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Abstract
This study extends our understanding of the influence of proximity to retail grocery provi-
sion on housing rental prices. To achieve this, extensive data on the size and location of 
retail outlets are combined with neighbourhood rental values for small areas across a two 
year period, together with varied contextual data for each area. In order to control the influ-
ence of many confounding variables in the determination of housing rentals, the technique 
of propensity score matching is applied. This provides a sophisticated means for the com-
parison between areas where there is substantial natural variation, rather than manageable 
controls. For a variety of types of retail brands, only a significant relationship is found 
between the proximity of a Premium retail outlet and the housing rental value. The find-
ings of this research allow local planning officers to further understand the impact of plan-
ning applications on the potential for gentrification and the affordability of neighbouring 
housing.
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1  Introduction

The retail sector is an important component of the built environment in many towns and 
cities, creating jobs, economic activity and leisure opportunities (Wrigley et al., 2002), but 
also bringing with it issues around traffic, air pollution and crime (Black et al., 2007).

One aspect of the built environment that has a close association with retail is housing. 
Generally, there is an extensive literature that attempts to understand what features influ-
ence the housing market. In particular economists and policy makers have an interest in 
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what characteristics help to determine the ‘price’ of housing, represented as either a sales 
price or a rental price. It is known that these prices can be influenced by many factors: on a 
macro-scale, such as interest rates or land availability; on a micro-scale, such as quality of 
local provision or access to services; and also by individual properties, for example the size 
and up-keep of the property. In this study we focus on the influence of differing brands of 
local grocery retail provision on the private residential rental market in Great Britain (GB).

Grocery provision is not uniform in GB. Retailers employ various strategies to expand 
their provision in an effort to increase their share of the market. These strategies vary by 
retailer, resulting in a complex geography of provision by both format (e.g. hypermarket 
vs convenience) and brand. Larger stores are generally found in the suburbs and outskirts 
of large conurbations whereas smaller stores are generally found in central urban and rural 
locations, with the former driven by cost and availability of space and the latter driven by 
less concentrated demand. By brand, the largest multiple retailers have commanded great-
est market share in cities and larger towns, whereas smaller retailers (including the Co-
operative group and symbol groups, which are independent retailers that are a members of 
a larger organisation (Institute of Grocery Distribution, 2012)) have greater market share 
in more rural locations (Hood et al., 2016). Within these different broad location types, a 
spatial battle based on a specific target market also exists, with retailers targeting different 
sections of the population, ranging from the affluent customer base of ‘premium’ retailers 
such as Waitrose through to the traditional blue collar customer base of the discount retail-
ers Aldi and Lidl (Thompson et al., 2012).

There is clearly the possibility that these strategies introduce some form of selection 
bias in where grocery retailers may choose to locate their stores, and since house prices or 
rental values could also be another way of making such differentials between neighbour-
hoods then this means that there is the potential for confounding to exist, which occurs 
when a factor (here the grocery retail provision) affects not only the treatment assignment 
(choice of store location) but also the outcomes (residential rental prices). There is there-
fore a potential for a non-random assignment of retail stores to neighbourhoods and this 
may introduce bias in any estimate derived from any traditional hedonic model, since a dif-
ference in the outcome between neighbourhoods with a retail band and those without may 
be caused by a factor that predicts probability of retail store location rather than the effect 
of the retail brand itself.

In this study the technique of propensity score matching is used to control for this poten-
tial selection bias (Rosenbaum & Rubin, 1983). Section two of the article contains a review 
of the literature on the relationship between retail provision and the housing market. The 
third section describes the method of propensity score matching and is followed by a sec-
tion that introduces the data used in the modelling. Section five presents the results of the 
model, which are further discussed in the final section.

2 � Literature review

Much of the early house price modelling literature focussed on the monocentric urban 
model in which prices were hypothesised to decrease when moving away from the Cen-
tral Business District (Chica Olmo, 1995; Orford, 2017). More recently, a wide range of 
location factors have been hypothesised (and found) to have an impact on house prices, 
in varying ways, at varying spatial scales (Orford, 2002). These studies attempt to capture 
the premium consumers are willing to pay for positive amenities (or are willing to pay 
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to avoid disamenities). Within this change of focus, several studies have investigated the 
capitalisation of retail provision in housing prices, ranging from the general availability of 
retail opportunities or larger types of provision such as shopping centres, through to spe-
cific studies on localised grocery provision.

