Skip to main content
Log in

Synthesis of Fluorescent Cu-MOF and Ni-MOF Sensors for Selective and Sensitive Detection of Arginine and Hydrogen Sulfide

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, we have synthesized a vinyl functional group containing 4, 4′-bis (1, 3-diphenoxypropane) diacrylic acid organic linker, which was used in construction of novel Cu-MOF (1) and Ni-MOF (2) through a solvothermal method. The synthesized MOFs were characterized by FT-IR, PXRD, TGA, FE-SEM, and EDAX. In particular, Cu-MOF can be used as a bifunctional sensor for detection of arginine and H2S by a fluorescence “turn-off” mechanism with low limit of detection of 0.5 µM and 3.1 µM with quick response time (< 1 min) respectively. On the other hand, Ni-MOF demonstrated to have capability for selective detection of H2S only by quenching mechanism in the presence of various other biologically important analytes. The limit of detection was found to be 3.0 µM and showed rapid quenching in fluorescence intensity (< 1 min).

Graphical Abstract

Organic linker 4,4′-bis(1,3-diphenoxypropane) diacrylic acid was used to construct Cu-MOF and Ni-MOF, which are showing good selectivity and sensitivity towards arginine and H2S using turn- off quenching mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data Availability

Authors declare that the data supporting the findings of this research are available within the article.

References

  1. C. Han, H. Li, Small 4, 1344 (2008). https://doi.org/10.1002/smll.200701221

    Article  CAS  PubMed  Google Scholar 

  2. J. Dong, X. Du Zhang, X.F. Xie, F. Guo, W.Y. Sun, RSC Adv. 10, 37449 (2020). https://doi.org/10.1039/d0ra06879a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Dong, X.Y. Dao, X.Y. Zhang, X. Du Zhang, W.Y. Sun, Molecules (2021). https://doi.org/10.3390/molecules26175336

    Article  PubMed  PubMed Central  Google Scholar 

  4. R. Du, D. Yang, G. Jiang, Y. Song, X. Yin, Sensors 20, 1 (2020). https://doi.org/10.3390/s20051330

    Article  CAS  Google Scholar 

  5. H. Liu, M. Li, L. Jiang, F. Shen, Y. Hu, X. Ren, SAA 173, 105 (2017). https://doi.org/10.1016/j.saa.2016.08.057

    Article  CAS  Google Scholar 

  6. N. Verma, A.K. Singh, M. Singh, Biochem. Biophys. Rep. 12, 228 (2017). https://doi.org/10.1016/j.bbrep.2017.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  7. L. Wang, B. Tu, W. Xu, Y. Fu, Y. Zheng, Inorg. Chem. 59, 5004 (2020). https://doi.org/10.1021/acs.inorgchem.0c00236

    Article  CAS  PubMed  Google Scholar 

  8. R. Cui, Y. Wan, G. Ji, Z. Liu, Analyst 144, 5875 (2019). https://doi.org/10.1039/C9AN01204D

    Article  CAS  PubMed  Google Scholar 

  9. J. Wang, Y. Liu, M. Jiang, Y. Li, L. Xia, P. Wu, Chem. Commun. 54, 1004 (2018). https://doi.org/10.1039/C7CC08414E

    Article  CAS  Google Scholar 

  10. C.L. Li, P.Z. Xia, Y.X. He, H. Zhou, B. Zhao, D.W. Zhang, J. Mol. Struct. 1229, 129613 (2021). https://doi.org/10.1016/j.molstruc.2020.129613

    Article  CAS  Google Scholar 

  11. L.A. Montoya, M.D. Pluth, Anal. Chem. 86, 6032 (2014). https://doi.org/10.1021/ac501193r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Nandi, S. Banesh, V. Trivedi, S. Biswas, Analyst. 143, 1482 (2018). https://doi.org/10.1039/C7AN01964E

    Article  CAS  PubMed  Google Scholar 

  13. R. Wang, Physiol. Rev. 92, 791 (2012). https://doi.org/10.1152/physrev.00017.2011

    Article  CAS  PubMed  Google Scholar 

  14. G.K. Kolluru, S.C. Bir, S. Yuan, X. Shen, S. Pardue, R. Wang, C.G. Kevil, Cardiovasc. Res. 107, 590 (2015). https://doi.org/10.1093/cvr/cvv198

