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Abstract
In this work, zinc oxide (ZnO) was produced using extracts of Thymus (Z), Hibiscus rosa-sinensis (K), and Daucus carota 
(G). Furthermore, sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) were combined with ZnO to form 
three novel nanocomposites. X-ray diffraction (XRD) was used for the structural analysis, where the semicrystalline nature 
of the (CMC/PVA)/ZnO nanocomposites was confirmed. The characteristics functional groups that arose inside the prepared 
samples were identified by Fourier transform infrared spectroscopy (FTIR). Evidence for the successful preparation of the 
pure ZnO particles and their nanocomposites was carried out using a transmission electron microscope (TEM). The ZnO 
nanoparticles are mostly spherical, irregularly distributed, and have radii ranging from 10 to 40 nm. Their anti-bacterial 
activity was studied against B. subtilis, E. coli, and Candida albicans. The inhibition zones of all the prepared samples against 
E. coli were 0, 19, 31, and 23 mm for PVA/CMC blend, PVA/CMC/ZnO (Z) (PCZ-Z), PVA/CMC/ZnO (K) (PCZ-K), and 
PVA/CMC/ZnO (G) (PCZ-G), respectively, compared to the streptomycin control Gram-positive standard with inhibition 
zone (34 mm). On the other hand, the inhibition zones of the prepared samples against B. subtilis were equal to 0, 26, 33, 
and 28 mm for CMC/PVA, PCZ-Z, PCZ-K, and PCZ-G, respectively. Based on these results, the PCZ-K sample is the most 
effective at resisting E. coli (91.17%) and B. subtilis (94.28%). These nanocomposites do not have harmful chemicals, mak-
ing them strong candidates for use in biological applications.
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1 Introduction

Nano-sized inorganic composites have exhibited extraordi-
nary antibacterial activity at extremely low concentrations 
because of their exceptional physiochemical properties and 
high surface area-to-volume ratio [1, 2]. Moreover, these 

compounds are thermally stable at high pressure. Some of 
them are considered non-toxic and even contain vital miner-
als for the human body. Metal and metal oxide nanoparti-
cles (NPs), like gold, copper, silver, zinc oxide, manganese 
oxide, and titanium oxide, were identified as the most anti-
bacterial inorganic materials [3–5].

As nanotechnology advances, more and more attention is 
being paid to how nanomaterials affect bacteria and fungi, 
with the hope that this may lead to improved hygiene in 
public places [6]. One of the non-toxic nanomaterials that 
might be employed in biomedical applications is zinc oxide 
nanoparticles (ZnO NPs). They are effective against cancer 
and microbes [7].

Among the many benefits of ZnO are its good electro-
chemical features, wide absorption spectrum, and strong 
chemical stability. In addition to being beneficial for elec-
trical and optoelectronic applications like storage devices 
and solar cells [8], its large energy bandwidth and thermal 
stability also qualify it as a semiconductor. Likewise, their 
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ability to absorb UV rays makes them an essential ingre-
dient in enzymes, cosmetics, toothpaste, and sunscreens 
[9]. ZnO has piezoelectric and pyroelectric properties that 
make it useful for the development of sensors, generators, 
and photocatalysis. It has low toxicity and biocompatibil-
ity, facilitating its applications in biomedicine [10].

Several studies [11–13] have reported on the different 
techniques to synthesize ZnO nanoparticles and its modifi-
cation over different blends. They also studied its biologi-
cal activities, as reported by Nadeem et al. [11], where 
they studied the antimicrobial activity of iron (Fe) and 
cobalt (Co) co-doped ZnO nanoparticles and displayed an 
enhancement in antibacterial activity by co-doping with 
iron and cobalt. Moreover, Mukhtar et al. [12] reported 
the photocatalytic properties of titanium, vanadium, and 
yttrium oxides and showed an increase in photocatalytic 
activity by mixing them together, as well as displayed 
excellent antibacterial activities.

