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Abstract
Herein, this study introduced a novel strategy for hazardous cement bypass dust (CBD) removal via incorporated it into glassy 
system having the chemical formula  10Li2O–10Bi2O3–(80 − x)B2O3–xCBD, where x = 0, 10, 20 and 30%. The doped glass 
samples with the CBD were used as a radiation shielding material. The structural, optical and nuclear radiation shielding 
properties of CBD-lithium bismuth borate (LBB) glass were investigated. The optical energy gap increases from 2.22 eV for 
LBB + 0% CBD glass sample to 2.66 eV for LBB + 30% CBD glass sample. Also, a comparative study between the experi-
mental data and theoretical interpretation for the attenuation coefficients was addressed via the Phy-X software database. 
The outcomes unveiled that the shielding parameters such as the linear attenuation coefficient, mass attenuation coefficient, 
and the effective atomic number were enhanced as CBD content increases. In the same time, the half-value layer, the tenth 
value layer, and the mean free path are reduced with the enrichment in the CBD content. Furthermore, the exposure build-up 
factor is inversely related to equivalent atomic numbers. Based on these findings, it was determined that the manufactured 
bismuth lithium-borate glass system doped cement bypass dust can be used for radiation shielding purposes.

Keywords Cement bypass dust removal · Lithium bismuth borate glass · Optical properties · Radiation shielding properties

1 Introduction

With the perspective increase of population growth in the 
middle east and north Africa countries and the increase in 
cement production, it is expected to increase other wastes 
produced by the cement industry, such as dust dispersed by 
clinker. Egypt produced almost 30 million tonnes of various 

types of cement, with 3 million tonnes of cement bypass dust 
(CBD)/year in dry lines. It has been employed in a variety of 
cost-effective and helpful applications in various parts of the 
world. Its contamination has been discovered to be an issue 
in the vicinity of cement plants. It could have toxic sub-
stances in it that are damaging to the environment [1, 2]. The 
amount of energy released per individual in the developing 
world could represent its stage of progress. Cement manu-
facturing is another factor that should be taken into account. 
However, any industrial activity generates trash that must be 
managed in order to avoid harmful health and environmental 
implications [3]. A unique waste material–cement bypass 
dust (CBD) is a by-product of cement production, which is 
of less market rate and is primarily relegated to waste where 
it contributes a risk of groundwater pollution [4].

Radiation has a wide range of applications, but an exces-
sive exposure can have major long-term consequences 
for human health [5]. As a result, appropriate radiation 
shielding material has been the most significant topic of 
research. The conventional materials can shield gamma 
rays and neutrons. However, it has many disadvantages 
like toxic, opaque, coast, inflexible, and unsuitable at high 
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temperatures. Additionally, another feature is harmful to 
human health and the surrounding environment. In search 
of alternative radiation shielding materials, glasses without 
lead doped by high and low Z elements are being recom-
mended because of its transparency, easy manufacturing, 
non-toxicity, favorable durability, structural stability, cost-
effective, lighter in weight and attenuation coefficients [6]. 
Numerous studies have been conducted to investigate a vari-
ety of radiation shielding glass technologies. The glasses 
PbO–Li2O–B2O3, BaO–Bi2O3–B2O3, ZnO–Bi2O3–B2O3, 
 Bi2O3–Li2O–Sb2O3–B2O3,  B2O3–Bi2O3–Li2O have been 
studied [6–10]. The rare-earth ions doped borate glasses, 
for example, erbium oxide  (Er2O3), cerium oxide  (CeO2) 
and tellurium oxide  (TeO2) have various proposes. Their sig-
nificance is due to chemical stability, corrosion resistance, 
and low glass transition temperatures, superior mechanical 
properties, low melting temperatures, high refractive indices 
and high optical transmittance and had an important role in 
areas of medical and industrial radiation shielding poten-
tial [11, 12]. Different researches have been investigated the 
incorporation of CBD into glass systems for various appli-
cations. Elazaka et al. [13], have incorporated the CBD 
into  Na2O–BaCl2–B2O3 glass system as a nuclear radiation 
shielding material.