    Article  PubMed  PubMed Central  Google Scholar 

  15. C. Gogoi, A. Kumar, S.K. Mostakim, S. Biswas, Microporous Mesoporous Mater. 311, 110725 (2021). https://doi.org/10.1016/j.micromeso.2020.110725

    Article  CAS  Google Scholar 

  16. P. Kamoun, M.-C. Belardinelli, A. Chabli, K. Lallouchi, B. Chadefaux-Vekemans, Am. J. Med. Genet. 116A, 310 (2003). https://doi.org/10.1002/ajmg.a.10847

    Article  PubMed  Google Scholar 

  17. C. Szabo, C. Coletta, C. Chao, K. Módis, B. Szczesny, A. Papapetropoulos, M.R. Hellmich, Proc. Natl. Acad. Sci. U.S.A. 110, 12474 (2013). https://doi.org/10.1073/pnas.1306241110

    Article  PubMed  PubMed Central  Google Scholar 

  18. W. Yang, G. Yang, X. Jia, L. Wu, R. Wang, J. Physiol. 569, 519 (2005). https://doi.org/10.1113/jphysiol.2005.097642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Eto, T. Asada, K. Arima, T. Makifuchi, H. Kimura, Biochem. Biophys. Res. Commun. 293, 1485 (2002). https://doi.org/10.1016/S0006-291X(02)00422-9

    Article  CAS  PubMed  Google Scholar 

  20. S. Rani, S. Kapoor, B. Sharma, S. Kumar, R. Malhotra, N. Dilbaghi, J. Alloys Compd. 816, 152509 (2020). https://doi.org/10.1016/j.jallcom.2019.152509

    Article  CAS  Google Scholar 

  21. R. Dalapati, S.N. Balaji, V. Trivedi, L. Khamari, S. Biswas, Sensors Actuators B Chem. 245, 1039 (2017). https://doi.org/10.1016/j.snb.2017.02.005

    Article  CAS  Google Scholar 

  22. S.S. Nagarkar, T. Saha, A.V. Desai, P. Talukdar, S.K. Ghosh, Sci. Rep. 4, 7053 (2015). https://doi.org/10.1038/srep07053

    Article  CAS  Google Scholar 

  23. M. Albakour, M. Zeyrek Ongun, S.Z. Topal, A.G. Gürek, New J. Chem. 44, 6285 (2020). https://doi.org/10.1039/D0NJ00383B

    Article  CAS  Google Scholar 

  24. J.R. Long, L.J. Murray, M. Dinca, Soc. Rev. 38, 1294 (2009). https://doi.org/10.1039/B802256A

    Article  Google Scholar 

  25. T.A. Makal, J.R. Li, W. Lua, H.S. Zhou, Chem. Soc. Rev. 41, 7761 (2012). https://doi.org/10.1039/C2CS35251F

    Article  CAS  PubMed  Google Scholar 

  26. J. Della Rocca, D. Liu, W. Lin, Acc. Chem. Res. 44, 957 (2011). https://doi.org/10.1021/ar200028a

    Article  CAS  PubMed  Google Scholar 

  27. P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1232 (2012). https://doi.org/10.1021/cr200256v

    Article  CAS  PubMed  Google Scholar 

  28. J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450 (2009). https://doi.org/10.1039/B807080F

    Article  CAS  PubMed  Google Scholar 

  29. J. Zhang, A.V. Biradar, S. Pramanika, T.J. Emgea, T. Asefa, J. Li, Chem. Commun. 48, 6541 (2012). https://doi.org/10.1039/C2CC18127D

    Article  CAS  Google Scholar 

  30. N. Du, J. Song, S. Li, Y.X. Chi, F.Y. Bai, Y.H. Xing, A.C.S. Appl, Mater. Interfaces. 8, 28718 (2016). https://doi.org/10.1021/acsami.6b09456

    Article  CAS  Google Scholar 

  31. S. Nandi, H. Reinsch, S. Banesh, N. Stock, V. Trivedi, S. Biswas, Dalt. Trans. 46, 12856 (2017). https://doi.org/10.1016/j.micromeso.2019.109790