To avoid agglomeration and control excessive growth 
of nanoparticles, nanomaterials synthesized from organo-
metallic precursors need the application of a capping agent 
that works as a stabilizer and makes colloids more stable 
[14]. The two most high-performance stabilizing agents 
are carboxymethyl cellulose (CMC) and polyvinyl alcohol 
(PVA) [15]. Hydrolysis of polyvinyl acetate yields PVA, 
a synthetic polymer with excellent biodegradability, bio-
compatibility, and hydrophilicity [16]. PVA is employed in 
different biological applications, where its hydrogels have 
significant potential for use in artificial grafts and tissue 
engineering. PVA is a low-cost, lightweight polymer with 
high mechanical and optical qualities that is also environ-
mentally friendly. It can also be utilized in various indus-
trial applications due to its superior chemical and physical 
qualities, such as textile sizing, solar cells, adhesives, soil 
stabilizers, surgical, optoelectronic, and biological devices 
[17, 18]. Additionally, one of the most important cellulose 
derivatives is carboxymethyl cellulose (CMC) which is 
treated with chloroacetic acid  (ClCH2CO2H). It's utilized 
in the cosmetic, paints, pharmaceutics, mineral process-
ing, food, textiles, ceramic foam, biodegradable films, and 
paper industries as a thickener, binder, suspension stabi-
lizer (stabilizing agent), and water-retaining agent [19].

In the current study, zinc oxide (ZnO) nanoparticles 
were synthesized from Thymus (Z), Hibiscus rosa-sinen-
sis (K), and Daucus carota (G) extracts. After that, ZnO 
NPs were combined with sodium carboxymethyl cellulose 
(CMC) and polyvinyl alcohol (PVA) to form three novel 
nanocomposites. The synthesized nanocomposites were 
investigated by different techniques, including TEM, XRD, 
UV–Vis, and FT-IR spectroscopy. The antibacterial activ-
ity of the prepared composites was studied against B. sub-
tilis, E. coli, and Candida albicans.

2  Materials and Methods

2.1  Materials

Polyvinyl alcohol (PVA) purchased from Acros (USA) has 
a molecular weight ≈ 6000 g/mol. Carboxymethyl cellu-
lose (CMC) supplied by Lanxess (Germany), in combina-
tion with Zinc acetate dehydrate (Zn(CH3COO)2·2H2O) 
as a precursor supplied by the Sigma Aldrich company.

2.2  Synthesis of ZnO Nanoparticles

Thyme (Z), Hibiscus rosa-sinensis (K), and Daucus carota 
(G) were rinsed using tap water, followed by double-distilled 
water and ethanol to remove any trace of contamination. The 
plants were then dried at room temperature. About 10 g of each 
plant was ground in an agate mortar. The obtained powder was 
mixed separately with 250 mL of distilled water adjusted at 
about 75 °C for 1 h. The mixture was then filtered using What-
man filter paper No. 1. The obtained solutions were stored in 
dark bottles at 4 °C. A 0.01 M aqueous solution of zinc acetate 
dihydrate (Zn(CH3COO)2·2H2O) was prepared and stored as 
a stock solution. 95 mL of the stoke solution was mixed with 
5 mL of the plant extract, where each plant was in a sepa-
rate flask. The resulting mixture was incubated for one hour 
at 75 °C while being continuously shaken at 150 rpm. As a 
result, bio-reduced salt ultimately settled in the flasks in the 
form of white precipitate. The supernatant was poured, and 
the precipitate was centrifuged and washed four times with 
deionized water to assure the elimination of contaminants [20].

2.2.1  Preparation of the Polymer Blend and Its 
Nanocomposites

The preparation steps are shown in Scheme 1. In brief, 2 g of 
both polyvinyl alcohol (PVA) and carboxymethyl cellulose 
(CMC) were vigorously stirred individually in deionized 
water. The obtained solutions were then mixed for about 
3 h until a clear, bubble-free mixture solution was obtained. 
The final mixture was then divided into four equal parts. 
The same quantity of ZnO nanoparticles synthesized from 
different plants, viz., thyme, rosella (Hibiscus sabdariffa), 
and carrots designated as shown in Table 1, was mixed with 
the blend sample using a sonicator homogenizer. Samples 
were then incubated at 50 °C for 2 days after being decanted 
into plastic Petri dishes to ensure evaporation of any solvent 
traces. The final product was in the form of thin films that 
were stored in a vacuum desecrator until use. Table 1 shows 
the symbols for the samples that were synthesized with dif-
ferent ZnO nanoparticles made from different plants.
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Scheme 1  The preparation steps of the (CMC/PVA)/ZnO nanocomposites
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2.3  Measurements

2.3.1  Characterization of Polymer Nanocomposites

The molecular interaction between the nanocomposite 
constituents is exhibited in Scheme 2. The crystallinity 
of the prepared nanocomposite samples was examined 
through an X-ray diffractometer (X'Pert PRO) with Cu 
Kα radiation at 30 kV and a wavelength of 0.15406 nm 
in room temperature. The structural features of all sam-
ples were investigated using a Fourier transform infrared 
(FTIR) spectrometer (Nicolet iS10) in the spectral region 
of 4000  cm−1 to 400  cm−1. The prepared composites were 
coated on copper grids (200 mesh) and inspected by 
HRTEM (JEM-2100) at 200 kV for transmission electron 
microscopic examination to examine the particle size and 
morphology of the prepared nanocomposites. The optical 
properties of the prepared composites were tested using a 
spectrophotometer (V/570 UV/VIS–NIR, JASCO, Japan) 
in the range of 200–1100 nm.

