Skip to main content
Log in

Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A low cytotoxic metal–organic framework (MOF) UiO-66 (UiO stands for University of Oslo) and NH2-UiO-66, that showed high cell viability of HFF-2 via 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl tetrazolium assay, was reported as an effective adsorbent (antidotal) agents. The structure of MOFs was confirmed by Fourier transform infrared, Field emission scanning electron microscopy (FESEM) and X-ray diffraction. Thermal behavior of MOFs was investigated using with thermogravimetric analyzer in nitrogen atmosphere to check the thermal stability. FESEM showed NH2-UiO-66 displayed symmetrical crystals with triangular base pyramid morphology, with the particle size around 100 nm and uniform size distribution. The specific surface areas were calculated using the Brunauer–Emmett–Teller method and surface area and total pore volume of NH2-UiO-66 were calculated to be 1258 m2/g and 0.51 cm3/g, respectively. Methotrexate salt (MTX) was selected as the model drug which was adsorbed into inner pores and channels of MOFs by diffusion manner. The interaction between MOFs and MTX and the effect of pH on interaction between them in aqueous solution was investigated. The final results showed that UiO-66 have high adsorbing capacity and great affinity to MTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.A. Rudd, Increases in drug and opioid-involved overdose deaths—United States, 2010–2015. MMWR 65, 50–51 (2016)

    Article  Google Scholar 

  2. J. Mounteney et al., The drug situation in Europe: an overview of data available on illicit drugs and new psychoactive substances from European monitoring in 2015. Addiction 111(1), 34–48 (2016)

    Article  Google Scholar 

  3. L.M. Meyer et al., Treatment of acute leukemia with amethopterin (4-amino, 10-methyl pteroyl glutamic acid). Acta Haematol. 4(3), 157–167 (1950)

    Article  CAS  Google Scholar 

  4. B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111(15), 5962–5964 (1989)

    Article  CAS  Google Scholar 

  5. T. Yamada et al., Proton-conductive metal–organic frameworks. Bull. Chem. Soc. Jpn. 89(1), 1–10 (2015)

    Article  Google Scholar 

  6. Y.-B. Huang et al., Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 46, 126–157 (2017)

    Article  CAS  Google Scholar 

  7. B. Van de Voorde et al., Adsorptive separation on metal–organic frameworks in the liquid phase. Chem. Soc. Rev. 43(16), 5766–5788 (2014)

    Article  Google Scholar 

  8. Q. Chen et al., Selective adsorption of cationic dyes by UiO-66-NH 2. Appl. Surf. Sci. 327, 77–85 (2015)

    Article  CAS  Google Scholar 

  9. C. Wang et al., Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45(18), 5107–5134 (2016)

    Article  CAS  Google Scholar 

  10. N.S. Bobbitt et al., Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. (2017). doi:10.1039/c7cs00108h

    Google Scholar 

  11. I. Erucar, S. Keskin, Computational investigation of metal organic frameworks for storage and delivery of anticancer drugs. J. Mater. Chem. B 5(35), 7342–7351 (2017)

    Article  CAS  Google Scholar 

  12. J. Liu et al., Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chem. Commun. 53(55), 7804–7807 (2017)

    Article  CAS  Google Scholar 

  13. T. Sattar, M. Athar, Hydrothermal synthesis and characterization of copper glycinate (Bio-MOF-29) and its in vitro drugs adsorption studies. Op. J. Inorg. Chem. 7(02), 17 (2017)

    Article  Google Scholar 

  14. S.E.H. Etaiw et al., Catalytic, Luminescence Activities and Structure of Metal-Organic Frameworks Containing CuCN Building Blocks and Bipodal Bridging Ligands. J. Inorg. Organomet. Polym. Mater. 21(3), 465–475 (2011)

    Article  CAS  Google Scholar 

  15. S. Kitagawa, R. Kitaura, S.i.. Noro, Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004)

    Article  CAS  Google Scholar 

  16. M. Eddaoudi et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554), 469–472 (2002)

    Article  CAS  Google Scholar 

  17. F. Li et al., Two Metal–organic frameworks with pharmaceutical ingredient linker: influence of pH and temperature. J. Inorg. Organomet. Polym. Mater. 27(1), 334–341 (2017)

    Article  CAS  Google Scholar 

  18. A.R. Abbasi et al., Methyl orange removal from wastewater using [Zn2 (oba) 2 (4-bpdh)] 3DMF metal–organic frameworks nanostructures. J. Inorg. Organomet. Polym. Mater. 25(6), 1582–1589 (2015)

    Article  CAS  Google Scholar 

  19. N.A. Khan et al., Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. J. Hazard. Mater. 282, 194–200 (2015)

    Article  CAS  Google Scholar 

  20. M. Özacar, İ.A. Şengil, Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon. Adsorption 8(4), 301–308 (2002)

    Article  Google Scholar 

  21. B. Armağan, M. Turan, Equilibrium studies on the adsorption of reactive azo dyes into zeolite. Desalination 170(1), 33–39 (2004)