Therefore retail opportunities are an important aspect of the built environment and play 
a notable role in shaping the desirability of neighbourhoods (M. Jang & Kang, 2015), 
hence the possibility of capitalisation in housing and rental prices. On a general level, 
Barreca et al. (2020) found a positive correlation between retail vibrancy (measured as a 
combination of the provision of a variety of retail opportunities) and house listing price in 
Turin, Italy, although they later found an insignificant, but positive impact of the variable 
in a multivariate model. Moreover, Song and Sohn (2007) found positive house price capi-
talisation from greater accessibility to retail provision in Oregon, USA, whilst Law (2017) 
found a significant, small, positive effect of retail stores (multiple sectors) on house prices 
in London. Glaeser et al. (2001) highlights the wider benefit of increased retail provision, 
particularly in attracting customers and other businesses into a locality, with the consumer 
potentially benefitting from convenience, cost savings and increased choice.

Moving onto studies with a focus on a more specific aspect of retail provision reveals a 
wide range of research focused on the impact of shopping centres on housing prices. These 
include studies across a range of continents and contexts including in Florida (Sirpal, 
1994), Quebec (Des Rosiers et al., 1996), Zurich (Stadelmann, 2010) and Nigeria (Aliyu 
et al., 2011), all of which found evidence of a positive association between provision of 
shopping centres (or a negative association to distance), highlighting the value placed on 
them by housing consumers. Importantly for this study, both Des Rosiers et al. (1996) and 
Sirpal (1994) found the positive impact to be conditioned by the size of the retail opportu-
nity, suggesting the quantity (which could also be a proxy for quality through choice) is an 
important component of retail opportunities.

Of direct relevance to this research are those studies which focus on the premium in 
housing or rental prices associated with the provision (in quality and/or quantity) of gro-
cery retailing. In North America, Cerrato Caceres and Geoghegan (2017) found the addi-
tion of a large grocery store very nearby (0–400 m) and nearby (400–800 m) was associ-
ated with 7% and 4% increases in house prices respectively in Massachusetts. Similarly 
Kang (2018) found appreciation of house prices with hypermarket grocery provision up 
to a certain distance in Seoul, South Korea, and Chiang et  al. (2015) find a small posi-
tive association between house prices and convenience store (7-Eleven) provision close by 
(within 100 m) in Taipei Metropolis. These studies highlight the importance of both quan-
tity and accessibility of available retail provision. Indeed Clarke et al. (2006) found that the 
largest driver of patronage to grocery stores was convenience and/or location, highlighting 
the importane of having a preferred brand available nearby with an associated premium 
envisaged for more desirable brands.

In a United Kingdom (UK) context, the national press often promotes the existence 
of a “Waitrose Effect”, said to result from the presence of the premium grocery retailer 
Waitrose increasing the price paid for housing in surrounding neighbourhoods (Alder, 
2017; Burridge, 2018), with similar effects reported in other countries (Humphries & 
Rascoff, 2015). These types of studies are centred on variation in house prices depend-
ing on the brand of local grocery stores, but commonly suffer from methodological 
issues in either poorly defining the catchment of a store or, highly problematically, 
attributing the whole premium in house price to the presence of the grocery brand. 
Conversely, Clark et  al. (2021) did control for a number of locational and structural 
factors when investigating the association between grocery brand and rental prices in 



1492	 S. Clark et al.

1 3

the private rental submarket in England, finding differentials in association, with the 
greatest premium indeed associated with “Luxury” brands (e.g. Waitrose and M&S). 
In a different European context, Kurvinen and Wiley (2019) also used propensity score 
matching to investigate the impact of new retail provision on the sales price of individ-
ual properties in the Helsinki Metropolitan Area. There they found an impact (undif-
ferentiated by brand) of + 1.5% within ½km of a new retail development and a more 
modest 0.6% within 1 km.

Consensus generally exists in the house price literature that the housing market is 
not a single entity, but rather made up of a number of subsets (submarkets) with their 
own characteristics and potential drivers of house price capitalisation, although how to 
define and identify each submarket remains a source of debate (Bangura & Lee, 2020). 
As with Clark et  al. (2021), the focus here is on prices in the private rental sector, 
although here we focus on the whole of GB rather than just England. The private rental 
sector is a large submarket in GB and is increasing in size (Wilcox et al., 2017) and is 
therefore worthy of attention.

