Skip to main content
Log in

Zr6O4(OH)4 Based Metal-Organic Frameworks for the Enhanced Chemiresistive Sensing of Ethanol

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Because of their special qualities, metal-organic frameworks, or MOFs, have drawn a lot of interest for their potential in chemiresistive ethanol sensing. Three distinct MOF materials Zr6O4(OH)4(TPA-NH2)6, Zr6O4(OH)4TPA6, and Zr6O4(OH)4NDCA6 were thoroughly examined and fabricated in this work to determine which was most appropriate for use in ethanol sensing applications. According to Tauc plot analysis, Zr6O4(OH)4(TPA-NH2)6 had the lowest optical band gap energy, 3.79 eV. FTIR spectroscopy further showed the various vibrational modes in each MOF, with Zr6O4(OH)4(TPA-NH2)6, exhibiting peculiar absorption peaks at 488 and 767 cm− 1. Dynamic light scattering provided information on Zr6O4(OH)4(TPA-NH2)6 particle size distribution. Moreover, Zr6O4(OH)4(TPA-NH2)6 demonstrated remarkable sensitivity in chemiresistive ethanol sensing, as it continuously had the strongest sensor response at various ethanol concentrations. Zr6O4(OH)4(TPA-NH2)6 was found to have the lowest limit of detection (8.69 ppm) in LOD study, indicating that it is very sensitive to ethanol. Zr6O4(OH)4(TPA-NH2)6 was shown to be the most selective for ethanol based on selectivity testing. Zr6O4(OH)4(TPA-NH2)6 exhibited the fastest response time and most effective recovery, as seen by their response and recovery times. These results offer important new understandings of the properties and functionality of MOFs for chemiresistive ethanol sensing, with Zr6O4(OH)4(TPA-NH2)6 showing great promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Hua, D. Kukkar, R.J. Brown, K.-H. Kim, Recent advances in the synthesis of and sensing applications for metal-organic framework-molecularly imprinted polymer (MOF-MIP) composites. Crit. Rev. Environ. Sci. Technol. 53(2), 258–289 (2023)

    Article  CAS  Google Scholar 

  2. P. Kumar, A. Deep, K.-H. Kim, Metal organic frameworks for sensing applications. TRAC Trends Anal. Chem. 73, 39–53 (2015)

    Article  CAS  Google Scholar 

  3. W. Yan, H. Xu, M. Ling, S. Zhou, T. Qiu, Y. Deng, Z. Zhao, E. Zhang, MOF-derived porous hollow Co3O4@ ZnO cages for high-performance MEMS trimethylamine sensors. ACS Sens. 6(7), 2613–2621 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. P. Nitha, A. Chandrasekhar, Marriage between metal organic frameworks/covalent organic frameworks and triboelectric nanogenerator for energy harvesting-a review. Mater. Today Energy. 37, 101393 (2023)

    Article  Google Scholar 

  5. H. Sohrabi, S. Ghasemzadeh, Z. Ghoreishi, M.R. Majidi, Y. Yoon, N. Dizge, A. Khataee, Metal-organic frameworks (MOF)-based sensors for detection of toxic gases: a review of current status and future prospects. Mater. Chem. Phys. 299, 127512 (2023)

    Article  CAS  Google Scholar 

  6. A. Verma, B.C. Yadav, 2D/2D Nanostructured system based on WO3/WS2 for acetone sensor and breath analyzer. ACS Appl. Nano Mater. 6(7), 5493–5507 (2023)

    Article  CAS  Google Scholar 

  7. X. Peng, X. Wu, M. Zhang, H. Yuan, Metal–organic framework coated devices for gas sensing. ACS Sens. 8(7), 2471–2492 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. A. Vaidyanathan, M. Mathew, S. Radhakrishnan, C.S. Rout, B. Chakraborty, Theoretical insight on the biosensing applications of 2D materials. J. Phys. Chem. B 124(49), 11098–11122 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. P. Yadav, K. Sahay, A. Verma, D.K. Maurya, B.C. Yadav, Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects. Sustain. Energy Fuels. 7(16), 3796–3831 (2023)

