Skip to main content

Advertisement

Log in

The Coexistence of the Poly(phospho-siloxo) Networks and Calcium Phosphates on the Compressive Strengths of the Acid-Based Geopolymers Obtained at Room Temperature

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work aims to investigate the coexistence of the poly(phospho-siloxo) networks and calcium phosphates on the compressive strengths of the acid-based geopolymers obtained at room temperature. Waste fired brick and phosphoric acid were used as an aluminosilicate and chemical reagent, respectively. Calcium aluminate hydrate was prepared by mixing calcium hydroxide from the calcined eggshell and calcined bauxite. Calcium silicate hydrate was obtained by the mixture of rice husk ash and calcium hydroxide. The molar ratios CaO/Al2O3 and CaO/SiO2 in the calcium aluminate and calcium silicate hydrates are equals to 1.0. The X-ray patterns of the acid-based geopolymers indicate the broad hump structure between 18 and 38°(2θ). In addition to this broad band, those from the mixture of calcium sources show the reflection peaks of monetite and brushite. The compressive strength of the reference is 56.43 MPa. Those obtained with the addition of 10, 20, 40 and 50 g of calcined eggshell are 30.15, 22.85, 21.16 and 13.47 MPa, respectively. The ones from calcium aluminate hydrate are 32.62, 31.58, 17.83 and 16.33 MPa, respectively. Whereas those containing calcium silicate hydrate are 44.02, 42.71, 40.19 and 18.59 MPa, respectively. This work demonstrates that the formation of calcium phosphates in the structure of the acid-based geopolymers decreases the poly(phospho-siloxo) chains and therefore reduces their compressive strengths. The moderate addition of calcium silicate hydrate reduces slightly the compressive strengths of the acid-based geopolymers which can be comparable to the one of CEM II 42.5R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.Y. Heah, H. Kamarudin, A.M.M. Al Bakri, M. Luqman, I. Khairul Nizar, Y.M. Liew, Potential application of kaolin without calcined as greener concrete: a review. Aust. J. Basic Appl. Sci. 5, 1026–1035 (2011)

    Google Scholar 

  2. E. Kamseu, C. Leonelli, D.S. Perera, U.F.C. Melo, P.N. Lemougna, Investigation of volcanic ash-based geopolymers as potential building materials. Int. Ceram. 58, 136–140 (2009)

    CAS  Google Scholar 

  3. D. Bondar, C.J. Lynsdale, N.B. Milestone, N. Hassani, A.A. Ramezanianpour, Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr. Build. Mater. 25, 4065–4071 (2011)

    Article  Google Scholar 

  4. D. Bondar, C.J. Lynsdale, N.B. Milestone, N. Hassani, A.A. Ramezanianpour, Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr. Build. Mater. 25, 2906–2910 (2011)

    Article  Google Scholar 

  5. P.N. Lemougna, K.J.D. Mackenzie, U.F.C. Melo, Synthesis and thermal properties of inorganic polymers (geopolymers) for structure and refractory applications from volcanic ash. Ceram. Int. 37, 3011–3018 (2011)

    Article  CAS  Google Scholar 

  6. H.K. Tchakouté, A. Elimbi, E. Yanne, C.N. Djangang, Utilization of volcanic ashes for the production of geopolymers cured at ambient temperature. Cem. Concr. Comp. 38, 75–81 (2013)

    Article  Google Scholar 

  7. W.K.W. Lee, J.S.J. van Deventer, Structural reorganisation of class F fly ash in alkaline solutions. Colloids Surf. A 211, 49–66 (2002)

    Article  CAS  Google Scholar 

  8. X. Guo, H. Shi, W.A. Dick, Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Comp. 32, 142–147 (2010)

    Article  CAS  Google Scholar 

  9. T.W. Cheng, J.P. Chiu, Fire resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 16, 205–210 (2003)

    Article  CAS  Google Scholar 

  10. A. Elimbi, H.K. Tchakoute, D. Njopwouo, Effects of calcination temperature of kaolinite clays on the properties of geopolymers cements. Constr. Build. Mater. 25, 2805–2812 (2011)

    Article  Google Scholar 

  11. C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerization. Cem. Concr. Res. 38, 554–564 (2008)

    Article  CAS  Google Scholar 

  12. C.K. Yip, G.C. Lukey, J.S.J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697 (2005)

    Article  CAS  Google Scholar 

  13. D.E.T. Mabah, H.K. Tchakouté, C.H. Rüscher, E. Kamseu, A. Elimbi, C. Leonelli, Design of low-cost semi-crystalline calcium silicate from biomass for the improvement of the mechanical and microstructural properties of metakaolin-based geopolymer cements. Mater. Chem. Phys. 223, 98–108 (2019)