This research aimed to produce a gamma radiation shield-
ing material based on cement bypass dust (CBD) doped 
with lithium bismuth borate (LBB) glass with composition 
 10Li2O–10Bi2O3–(80 − x)  B2O3–xCBD, where (x = 0, 10, 
20, and 30%). The LBB + x% CBD (x = 0, 10, 20, and 30) 
glass samples were characterized via EDX, XRD, FTIR and 
UV–Vis spectroscopy. Also, the experimental results along 
with theoretical estimations such as the mass attenuation 
coefficient (MAC), linear attenuation coefficient (LAC), 
mean free path (MFP), effective atomic number  (Zeff), half 
value layer (HVL), tenth value layer (TVL) and effective 
electron density  (Neff) were resolved to study the gamma-ray 
attenuation properties. The exposure build up factor (EBF) 
and equivalent atomic numbers (Zeq) were also computed. 
The current examination results would be suitable for spe-
cial applications on removing hazardous cement bypass dust 
(CBD) through incorporated it with a glass system to build 
novel material for gamma radiation shielding.

2  Materials and Methods

2.1  Sample Preparation

In this study, CBD was incorporated with a glass system 
with composition  10Li2O–10Bi2O3–(80 − x)  B2O3–xCBD, 
(LBB + xCBD) where (x = 0, 10, 20 and 30%) (Table 1). 
The chemical composition of CBD are analyzed by EDX 
technique that consists of silicon dioxide  (SiO2), aluminium 
oxide  (Al2O3), ferric oxide  (Fe2O3), calcium oxide (CaO), 
potassium oxide  (K2O), sodium oxide  (Na2O), sulfur tri-
oxide  (SO3), titanium dioxide  (TiO2), manganese oxide 
 (Mn2O3) and magnesium oxide (MgO) at 17.14%, 4.96%, 
3.37%, 60.33%, 4.82%, 2.46%, 2.64%, 1.17%, 1.09 and 
1.02%, respectively. Proper amounts of  Li2O,  Bi2O3,  B2O3, 
and CBD were used in the glass synthesis as previously 
described in [14, 15]. The thickness of LBB + xCBD where 
(x = 0, 10, 20 and 30%) samples was found of 2 ± 0.4 mm.

2.2  Characterization Techniques Employed

The traditional Archimedes rule has been utilized to cal-
culate the density of LBB + x% CBD samples at the room 
temperature as the subsequent equation [16];

where:  Ma is the weight of the sample in the air.  ML is the 
weight of the sample in the distilled water. The molar vol-
ume (Vm) of the LBB + x%CBD samples was computed by 
the following relation,

 where Mi is the molecular weight of the ith component and 
Xi is the molar fraction of the ith component.

The LBB + x%CBD samples were characterized for 
their structural properties using X-ray powder diffraction 
(XRD; Shimadzu XRD-6000) [17–22]. Fourier Trans-
form Infrared (FT-IR) spectroscopy was used to investi-
gate the groups that initiated the LBB + x%CBD samples 
in range of (4000–400   cm−1). The optical properties of 
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Table 1  Chemical composition 
(mole fraction), measured 
density, molar volume for 
LBB + x% CBD glasses

Sample code Mole fraction Density (ρ) 
 (cm3/g)

Molar 
Volume  Vm 
 (cm3)Li2O Bi2O3 B2O3 CBD

LBB + 0%CBD 10 10 80 0 2.965 35.528
LBB + 10%CBD 10 10 70 10 2.988 35.124
LBB + 20%CBD 10 10 60 20 3.046 34.298
LBB + 30%CBD 10 10 50 30 3.169 32.838
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LBB + x%CBD samples were illustrated in the wavelength 
range 300–1100 nm via UV–Vis spectrophotometer [15, 23].