2.3.2  Evaluation of Antibacterial Activity

Usually, the antibacterial activities of the present composites 
were estimated by the disc diffusion technique using inocu-
lums consisting of  106 bacterial spreads on Mueller–Hinton 
agar plates [21]. The activities of Bacillus subtilis as Gram-
positive bacteria, Escherichia coli as Gram-negative bacte-
ria, and Candida albicans as fungi were examined for the 
synthesized samples by the qualitative technique. 20 mL of 
Mueller agar was placed into sterile petri dishes, allowed to 
harden, and then dried in the incubator. A total of roughly 
 106 cells were spread out on the agar plate using a sterilized 
glass rod, and the plate was then allowed to dry to a stand-
ard turbidity of 0.5 McFarland. The discs of samples were 
placed on top of agar plates that had been planted. The agar 
plates were incubated for one day at 37 °C. Each plate was 
tested after incubation. For each bacterium, positive control 
of streptomycin (100 mg/mL) is utilized. The disc’s diam-
eter as well as the diameter of the inhibition zones were 
measured. Zones are measured to the closest full millimeter 

Table 1  Sample composition 
and designation

Sample Symbol PVA (wt%) CMC (wt%) ZnO Source

PVA/CMC blend Pure blend 50 50 0.0
PVA/CMC/ZnO (Z) PCZ-Z 49.95 49.95 0.1 Thymus
PVA/CMC/ZnO (K) PCZ-K 49.95 49.95 0.1 Hibiscus rosa-sinensis
PVA/CMC/ZnO (G) PCZ-G 49.95 49.95 0.1 Daucus carota

Scheme 2  Molecular interac-
tion of PVA and CMC
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using calipers or a ruler placed on the back of the upright 
petri dish.

3  Results and Discussion

3.1  XRD Analysis

The XRD spectra of the CMC/PVA blend doped with ZnO-
NPs extracted from the three different plants are displayed 
in Fig. 1. For the pure PVA/CMC blend, the protuberant 
broad peak at 2θ ≈ 19.35° was ascribed to the semicrys-
talline nature of PVA [22] and the crystalline cellulosic 
structure [18]. The other peak, centering at 2θ ≈ 41.13°, 
indicates the presence of a representative semi-crystalline 
structure, suggesting that CMC interacted strongly with 
PVA [23]. The first broad peak has shifted with the addition 
of ZnO nanoparticles, confirming the efficacy and compat-
ibility of the ZnO-based filler in the polymer blend matrix. 
Some parameters, such as area under the main peaks  (AP), 
d-spacing, and the full width at half maximum (FWHM), 
were calculated and listed in Table 2. The average crystalline 
size  (Dcry) was determined by using Sherrer’s method that 
was previously discussed in detail in the literature [24–26]. 

From this table, it is observed that the broadness of the main 
peak had increased, which could be due to the lattice strain 
in the nanocomposites [27]. Further, the degree of crystal-
linity  (Xcry %) was calculated using the Hermans–Weidinger 
approach [24]. The decrease in  Xcry % indicates that the 
amorphous areas were distributed throughout the host matri-
ces, revealing that CMC/PVA/ZnO nanocomposites are sem-
icrystalline in nature. The sharp peaks shown at 2θ ≈ 11.71° 
for the PCZ-G sample, and at θ ≈ 11.77° and 17.81° for the 
PCZ-Z sample may be stemmed from the presence of ZnO-
nanoparticles, confirming the above results and recommend-
ing them for use in advanced technological applications.

3.2  ATR‑FTIR Spectroscopy

At room temperature, FT-IR spectroscopy was used to look 
at how the molecules in the current blend interacted with 
each other and with the nanoparticles. The FT-IR spectra 
of pure and modified CMC/PVA blends with ZnO-NPs 
extracted from three different plants were demonstrated 
in Fig. 2. The figure displayed that all the prepared sam-
ples have characteristic bands such as; 3369  cm−1 (O–H 
stretching of CMC or physically adsorbed water) [28, 29], 
2928  cm−1  (CH2 asymmetrical str.), 1644  cm−1 (C=O str.) 