Homing in on the impact of one dimension of housing price requires controlling for a 
number of other covariates, each of which are generally either structural or locational in 
nature (Can, 1992; Singla & Bendigiri, 2019). Structurally, consensus has been reached 
on the main factors influencing price; notably that the age, type and size of the property 
are important. The latter has been specified by count of number of rooms (Ahmed et al., 
2014; McCord et al., 2014) or by the floor area of the property (Löchl, 2010; McClus-
key et  al., 2013) in previous studies of rental price. Less consensus exists on which 
location variables to use, with a range of amenities and disamenities found to condition 
housing prices.

As noted by Clark et al. (2021), these include variables related to: the general charac-
ter of the neighbourhood (Baron & Kaplan, 2010; Chica-Olmo et al., 2013; Heng et al., 
1997; Kain & Quigley, 1970); amenities and services in a local area such as the quality 
and/or accessibility of schools (McCord et  al., 2014; Zheng et  al., 2016), parks (Del 
Giudice et al., 2017; Hoshino & Kuriyama, 2009) and transport infrastructure (Gibbons 
& Machin, 2005; Bohman & Nilsson, 2016; Dubé et al., 2018; Chica‐Olmo et al., 2019); 
the absence of specific disamenities such as pollution (Hanna, 2007) or crime (Oduwole 
& Eze, 2013); measures of accessibility related to both national and regional economic 
hubs (Adair et al., 2000; Waddell et al., 1993); and the local level of accessibility of the 
built environment (in space syntax studies such as Law (2017) and Xiao et al. (2016)).

Large grocery retailers employ location planning teams that consider a number of 
factors when choosing store locations. Many of these overlap with impacts on hous-
ing prices discussed so far, thus introducing potential selection bias into models of the 
impact of grocery amenities on housing costs. Many of these factors are encapsulated 
in their use of geodemographic systems capturing a range of demographic, economic 
or behavioural characteristics of potential customers and potential store location neigh-
bourhoods (see Rains, (2020) for an example from Sainsbury’s location planning team). 
This also translates into varying brand affinity by different social, demographic and 
economic groups within the population (Pechey & Monsivais, 2015; Thompson et al., 
2012). Additionally, housing variables themselves are known to form part of location 
strategy (Zentes et  al., 2017), making recognition of this potential for selection bias 
particularly important.

In an attempt to overcome some of the issues of using an hedonic approach to this 
problem (Rosen, 1974), this paper uses an approach with the ability to control for selec-
tion bias, namely propensity score matching (Rosenbaum & Rubin, 1983).
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3 � Methodology

Ideally, one approach to identify causal effects is to conduct a randomised-control trial 
experiment. Couched in a medical context, this is usually conducted by firstly allocating 
trial subjects randomly to either a treatment or a control (or placebo) group before the 
experiment begins. The impact of the treatment can then be estimated by the difference in 
the outcome of interest between the treated and control groups. Commonly however, only 
observational experiments are available, where the ‘experimenter’ has no control or influ-
ence on how or which trial subjects are allocated to either group. This impediment raises 
some issues, particularly the presence of confounding effects, which cannot be controlled 
for (Austin, 2011). The concern is that if the group of subjects that have undergone a treat-
ment do not resemble the control group for some co-variates, then a bias is introduced into 
any outcome measures. There are various techniques available to address this concern. Of 
these, propensity score analysis is the technique adopted in this study.

3.1 � Propensity score analysis

The goal of propensity score analysis is to make the treatment and control groups similar 
when described by these co-variates (Rosenbaum & Rubin, 1983). The stages to this analy-
sis are summarised here:

(1)	 Choose the primary treatment effect
(2)	 Estimate the propensity score weights
(3)	 Evaluate the quality of the weights
(4)	 Estimate the treatment effect

3.1.1 � Choose the primary treatment effect

This treatment effect can usually be measured as either an average treatment effect on those 
who received the treatment (ATT) or as a population average treatment effect on both those 
treated and not treated (ATE).

