Skip to main content
Log in

Facile Synthesis and Characterization of Zn(II)-Impregnated Chitosan/Graphene Oxide: Evaluation of Its Efficiency for Removal of Ciprofloxacin from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zn(II)-impregnated chitosan/graphene oxide composite (Zn(II)-CS/GO) was prepared and applied for adsorptive removal of ciprofloxacin (CFN) from aqueous solutions. The material was characterized by FTIR, XRD, SEM coupled with EDX, and TGA- DTA. The experimental variables were optimized by Box- Behnken design. Under optimized conditions, the adsorption capacity of Zn(II)-CS/GO for CFN was 210.96 mg/g at pH 6.5. The experimental adsorption data fitted well to Langmuir model with R2 \(\ge 0.9914\). The sorption kinetic data were well described by pseudo- second- order kinetic model (R2 \(\ge 0.9989)\). Elovich model with R2 ˃ 0.986 indicated towards the chemical nature of adsorption. The adsorption of CFN on the adsorbent occurs through electrostatic and π-π interactions. The values of thermodynamic parameters (ΔG°, ΔS°, and ΔH°) indicated that the sorption of CFN on the Zn(II)-CS/GO was an endothermic and spontaneous process. Adsorption- desorption studies suggested that the Zn(II)-CS/GO composite can be used effectively for CFN removal from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary files).

References

  1. A.A. Inyinbor, O.S. Bello, A.E. Fadiji, H.E. Inyinbor, Threats from antibiotics: a serious environmental concern. J. Environ. Chem. Eng. 6, 784–793 (2018)

    Article  CAS  Google Scholar 

  2. M. Mezzelani, S. Gorbi, F. Regoli, Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms. Mar. Environ. Res. 140, 41–60 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. Y.-X. Wang, K. Gupta, J.-R. Li, B. Yuan, J.-C.E. Yanga, M.-L. Fu, Novel chalcogenide based magnetic adsorbent KMS-1/L-Cystein/Fe3O4 for the facile removal of ciprofloxacin from aqueous solution. Colloids Surf. A 538, 378–386 (2018)

    Article  CAS  Google Scholar 

  4. A. Kumar, D. Pal, Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. J. Environ. Chem. Eng. 6, 52–58 (2018)

    Article  CAS  Google Scholar 

  5. T. Trouchon, S. Lefebvre, A review of enrofloxacin for veterinary use. Open J. Vet. Med. 6, 40–58 (2016)

    Article  CAS  Google Scholar 

  6. G. Drusano, M.-T. Labro, O. Cars, P. Mendes, P. Shah, F. Sorgel, W. Weber, Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin. Microbiol. Infect. 4, 2S27-2S41 (1998)

    Article  CAS  Google Scholar 

  7. J. Schulz, N. Kemper, J. Hartung, F. Janusch, S.A.I. Mohring, G. Hamscher, Analysis of fluoroquinolones in dusts from intensive livestock farming and the co- occurrence of fluoroquinolone resistant Escherichia coli. Sci. Rep. 9, 5117 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. R. Alexy, T. Kumpel, K. Kummerer, Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57, 505–512 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. C. Girardi, J. Greve, M. Lamshoft, I. Fetzer, A. Miltner, A. Schaffer, M. Kastner, Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J. Hazard. Mater. 198, 22–30 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. A.R. Rahmani, D. Nematollahi, M.R. Samarghandi, M.T. Samadi, G. Azarian, A combined advanced oxidation process: electrooxidation- ozonation for antibiotic ciprofloxacin removal from aqueous solution. J. Electroanal. Chem. 808, 82–89 (2018)

    Article  CAS  Google Scholar 

  11. F. Wang, Y. Feng, P. Chen, Y. Wang, Y. Su, Q. Zhang, Y. Zeng, Z. Xie, H. Liu, Y. Liu, W. Lv, G. Liu, Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B: Environ. 227, 114–122 (2018)

    Article  CAS  Google Scholar 

  12. R. Mostafaloo, M. Asadi-Ghalhari, H. Izanloo, A. Zayadi, Photocatalytic degradation of ciprofloxacin antibiotic from aqueous solution by BiFeO3 nanocomposite using response surface methodology. Global J. Environ. Sci. Manage 6, 191–202 (2020)