    Article  CAS  Google Scholar 

  10. S. Duan, X. Wu, Z. Shu, A. Xiao, B. Chai, F. Pi, J. Wang, H. Dai, X. Liu, Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits. Microchem. J. 184, 108182 (2023)

    Article  CAS  Google Scholar 

  11. X. Chen, C. Liu, Z. Hua, N. Ma, Ferroelectric polarization and Oxygen Vacancy synergistically Induced an Ultrasensitive and fast humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces. 14(44), 49965–49974 (2022)

    Article  CAS  Google Scholar 

  12. K.F. Alshammari, A. Subaihi, A. Alharbi, M. Khalil, A. Shahat, Efficient dual sensor based on modified NH2-UiO-66 (zr) MOF for sensitive and rapid monitoring of ultra-trace arsenic (III) in aqueous media. J. Mol. Liq. 389, 122787 (2023)

    Article  CAS  Google Scholar 

  13. S. Zhou, J. Ji, T. Qiu, L. Wang, W. Ni, S. Li, W. Yan, M. Ling, C. Liang, Boosting selective H2 sensing of ZnO derived from ZIF-8 by rGO functionalization. Inorg. Chem. Front. 9(3), 599–606 (2022)

    Article  CAS  Google Scholar 

  14. P. Yadav, K. Sahay, M. Srivastava, A. Verma, B.C. Yadav, Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: a comprehensive review and roadmap. Front. Energy (2023) 1–24

  15. A. Verma, D. Yadav, A. Singh, M. Gupta, K.B. Thapa, B.C. Yadav, Detection of acetone via exhaling human breath for regular monitoring of Diabetes by low-cost sensing device based on perovskite BaSnO3 nanorods. Sens. Actuators B 361, 131708 (2022)

    Article  CAS  Google Scholar 

  16. R. Guo, H. Wang, R. Tian, D. Shi, H. Li, Y. Li, H. Liu, The enhanced ethanol sensing properties of CNT@ ZnSnO3 hollow boxes derived from Zn-MOF (ZIF-8). Ceram. Int. 46(6), 7065–7073 (2020)

    Article  CAS  Google Scholar 

  17. Y. Qin, X. Wang, J. Zang, Room-temperature ethanol sensor based on ZIF-67 modified silicon nanowires with expanded detection range and enhanced moisture resistance. Chem. Phys. Lett. 765, 138302 (2021)

    Article  CAS  Google Scholar 

  18. D.K. Sannes, S. Øien-Ødegaard, E. Aunan, A. Nova, U. Olsbye, Quantification of linker defects in UiO-type metal–organic frameworks. Chem. Mater. 35(10), 3793–3800 (2023)

    Article  CAS  Google Scholar 

  19. R. Wadhwa, A. Kumar, R. Sarkar, P.P. Mohanty, D. Kumar, S. Deswal, P. Kumar, R. Ahuja, S. Chakraborty, M. Kumar, Pt nanoparticles on vertically aligned large-area MoS2 flakes for Selective H2 sensing at Room temperature. ACS Appl. Nano Mater. 6(4), 2527–2537 (2023)

    Article  CAS  Google Scholar 

  20. A. Dhakshinamoorthy, S. Navalón, A. Primo, H. García, Selective gas-phase hydrogenation of CO2 to methanol catalysed by Metal‐Organic frameworks. Angew. Chem. e202311241 (2023). https://doi.org/10.1002/ange.202311241

  21. S. Ma, J. Xu, S. Sohrabi, C.A. J.J.J.o.M, Zhang, Metal-organic gels and their derived materials for electrochemical applications. J. Mater. Chem. A 11, 11572–11606 (2023)

    Article  CAS  Google Scholar 

  22. X. Zhang, J. Xu, J. Zhong, L. Zhong, Z. Mai, D. Sun, H. Zhai, A novel fluorescence sensor for sensitive detection of zearalenone using a polyvinylpyrrolidone-modified zr (IV)-based metal-organic framework. Sens. Actuators B 395, 134516 (2023)