    Article  CAS  Google Scholar 

  32. X.F. Yang, H. Bin Zhu, M. Liu, Inorganica Chim Acta. 466, 410 (2017). https://doi.org/10.1016/j.ica.2017.06.067

    Article  CAS  Google Scholar 

  33. X. Zhang, Q. Hu, T. Xia, J. Zhang, Y. Yang, Y. Cui, B. Chen, G. Qian, A.C.S. Appl, Mater. Interfaces. 8, 32259 (2016). https://doi.org/10.1021/acsami.6b12118

    Article  CAS  Google Scholar 

  34. A. Buragohain, S. Biswas, CrystEngComm 18, 4374 (2016). https://doi.org/10.1039/C6CE00032K

    Article  CAS  Google Scholar 

  35. R. Dalapati, S. Nandi, S. Biswas, Dalt. Trans. 49, 8684 (2020). https://doi.org/10.1039/D0DT00837K

    Article  CAS  Google Scholar 

  36. Y. Li, X. Zhang, L. Zhang, K. Jiang, Y. Cui, Y. Yang, G. Qian, J. Solid State Chem. 255, 97 (2017). https://doi.org/10.1016/j.jssc.2017.07.027

    Article  CAS  Google Scholar 

  37. Q. Lin, W. Xie, Z. Zong, Z. Liu, Y. Sun, L. Liang, New J. Chem. 45, 7382 (2021). https://doi.org/10.1039/D1NJ00863C

    Article  CAS  Google Scholar 

  38. S. Nandi, H. Reinsch, S. Biswas, Microporous Mesoporous Mater. 293, 109790 (2019). https://doi.org/10.1016/j.micromeso.2019.109790

    Article  CAS  Google Scholar 

  39. H. Yu, C. Liu, Y. Li, A. Huang, A.C.S. Appl, Mater. Interfaces. 11, 41972 (2019). https://doi.org/10.1021/acsami.9b16529

    Article  CAS  Google Scholar 

  40. X. Han, J. Liu, K. Yu, Y. Lu, W. Xiang, D. Zhao, Y. He, Inorg. Chem. 61, 5067 (2022). https://doi.org/10.1021/acs.inorgchem.2c00019

    Article  CAS  PubMed  Google Scholar 

  41. M. Hajibeygi, M. Shabanian, Des. Monomers Polym. 16, 222 (2013). https://doi.org/10.1080/15685551.2012.725212

    Article  CAS  Google Scholar 

  42. W.J.P. Neish, Recl. Des Trav. Chim. Des Pays Bas 66, 433 (1947). https://doi.org/10.1002/recl.19470660708

    Article  CAS  Google Scholar 

  43. K. Balaji, S.C. Murugavel, J. Polym. Sci. Part A 49, 4809 (2011). https://doi.org/10.1002/pola.24928AL

    Article  CAS  Google Scholar 

  44. R. Nivetha, A. Sajeev, A. Mary Paul, K. Gothandapani, S. Gnanasekar, G. Jacob, R. Sellappan, V. Raghavan, N. Krishna Chandar, S. Pitchaimuthu, S.K. Jeong, A. Nirmala, Mater. Res. Express 7, 114001 (2020). https://doi.org/10.1088/2053-1591/abb056

    Article  CAS  Google Scholar 

  45. L. Sondermann, W. Jiang, M. Shviro, A. Spieß, D. Woschko, L. Rademacher, C. Janiak, Molecules 27, 1 (2022). https://doi.org/10.3390/molecules27041241

    Article  CAS  Google Scholar 

  46. B. Venu, V. Shirisha, B. Vishali, G. Naresh, R. Kishore, I. Sreedhar, A. Venugopal, New J. Chem. 44, 5972 (2020). https://doi.org/10.1039/C9NJ05997K

    Article  CAS  Google Scholar 

  47. Z. Neisi, Z. Ansari-Asl, A.S. Dezfuli, J. Inorg. Organomet. Polym. Mater. 29, 1838 (2019). https://doi.org/10.1007/s10904-019-01145-9

    Article  CAS  Google Scholar 

  48. P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, J. Colloid Interface Sci. 518, 57 (2018). https://doi.org/10.1016/j.jcis.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  49. K.S. Nirmal, S.K. Poonam, Tripathi, AIP Conf. Proc. 2265, 5 (2020). https://doi.org/10.1063/5.0017162

