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1  Introduction

A material’s dielectric response measures how it reacts to 
an applied electric field. It is a basic property that governs 
several significant properties of a material, including its 
polarization, capacitance, and electrical conductivity. As it’s 
crucial to the functionality of many devices and technolo-
gies, such as electronic components, energy storage devices, 
supercapacitors, solar cells, nanogenerators, and sensors, 
the dielectric response of a material is consequently of sig-
nificant interest to the industry and academia [1]. In super-
capacitors, a higher dielectric constant leads to a higher 
capacitance and energy density. In solar cells, a higher 
dielectric constant leads to a higher absorption of light and a 
higher efficiency. In nanogenerators and piezoelectric mate-
rials, a higher dielectric constant leads to a higher output 
voltage and power density. In sensors, a higher dielectric 
constant leads to a higher sensitivity and selectivity [2–5].

Polymer-based dielectric film are a type of energy storage 
device that has become important for advanced electronic 
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Abstract
With the proliferation of electronic gadgets and the internet of things comes a great need for lightweight, affordable, 
sustainable, and long-lasting power devices to combat the depletion of fossil fuel energy and the pollution produced by 
chemical energy storage. The use of high-energy-density polymer/ceramic composites is generating more curiosity for 
future technologies, and they require a high dielectric constant and breakdown strength. Electric percolation and Interface 
polarization are responsible for the high dielectric constant. To create composite dielectrics, high-conductivity ceramic 
particles are combined with polymers to improve the dielectric constant. In this work, ternary nanocomposites with better 
dielectric characteristics are created using a nanohybrid filler of V2C Mxene-ZnO in a polypyrrole (PPy) matrix. Then, the 
bonding and the uneven charge distribution in the ceramic/ceramic contact area are investigated using quantum mechani-
cal calculations. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface’s dipole 
polarization (dielectric response). The interfacial chemical bond formation can also improve the hybrid filler’s stability 
in terms of structure and, consequently, of the composite films. To comprehend the electron-transfer process, the density 
of state and electron localization function of the ceramic hybrid fillers are also studied. The polymer nanocomposite is 
suggested to provide a suitable dielectric response for energy storage applications.
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devices and electric power systems [6–9]. As such, polymer 
nanocomposites [7–14], particularly those made from poly-
pyrrole matrix reinforced with nanoscale fillers [11], are 
being researched for usage in dielectric applications. Flex-
ible regenerated cellulose/polypyrrole composite films [15], 
polypyrrole/graphite composites [16], graphene/polypyrrole 
nanocomposites [17], Fe3O4-polypyrrole hybrid nanocom-
posites [18], BaTiO3/polypyrrole nanocomposites [19], and 
poly(vinylidene fluoride) nanocomposites reinforced with 
polypyrrole-decorated graphene oxide are a few examples 
of polymer nanocomposites with improved dielectric prop-
erties [20]. These materials have exhibited high dielectric 
constants, low dielectric losses, and good stability, making 
them suitable for use in various dielectric applications.

For instance, in a study by Feng et al., the percolation 
threshold of poly(vinylidene fluoride-chlorotrifluoroeth-
ylene) (PVDF-CTFE) reinforced conducting poly(pyrrole 
(PPy) nano-clips was reported to be about 7.4 wt % in all-
organic nanocomposites [21]. Meanwhile, the dielectric 
constant of these nanocomposites was 23 times greater than 
that of the polymer matrix at 1  kHz and was lower than 
0.4 over a wide frequency range. After being heated into 
a dielectric state, polypyrrole samples made with potas-
sium persulfate or ferric chloride as oxidizing agents were 
observed to exhibit dielectric characteristics that were influ-
enced by the quantities of the reactants employed in produc-
tion [22].