    Article  CAS  Google Scholar 

  23. A. Singh, A. Singh, S. Lee, H. Bae, T. Hussain, H. Lee, Density functional theory study on sensing and dielectric properties of arsenic trisulfide nanosheets for detecting volatile organic compounds. ACS Appl. Nano Mater. 4(5), 5444–5453 (2021)

    Article  CAS  Google Scholar 

  24. V. Chaudhary, S. Rustagi, A. Kaushik, Bio-derived smart nanostructures for efficient biosensors. Curr. Opin. Green Sustainable Chem. 42, 100817 (2023)

    Article  Google Scholar 

  25. N. Ingle, P. Sayyad, M. Deshmukh, G. Bodkhe, M. Mahadik, T. Al-Gahouari, S. Shirsat, M.D. Shirsat, A chemiresistive gas sensor for sensitive detection of SO2 employing Ni-MOF modified–OH-SWNTs and–OH-MWNTs. Appl. Phys. A 127, 1–10 (2021)

    Article  Google Scholar 

  26. I. Stassen, J.-H. Dou, C. Hendon, M. Dincă, Chemiresistive sensing of ambient CO2 by an autogenously hydrated Cu3(hexaiminobenzene)2 framework. ACS Cent. Sci. 5(8), 1425–1431 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.E. DMello, N.G. Sundaram, S.B. Kalidindi, Assembly of ZIF-67 metal–Organic Framework over Tin Oxide nanoparticles for synergistic chemiresistive CO2 gas sensing, Chemistry–A. Eur. J. 24(37), 9220–9223 (2018)

    Article  CAS  Google Scholar 

  28. K. Li, X. Chang, X. Qiao, S. Yu, X. Li, F. Xia, Q. Xue, Bimetallic metal–organic frameworks derived hierarchical flower-like Zn-doped Co3O4 for enhanced acetone sensing properties. Appl. Surf. Sci. 565, 150520 (2021)

    Article  CAS  Google Scholar 

  29. W.-T. Koo, S. Yu, S.-J. Choi, J.-S. Jang, J.Y. Cheong, I.-D. Kim, Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS Appl. Mater. Interfaces. 9(9), 8201–8210 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. A. Sharma, K. Karuppasamy, D. Vikraman, Y. Cho, K. Adaikalam, J.G. Korvink, H.-S. Kim, B. Sharma, Metal organic framework-derived ZnO@ GC nanoarchitecture as an effective hydrogen gas sensor with improved selectivity and gas response. ACS Appl. Mater. Interfaces. 14(39), 44516–44526 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. T.L.H. Doan, J.-Y. Kim, J.-H. Lee, L.H.T. Nguyen, Y.T. Dang, K.-B.T. Bui, A.T.T. Pham, A. Mirzaei, T.B. Phan, S.S. Kim, Preparation of n-ZnO/p-Co3O4 heterojunctions from zeolitic imidazolate frameworks (ZIF-8/ZIF-67) for sensing low ethanol concentrations. Sens. Actuators B 348, 130684 (2021)

    Article  CAS  Google Scholar 

  32. Y.-M. Jo, K. Lim, J.W. Yoon, Y.K. Jo, Y.K. Moon, H.W. Jang, J.-H. Lee, Visible-light-activated type II heterojunction in Cu3 (hexahydroxytriphenylene)2/Fe2O3 hybrids for reversible NO2 sensing: critical role of π–π* transition. ACS Cent. Sci. 7(7), 1176–1182 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Chen, Y. Song, W. Liu, H. Dong, D. Wang, J. Liu, Q. Liu, X. Chen, MOF-based nanoscale pt catalyst decorated SnO2 porous nanofibers for acetone gas detection. J. Alloys Compd. 893, 162322 (2022)

    Article  CAS  Google Scholar 

  34. L. Guo, F. Chen, N. Xie, X. Kou, C. Wang, Y. Sun, F. Liu, X. Liang, Y. Gao, X. Yan, Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B Chem. 272, 185–194 (2018)