    Article  Google Scholar 

  22. F. Rozada et al., Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour. Technol. 87(3), 221–230 (2003)

    Article  CAS  Google Scholar 

  23. G. Annadurai, R.-S. Juang, D.-J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92(3), 263–274 (2002)

    Article  CAS  Google Scholar 

  24. R. Mostafa Zamani, M. Rostami, M. Aghajanzadeh, H.K. Manjili, K. Rostamizadeh, H. Danafar, Mesoporous titanium dioxide@zinc oxide-graphene oxide nanocarries for colon-specific drug delivery. J. Mater. Sci. (2017). doi:10.1007/s10853-017-1673-6

    Google Scholar 

  25. H. Molavi et al., Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr). Microporous Mesoporous Mater. 257, 193–201 (2018)

    Article  CAS  Google Scholar 

  26. A. Nematollahzadeh, A. Shojaei, M. Karimi, Chemically modified organic/inorganic nanoporous composite particles for the adsorption of reactive black 5 from aqueous solution. React. Funct. Polym. 86, 7–15 (2015)

    Article  CAS  Google Scholar 

  27. M. Karimi, A. Nematollahzadeh, A. Shojaei, Amino functionalized hierarchically produced porous polyacrylamide microspheres for the removal of chromium (VI) from aqueous solution. J. Porous. Mater. (2017). doi:10.1007/s10934-017-0413-2

    Google Scholar 

  28. H. Mahdavi, L. Ahmadian-Alam, H. Molavi, Grafting of sulfonated monomer onto an amino-silane functionalized 2-aminoterephthalate metal—organic framework via surface-initiated redox polymerization: proton-conducting solid electrolytes. Polym. Int. 64(11), 1578–1584 (2015)

    Article  CAS  Google Scholar 

  29. H. Nosrati et al., Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem. (2017). doi:10.1002/aoc.4069

    Google Scholar 

  30. H. Kheiri Manjili et al., Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artif. Cells Nanomed. Biotechnol. 22(8), 947–957 (2017)

    Google Scholar 

  31. H. Danafar, Study of the composition of polycaprolactone/poly (ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J. Nat. Pharm. Prod. (2017). doi:10.5812/jjnpp.34179

    Google Scholar 

  32. A. Nomani et al., Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res. 67(08), 458–465 (2017)

    Article  CAS  Google Scholar 

  33. H. Danafar et al., Drug-conjugated PLA–PEG–PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation. Pharm. Dev. Technol. 22(8), 947–957 (2017). doi:10.3109/10837450.2015.1125920

    Article  Google Scholar 

  34. H. Danafar et al., Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG–PCLNanoparticles. Drug Dev. Ind. Pharm. 43(11), 1908–1918 (2017)

    Article  CAS  Google Scholar 

  35. A. Sadeghi et al., Synthesis, characterization, and antibacterial effects of trimethylated and triethylated 6-NH2-6-deoxy chitosan. J. Bioact. Compat. Polym. 23(3), 262–275 (2008)

    Article  CAS  Google Scholar 

  36. H. Li et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759), 276 (1999)

    Article  CAS  Google Scholar 

  37. J.H. Cavka et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130(42), 13850–13851 (2008)

    Article  Google Scholar 

  38. H.R. Abid et al., Adsorption of CH4 and CO2 on Zr-metal organic frameworks. J. Colloid. Interface Sci. 366(1), 120–124 (2012)

    Article  CAS  Google Scholar 

  39. H. Saleem, U. Rafique, R.P. Davies, Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous Mesoporous Mater. 221, 238–244 (2016)

    Article  CAS  Google Scholar 

  40. H.R. Abid et al., Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4. Int. J. Smart Nano Mater. 4(1), 72–82 (2013)

    Article  CAS  Google Scholar 

  41. V. Fierro et al., Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 111(1), 276–284 (2008)

    Article  CAS  Google Scholar 

  42. E. Haque et al., Adsorption of phenol on mesoporous carbon CMK-3: effect of textural properties. Bull. Korean Chem. Soc. 31(6), 1638–1642 (2010)

    Article  CAS  Google Scholar 

  43. A. Gundogdu et al., Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. J. Chem. Eng. Data 57(10), 2733–2743 (2012)

    Article  CAS  Google Scholar 

  44. J. Hu et al., Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009)

    CAS  Google Scholar 

  45. M. Vicente et al., Synthesis, dark toxicity and induction of in vitro DNA photodamage by a tetra (4-nido-carboranylphenyl) porphyrin. J. Photochem. Photobiol. B 68(2), 123–132 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by Zanjan University of medical science and Sharif University of Technology, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Danafar or Akbar Shojaei.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajanzadeh, M., Zamani, M., Molavi, H. et al. Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution. J Inorg Organomet Polym 28, 177–186 (2018). https://doi.org/10.1007/s10904-017-0709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0709-3

Keywords

Navigation