3.1.2 � Estimate the propensity score weights

The next step is to calculate a set of observation weights which are applied to subjects in 
the control group so that when the weighted summary statistics are calculated for each co-
variate, they resemble the same statistics calculated on the treatment group. The first task 
is to estimate a model that provides the estimated probability that a subject will undergo 
the treatment, here denoted as p̂ , given the cofounders. Depending on the treatment effect 
desired, these probabilities are converted to observation weights; for ATT those in the 
treatment group are given a weight of 1.0 whilst those in the control group are weighted by 
p̂/(1-p̂ ), whilst for ATE, those treated are weighted by p̂ and those in the control by 1/(1-p̂ ). 
A point to note is that these weights are defined by not just one co-variate, but typically 
using an assortment of co-variates.

The method is largely agnostic to the manner in which the p̂ is estimated, concentrat-
ing instead on the ability of the weights to make the treated and weighted control groups 
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appear similar, see 3.1.3 below. Commonly a logistic model is used to derive these weights 
but more recently machine learning techniques have been found to be easier to apply and 
perform better in arriving at balancing scores (McCaffrey et al., 2013).

3.1.3 � Evaluate the quality of the weights

Balance tables are available that show how well each weighted co-variate compares 
between the treatment and control group. The headline measure is the standardised differ-
ence between each group (Austin, 2009), which is a measure of agreement between means 
(an Effect Size, denoted as es). Also, rather than using a point estimate, measures are avail-
able to quantify and test the agreement between the distribution of values in the treatment 
and control group (from Kolmogorov–Smirnov, denoted as ks). In practice the quality 
is monitored using both criteria, each measured at their mean and maximum values (i.e. 
es.mean, es.max, ks.mean, ks.max) (Belitser et al., 2011).

3.1.4 � Estimate the treatment effect

If this weighting exercise is a success, the treatment effect can be estimated by the differ-
ence in the weighted outcome of interest between the treated and control groups. Alter-
natively, rather than a simple difference in weighted outcomes, a weighted regression 
approach can be used. In this regression, the y variable is the outcome and the explanatory 
variable is a binary variable set to 0 if the subject is in the control group and 1 if they are 
in the treatment group, with the weights being those estimated at step 3.1.2. The parameter 
associated with this binary variable is the treatment effect, and its associated standard error 
gives an indication of the significance of the effect.

If any of the co-variates in Sect. 3.1.3 have a standardised effect size greater than 0.20, 
(a rule of thumb often cited in the literature, e.g. McCaffrey et al. (2013)), then they can 
be used as additional terms in the regression to produce doubly-robust estimates (Bang & 
Robins, 2005), which are consistent if either the propensity score weights are estimated 
correctly or the regression model used to estimate the weighted outcome is specified 
correctly.

3.1.5 � Observations

In arriving at the balancing scores, the outcome of interest is not used, helping to avoid 
modelling decisions that are driven by the desired outcome. There are some drawbacks 
to propensity score analysis. The main one is that the effective sample size (ESS) of the 
control group is reduced as part of this process. Calculations are available that demonstrate 
how great this reduction is (Ridgeway et  al., 2017), but if the initial unweighted control 
group is sufficiently large, this drawback is not so critical.

3.2 � Estimation software

The R software package (R Core Team, 2020) offers a number of techniques for estimat-
ing causal effects using propensity score analysis (Keller & Tipton, 2016; Leite, 2016). In 
this study the ‘Toolkit for Weighting and Analysis of Non-equivalent Groups’ (TWANG) 
approach will be used (Ridgeway et al., 2017). This approach uses Gradient Boosted Ran-
dom Forests (GBRF) to derive the balancing scores that function as the weights. TWANG 
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has been mainly applied in the medical (Pedersen et al., 2017; J. B. Jang et al., 2019) and 
public health domains (Cohen et  al., 2013; Holliday et  al., 2020; Patorno et  al., 2013), 
although some (mainly in the United States of America) have applied propensity score 
analysis to the housing market (Aratani, 2011; Lim et al., 2014; Locke et al., 2017; Nanda 
& Ross, 2012; Paredes, 2011; Pollack et al., 2010).

Of the two alternative primary treatment effects to estimate, ATT and ATE, here the 
ATT will be estimated. This is because we are interested in what the effect on average 
rental prices is for those neighbourhoods that have the presence of a rental brand and we 
are not interested in the general effect, over the entire population, of a particular retail 
brand.