2.3  Shielding Parameters Simulation

A fine beam transmission scheme has been applied to meas-
ure the gamma ray effectiveness parameters for LBB + x% 
CBD samples as represented in Fig. 1. The 137Cs (1 µCi) 
and 60Co (1 µCi) gamma ray point sources were utilized in 
this study as well as a NaI (Tl) scintillation detector with a 
3″ × 3″ powerful crystal location. The gamma-ray detector 
held attached to Canberra Genie-2000 software for the data 
interpretation. Furthermore, the Phy-X /PSD software was 
accepted in order to calculate the gamma-ray shielding char-
acteristics of LBB + x%CBD samples at different energies 
from 0.001 to 15 MeV [24, 25].

3  Results and Discussion

3.1  Structural Analyses

Figure 2 shows the XRD patterns of LBB + x% CBD glass 
samples. The figure reveals that the samples displayed a 
broad amorphous hump at 2θ ~ 28° and there is non-attend-
ance of sharp peaks [26, 27]. This gives confirmation of the 
glassy state of the prepared samples. Besides, there a small 
peak appeared in the range (2θ = 10°–20°) for LBB + 30% 
CBD sample, which may be related to the presence of sec-
ond phase (ceramic/glass) due to increasing the CBD doping 
ratio [28–30].

Figure 3 exhibited the FTIR spectra of LBB + x% CBD 
glass samples. The figure tells a clear explanation about the 
chemical structure of the prepared cement-glass samples, 
and the changes that occurred upon increasing CBD concen-
tration in the wavenumber range from 400 to 4000  cm−1. In 
case of base glass (LBB + 0% CBD); the spectra admit four 
main absorption peaks at 520, 690, 955 and 1300  cm−1. In 
general, boron atoms are found inside the glass network as 
tetraborate units  (BO4) and boroxol rings. The tetraborate 
units can be broken to give NBO (non-bridging oxygen) 
upon addition any cation which results from other additives 
to the structure as former or modifiers [31].  Bi3+ can be 

settled inside the glass network by ionic bond between  Bi3+ 
ion and oxygen atoms bonded to borate network as a result 
of the previous rupture occurred from borate units so bis-
muth borate glasses can show two bands; one at 850  cm−1 
for  BiO3 units and another one at 540  cm−1 for  BiO6 (octa-
hedron) [32, 33].

Figure 3 gives four broad regions due to the amorphous 
nature and the well homogenous distribution of the com-
ponent inside the glass matrix. The first three regions can 
be decovoluted to illustrate the overlap peaks under these 
regions as given by Fig. 4a and b. All observed peaks are 
shown at Table 2.

Upon introducing and increment of CBD concentra-
tion by (x = 10, 20 and 30%) in bismuth-borate glass; some 
observations are detected as follow:

(a) relative area for bands in the ranges from 1245 to 
1450  cm−1 decreased by increased cement dust con-
centration due to the formation of  BO3 from  BO4

Fig. 1  The experimental setup for LBB + x%CBD glass

Fig. 2  XRD patterns of LBB + x% CBD glass samples

Fig. 3  FTIR spectra of LBB + x% CBD glass samples
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(b) Peak at 520  cm−1 give higher intensity for 30% cement 
dust

(c) Lowering in borate group intensity due to the breaking 
in borate bonds and formation of NBO and at the same 
time decreasing of OH and  H2O groups inside the net-
work as CaO introduced.

(d) Position of some bonds show shift to higher values of 
wavenumber

The first three regions can be decovoluted to illustrate the 
overlap peaks under these regions as given by Figs. 3 and 
4 with their relative area (A) and band center (C) in wave-
number range from 400 to 1800  cm−1 as shown in Table 3. 
These parameters help in calculating (N4) values for each 
sample where:

N4 value can confirm how the transformation from 
 BO3 into  BO4 units is; only one oxygen atom for each 

N
4
= BO

4
∕
(

BO
3
+ BO

4

)

transformation is needed to finish this process. Upon the 
addition of cement bypass dust,  N4 values increase due to 
the decrease of the area and shifted of most of the peaks 
to higher wavenumbers due to the formation of  (SiO4 and 
 CaO4) units and the tendency of conversion from  BO3 to 
 BO4 by creating calcium silicate covalent bonds inside the 
borate glassy network which raise the yield of non-bridging 
oxygen [31] by filling the positions between boron-oxygen 
linkage with  Ca2+ and  Si4+ that meaning the glass network 
become more lose.  N4 results are confirmed by density val-
ues as by adding more cement dust to bismuth borate glass, 
the density increase gradually, so the compactness of the 
glass network increases. This behavior suggested that our 
samples can be used for many purposes, including radiation 
shielding.