    CAS  Google Scholar 

  13. A. Hassani, M. Karaca, S. Karaca, A. Khataee, O. Acislı, B. Yılmaz, Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. J. Environ. Manage. 211, 53–62 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. A. Hassani, A. Khataee, S. Karaca, C. Karaca, P. Gholami, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 35, 251–262 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. S.P. Sun, T.A. Hatton, T.-S. Chung, Hyperbranched polyethyleneimine induced cross-linking of polyamide imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Environ. Sci. Technol. 45, 4003–4009 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. M. Rusch, A. Spielmeyer, H. Zorn, G. Hamscher, Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl. Microbiol. Biotechnol. 103, 6933–6948 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Fei, L. Yong, H. Sheng, M. Jie, Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 484, 196–204 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. G. Wu, J. Ma, S. Li, J. Guan, B. Jiang, L. Wang, J. Li, X. Wang, L. Chen, Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 528, 360–371 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. H. Rasoulzadeh, A. Mohseni-Bandpei, M. Hosseini, M. Safari, Mechanistic investigation of ciprofloxacin recovery by magnetite– imprinted chitosan nanocomposite: isotherm, kinetic, thermodynamic and reusability studies. Int. J. Biol. Macromol. 133, 712–721 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. M.E. Penafiel, E. Vanegas, D. Bermejo, J.M. Matesanz, M.P. Ormad, Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution. Hyperfine Interact. 240, 71 (2019). https://doi.org/10.1007/s10751-019-1612-9

    Article  CAS  Google Scholar 

  21. N. Dhiman, N. Sharma, Removal of ciprofloxacin hydrochloride from aqueous solution using vertical bed and sequential bed columns. J. Environ. Chem. Eng. 6, 4391–4398 (2018)

    Article  CAS  Google Scholar 

  22. Z. Movasaghi, B. Yan, C. Niu, Adsorption of ciprofloxacin from water by pretreated oat hulls: equilibrium, kinetic, and thermodynamic studies. Ind. Crops Prod. 127, 237–250 (2019)

    Article  CAS  Google Scholar 

  23. Y. Shao, P. Zhao, Q. Yue, Y. Wu, B. Gao, W. Kong, Preparation of wheat straw-supported Nanoscale Zero-Valent Iron and its removal performance on ciprofloxacin. Ecotoxicol. Environ. Saf. 158, 100–107 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. J. Li, G. Yu, L. Pan, C. Li, F. You, S. Xie, Y. Wang, J. Ma, X. Shang, Study of ciprofloxacin removal by biochar obtained from used tea leaves. J. Environ. Sci. 73, 20–30 (2018)

    Article  Google Scholar 

  25. Y. Hu, Y. Zhu, Y. Zhang, T. Lin, G. Zeng, S. Zhang, Y. Wang, W. He, M. Zhang, H. Long, An efficient adsorbent: simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption. Bioresour. Technol. 288, 121511 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. A. Ashiq, N.M. Adassooriya, B. Sarkar, A.U. Rajapaksha, Y.S. Ok, M. Vithanage, Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. J. Environ. Manage. 236, 428–435 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Zhou, S. Cao, C. Xi, X. Li, L. Zhang, G. Wang, Z. Chen, A novel Fe3O4/ graphene oxide/ citrus peel- derived bio- char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin. Bioresour. Technol. 292, 121951 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. H. Li, W. Wu, X. Hao, S. Wang, M. You, X. Han, Q. Zhao, B. Xing, Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes. Environ. Pollut. 243, 206–217 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. A. Gupta, A. Garg, Adsorption and oxidation of ciprofloxacin in a fixed bed column using activated sludge derived activated carbon. J. Environ. Manage. 250, 109474 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 222, 188–194 (2016)

    Article  CAS  Google Scholar 

  31. Y. Privar, D. Shashura, A. Pestov, E. Modin, A. Baklykov, D. Marinin, S. Bratskaya, Metal-chelate sorbents based on carboxyalkylchitosans: ciprofloxacin uptake by Cu(II) and Al(III)-chelated cryogels of N-(2-carboxyethyl) chitosan. Int. J. Biol. Macromol. 131, 806–811 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. G.Z. Kyzas, P.I. Siafaka, E.G. Pavlidou, K.J. Chrissafis, D.N. Bikiaris, Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 259, 438–448 (2015)

    Article  CAS  Google Scholar 

  33. G.Z. Kyzas, N.K. Lazaridis, M. Kostoglou, Adsorption/desorption of a dye by a chitosan derivative: experiments and phenomenological modelling. Chem. Eng. J. 248, 327–336 (2014)

