Skip to main content

Advertisement

Log in

Preparation and Properties of Silver-Based Cellulose/Polyvinyl Alcohol Antibacterial Materials

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This paper reports the synthesis and application of nanosilver antibacterial materials. The preparation methods of nanosilver complexes are described. The effect of silver nitrate concentration and nanosilver dispersion on antibacterial properties was analysed. In this experiment, TEMPO oxidant was used to oxidize hydroxyl on the C6 position of wood nanocellulose into a carboxyl group. Meanwhile, carboxyl compound was used to react with AgNO3, the silver composite material was prepared with PVA as the substrate. We use interface grafting. The surface of cellulose is bonded with reactive functional groups to form a transition layer. To improve the interface bonding between matrix and reinforcing fiber. The Ag-NC-PVA nanocomposite film was characterized by UV–Vis, SEM, TEM, mechanical properties and antibacterial properties analysis. SEM and TEM images showed that the size of most silver nanoparticles ranged from 5 to 20 nm; the mean particle size was 10 nm. The mechanical properties of Ag-NC-PVA films were greater than that of PVA film. When the amount of Ag-NC was 4%, its tensile strength was 71.3 MPa; it’s almost 15% higher than PVA. After antibacterial analysis, Ag-NC endowed PVA with excellent antibacterial properties. The prepared Ag-NC-PVA greatly promotes the practical application development of the silver-based composite bacteriostatic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Rajendran, B. Deepa, Studies on the structural, morphological, optical, electro-chemical and antimicrobial activity of bare, Cu and Ag @ WO3 nanoplates by hydrothermal method. J. Inorg. Organomet. 28(4), 1574–1586 (2018)

    CAS  Google Scholar 

  2. X.Y. Zhao, G.H. Yan, Y. Sun, Preparation of ethyl cellulose composite film with down conversion luminescence properties by doping perovskite quantum dots. Chem. Sel. 4(21), 6516–6523 (2019)

    CAS  Google Scholar 

  3. X.D. Wang, C.H. Yao, F. Wang, Cellulose-based nanomaterials for energy applications. Small 13(42), 1702240 (2017)

    Google Scholar 

  4. V. Siahpoush, S. Ahmadi-kandjani, A. Nikniazi, Effect of plasmonic coupling on photo thermal behavior of random nanoparticles. Opt. Commun. 420, 52–58 (2018)

    CAS  Google Scholar 

  5. S. Ghiassi, M. Mokhtary, S. Sedaghat, H. Kefayati, Preparation, and antibacterial activity of chloroacetic acid immobilized on chitosan coated iron oxide decorated silver nanoparticles as an efficient catalyst for the synthesis of hexahydroquinoline-3-carboxamides. J. Inorg. Organomet. 29(6), 1972–1982 (2019)

    CAS  Google Scholar 

  6. X.Y. Dong, L.X. Gao, W.Q. Zhang, Evolution of cobalt catalysis for catalytic construction of Si-H containing semi-penetrating networks: updated application in nanosilver-catalyzed alkynylation of paraformaldehyde. Chem. Sel. 1(13), 4034–4043 (2016)

    CAS  Google Scholar 

  7. X.Y. Dong, Z.W. Gao, K.F. Yang, Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 5(5), 2554–2574 (2015)

    CAS  Google Scholar 

  8. H. Tang, R. Wang, C.X. Zhao, Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chem. Eng. J. 374, 1064–1075 (2019)

    CAS  Google Scholar 

  9. Z. Ahmadi, M. Ashjari, R. Hosseini, Synthesis and morphological study of nanoparticles Ag/TiO2 ceramic and bactericidal investigation of polypropylene-Ag/TiO2 composite. J. Inorg. Organomet. 19(3), 322–327 (2009)