    Article  Google Scholar 

  14. H.K. Tchakouté, D.E.T. Mabah, C.H. Rüscher, E. Kamseu, F. Andreola, M.C. Bignozzi, C. Leonelli, Preparation of low-cost nano and microcomposites from chicken eggshell, nano-silica and rice husk ash and their utilisations as additives for producing geopolymer cements. J. Asian Ceram. Soc. 8, 149–161 (2020)

    Article  Google Scholar 

  15. K.J.D. MacKenzie, M.E. Smith, A. Wong, A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers. J. Mater. Chem. 17, 5090–5096 (2007)

    Article  CAS  Google Scholar 

  16. F.M. Tchuenté, H.K. Tchakouté, C. Banenzoué, C.H. Rüscher, E. Kamseu, F. Andreola, C. Leonelli, Microstructural and mechanical properties of (Ca, Na)-poly(sialate-siloxo) from metakaolin as aluminosilicate and calcium silicate from precipitated silica and calcined chicken eggshell. Constr. Build. Mater. 201, 662–675 (2019)

    Article  Google Scholar 

  17. H.K. Tchakouté, D. Fotio, C.H. Rüscher, E. Kamseu, J.N.Y. Djobo, M.C. Bignozzi, C. Leonelli, The effects of synthesized calcium phosphate compounds on the mechanical and microstructural properties of metakaolin-based geopolymer cements. Constr. Build. Mater. 163, 776–792 (2018)

    Article  Google Scholar 

  18. M.L. Gualtieri, M. Romagnoli, A.F. Gualtieri, Preparation of phosphoric acid-based geopolymer foams using limestone as pore forming agent-thermal properties by in situ XRPD and Rietveld refinements. J. Eur. Ceram. Soc. 35, 3167–3178 (2015)

    Article  Google Scholar 

  19. N. Boutaleb, F. Chouli, A. Benyoucef, F.Z. Zeggai, K. Bachari, A comparative study on surfactant cetyltrimethylammoniumbromide modified clay-based poly(p-anisidine) nanocomposites: synthesis, characterization, optical and electrochemical properties. Polym. Compos. (2021). https://doi.org/10.1002/pc.25941

    Article  Google Scholar 

  20. D. Cao, D. Su, B. Lu, Y. Yang, Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid. J. Chin. Ceram. Soc. 33, 1385–1389 (2005)

    CAS  Google Scholar 

  21. D.S. Perera, J.V. Hanna, J. Davis, The relative strength of phosphoric acid-reacted and alkali-reacted metakaolin materials. J. Mater. Sci. 43, 6562–6566 (2008)

    Article  CAS  Google Scholar 

  22. H. Celerier, J. Jouin, V. Mathivet, N. Tessier-Doyen, S. Rossignol, Composition and properties of phosphoric acid-based geopolymers. J. Non-Cryst. Solids 493, 94–98 (2018)

    Article  CAS  Google Scholar 

  23. M.L. Gualtieri, M. Romagnoli, S. Pollastri, A.F. Gualtieri, Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: mechanical and microstructural properties. Cem. Concr. Res. 67, 259–270 (2015)

    Article  Google Scholar 

  24. C.N. Bewa, H.K. Tchakouté, C.H. Rüscher, E. Kamseu, C. Leonelli, Influence of the curing temperature on the properties of poly(phospho-ferro-siloxo) networks from laterite. SN Appl. Sci. 1, 1–12 (2019)

    Article  Google Scholar 

  25. J. Davidovits, Geopolymer Chemistry and Applications, 3rd edn. (Institute Geopolymer, Saint-Quentin, 2011), p. 612

    Google Scholar 

  26. C.N. Bewa, H.K. Tchakouté, C. Banenzoué, L. Cakanou, T.T. Mbakop, E. Kamseu, C.H. Rüscher, Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci. 198, 105813 (2020)

    Article  CAS  Google Scholar 

  27. A.B. Tchamba, R. Yongue, U.F.C. Melo, E. Kamseu, D. Njoya, D. Njopwouo, Caractérisation de la bauxite de Haléo-Danielle (Minim-Martap, Cameroun) en vue de son utilisation industrielle dans les matériaux à haute teneur en alumine. Silic. Ind. 73, 77–83 (2008)

    CAS  Google Scholar 

  28. D. Prasetyoko, Z. Ramli, S. Endud, H. Hamdan, B. Sulikowski, Conversion of rice husk ash to zeolite beta. Waste Manag. 26, 1173–1179 (2006)