In another study, polyvinyl alcohol (PVA), water-solu-
ble polypyrrole (WPPy), and graphene oxide (GO) were 
combined to create flexible dielectric nanocomposites. The 
dielectric constant of these materials increased from 27.93 
for an equal blend of WPPy/PVA to 155.18 for nanocom-
posites with 3 wt% GO loading, and the dielectric loss 
increased from 2.01 to 4.71 at 50 Hz and 150 °C [23].

Recent study showed that MXenes such as V2C can be 
combined with several polymers for dielectric applications. 
PVC/MXene nanocomposites have been shown to have a 
high dielectric constant of 11,800 and low dielectric loss of 
1.31 [24–26]. Poly(vinyl alcohol) (PVA)/V2C MXene nano-
composite films have exhibited a permittivity of around 24 
and a dielectric loss of around 0.14 at 1 kHz when using 4 
wt% V2C [27]. PVA/V2C/cellulose have also been shown 
to have good dielectric properties, with a permittivity of 
around 21 and a dielectric loss of around 0.25 at 0.1 kHz 
when using 6 wt% MXene [28]. When using 2 wt% V2C, it 
has been demonstrated that PVDF/La2TiO5/V2C nanocom-
posites have a high dielectric constant of around 47 and a 
low dielectric loss of about 0.17 at 1 kHz [29]. Similarly, 
it was reported that V2C MXene-SWCNT nanocomposites, 
when made with 5 wt % hybrid ceramic, have a high dielec-
tric constant of around 232 and a low dielectric loss of about 
0.2 at 0.1  kHz [30]. When employing 4 wt% V2C, it has 

been proven that polymer/V2C/ionic liquid nanocompos-
ites have a high dielectric constant of around 54 and a low 
dielectric loss of about 0.15 at 1 kHz [31].

Beside the use of PPy and V2C-MXene based nanocom-
posite for dielectric applications, a well-known semiconduc-
tor material with a broad bandgap, excellent transparency, 
and strong chemical stability is zinc oxide (ZnO) which has 
also garnered great interest for dielectric application. ZnO 
nanocomposites have also been studied for their potential 
use in dielectric applications [32–35]. PVA/ZnO hybrid 
nanocomposite films [36], PVDF composites filled with 
core@double-shell structured Zn@ZnO@PS particles [37], 
and undoped and co-doped ZnO nanoparticles [32] are a few 
examples. These materials have shown improved dielectric 
permittivity, breakdown strength, and thermal conductivity, 
as well as suppressed dissipation factor and conductivity. 
They have potential applications in optoelectronic devices, 
high voltage insulation materials, and microwave devices. 
In addition, (PMMA/PVDF)/ZnO nanocomposites [38] 
have been shown to have good dielectric and mechanical 
properties, making them suitable for use in flexible elec-
tronics. Likewise, it has been shown that (PVA-PEO)-ZnO 
polymer nanocomposites [39] have enhanced dielectric per-
formance and strong thermal stability.

A proposed hybrid material with improved electrical 
conductivity, dielectric characteristics, and transparency 
is possible when PPy/V2C Mxene and ZnO are com-
bined. Therefore, given the importance of the dielectric 
response in materials science and the potential applica-
tions of PPy/V2C Mxene-ZnO, it is crucial to investigate 
the dielectric response of this material in order to under-
stand its properties and optimize its performance. In this 
study, we use first-principles calculations to investigate the 
dielectric behaviour of PPy/V2C Mxene-ZnO, with the aim 
of understanding the underlying mechanisms in the ceramic 
hybrid fillers and predicting its potential applications. The 
ternary composites exhibit a well-maintained high electrical 
breakdown strength, according to the electron localization 
function (ELF) results. Besides, due to the decreased hole 
quantity of the point charge in the Zn-V dipole, the charge 
transfer analysis suggests that an increase in the charge 
quantity at Zn may signify an improved dielectric response 
in ternary composites. It is notable that adding ZnO to V2C 
resulted in a greater contribution of V2C electrons to the 
Fermi level, as shown by the density of states (DOS) study.