    Article  CAS  Google Scholar 

  34. S.T. Danalıoglu, S.S. Bayazit, O.K. Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq. 240, 589–596 (2017)

    Article  CAS  Google Scholar 

  35. Z. Zhang, H. Li, J. Li, X. Li, Z. Wang, X. Liu, L. Zhang, A novel adsorbent of core-shell construction of chitosan-cellulose magnetic carbon foam: synthesis, characterization and application to remove copper in wastewater. Chem. Phys. Lett. 731, 136573 (2019)

    Article  CAS  Google Scholar 

  36. Y. Wang, G. Xia, C. Wu, J. Sun, R. Song, W. Huang, Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B. Carbohydr. Polym. 115, 686–693 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. L. Liu, C. Li, C. Bao, Q. Jia, P. Xiao, X. Liu, Q. Zhang, Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93, 350–357 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Chen, L. Chen, H. Bai, L. Li, Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A. 1, 1992–2001 (2013)

    Article  CAS  Google Scholar 

  39. L.V. Candioti, M.M. De Zan, M.S. Camara, H.C. Goicoechea, Experimental design and multiple response optimization using the desirability function in analytical methods development. Talanta 124, 123–138 (2014)

    Article  PubMed  CAS  Google Scholar 

  40. N. Rahman, S. Sameen, M. Kashif, Application of Box- Behnken design and desirability function in the optimization of spectrophotometric method for the quantification of WADA banned drug: acetazolamide. J. Mol. Liq. 274, 270–277 (2019)

    Article  CAS  Google Scholar 

  41. N. Rahman, S. Khan, Experimental design approach in the optimization of potentiometric method for lansoprazole determination using lansoprazole- tungstate based ion- selective electrode. Ind. Eng. Chem. Res. 57, 9351–9361 (2018)

    Article  CAS  Google Scholar 

  42. N. Rahman, M.F. Khan, M. Nasir, Experimental design approach for optimization of Pb(II) removal from aqueous solution using poly- o- toluidine/ stannic(IV) triethanolamine as adsorbent. Environ. Technol. Innov. 17, 100634 (2020). https://doi.org/10.1016/j.eti.2020.100634

    Article  Google Scholar 

  43. N. Rahman, M. Nasir, Effective removal of acetaminophen from aqueous solution using Ca(II)- doped chitosan/ β- cyclodextrin composite. J. Mol. Liq. 301, 112454 (2020). https://doi.org/10.1016/j.molliq.2020.112454

    Article  CAS  Google Scholar 

  44. N. Rahman, M. Nasir, N-(((2- ((2- Aminoethyl) amino) ethyl) amino) methyl)-4- sulfamoyl benzamide impregnated hydrous zirconium oxide as a novel adsorbent for removal of Ni(II) from aqueous solutions: optimization of variables using central composite design. ACS Omega 4, 2823–2832 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. N. Rahman, M. Nasir, Application of Box- Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly (o- phenylenediamine)/ hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 25, 26114–26134 (2018)

    Article  CAS  Google Scholar 

  46. L.J. Cote, F. Kim, J. Huang, Langmuir- Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  48. A.M. Khan, S.S. Shah, Fluorescence spectra behavior of ciprofloxacin HCl in aqueous medium and its interaction with sodium dodecyl sulfate. J. Dispers. Sci. Technol. 30, 997–1002 (2009)

    Article  CAS  Google Scholar 

  49. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. J. Zhang, Y. Wei, H. Li, E.Y. Zeng, J. You, Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta 170, 392–398 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. B. Liao, W.-Y. Sun, N. Guo, S.-L. Ding, S.-J. Su, Comparison of Co2+ adsorption by chitosan and its triethylene- tetramine derivative: performance and mechanism. Carbohydr. Polym. 151, 20–28 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. S.M.L. Silva, C.R.C. Braga, M.V.L. Fook, C.M.O. Raposo, L.H. Carvalho, E.L. Canedo, Application of infrared spectroscopy to analysis of chitosan/ clay nanocomposites, in Infrared spectroscopy- Materials Science, Engineering and Technology, ed. By T. Theophile ( In Tech, 2012) 43–62; ISBN: 978-953-51-0537-4