3.2  Optical Behavior

Figure 5 presents the transmittance (T) of LBB + x% CBD 
glass samples. In Fig. 5, the transmittance edges in the vis-
ible region were showed a shift to a higher wavelength ( � ) as 
the CBD’ concentration was increased [42–44]. Besides, it is 
clear that in IR region, the transmittance was increased with 
the increase in CBD’ concentration except for the decrease 
that occurred at x = 20%. This behavior can be attributable 
to the defects variation and the localized electronic states 
in the glass lattice between the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecular 
orbital (LUMO) band edges [45]. These parameters lead to 
appearing the changing in the energy transitions available as 
a result of CBD’ addition [23, 46]. This behavior was previ-
ously seen in [14]. Radiation-shielded windows are com-
monly employed to give total protection while providing 
visibility into the protected room's operations. As a result, 
it should be transparent rather than opaque.

Also, Fig. 6 illustrates the extinction coefficient k of 
LBB + x% CBD glass samples [47]. The extinction coef-
ficient k is represented the light lost ascribing to scattering 
and absorption by unit volume. Therefore, great values of 
k in the lower wavelength area confirm that these materials 
are opaque in this area [48]. The addition of CBD to LBB 
glass shifted the absorption edge for the higher wavelength 
in the visible area [14, 49, 50].

The indirect bandgap can be obtained via plotting ( αhν
)1/2 vs ( hν ) for LBB + x% CBD glass samples (Fig. 7). The 
optical energy gap increases from 2.22 eV for LBB + 0% 
CBD glass sample to 2.66 eV for LBB + 30% CBD glass 
sample due to the addition of CBD to LBB glass [51]. The 
increase in Eg values can be ascribed to a change in LBB 
glass structure and the generation of defects in charge dis-
tribution as a result of the addition of CBD concentration 
through enhancing the energy state of the oxygen ions and 
the degree of localization. It should be highlighted that all 

Fig. 4  Deconvoluted FTIR spectra of LBB + x% CBD glass with a 
0% CBD, b 30% CBD
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Table 2  FTIR peaks and their assignment for LBB + x% CBD glass samples

Peak  (cm−1) Assignment

Area (I) 400–800  cm−1 (Cation region)
 430 Vib. of  Fe3+ cations[34]
 450 Vib. of  Li3+ cations [31]
 520 Vib. of  Ca2+ cations [34, 35]
 540 Bi–O–Bi and Bi–O in  BiO6 octahedral group [32, 36]
 590 Bend. Vib. O–Si–O and Si–O–Si in  SiO4 unit (tetrahedral) [35, 37]
 620 Vib. of  BO4 group
 690 Bend. Vib. of B–O–B of  BO3 groups

Area (II) 800–1155  cm−1 (Tetragonal Units)  (BO4 units)
 820 Bend. Vib. of Si–O–Si of  (SiO4) groups[38]
 865 For  BiO3 groups[32]
 950 Str. Vib. of B–O in diborate  BO4 groups[32]
 1050 Str. Vib. of B–O in triborate  BO4 groups and may be for Si–O–B linkage[39]
 1100 Str. Vib. of B–O in tetraborate  BO4 groups[31]
 1150 Str. Vib. of B–O in pentaborate  BO4 groups [31]
 1155 Str. Vib. of  CaO6 units

Area (III) 1155–1640  cm−1 (Triagular Units)  (BO3 units)
 1245 Vib. of BO3 groups (meta, ortho, pyro)
 1345 Vib. of BO3 groups (meta, ortho, pyro)
 1450 Antisym. Str. Vib. of 3 NBO of B–O–B of  BO3 units[31]
 1650 Str. B–O of BO3