2  Computational Method

In this study, we used first-principles calculations to inves-
tigate the dielectric response of PPy/V2C Mxene-ZnO. For 
our calculations, we used the density functional theory 
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(DFT) method, which is a widely used and well-established 
first-principles calculation method [40–48]. DFT is based 
on the idea that through the self-consistent solution of the 
Kohn-Sham equations, the total energy of a system may be 
represented as a function of the electron density. In our cal-
culations, we used the exchange-correlation functionals to 
describe the electron-electron interactions within the mate-
rial. The Exchange-correlation functional is approximately 
modelled using generalized gradient approximation (GGA) 
and Perdew − Burke − Ernzerh (PBE). First, the structure of 
the V2C-MXene was modelled with 3 × 3 periodic supercell 
lattice structure having a, b, & γ of 8.68 Å, 8.68 Å, and 120°, 
respectively. The adoption of a vacuum space of about 15Å 
perpendicular to the lattice plane prevented interactions 
between repeated pictures. Similarly, the ZnO structure was 
also modelled with 2 × 2 non-periodic supercell. We then 
performed structural optimization to relax the positions of 
the atoms and minimize the total energy of the system by 
using DMol3 in Materials Studio software. 1 × 10− 6 eV was 
the Self Consistent Field (SCF) tolerance used for the opti-
mization. Once the optimized structures were obtained, we 
performed adsorption calculation using Adsorption Locator 
calculator in Materials Studio to generate the most stable 
and optimized V2C Mxene-ZnO configurations. Thereafter, 
a series of calculations to determine the energetics and elec-
tronic properties of V2C Mxene-ZnO was conducted using 
Cambridge Sequential Total Energy Package (CASTEP). 
For these calculations, 571 eV was employed for the plane 
wave cutoff energy, and the Brillouin zone of 10 × 10 × 1 
k-points was used. Long-range van der Waals interactions 
are taken into account using Tkatchenko-Scheffler method 
for the DFT dispersion correction [49]. Whereas OTFG 
ultrasoft with Koelling-Harmon were employed for the 
pseudopotential and relativistic treatment.

3  Results and Discussion

DFT calculations were used to determine the charge distribu-
tion in the optimized structural unit of ZnO and V2C-MXene 
in order to examine the dielectric mechanism in the ceramic 
hybrid filler (Fig.  1a & b). Mulliken population analysis 
establishes the appropriate values of charges. Meanwhile, 
some of the Zn atoms in the ZnO are adsorbed onto the 
V2C surface, as shown by Fig. 2. This figure presents the 
schematic 3D diagram of the ZnO/V2C interface with the 
optimum geometric structure. After hybridization, V atoms 
from the surface of V2C may interact with Zn atoms from 
the surface of ZnO to produce Zn-V metallic bonds. At the 
V2C/ZnO contact area, the average ZnV bond length is 2.62 
Å. And the values in red represent the precise charge trans-
fer values as established by the Mulliken population study.

Due to the lower hole amount of the point charge in the 
Zn-V dipole, an increase in the charge quantity at Zn may 
indicate an enhanced dielectric response in ternary compos-
ites. The hybrid filler’s interface zone has a non-uniform 
distribution of charges due to the chemical bond that exists 
there. Such an uneven distribution of charges can improve 
the ceramic/ceramic interface’s dipole polarization which is 
the dielectric response [48]. Interfacial chemical bond for-
mation can also improve the structural stability of the hybrid 
filler and, consequently, of the composite films. Ultimately, 
the semiconducting ZnO ceramic filler’s dielectric respon-
siveness is enhanced by the development of a V2C-ZnO 
hybrid structure.