  53. M.F. Queiroz, K.R.T. Melo, D.A. Sabry, G.L. Sassaki, H.A.O. Rocha, Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs. 13, 141–158 (2015)

    Article  CAS  Google Scholar 

  54. K. Liu, L. Chen, L. Huang, Y. Lai, Evaluation of ethylenediamine- modified nanofibrillated cellulose/ chitosan composites on adsorption of cationic and anionic dyes from aqueous solution. Carbohydr. Polym. 151, 115–119 (2016)

    Google Scholar 

  55. Q. Yuan, J. Shah, S. Hein, R.D.K. Misra, Controlled and extended drug release behaviour of chitosan- based nanoparticle carrier. Acta Biomater. 6, 1140–1148 (2010)

    Article  CAS  PubMed  Google Scholar 

  56. R. Varma, S. Vasudevan, Extraction, characterization and antimicrobial activity of chitosan from horse mussel Modiolus modiolus. ACS Omega 5, 20224–20230 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. G. Socrates, Infrared characteristic group frequencies (wiley, New York,1980), pp. 48, 54, 88

  58. J.A. Luceno-Sanchez, G. Maties, C. Gonzalez-Arellano, A.M. Diez-Pascual, Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Proceedings (2019). https://doi.org/10.3390/IOCN_2018-1-05485

    Article  Google Scholar 

  59. Z. Liu, X. Duan, X. Zhou, G. Qian, J. Zhou, W. Yuan, Controlling and formation mechanism of oxygen- containing groups on graphitic oxide. Ind. Eng. Chem. Res. 53, 253–258 (2014)

    Article  CAS  Google Scholar 

  60. D. He, Z. Peng, W. Gong, Y. Luo, P. Zhao, L. Kong, Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv. 5, 11966–11972 (2015)

    Article  CAS  Google Scholar 

  61. J. Guerrero-Contreras, F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220 (2015)

    Article  CAS  Google Scholar 

  62. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal- carboxylate inetractions in metal- alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 345, 469–473 (2010)

    Article  CAS  PubMed  Google Scholar 

  63. S. Nzikayel, I.J. Akpan, E.C. Adams, Synthesis, FTIR and electronic studies of metal (II) complexes of pyrazine-2-carboxylic acid derivative. Med. Chem. 7, 321–323 (2017)

    Google Scholar 

  64. Z. Yang, X. Liu, X. Liu, J. Wu, X. Zhu, Z. Bai, Z. Yu, Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloids Surf. B 200, 11605 (2021)

    Article  CAS  Google Scholar 

  65. C. Valencia, C.H. Valencia, F. Zuluaga, M.E. Valencia, J.H. Mina, C.D. Grande-Tovar, Synthesis and application od scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 23, 2651 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  66. G.Z. Kyzas, N.A. Travlou, O. Kalogirou, E.A. Deliyanni, Magnetic graphene oxide: effect of preparation route on reactive black 5 adsorption. Materials 6, 1360–1376 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A.H. Gedam, R.S. Dongre, Adsorption characterization of Pb (II) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Adv. 5, 54188–54201 (2015)

    Article  CAS  Google Scholar 

  68. H.-M. Ju, S.-H. Choi, S.H. Huh, X-ray diffraction patterns of thermally-reduced graphenes. J. Korean Phys. Soc. 57, 1649–1652 (2010)

    Article  CAS  Google Scholar 

  69. G. Pavoski, T. Maraschin, F. de Carvalho Fim, N.M. Balzaretti, G.B. Galland, C.S. Moura, N.R. de Souza Basso, Few layer reduced graphene oxide: evaluation of the best experimental conditions for easy production. Mater. Res. 20, 53–61 (2017)

    Article  CAS  Google Scholar 

  70. G. Cardenas, S.P. Miranda, FTIR and TGA studies of chitosan composite films. J. Chilean Chem. Soc. 49, 291–295 (2004)

    CAS  Google Scholar 

  71. K.S.V. Krishna Rao, B.V. Naidu, M.C.S. Subha, M. Sairam, T.M. Aminabhavi, Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr. Polym. 66, 333–344 (2006)

    Article  CAS  Google Scholar 

  72. M.M. Ansari, A. Ahmad, R.K. Mishra, S.S. Raza, R. Khan, Zinc gluconate loaded chitosan nanoparticles reduce severity of collagen-induced arthritis in wistar rats. ACS Biomater. Sci. Eng. 5, 3380–3397 (2019)