Area (IV) Above1640  cm−1 (near IR region)
 1980 (SiOH) silanol units[40]
 2160, 2975 and 3370 Str. vib. of OH and hydroxyl units beside the bending vib. from H–O–H bonds[41]

Table 3  De-convolution 
parameter of the infrared 
spectra of studied glasses, (C) 
is the component band center 
and (A) is the relative area (%) 
of the samples bands (0, 10, 20, 
30% CBD)

Sample x% CBD

0% 10% 20% 30%

Deconvelotion 
parameters

C A C A C A C A

Peak 1 411 0.258 401 0.454 401 0.185 401 0.061
Peak 2 503 0.141 431 0.145 436 0.099 444 0.100
Peak 3 599 0.109 469 0.148 470 0.085 502 0.150
Peak 4 – – 525 0.016 512 0.034 532 0.096
Peak 5 – – 550 0.063 555 0.060 577 0.092
Peak 6 620 0.459 614 0.131 611 0.209 617 0.518
Peak 7 688 1.092 697 0.627 704 0.824 711 0.825
Peak 8 – – 850 1.172 846 0.698 829 0.161
Peak 9 868 2.272 914 1.539 902 0.578 888 0.836
Peak 10 955 2.160 978 1.324 960 1.058 949 0.384
Peak 11 1017 0.679 1050 1.024 1038 0.747 996 0.779
Peak 12 1058 0.539 1098 0.119 1106 0.383 1129 0.137
Peak 13 1110 1.000 1211 0.156 1176 0.310 1163 0.164
Peak 14 – – 1248 0.184 1239 0.395 1204 0.476
Peak 15 1237 1.489 1287 0.612 1297 0.618 1328 0.638
Peak 16 1317 1.795 1343 1.683 1340 0.598 1385 0.341
Peak 17 1383 1.438 1429 0.198 1389 0.954 1424 0.181
Peak 18 1455 1.331 1475 0.103 1455 0.585 1468 0.157
N4 value 0.459 0.469 0.475 0.499
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data show an increase in NBO in the glass matrix, which 
causes an increase in  O2− ions [52].

3.3  Radiation Shielding Properties

By analyzing the spectrum of emitted gamma rays across an 
absorber of a specific thickness, the gamma-ray attenuation 
capabilities were investigated for the glass barriers under 
study. Lambert-law Beer's was utilized to get linear attenu-
ation coefficient (LAC) parameter for the investigated glass 
samples using gamma rays narrow beam system of 60Co and 
137Cs that can be computed by the following equation.

where (d) is the thickness of sample,  I0 is the intensity of 
incident gamma rays without absorber, and  Id is the intensity 
of incident gamma rays with absorber thickness (d).

The gamma-ray effectiveness relations did apply to assess 
the attenuation parameters LAC, MAC, HVL, TVL, MFP, 
Neff and Zeff of the LBB + x% CBD samples according to 
equations as presented in [14, 16, 24].

Along with all specified photon energies, Fig. 8 displays 
the LAC values in a relationship to CBD content. That 
shows LAC increases as CBD content increase due to add-
ing more elements have gamma-ray absorption effect, which 
increases the molecular weight of the sample as well as den-
sity increase (such as,  Fe2O3,  TiO2,  Al2O3,  SiO2,  Mn2O3, 
MgO and CaO) [9, 13, 14].

By comparing the gamma-ray mass attenuation coef-
ficient of the prepared samples with ordinary concrete 
(OC) and barite concrete (BC) at 662 keV, it was found of 
0.07889, 0.084 and 0.0857  cm2/g, respectively. In addition, 
it is observed that the sample 30% CBD has the lowest 

(3)I(d) = I
o
e
LAC∗d

Fig. 5  the transmittance (T) spectra of LBB + x% CBD glass samples

Fig. 6  The extension coefficient (k) vs. hν of LBB + x% CBD glass 
samples

Fig. 7  relation between ( αhν)1/2 vs ( hν ) for LBB + x% CBD glass 
samples

Fig. 8  Linear attenuation coefficients for LBB + x% CBD glass sam-
ples
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values of the mean free path compared to the mean free 
path for ordinary concrete, hematite-serpentine concrete 
and ilmenite-limonite concrete at the 662 keV energy are 
5.5957, 5.2219 and 4.6038 cm respectively. Therefore, the 
substitution of the ordinary gamma-ray shielding materials 
by low weight, reusing hazardous by-products, transparent 
shield, relatively efficient attenuator and low coast manu-
factured material was much gained [53–55].