    CAS  Google Scholar 

  10. V. Suba, G. Rathika, E. Ranjith Kumar, M. Saravanabhavan, Enhanced adsorption and antimicrobial activity of fabricated apocynaceae leaf waste activated carbon by cobalt ferrite nanoparticles for textile effluent treatment. J. Inorg. Organomet. 29(2), 550–563 (2019)

    CAS  Google Scholar 

  11. G.V. Kumari, T. Mathavan, R. Srinivasan, The influence of physical properties on the antibacterial activity of lysine conjugated chitosan functionalized silver nanoparticles. J. Inorg. Organomet. 28(6), 2418–2426 (2018)

    Google Scholar 

  12. Y. Haldorai, J.J. Shim, Chitosan-zinc oxide hybrid composite for enhanced dye degradation and antibacterial activity. Compos. Interfaces 20(5), 365–377 (2013)

    CAS  Google Scholar 

  13. J. Koeser, M. Engelke, M. Hoppe, Predictability of silver nanoparticle speciation and toxicity in ecotoxicological media. Environ. Sci. Nano. 4(7), 1470–1483 (2017)

    CAS  Google Scholar 

  14. L. Klapiszewski, T. Rzemieniecki, M. Krawczyk, Kraft lignin/silica-AgNPs as a functional material with antibacterial activity. Colloid Surf. B 134, 220–228 (2015)

    CAS  Google Scholar 

  15. M.E. Barbinta-Patrascu, C. Ungureanu, S.M. Iordache, Eco-designed biohybrids based on liposomes, mint-nanosilver and carbon nanotubes for antioxidant and antimicrobial coating. Mater. Sci. Eng. C 39, 177–185 (2014)

    CAS  Google Scholar 

  16. S.M. Xu, W.J. Yu, X.L. Yao, Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Compos Sci Technol. 131, 67–76 (2016)

    CAS  Google Scholar 

  17. G.A. Sotiriou, S.E. Pratsinis, Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng. 1(1), 3–10 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. S.Y. Zhang, X.Y. Xu, T.S. Lin, Recent advances in nano-materials for packaging of electronic devices. J Mater Sci-Mater Electron. 30(15), 13855–13868 (2019)

    CAS  Google Scholar 

  19. B.B. Liu, A.R. Chen, R.F. Wang, T. Sun, Sputtered Ge/Si nanocomposite films as high performance anode materials for lithium-ion battery. J. Inorg. Organomet. 30(2), 427–437 (2020)

    CAS  Google Scholar 

  20. Y.L. Cui, Z. Sun, Q.C. Zhuang, Electrochemical properties of a 4.7 V-Class LiNi0.5Mn1.5O4 positive electrode material for high power Li-Ion battery. J. Inorg. Organomet. 21(4), 893–899 (2011)

    CAS  Google Scholar 

  21. D. Sharma, N. Jaggi, Two-gap superconductivity in niobium carbide-coated single-walled carbon nanotubes: a first-principles study. J. Supercond. Nov. Magn. 30(2), 371–377 (2017)

    CAS  Google Scholar 

  22. S. Niakan, M. Niakan, S. Hesaraki, M.R. Nejadmoghaddam, Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of acinetobacter baumannii. Jundishapur J. Microb. 6, 5 (2013)

    Google Scholar 

  23. K. Madhumathi, S. Abhilash, Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Electron. 21(2), 807–813 (2010)

    CAS  Google Scholar 

  24. Y.A. Kahnouji, E. Mosaddegh, M.A. Bolorizadeh, Detailed analysis of size-separation of silver nanoparticles by density gradient centrifugation method. Mater. Sci. Eng. C. 103, 109817 (2019)

    Google Scholar 

  25. S.S. Irhayyim, S.R. Ahmed, A.A. Annaz, Mechanical performance of micro-Cu and nano-Ag reinforced Al-CNT composite prepared by powder metallurgy technique. Mater. Res. Express. 6(10), 105071 (2019)

    CAS  Google Scholar 

  26. S.M. Amini, Preparation of antimicrobial metallic nanoparticles with bioactive compounds. Mater. Sci. Eng. C 103, 109809 (2019)