    Article  CAS  Google Scholar 

  50. F. Israr, D. Chun, Y. Kim, D.K. Kim, Ultrason. Sonochem. 31, 93 (2016). https://doi.org/10.1016/j.ultsonch.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  51. Z. Yao, Z. Li, H. Liu, Y. Liu, Y. Sun, Z. Li, Anal. Methods. 11, 1697 (2019). https://doi.org/10.1039/c9ay00172g

    Article  CAS  Google Scholar 

  52. A.N. Pour, M. Gholizadeh, M. Housaindokht, F. Moosavi, H. Monhemi, Appl Phys A 123, 269 (2017). https://doi.org/10.1007/s00339-017-0876-7

    Article  CAS  Google Scholar 

  53. Y. Wu, X. Song, S. Li, J. Zhang, X. Yang, P. Shen, L. Gao, R. Wei, J. Zhang, G. Xiao, J. Ind. Eng. Chem. 58, 296 (2018). https://doi.org/10.1016/j.jiec.2017.09.040

    Article  CAS  Google Scholar 

  54. S. Jabarian, A. Ghaffarinejad, J. Inorg. Organomet. Polym. Mater. 29, 1565 (2019). https://doi.org/10.1007/s10904-019-01120-4

    Article  CAS  Google Scholar 

  55. Y.B.N. Tran, P.T.K. Nguyen, New J. Chem. 45, 2090 (2021). https://doi.org/10.1039/d0nj05685e

    Article  CAS  Google Scholar 

  56. M.Z. Wu, J.Y. Shi, P.Y. Chen, L. Tian, New J. Chem. 43, 10575 (2019). https://doi.org/10.1039/c9nj02214g

    Article  CAS  Google Scholar 

  57. H.Q. Yin, X.Y. Wang, X.B. Yin, J. Am. Chem. Soc. 141, 15166 (2019). https://doi.org/10.1021/jacs.9b06755

    Article  CAS  PubMed  Google Scholar 

  58. A. Mohammadi, S. Khoshsoroor, B. Khalili, J. Photochem. Photobiol. A Chem. 384, 112035 (2019). https://doi.org/10.1016/j.jphotochem.2019.112035

    Article  CAS  Google Scholar 

  59. A.L. Mirajkar, L.L. Mittapelli, G.N. Nawale, K.R. Gore, Sensors Actuators B Chem. 265, 257–263 (2018). https://doi.org/10.1016/j.snb.2018.03.068

    Article  CAS  Google Scholar 

  60. P. Kumar, V. Kumar, R. Gupta, RSC Adv. 7, 7734 (2017). https://doi.org/10.1039/c8dt01351a

    Article  CAS  Google Scholar 

  61. L. Mohammadi, H.R. Khavasi, Inorg. Chem 59, 13091–13097 (2020). https://doi.org/10.1021/acs.inorgchem.0c01045

    Article  CAS  PubMed  Google Scholar 

  62. X.-L. Yang, C. Ding, R.-F. Guan, W.-H. Zhang, Y. Feng, M.-H. Xie, Hazard Mater 403, 123698 (2021). https://doi.org/10.1016/j.jhazmat.2020.123698

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Mahatma Jyotiba Research Fellowship (MJRF) for the financial support. MNIT-Jaipur for FE-SEM, EDS, BET. Department of Material Science and Chemical Engineering-IITB for PXRD.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

CSG: conceptualization, methodology, design, synthesis, and characterization of MOF, and preparation of manuscript: SDP: supervision, conceptualization, methodology, design, characterization of compounds, supervision, writing, reviewing and editing.

Corresponding author

Correspondence to Suresh D. Pawar.

Ethics declarations

Conflict of interest

Authors declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8789 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gujja, C.S., Pawar, S.D. Synthesis of Fluorescent Cu-MOF and Ni-MOF Sensors for Selective and Sensitive Detection of Arginine and Hydrogen Sulfide. J Inorg Organomet Polym 33, 2636–2646 (2023). https://doi.org/10.1007/s10904-023-02669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02669-x

Keywords

Navigation