Figure 9 illustrates the MAC values as a relationship 
of CBD content for all particular photon energies. Table 4 
shows a contrast of computed MAC values LBB + x% CBD 
glass samples and gamma ray energy. It can be observed 

that the experimental data obtained and the numerical 
simulations are in reasonable conformity.

The HVL, MFP, and TVL are depicted in Figs. 10, 11, 
and 12. The HVL, MFP, and TVL values decreases as the 
CBD content in the LBB glass increasing, as shown in those 
graphs. As well as the gamma rays energies increases these 
values increase [6, 54]. Therefore, it may be confirmed that 
addition of CBD to the LBB glass increases the system's 
shielding properties.

Figures 13 and 14 illustrated the  Zeff and  Neff values for 
LBB + x% CBD glass samples at given gamma rays energies 
(662, 1.173 and 1.332 MeV) were increased with increas-
ing CBD concentration (Table 5). Conversely, when pho-
ton energy increase, both  Zeff and  Neff values reduced for 
LBB + x% CBD samples. In addition, Table 5 shows that the 
total atomic cross section (σt) and the total electronic cross 

Fig. 9  Mass attenuation coefficients for LBB + x% CBD glass sam-
ples

Table 4  Theoretical (MAC) Phy-X and experimental mass attenua-
tion coefficient (MAC)exp  (cm2/g) for LBB + x% CBD glass samples

Diff = |(Phy-X − EXP.)/Phy-X | × 100

CBD mol% Phy-X EXP Diff

662 MeV
 0 0.0785 0.07858 0.105732
 10 0.07867 0.07865 0.027965
 20 0.07884 0.07879 0.060883
 30 0.07901 0.07889 0.153145

1.173 MeV
 0 0.0577 0.05734 0.630849
 10 0.05781 0.05756 0.425532
 20 0.05792 0.05778 0.239986
 30 0.05803 0.05806 0.055144

1.332 MeV
 0 0.0539 0.05363 0.508349
 10 0.054 0.05388 0.218519
 20 0.05411 0.05417 0.109037
 30 0.05421 0.05427 0.11437

Fig. 10  HVL values for LBB + x% CBD glass samples

Fig. 11  MFP values for LBB + x% CBD glass samples
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section (σe) values for LBB + x%CBD glass samples. All of 
these variables exhibit nearly identical response to that of 
MAC as energy dependence and CBD content.

Figure 15 shows the EBF against gamma rays energy 
charts for LBB + x%CBD samples at different penetration 
depths of 1, 5, 10, 15, 20, 25, 30, 35 and 40 mfp. The steep 
peaks in the graphs are caused by bismuth absorption edges. 
The EBF grows with a depth and reaches extreme value at 
40 mfp. Several scattering reactions result in the creation 
of secondary gamma rays at deeper penetration depths [54, 
56, 57].

The fluctuation of EBF with penetration depth (mfp) for 
the glass samples has been estimated and can be seen in 
Fig. 16 for gamma rays energies of 0.015, 0.15, 1.5, 3, 8, 
15 MeV. The EBF values are mfp independent at the low 
energy range (0.015, 0.15 MeV) and lowest values. The 

gamma rays photons are fully cancelled out due of the pho-
toelectric effect in this energy band. In the intermediate 
energy area, EBF has a linear relationship with mfp. The 
EBF improved within repeated Compton scattering at higher 
gamma-ray energies [6]. Furthermore, in the low and inter-
mediate energy zones, an inverse relation between EBF and 
the equivalent atomic number (Zeq), whereas in the higher 
energy region, it is roughly related to  Zeq (Fig. 17). This 
occurs due to the pair production phenomenon is the most 
important interacting activity in the higher energy area.