    Article  CAS  PubMed  Google Scholar 

  73. N. Rahman, M. Nasir, P. Varshney, A.M. Al-Enizi, M. Ubaidullah, S.F. Shaikh, M.A. Al-Adrabalnabi, Efficient removal of Pb(II) from water using silica gel functionalized with thiosalicylic acid: Response surface methodology for optimization. J. King Saud Univ. Sci. 33, 101232 (2021)

    Article  Google Scholar 

  74. P.C. Sharma, A. Jain, S. Jain, R. Pahwa, M.S. Yar, Ciprofloxacin: review on developments in synthetic, analytical and medicinal aspects. J. Enzyme Inhibit. Med. Chem. 25, 577–589 (2010)

    Article  CAS  Google Scholar 

  75. N. Rahman, M. Nasir, Development of Zr(IV)-doped polypyrrole/ziorconium(IV) iodate composite for efficient removal of fluoride from water environment. J. Water Process Eng. 19, 172–184 (2017)

    Article  Google Scholar 

  76. K.C. Nebaghe, Y. El Boundati, K. Ziat, A. Naji, L. Rghioui, M. Saidi, Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper (II) onto treated Martil sand. Fluid Phase Equilib. 430, 188–194 (2016)

    Article  CAS  Google Scholar 

  77. M.A. Hossain, H.H. Ngo, W. Guo, Introductory of Microsoft Excel SOLVER functions-spreadsheet method for isotherm and kinetics modelling of metals biosorption in watstewater. J. Water Sustain. 3, 223–227 (2013)

    CAS  Google Scholar 

  78. N. Rahman, U. Haseen, M.F. Khan, Cyclic tetra [(indolyl)-tetramethyl]-diethane-1,2-diamine (CTet) impregnated hydrous zirconium oxide as a novel hybrid material for enhanced removal of fluoride from water samples. RSC Adv. 5, 39062–39074 (2015)

    Article  CAS  Google Scholar 

  79. B. Sukhbaatar, B. Yoo, J.-H. Lim, Metal-free high adsorption-capacity adsorbent derived from spent coffee grounds for methylene. RSC Adv. 11, 5118–5127 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. N. Danesh, M. Ghorbani, A. Marjani, Separation of copper ions by nanocomposites using adsorption process. Sci. Rep. 11, 1676 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. A. Chowdhury, S. Kumari, A.A. Khan, M.R. Chandra, S. Hussain, Activated carbon loaded with Ni-Co-S-nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: kinetics and isotherms. Colloids Surf. A 611, 125868 (2021)

    Article  CAS  Google Scholar 

  82. E. Inam, U.J. Etim, E.G. Akpabio, S.A. Umoren, Process optimization for the application of carbon from plantain peels in dye abstraction. J. Taibah Univ. Sci. 11, 173–185 (2017)

    Article  Google Scholar 

  83. S. Savci, Dubinin- Radushkevich isotherm studies of equilibrium biosorption of some veterinary pharmaceuticals by using live activated sludge. Kuwait J. Sci. 43, 142–147 (2016)

    CAS  Google Scholar 

  84. N. Rahman, P. Varshney, Assessment of ampicillin removal efficiency from aqueous solution by polydopamine/zirconium (IV) iodate: optimization by response surface methodology. RSC Adv. 10, 20322–20337 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. N. Rahman, M. Nasir, Facile synthesis of thiosalicylic acid functionalized silica gel for effective removal of Cr(III): Equilibrium modelling, kinetic and thermodynamic studies. Environ. Nanotechnol. Monit. Manage. 14, 100353 (2020)

    Google Scholar 

  86. S. Sarkar, M. Sarkar, Ultrasound assisted batch operation for the adsorption of hexavalent chromium onto engineered nanobiocomposite. Heliyon 5, e01491 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  87. M.A. Alnajrani, O.A. Alsager, Removal of antibiotics from water by polymer of intrinsic microporosity: isotherms, kinetics, thermodynamics and adsorption mechanism. Sci. Rep. 10, 794 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep. 5, 13578 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  89. H. Zhao, X.-K. Ouyang, L.-Y. Yang, Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber-sodium alginate hydrogel beads. J. Mol. Liq. 324, 115122 (2021)