Fig. 1  XRD spectra of CMC/PVA blend doped with ZnO-NPs 
extracted from three different plants

Table 2  The Area under the peak  (AP), FWHM,  Xcry %, d-spacing, average crystalline size  (Dcry), Urbach Energy (ΔE) and the indirect and 
direct optical energy gap values for the prepared samples

Sample AP FWHM XCry % d-spacing Dcry (nm) Eigd (eV) Egd (eV) ΔE (eV)

Pure blend 13,620 12.44 39.08 4.49753 – 4.35 5.78 1.22
PCZ-Z 14,793 14.12 17.1 4.49787 10.8 4.25 5.50 1.00
PCZ-K 14,282 11.31 30.34 4.55624 13.58 3.52 4.80 1.16
PCZ-G 16,597 13.78 31.49 4.5153 11.15 4.00 5.22 0.97

Fig. 2  FT-IR spectra of the PVA/CMC polymer blend and the blend 
doped with ZnO-NPs extracted from three different plants
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[30], and 849  cm−1 (C–H rocking of PVA) [31]. Table 3 
summarizes additional band assignments for the FTIR spec-
tra of the produced samples. The presence of oxygen in the 
ether bond allows hydrogen to interact with other molecules 
in the PVA and CMC polymers, leading to the development 
of a strong peak at 1092  cm−1 [32]. This peak substantiates 
that the currently available nanocomposite samples have a 
semicrystalline structure. Furthermore, the intra-molecular 
interaction between the asymmetric carboxylate (–COO−) 
str. groups and the bending hydroxyl groups (–OH) is 
responsible for the two spectral bands seen at 1588  cm−1 and 
about 1323  cm−1 [33]. Having these two functional groups 
improves the structural characteristics of the nanocompos-
ites formed from ZnO-NPs and the CMC/PVA blend [34]. 
Similar CMC characteristic bands at 1581, 1421, 1334, and 
1056  cm−1, which were carbohydrate signature peaks, have 
been observed by previous reports [23, 35], indicating the 
existence of carboxymethyl substituents on the CMC back-
bone [36]. The observed shift in some peaks, such as –OH 
bending from 1323 to 1343  cm−1 proves the constructive 
interaction of the current blend with ZnO NPs [37]. Accord-
ing to the available literature, the typical FT-IR bands of 
oxides are located between 600 and 400  cm−1. Thus, the 
vibrational bands observed in the range of 600–400  cm−1 
correspond to the characteristic ZnO-NPs stretching vibra-
tions [26]. The enhanced structural characteristics of 
the nanocomposite samples are further supported by the 
increased -OH band intensity, which shows the formation 
of hydrogen bonds.

3.3  UV/Vis Study

Absorbance spectrum data of the prepared samples in the 
ultraviolet and visible regions were illustrated in Fig. 3. The 
π → π* transition is responsible for the 200 nm absorption 
edge in the UV region of the CMC/PVA mixture spectra 
[18]. After being filled with ZnO-NPs, the absorbance 

values of the produced composites significantly increase, 
and a new absorption peak appears at about 350 nm. The 
presence of such a peak and its shift could be ascribed to the 
complexation and interaction behavior of the ZnO-NPs with 
polymeric matrices, affecting the optical band gap’s value 
[38], which was associated with crystallinity variation in 
the nanocomposite, supporting the XRD findings [39]. The 
value of the optical energy gap ( Eg ) could be determined 
by the equation of Mott and Davis [40], which analyzes the 
spectrum dependency of the absorption coefficient near the 
absorption edge.

where B is an electronic transition probability constant and 
hυ is the energy of the incident photons. m is equivalent 
to 2 or 1/2 for the allowed direct and indirect transitions, 
respectively.