    Article  CAS  Google Scholar 

  35. K. Karuppasamy, A. Sharma, D. Vikraman, Y.-A. Lee, P. Sivakumar, J.G. Korvink, H.-S. Kim, B. Sharma, Room-temperature response of MOF-derived Pd@ PdO core shell/γ-Fe2O3 microcubes decorated graphitic carbon based ultrasensitive and highly selective H2 gas sensor. J. Colloid Interface Sci. 652, 692–704 (2023)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Chang, M. Chen, Z. Fu, R. Lu, Y. Gao, F. Chen, H. Li, N.F. de Rooij, Y.-K. Lee, Y. Wang, Building porphyrin-based MOFs on MXenes for ppb-level NO sensing. J. Mater. Chem. A 11(13), 6966–6977 (2023)

    Article  CAS  Google Scholar 

  37. Y. Cui, W. Jiang, S. Liang, L. Zhu, Y. Yao, MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties. J. Mater. Chem. A 6(30), 14930–14938 (2018)

    Article  CAS  Google Scholar 

  38. R.K. Baimuratova, A.V. Andreeva, I.E. Uflyand, G.V. Shilov, F.U. Bukharbayeva, A.K. Zharmagambetova, G.I. Dzhardimalieva, Synthesis and catalytic activity in the hydrogenation reaction of palladium-doped metal-organic frameworks based on oxo-centered zirconium complexes. J. Compos. Sci. 6(10), 299 (2022)

    Article  CAS  Google Scholar 

  39. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, QUALX: a computer program for qualitative analysis using powder diffraction data. J. Appl. Crystallogr. 41(4), 815–817 (2008)

    Article  ADS  CAS  Google Scholar 

  40. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, QUALX2. 0: a qualitative phase analysis software using the freely available database POW_COD. J. Appl. Crystallogr. 48(2), 598–603 (2015)

    Article  ADS  CAS  Google Scholar 

  41. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46(4), 1231–1235 (2013)

    Article  ADS  CAS  Google Scholar 

  42. Z.A. ALOthman, A review: fundamental aspects of silicate mesoporous materials. Materials. 5(12), 2874–2902 (2012)

    Article  ADS  CAS  PubMed Central  Google Scholar 

  43. M. Nemiwal, D. Kumar, Metal organic frameworks as water harvester from air: hydrolytic stability and adsorption isotherms. Inorg. Chem. Commun. 122, 108279 (2020)

    Article  CAS  Google Scholar 

  44. C. Larabi, C. E.A.J.E.J.o.I, Quadrelli, Titration of Zr3 (µ-OH) Hydroxy groups at the cornerstones of Bulk MOF UiO‐67,[Zr6O4(OH)4 (biphenyldicarboxylate) 6], and their reaction with [AuMe (PMe3)]. Eur. J. Inorg. Chem. 2012, 3014–3022 (2012)

    Article  CAS  Google Scholar 

  45. S.-J. Yin, H. Chen, S. Wang, Y. Wang, F.-Q. Yang, Preparation of core-shell MOF@ MOF nanoparticle as matrix for the analysis of rhubarb anthraquinones in plasma by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Heliyon 9(5) (2023)

  46. M. Perfecto-Irigaray, G. Beobide, O. Castillo, I. da Silva, D. García-Lojo, A. Luque, A. Mendia, Pérez-Yáñez, [Zr6O4(OH)4(benzene-1,4-dicarboxylato)6]n: a hexagonal polymorph of UiO-66. Chem. Commun. 55(42), 5954–5957 (2019)

    Article  CAS  Google Scholar 

  47. Z. Zhu, Y.-S. Lin, R.-J. Wu, U. Kumar, C.-H. Wu, A Rapid Ppb Level Room temperature NO2 sensing by using BiVO4–CeO2 composites with DFT interpretation. ACS Appl. Nano Mater. 6(20), 18803–18811 (2023)

    Article  CAS  Google Scholar 

  48. M. Gupta, A. Verma, P. Chaudhary, B.C. Yadav, MXene and their integrated composite-based acetone sensors for monitoring of Diabetes. Mater. Adv. 4, 3989–4010 (2023)