    Article  CAS  Google Scholar 

  90. C.S. Ngakou, G.S. Anagho, H.M. Ngomo, Non-linear regression analysis for the adsorption kinetics and equilibrium isotherm of phenacetin onto activated carbons. Curr. J. Appl. Sci. Technol. 36, 49764 (2019)

    Google Scholar 

  91. N. Rahman, M. Nasir, A.A. Alothman, A.M. Al-Enizi, M. Ubaidullah, S.F. Shaikh, Synthesis of 2-mercaptopropionic acid/ hydrous zirconium oxide composite and its application for removal of Pb(II) from water samples: central composite design for optimization. J. King Saud Univ. Sci. 33, 101280 (2021)

    Article  Google Scholar 

  92. H. Guedidi, L. Reinert, Y. Soneda, N. Bellakhal, L. Duclaux, Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arabian J. Chem. 10, S3584–S3594 (2017)

    Article  CAS  Google Scholar 

  93. W.J. Weber Jr., J.C. Morris, J. Sanit, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civil Eng. 89, 31–38 (1963)

    Article  Google Scholar 

  94. N. Rahman, U. Haseen, Equilibrium modeling, Kinetic and thermodynamic studies on adsorption of Pb (II) by a hybrid inorganic-organic material: polyacrylamide zirconium (IV) iodate. Ind. Eng. Chem. Res. 53, 8198–8207 (2014)

    Article  CAS  Google Scholar 

  95. N. Rahman, M.F. Khan, Nitrate removal using poly-o-toluidine zirconium (IV) ethylenediamine as adsorbent: batch and fixed-bed column adsorption modelling. J. Water Process Eng. 9, 254–266 (2016)

    Article  Google Scholar 

  96. S. Sumanjit, R.K. Rani, Mahajan, equilibrium, kinetic and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arabian J. Chem. 9, S1464–S1477 (2016)

    Article  CAS  Google Scholar 

  97. N. Rahman, M.F. Khan, Development of poly-o-toluidine zirconium (IV) ethylenediamine as a new adsorbent for nitrate: equilibrium modeling and thermodynamic studies. J. Ind. Eng. Chem. 25, 272–279 (2015)

    Article  CAS  Google Scholar 

  98. S.K. Milonjic, A consideration of the correct calculation of thermodynamic parameters of adsorption. J. Serb. Chem. Soc. 72, 1363–1367 (2007)

    Article  CAS  Google Scholar 

  99. U.E. Osonwa, J.I. Ugochukwu, E.E. Ajaegbu, K.I. Chukwu, R.B. Azevedo, C.O. Esimone, Enhancement of bacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate. Bull. Fac. Pharm. Cairo Univ. 55, 233–237 (2017)

    Google Scholar 

  100. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83–94 (2004)

    Article  CAS  Google Scholar 

  101. S. Wu, X. Zhao, Y. Li, C. Zhao, Q. Du, J. Sun, Y. Wang, X. Peng, Y. Xia, Z. Wang, L. Xia, Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem. Eng. J. 230, 389–395 (2013)

    Article  CAS  Google Scholar 

  102. S. Shi, Y. Fan, Y. Huang, Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics. Ind. Eng. Chem. Res. 52, 2604–2612 (2013)

    Article  CAS  Google Scholar 

  103. C. Gu, K.G. Karthikeyan, Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 39, 9166–9173 (2005)

    Article  CAS  PubMed  Google Scholar 

  104. C.L. Zhang, G.-L. Qiao, Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J. Mol. Liq. 163, 53–56 (2011)

    Article  CAS  Google Scholar 

  105. A. Avc, I. Inci, N. Baylan, Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube. J. Mol. Struct. 1206, 127711 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Aligarh Muslim University for providing necessary facilities. Poornima Varshney thankfully acknowledge the UGC, New Delhi for providing Non NET fellowship to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of individual authors is given below: Nafisur Rahman: Compiled the manuscript and interpreted the data. Poornima Varshney: Literature review, performed all experimental parts, calculation of required parameters and figures drawings.

Corresponding author

Correspondence to Nafisur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, N., Varshney, P. Facile Synthesis and Characterization of Zn(II)-Impregnated Chitosan/Graphene Oxide: Evaluation of Its Efficiency for Removal of Ciprofloxacin from Aqueous Solution. J Inorg Organomet Polym 31, 3595–3612 (2021). https://doi.org/10.1007/s10904-021-01981-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01981-8

Keywords

Navigation