Figure 4 displays (αhυ)2 and (αhυ)1/2 plots of versus pho-
ton energy (hυ) of the as-synthesized composites. Linear 
extrapolation of these data points along the hυ axis yielded 
the optical band gap values shown in Table 2. The predicted 
optical energy gap reduces when ZnO-NPs are filled; this is 
ascribed to the function of ZnO-NPs in modifying the struc-
tural properties due to the development of varying polarons 
and defect contents, which are associated with the density of 
localized states N(E) [41]. Spectral measurements showed 
an extended tail that coincides with localised states in the 
valence band tail. The tail is longer because of ZnO-NPs 
defects, which allow it to reach into the conduction band at 
lower energies below the main edge. Therefore, the Urbach 

(1)α =
B(hυ − Eg)

m

hυ

Table 3  Bands assignments for the FT-IR spectra of the prepared 
films under study

Wavenumber 
 (cm−1)

Band assignment Source

3369 –OH stretching PVA + CMC
2928 CH2 asymmetrical stretching CMC
1644 C=O stretching (shoulder) CMC
1420 –CH2 scissoring CMC
1588 Asymmetric carboxylate (–COO−) str CMC
2857 CH2 symmetrical stretching PVA
1323 –OH bending CMC + PVA
1057 C-O str PVA
849 –CH rocking PVA

Fig. 3  UV/VIS absorbance spectra for pure and filled CMC/PVA 
blend with ZnO-NPs extracted from the three different plants
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formula [39] may be used to calculate the absorption coeffi-
cient (α) using just the energy tail width (ΔE) and the photon 
energy, both of which are correlated to thermal vibration in 
the lattice [22].

where αo is a constant
Urbach energy values (ΔE) were calculated using Fig. 5's 

absorption coefficient-photon energy relationship. The ΔE 
values have been recorded in Table 2. The value of ΔE for 
the pure blend is 1.22 eV, whereas the filled samples have 
values ranging from 1.16 and 0.97 eV.

3.4  Transmission Electron Microscopy (TEM)

The morphology, nanoparticle size, and shape of the pro-
duced ZnO-NPs were checked using TEM images. Figure 6 
displays TEM images for the purely obtained ZnO-NPs 
extracted from the three different plants and also shows the 
ZnO-NPs distributed in the aqueous solution of the CMC/
PVA blend. The nanomaterials are mostly spherical, irregu-
larly distributed, and their radii ranged from 10 to 40 nm. As 
well as, the images revealing that after addition of the CMC/
PVA blend, the ZnO NPs were well dispersed over the blend, 
especially PCZ-K, which could have an excellent feature in 
the microbial activity. According to the nanoparticle size 
distribution histograms shown in Fig. 7, the average sizes of 
ZnO extracted from the three different plants were found to 
be 25.4, 15.2, and 17.9 nm for blended PCZ-G, PCZ-K, and 
PCZ-Z, respectively. So, the PCZ-K sample has the smallest 
particle size, which could affect the catalytic activity toward 
the different microbial organisms.

3.5  Antibacterial Activity

Figure 8 displays the antibacterial activity of CMC/PVA, 
PCZ-Z, PCZ-K and PCZ-G nanocomposites against B. 
subtilis, E. coli, and Candida albicans. The inhibition 
zone diameter was given in millimeters on the agar plate 
and calculated as an average value after each sample was 
repeated three times. The results are listed in Table 4. 
CMC/PVA did not display any antibacterial or antifungal 
activities. On the other hand, PCZ-Z, PCZ-K and PCZ-G 
displayed good antibacterial activity. The inhibition zone 
was bigger in Hibiscus sabdariffa than in Daucus carota 
and the thymus, which was interesting. These antibacte-
rial activities for ZnO samples may result from numerous 
recommended mechanisms; the first mechanism is due to 
the size of nanoparticles of ZnO; when the particle size 
was decreased, the antibacterial activity was increased 
because of the concentration was increased [42]. The sec-
ond process might include the introduction of  Zn2+ ions 

(2)� = �oexp

(

hυ

ΔE

)

Fig. 4  The plots of a (αhυ)1∕2 , and b (αhυ)2 versus (hυ) for pure and 
filled CMC/PVA blend with ZnO-NPs extracted from the three differ-
ent plants

Fig. 5  Absorption efficiency ( α ) of a CMC/PVA blend including 
ZnO-NPs as a function of photon energy (hυ)
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into the bacterial growth medium [43, 44]. So, all the sam-
ples containing ZnO-NPs displayed excellent antibacterial 
activity and showed a deadly effect on the tested bacteria. 
The inhibition zones of all the prepared samples against 
E. coli was 0, 19, 31, and 23 mm for CMC/PVA, PCZ-Z, 
PCZ-K and PCZ-G, respectively, compared to the strepto-
mycin control gram-positive standard with inhibition zone 
(34 mm). On the other hand, the inhibition zones of the 
prepared samples against B. subtilis were equal to 0, 26, 

33, and 28 for CMC/PVA, PCZ-Z, PCZ-K and PCZ-G, 
respectively. These results reveal that PCZ-K sample has 
the maximum antibacterial efficiency for E. coli (91.17%) 
and B. subtilis (94.28%). Unfortunately, all the prepared 
samples have no activity toward Candida albicans, which 
means these samples do not have any antifungal activities. 
The improved antibacterial activity may be related to the 
CMC/PVA support that prevents the accumulation of ZnO 
nanoparticles and surface defects in ZnO [45].