    Article  CAS  Google Scholar 

  49. A. Sharma, P. Chaudhary, A. Verma, R.K. Tripathi, R. Kumar, G. Gupta, D.P. Mondal, B.C. Yadav, A.K. Srivastava, Novel 3D lightweight carbon foam for ultrasensitive humidity sensor operated at different frequencies. ECS J. Solid State Sci. Technol. 12(2), 027004 (2023)

    Article  ADS  Google Scholar 

  50. A. Verma, A. Singh, P. Chaudhary, R.K. Tripathi, B.C. Yadav, P. Chauhan, D. Kumar, Photocurrent conversion capability of a 2D WS2-polyvinyl alcohol matrix and its DFT-based charge carrier dynamics analysis. Mater. Adv. 4(4), 1062–1074 (2023)

    Article  CAS  Google Scholar 

  51. H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Metal-organic framework based gas sensors. Adv. Sci. 9(6), 2104374 (2022)

    Article  CAS  Google Scholar 

  52. A. Verma, P. Chaudhary, A. Singh, R.K. Tripathi, B.C. Yadav, P. Chauhan, Photomultiplicative and High External Quantum efficient energy Conversion device for Paper Electronics. ACS Appl. Electron. Mater. 5(9), 4899–4914 (2023)

    Article  CAS  Google Scholar 

  53. Y.-M. Jo, Y.K. Jo, J.-H. Lee, H.W. Jang, I.-S. Hwang, D.J. Yoo, MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities, Advanced Materials. 35(43), 2206842 (2023)

    CAS  Google Scholar 

  54. A. Verma, B.C. Yadav, Development and integration of a hierarchical Pd/WO3 acetone-sensing device for real-time exhaled breath monitoring with disposable face mask. J. Hazard. Mater. 463, 132872 (2024)

    Article  CAS  PubMed  Google Scholar 

  55. W.-T. Koo, J.-S. Jang, I.-D. Kim, Metal-organic frameworks for chemiresistive sensors. Chem. 5(8), 1938–1963 (2019)

    Article  CAS  Google Scholar 

  56. N. Garg, A. Deep, A.L. Sharma, Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coord. Chem. Rev. 445, 214073 (2021)

    Article  CAS  Google Scholar 

  57. J.F. Olorunyomi, S.T. Geh, R.A. Caruso, C.M. Doherty, Metal–organic frameworks for chemical sensing devices. Mater. Horiz. 8(9), 2387–2419 (2021)

    Article  CAS  PubMed  Google Scholar 

  58. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112(2), 1105–1125 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

First and second authors equally contributed in this work. Authors are highly thankful to USIC, BBAU, Lucknow for providing the characterization facilities. Mr. Arpit Verma and corresponding author acknowledge to Uttar Pradesh Council of Science and Technology, Lucknow for financial assistance in the form of Project Ref: CST/D-2290. This work was also supported by as part of State Task No. FFSG-2024-0010 using the equipment of the Multi-User Analytical Center of FRC PCP and MC RAS.

Author information

Authors and Affiliations

Authors

Contributions

A.K.S.: Conceptualization, Methodology, Investigation, Writing - Original Draft, V.V.: Data curation, Formal analysis, Visualization, Writing – Review, P.G.: Validation, Formal analysis, Writing - Original Draft, A.R.: Review & Editing, A.V.: Visualization, Data curation, Writing - Original Draft, A.S.: Methodology, Validation, B.C.Y.: Supervision, Project administration, Validation, R.K.B.: Synthesis, Conceptualization, Visualization, A.V.A.: Synthesis, Conceptualization, Visualization, G.I. D.: Resources, Funding acquisition.

Corresponding author

Correspondence to Bal Chandra Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A.K., Verma, V., Goriyan, P. et al. Zr6O4(OH)4 Based Metal-Organic Frameworks for the Enhanced Chemiresistive Sensing of Ethanol. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02986-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02986-1

Keywords

Navigation