3.3 � Estimation framework

Here we fit nine models in total; one for each retail brand or grouping. The first model has 
as its treatment the presence or absence of a discounter brand (i.e. Aldi or Lidl) and uses 
the co-variates described in Sect. 4.3. The second model has the presence or absence of a 
freezer store as its treatment, and so on through the remaining brands.

Each of these nine TWANG models are estimated in two stages, the first stage is to 
estimate the propensity score weights and the second is to use these to estimate a weighted 
regression model. Optimality is monitored using all four criteria available in TWANG (es.
mean, es.max, ks.mean, ks.max). The iteration which minimises each stopping criterion 
is adopted as the optimal solution for that criterion. The stopping criterion of the four that 
yields the largest ESS is chosen to derive the propensity scores.

For the weighted regression step a quasi-poisson formulation is used with clustered 
standard errors. The poisson model is adopted to reflect that the median rental prices are 
positively skewed with a potential for over-dispersion. This formulation means that any dif-
ferences in rental prices are best interpreted as percentages. Standard errors are clustered 
by local government authority in which the neighbourhood belongs to account for the fact 
that such authorities set local property taxes and have some role in private rental regulation 
(Balchin & Rhoden, 2019).

4 � Data

4.1 � Rental data

Information on the level of neighbourhood rental prices is provided by the Urban Big Data 
Centre (2020) and is derived from the Zoopla Property listing web site (Zoopla, 2020). 
These data are aggregated to Middle Layer Super Output Area (MSOA) geography in Eng-
land and Wales (Office for National Statistics, 2020a) and Intermediate Zones in Scotland 
(National Records of Scotland, 2020a) and provided as the mean rental listing price, the 
median listing price and a count of rental property listings. These rental data are provided 
by quarter of the year, from 2011 to 2016. Given the critical importance of this rental data 
to this study, the unit of analysis adopted are these MSOA’s/IZ’s, and it is these areas that 
define our neighbourhoods (there are 8,480 such neighbourhoods in total and MSOA’s 
have a mean size of 3,244 households and IZ’s have 1,855 households).

In these data the rental listing price is summarised as both a mean and a median. Whilst 
computationally the mean listing price has advantages, the median is much more robust to 
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outliers, and there are some outliers present in these data. If we compare the ratio of the 
mean to the median, the mean is generally about 22% higher than the median, indicating a 
sizeable positive skew to these data. However, there are 3,203 neighbourhoods out of 8,480 
(38%) where the mean rental price for at least one quarter is more than 33% greater than 
the median. The causes of these high means could be the presence of a particularly high 
value listing appearing on one rare occasion or errors in the listing price. To minimise the 
impact of these outliers, the outcome used for this study is the median rental listing price.

In appearance these data resemble (using a pseudo-medical analogy) partial panel data 
with multiple treatments and varying doses. The data is a partial panel, over a number of 
quarters, but for some neighbourhoods there are quarters with no data, since there were no 
properties listed for rent during those months,. The treatment applied to each neighbour-
hood is the presence of each retail brand (see 4.2), which can be applied in various doses, 
here measured as a count of the number of each retailers’ stores in the neighbourhood’s 
catchment. This structure is not amenable to direct analysis using currently available soft-
ware, and therefore requires some re-structuring. Firstly the partial panel nature is col-
lapsed into a single weighted median (using the R package matrixStats (Bengtsson, 2020)). 
Secondly the varying doses are collapsed to the presence or absence of a retail brand rather 
than a count of the brand. The multiple treatment aspect of the data is retained, allowing 
for an account of the competition effects between retail brands. Figure 1 maps the weighted 
median rental price for those neighbourhoods for which we have data. It can be seen here 
that there is good representation of urban neighbourhoods in these data, but in more rural 
areas, and much of Scotland, there are fewer neighbourhoods with rental data.