Fig. 6  TEM Images of a pure 
synthesized ZnO-NPs (G), b 
pure synthesized ZnO-NPs (K), 
c pure synthesized ZnO-NPs 
(Z), d blended PCZ-G, e PCZ-
K, and f PCZ-Z
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The higher antibacterial activity of ZnO NPs could be 
related to the production of reactive oxygen species and the 
accumulation on the surface or deposition in the cytoplasm 
of the cells, as detected in the previous results for S. aureus 
[43]. The smallest particle size of 15.2 nm in the case of 
PCZ-K has been found to strongly inhibit the survival of 
pathogenic microorganisms tested compared with other 
results. So, the inhibitory efficacy of ZnO NPs is very much 
dependent on their size, which is similar to other findings 
[46].

The mechanisms of antibacterial activity of ZnO parti-
cles are not well understood, although some statements were 
proposed, such as the binding of ZnO particles on bacterial 
surfaces due to the electrostatic forces could be a mecha-
nism [47], the generation of hydrogen peroxide could be the 
main factor of antibacterial activity [48], or the production 
of reactive oxygen species, that elevate membrane lipid per-
oxidation, which causes membrane leakage of reducing sug-
ars, DNA, proteins, and reduces cell viability [49]. Herein, 

 Zn2+ ions collide with the cell membrane of bacteria having 
a negative charge. These electrostatic collision of positive 
 Zn2+ ions and negative cell membrane may prevent bacterial 
evolution. So, microbes are feeble that can weaken succes-
sively with time. Also, the creation of reactive oxygen spe-
cies (ROS), including  H2O2,  OH∗, and  O2∗− played a crucial 
character in antibacterial sensation. The  O2∗−,  OH− being 
negatively charged, may stick to the material's surface and 
can damage DNA [50].

4  Conclusions

Pure and doped CMC/PVA blends with ZnO-NPs films were 
synthesized by the casting method using water as a solvent. 
The prepared composites were characterized by XRD, FTIR, 
TEM, and UV/Vis spectroscopy. UV/Vis and FTIR spectros-
copy showed the complexation and interaction of both poly-
mers and/or ZnO-NPs appeared in the growth and red-shift 

Fig. 7  Nanoparticle size distribution histograms of a PCZ-G, b PCZ-K, and c PCZ-Z
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of the UV region, which is ascribed to the intermolecular 
interaction between the hydrogen bonds. The XRD analysis 
revealed the semi-crystalline nature of the CMC/PVA blend, 

which decreased after filling with ZnO-NPs. TEM images 
confirm the presence of ZnO-NPs with a spherical shape 
and a diameter between 10 and 40 nm. TEM images also 

Fig. 8  Comparison of inhibition 
zone test between A, B Bacillus 
subtilis, C, D Escherichia coli 
and E, F Candida albicans for 
different samples

Table 4  Average inhibition zone 
and approximated efficiency for 
all prepared samples compared 
with streptomycin as a positive 
control

(A) Streptomycin as a positive control, (B) CMC/PVA, (C) PCZ-Z, (D) PCZ-K, (E) PCZ-G

Microbe Inhibition zone (mm) Approximated efficiency (%)

A B C D E

Bacillus subtilis 35 – 26 33 28 0, 74, 94 and 80%
Escherichia coli 34 – 19 31 23 0, 56, 91 and 68%
Candida albicans 27 – – – – 0, 0, 0, 0%
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revealed that the CMC/PVA blend is an effective host matrix 
for the encapsulation of ZnO-NPs, acting as a good capping 
agent and giving it environmental and chemical stability. All 
these data support the idea of complexation between ZnO-
NPs and polymer matrix. Antibacterial tests revealed that all 
samples containing ZnO-NPs had exceptional antibacterial 
activity and were lethal to the bacteria tested. The PCZ-K 
sample, in particular, displays a high antibacterial efficiency 
against E. coli (91.17%) and B. subtilis (94.28%).
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