    Article  CAS  Google Scholar 

  29. H.K. Tchakouté, C.H. Rüscher, J.N.Y. Djobo, B.B.D. Kenne, D. Njopwouo, Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl. Clay Sci. 107, 188–194 (2015)

    Article  Google Scholar 

  30. R.L. Frost, J.T. Kloprogge, S.C. Russell, J.L. Szetu, Vibrational spectroscopy and dehydroxylation of aluminum (oxo)hydroxides: gibbsite. Appl. Spectrosc. 53, 423–434 (1999)

    Article  CAS  Google Scholar 

  31. R.L. Frost, J.T. Kloprogge, S.C. Russell, J.L. Szetu, Dehydroxylation and the vibrational spectroscopy of aluminum (oxo)hydroxides using infrared emission spectroscopy. Part III: diaspore. Appl. Spectrosc. 53, 829–835 (1999)

    Article  CAS  Google Scholar 

  32. A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J.B. Brubach, P. Berthet, A.M. Hunt, P. Roy, R. Tétot, Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 182, 1171–1176 (2009)

    Article  CAS  Google Scholar 

  33. X. Pan, D. Zhang, Y. Wu, H. Yu, Synthesis and characterization of calcium aluminate compound from gehlenite by high-temperature solid state reaction. Ceram. Int. 44, 13544–13550 (2018)

    Article  CAS  Google Scholar 

  34. Z. Zidi, M. Ltifi, Z. Ben Ayadi, L. ElMir, Synthesis of nano-alumina and their effect on structure, mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 7, 524–535 (2019)

    Article  Google Scholar 

  35. K. Baltakys, R. Jauberthie, R. Siauciunas, R. Kaminskas, Influence of modification of SiO2 on the formation of calcium silicate hydrate. Mater. Sci. Poland 25, 663–670 (2007)

    CAS  Google Scholar 

  36. C.N. Bewa, H.K. Tchakouté, D. Fotio, C.H. Rüscher, E. Kamseu, C. Leonelli, Water resistance and thermal behaviour of metakaolin-phosphate-based geopolymer cements. J. Asian Ceram. Soc. 6, 271–283 (2018)

    Article  Google Scholar 

  37. B. Zhang, H. Guo, P. Yuan, L. Deng, X. Zhong, Y. Li, Q. Wang, D. Liu, Novel acid-based geopolymer synthesized from nanosized tubular halloysite: the role of precalcination temperature and phosphoric acid concentration. Cem. Concr. Comp. 110, 103601 (2020)

    Article  CAS  Google Scholar 

  38. J. Wang, H. Zhao, S. Zhou, X. Lu, B. Feng, C. Duan, J. Weng, One-step in situ synthesis and characterization of sponge-like porous calcium phosphate scaffolds using a sol-gel and gel casting hybrid process. J. Biomedical Mater. Res. Part A 90A, 401–410 (2009)

    Article  CAS  Google Scholar 

  39. R. Štulajterová, L. Medvecky, Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions. Colloids Surf. A 316, 104–109 (2008)

    Article  Google Scholar 

  40. M.M. Mirkovic, T.D.L. Pašti, A.M. Došen, M.Z. Cebela, A.A. Rosic, B.Z. Matovic, B.M. Babic, Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite. RSC Adv. 6, 12219–12225 (2016)

    Article  CAS  Google Scholar 

  41. C.K. Yip, The role of calcium in geopolymerization, University of Melbourne, Australia, PhD Thesis (2004)

  42. A. Moshiri, D. Stefaniuk, S.K. Smith, A. Morshedifard, D.F. Rodrigues, M.J.A. Qomi, K.J. Krakowiak, Structure and morphology of calcium-silicate-hydrates cross-linked with dipodal organosilanes. Cem. Concr. Res. 133, 106076 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Tchakouté Kouamo Hervé gratefully acknowledges the Alexander von Humboldt-Stiftung for its financial support this work under Grant N° KAM/1155741 GFHERMES-P. The authors would like to thank Dr. Valerie Petrov for SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé K. Tchakouté.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riyap, H.I., Tazune, F.K., Fotio, D. et al. The Coexistence of the Poly(phospho-siloxo) Networks and Calcium Phosphates on the Compressive Strengths of the Acid-Based Geopolymers Obtained at Room Temperature. J Inorg Organomet Polym 31, 3301–3323 (2021). https://doi.org/10.1007/s10904-021-01949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01949-8

Keywords

Navigation