    CAS  Google Scholar 

  27. P.P. Kumar, R.L. Kalyani, S.C. Veerla, Biogenic synthesis of stable silver nanoparticles via Asparagus racemosus root extract and their antibacterial efficacy towards human and fish bacterial pathogens. Mater. Res. Express. 6(10), 104008 (2019)

    Google Scholar 

  28. L.M. Mahlaule-Glory, Z. Mbita, M.M. Mathipa, Biological therapeutics of AgO nanoparticles against pathogenic bacteria and A549 lung cancer cells. Mater. Res. Express. 6(10), 105402 (2019)

    CAS  Google Scholar 

  29. H.M. Abd El Salam, H.N. Nassar, T. Zaki, Antimicrobial activities of green synthesized Ag nanoparticles @ Ni-MOF nanosheets. J. Inorg. Organomet. 28(6), 2791–2798 (2018)

    CAS  Google Scholar 

  30. M. Alqahtany, P. Khadka, I. Niyonshuti, Nanoscale reorganizations of histone-like nu-cleoid structuring proteins in Escherichia coli are caused by silver nanoparticles. Nanotechnology 30(38), 385101 (2019)

    CAS  PubMed  Google Scholar 

  31. L. Baldino, J. Aragon, G. Mendoza, Production characterization and testing of antibacterial PVA membranes loaded with HA-Ag3PO4 nanoparticles produced by SC-CO2 phase inversion. J Chem Technol Biot. 94(1), 98–108 (2019)

    CAS  Google Scholar 

  32. H.Y. Li, H.Y. Jing, Y.D. Han, Interfacial evolution behavior of AgSbTe2.01/nanosil-ver/Cu thermoelectric joints. Mater. Des. 89, 604–610 (2016)

    CAS  Google Scholar 

  33. Q.Y. Xu, Y.H. Mei, X. Li, Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J. Alloy Compd. 675, 317–324 (2016)

    CAS  Google Scholar 

  34. J.T. Sun, C.C. Wang, H.T. Lee, Preparation and characterization of polysulfone/Na-nosilver-doped activated carbon nanocomposite. Polym. Sci. A. 60(1), 90–101 (2018)

    CAS  Google Scholar 

  35. L. Jiang, G.Y. Lei Thomas, D.T. Ngo Khai, Evaluation of thermal cycling reliability of sintered nanosilver versus soldered joints by curvature measurement. IEEE Trans. Compon Pack Manuf. Technol. 4(5), 751–761 (2014)

    CAS  Google Scholar 

  36. Y.H. Mei, G. Chen, X. Li, Evolution of curvature under thermal cycling in sandwich assembly bonded by sintered nanosilver paste. Solder Surf. Mt. Technol. 25(2), 107–116 (2013)

    CAS  Google Scholar 

  37. F. Zandpour, A.R. Allafchian, M.R. Vahabi, Green synthesis of silver nanoparticles with the Arial part of Dorema ammoniacum D. extract by antimicrobial analysis. IET Nanobiotechnol. 12(4), 491–495 (2018)

    PubMed  Google Scholar 

  38. A. Laik, A.A. Shirzadi, G. Sharma, Microstructure and interfacial reactions during vacuum brazing of stainless steel to titanium using Ag-28 pct Cu alloy. Metall. Mater. Trans. A. 46A(2), 771–782 (2015)

    Google Scholar 

  39. O. Crisan, A.D. Crisan, M. Enculescu, Interfacial mechanisms of novel laser-irradiated L1(0)-based nanocomposite magnets. Appl Phys A. 122(4), 411 (2016)

    Google Scholar 

  40. N. Maity, A. Mandal, A.K. Nandi, Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly(vinylidene fluoride) matrix yielding superior mechanical and electronic properties. Polymer 88, 79–93 (2016)