At middle photon energy region the EBF is lowest for 
LBB + 30% CBD (30 mol% CBD) and in dissimilarity, the 
EBF is lowest for LBB + 0% CBD (0 mol% CBD) in higher 
photon energy area (Fig. 16). Hence, the choice of appropri-
ate radiation shielding material be influenced by the incident 
radiation energy in a specific application [9, 58].

4  Conclusions

This study displayed a novel strategy for removing 
hazardous cement bypass dust (CBD) by incorporat-
ing it into a glassy system with the chemical formula 
 10Li2O–10Bi2O3–(80 − x)B2O3–xCBD, where x = 0, 10, 
20, and 30%. Further, the LBB + x% CBD glass samples 
possess an additional function as a candidate material for 
radiation shielding applications. Also, the structural, opti-
cal, and attenuation properties of the LBB + x% CBD glass 
samples have studied. The optical energy gap increases 
from 2.22 eV for LBB + 0% CBD glass sample to 2.66 eV 
for LBB + 30% CBD glass sample. The increase in  Eg val-
ues can be ascribed to a change in LBB glass structure and 
the generation of defects in charge distribution due to the 
addition of CBD concentration. The MAC values were 

Fig. 12  TVL values for LBB + x% CBD glass samples

Fig. 13  Variation of effective atomic number  (Zeff) with for 
LBB + x% CBD glass samples

Fig. 14  Variation of effective electron number  (Neff) for LBB + x% 
CBD glass samples
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Table 5  The total atomic cross 
section (σt), the total electronic 
cross section (σe), the effective 
atomic number  (Zeff), and 
the electron density  (Neff) for 
LBB + x% CBD glass samples

CBD mol% σt ×  10–24  (cm2/g) σe ×  10–25  (cm2/g) Zeff Neff ×  1023  (e−/g)

662 MeV
 0 1.9035 2.6555 7.17 2.9592
 10 1.9995 2.5959 7.70 3.0297
 20 2.1076 2.5296 8.33 3.1148
 30 2.2263 2.4553 9.07 3.2131

1.173 MeV
 0 1.3888 1.9818 7.01 2.8931
 10 1.4634 1.9343 7.57 2.9760
 20 1.5456 1.8813 8.22 3.0713
 30 1.6386 1.8220 8.99 3.1867

1.332 MeV
 0 1.2989 1.8535 7.01 2.8932
 10 1.3698 1.8088 7.57 2.9788
 20 1.4490 1.7591 8.24 3.0794
 30 1.5316 1.7033 8.99 3.1863

Fig. 15  The EBF versus photon energy for LBB + x% CBD glass samples at various penetration depths



3542 Journal of Inorganic and Organometallic Polymers and Materials (2022) 32:3533–3545

1 3

Fig. 16  The EBF versus the penetration depth for LBB + x% CBD glass samples at various photon energies
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calculated using the Phy-X database code, and experi-
ments. The LAC and MAC values are enhanced as the 
CBD substituent ratio increases. The MFP and HVL val-
ues declined as the CBD substituent ratio increased in the 
same context. By comparing the gamma-ray mass attenu-
ation coefficient of the prepared samples with ordinary 
concrete (OC) and barite concrete (BC), it was found to 
be promising. Furthermore, a good matching between 
the experimental results and theoretical calculations was 
observed, indicating the Phy-X code's efficiency. Besides, 
it is noticed that the best sample for gamma-ray shield-
ing is LBB + 30% CBD. Choosing a suitable shield mate-
rial with the best thickness for radiation shielding could 
be accomplished using data from the tenth value layer, 
considering the exposure build-up factor, the energy of 
incident radiation, and the particular applications. Over-
all, the structural, optical, and attenuation properties of 
the LBB + x%CBD glass samples make them candidate 
materials for radiation shielding applications.
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