The DOS diagram for the s, p, and d-orbital electrons 
in the V2C/ZnO structure is shown in Fig. 3a. At the Fermi 
level, the d orbital electron distribution was more preva-
lent. Similarly, the p-orbital electron distribution was 
equally very prevalent at the Fermi level. The contribution 
of the Fermi-level electrons might therefore be improved 
by increasing the amount of d and p orbital electrons. The 
density of states (DOS) values for the V2C and V2C/ZnO 
structures are displayed in Fig. 3b. The DOS diagram in this 

Fig. 1  (a) 3D structural representation of optimized ZnO, (b) Top-surface of the structural representation of V2C − MXene
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Fig. 3  (a) The DOS diagrams for the s, p, and d-orbital atoms in the V2C-ZnO, (b) The results of the DOS of the atoms for the structure (c), The 
top-surface ELF result, and (d) The side-surface ELF result

 

Fig. 2  Optimized 3D structural configuration of V2C/ZnO hybrid with charge distribution
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understanding of this new class of materials and can help to 
guide the design and optimization of PPy/V2C-ZnO -based 
devices and technologies.

There are several directions for future work that could 
build upon the results of this study. For example, it would be 
interesting to investigate the frequency dependent dielectric 
response and the effect of different factors, such as compo-
sition, temperature, and strain, on the dielectric response of 
PPy/V2C-ZnO. The application of PPy/V2C-ZnO in various 
device designs and applications, such as supercapacitors, 
touch screens, solar cells, and sensors, would also be worth-
while to investigate. A high dielectric constant and low loss 
tangent can lead to improved performance in high-frequency 
applications and its ability to be used as a conductive layer 
or sensing material will make it a promising material for 
various device designs and applications. Further research 
in these areas could help to fully realize the potential of 
PPy/V2C-ZnO as a promising new class of materials.
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instance is produced by superimposing the results of the 
total DOS of V2C before and after hybridization with ZnO. 
It is interesting to note that adding ZnO to V2C exhibited 
increased Fermi level contribution from V2C electrons.

Becke and Edgecombe established the electron local-
ization function (ELF) as a “simple measure of electron 
localization in atomic/molecular systems.“ [50] The ELF 
of the V2C/ZnO structure was determined to further eluci-
date the electron localization contribution of the valence-
band electrons at the surface. The ELF findings for the top 
and side surfaces of the V2C/ZnO were shown in Fig. 3c 
and d, respectively. Yellow and orange, which represent 
the localisation of electrons in atomic systems on the ELF 
map, were displayed [44]. The electron localization map 
showed enhanced electron localization in ZnO which led 
to the increased electron movement in the of the V2C/ZnO 
structure. And this is in line with the DOS for the V2C and 
V2C/ZnO structures.

In sum, the compact V2C/ZnO interface created by the 
bonding method prevented an increase in the leakage con-
duction at the V2C/ZnO interface. Results indicate that the 
ternary composites have a well-maintained high electrical 
breakdown strength. As a result, the electrical characteris-
tics of the ternary composite films for possible energy stor-
age applications could be perfectly balanced as desired.

4  Conclusion

In this study, we used first-principles calculations to inves-
tigate the dielectric response of the ceramic-ceramic inter-
face in PPy/V2C-ZnO ternary composite. The results of our 
calculations showed that the V2C-ZnO ceramic-ceramic 
contact area display a strong dielectric response. This sug-
gest that PPy/V2C-ZnO may have potential applications in 
energy storage, electronics, and optoelectronics, where the 
dielectric response is an important factor. In addition, the 
results of the electron localization function (ELF) test show 
that the electrical breakdown strength of the ternary com-
posites is well-maintained and high. Moreover, according 
to the Mulliken charge transfer study, a rise in the charge 
quantity at Zn may signify an improved dielectric response 
in ternary composites because the point charge in the Zn-V 
dipole has less hole content. It is interesting to note that the 
density of states (DOS) study showed that the contribution 
of V2C electrons to the Fermi level increased when ZnO 
was added to V2C. This property explains the ability of the 
material to exhibit electron mobility for an enhanced dielec-
tric response. Overall, our study provides a comprehensive 
analysis of the dielectric response of V2C/ZnO hybrid inter-
face and offers new insights into the underlying mechanisms 
that govern its properties. These results contribute to a better 
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