    CAS  Google Scholar 

  41. M.S. Islam, N. Akter, M.M. Rahman, Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain. Chem. Eng. 6(7), 9178–9188 (2018)

    CAS  Google Scholar 

  42. O.B. Ceran, B. Simsek, S. Doruk, Effects of dispersed and powdered silver nanoparticles on the mechanical, thermal, electrical and durability properties of cementitious composites. Constr. Build Mater. 222, 152–167 (2019)

    CAS  Google Scholar 

  43. H. Celebi, M. Gurbuz, A.S. Koparal, A. Dogan, Development of antibacterial electro spun chitosan/poly(vinyl alcohol) nanofibers containing silver ion-incorporated HAP nanoparticles. Compos. Interfaces. 20(9), 799–812 (2013)

    CAS  Google Scholar 

  44. S. Wang, S.Y. Niu, H.S. Li, Synthesis and controlled morphology of Ni@Ag core shell nanowires with excellent catalytic efficiency and recyclability. Nanotechnology 30(38), 385603 (2019)

    CAS  PubMed  Google Scholar 

  45. S. Addanki, J. Jayachandiran, K. Pandian, Development of optical sensors for the quantitative detection of ozone using gold and silver thin film nanoislands. Sens Actuator B-Chem. 210, 17–27 (2015)

    CAS  Google Scholar 

  46. M.S. Sarwar, M. Niazi, Z. Jahan, T. Ahmad, Preparation and characterization of PV-A/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 184, 453–464 (2018)

    CAS  PubMed  Google Scholar 

  47. G.H. Qin, J. Liu, Y. Xue, Enhanced stability of antimicrobial bamboo fiber by launching ultra fine silver particles in a sodium dodecyl sulfate micro emulsion system. Text Res J. 87(20), 2505–2512 (2017)

    CAS  Google Scholar 

  48. S. Anjum, A. Sharma, M. Tummalapalli, A novel route for the preparation of silve-r loaded polyvinyl alcohol nanogels for wound care systems. Int. J. Polym. Mater. 64(17), 894–905 (2015)

    CAS  Google Scholar 

  49. A. Chaturvedi, A.K. Bajpai, J. Bajpai, Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials. Mater. Sci. Eng. C 65, 408–418 (2016)

    CAS  Google Scholar 

  50. J.H. Lin, Z.I. Lin, Y.J. Pan, Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: Preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness. J. Appl. Polym. Sci. 133(21), 43474 (2016)

    Google Scholar 

  51. Z.W. Abdullah, Y. Dong, Biodegradable and water resistant poly (vinyl) alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging. Front Mater. 6, 34 (2019)

    Google Scholar 

  52. W. Tanan, J. Panichpakdee, S. Saengsuwan, Novel biodegradable hydrogel based on natural polymers: synthesis, characterization, swelling/reswelling and biodegradability. Eur Polym J. 112, 678–687 (2019)

    CAS  Google Scholar 

  53. A. Gautam, P. Komal, Synthesis of montmorillonite clay/poly (vinyl alcohol) nanocomposites and their mechanical properties. J. Nanosci. Nanotechnol. 19(12), 8071–8077 (2019)

    CAS  PubMed  Google Scholar 

  54. F. Wahid, F.P. Wang, Y.Y. Xie, Reusable ternary PVA films containing bacterial cellulose fibers and epsilon-polylysine with improved mechanical and antibacterial properties. Colloid Surf. B. 183, 110486 (2019)

    Google Scholar 

Download references

Funding

This work was supported by Science and Technology Innovation Leading Project of Mongolia Autonomous Region (KCBJ2018013) and The Team of Inner Mongolia Autonomous Region Grassland Domain Innovation (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintian Huang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, S., Hong, L. et al. Preparation and Properties of Silver-Based Cellulose/Polyvinyl Alcohol Antibacterial Materials. J Inorg Organomet Polym 30, 4382–4393 (2020). https://doi.org/10.1007/s10904-020-01669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01669-5

Keywords

Navigation