4.2 � Retail data

Information on the retail brand, location, size band and opening date is obtained from 
GEOLYTIX (2020a) using their open retail point data (GEOLYTIX, 2020b). The precise 
opening date is only available for stores opened post-2014. It can be assumed that stores 
with missing opening dates were open by the end of 2014, and to account for this impreci-
sion, we restrict our analysis to the period that best overlaps our rental data; from 2015 
quarter 1 to 2016 quarter 4. In reality, since there is a planning and construction lead time 
for retail stores, it is possible for a store to have an influence on the neighbourhood rental 
market before its actual recorded opening date. Such an impact is reported by Humphries 
and Rascoff (2015) and Kurvinen and Wiley (2019). This later study used a time horizon 
of 6 months to identify the effect of the temporal proximity of house sales to new retail 
developments, and report in Exhibit 5 that some positive effects where seen 6 months prior 
to a new retail development. To capture this dynamic for our study, a store is anticipated to 
have an effect on its neighbourhood for 6 months prior to its opening date.

Some aggregation is applied to create nine retail brands or groupings (Hood et  al., 
2016). Firstly there are separately the ‘Big-4’ retailers: ASDA, Morrisons, Sainsbury’s and 
Tesco. Then there are Aldi and Lidl, grouped together as ‘Discounters’. A number of retail-
ers are similar in character, in that much of their produce is sold in freezers (Iceland, Farm-
foods, Heron Foods and Jack Fulton) and these are grouped together as ‘Freezer’ brands. 
Both Budgens and Spar stores are similar in nature being convenience stores so are also 
grouped together. The Co-operative group is kept as a separate brand since it has its own 
substantial presence in the UK grocery market, serving both urban and rural locations. The 
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final grouping is the ‘Premium’ retailers, Waitrose, Marks and Spencer and Booths. The 
geographic spread of these retail brands is shown in supplementary maps S1 to S9.

To determine which retail stores are in the catchment of each of our neighbourhoods, 
the crow-fly distance from the population weighted centroid of the neighbourhood to each 
retail store is calculated. A store is defined as being part of the neighbourhood if this dis-
tance is less than some threshold, which varies by four store sizes. To help determine what 
these thresholds might be, data from the National Travel Survey (Department for Trans-
port 2020), table NTS0403, shows that people in Great Britain travel, on average, a road 
distance of 4 miles for shopping. However this is for all types of shopping and an analysis 
conducted for this study using record level participant’s data with shopping trips that have 
a main destination purpose of food shopping, shows that for such trips this road distance is 

Fig. 1   Distribution of weighted median rental prices
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a more modest 2 miles (3.2 km). With this in mind, the thresholds used in this study for the 
various stores sizes are given in Table 1 .

Here it should be noted that in general these crow-fly distances will be an underesti-
mate of the actual road distance, meaning that for example, some large stores with a road 
distance greater than say 4.8 km may have a crow-fly distance less than 4.8 km and thus 
be included in the neighbourhood’s catchment. This buffer approach was adopted in prefer-
ence to an approach that only identifies stores within the neighbourhood - given that our 
neighbourhoods are small, it is feasible that shoppers would consider stores that are outside 
their own neighbourhood, but within some travel distance.

4.3 � Co‑variate data

As highlighted previously, studies have identified a range of factors that have been shown 
to have an influence on private rental housing and these can be summarised in terms of the 
nature of the property itself (e.g. its size or amenities), the nature of the neighbourhood 
(e.g. levels of affluence or crime), or access to facilities (e.g. transport hubs, greenspace 
and also retail options). Here we will describe co-variate data that captures each of these 
influences.

4.3.1 � Property data

Since the data on rental listing prices is aggregated from many property listings, no accu-
rate notion of the type or size of property is possible. However, it may be useful to know 
the mix of rental properties in each neighbourhood, and this information is available from 
the 2011 census. Tables DC4402EW (England and Wales) and LC4402SC (Scotland) pro-
vide the percentage mix of private rental property types in the neighbourhood, here cat-
egorised as detached, semi-detached, terraced and flats (apartments). Corresponding tables 
LC4404EW and LC4404SC provide information on the percentage mix of property sizes, 
measured as the number of rooms (excluding bathrooms, toilets, halls or landings, or rooms 
that can only be used for storage) and categorised as 1 room, 2 or 3 rooms, 4 or 5 rooms, 
and 6 or more rooms.

4.3.2 � Affluence

Capturing the affluence of residents in a neighbourhood can be a challenge since there is no 
accepted definition of what affluence is precisely. It could simply be derived from the aver-
age income of households in the neighbourhood, to something that is a composite of vari-
ous indicators of prosperity. Whilst small area estimates of income (Scottish Government/

Table 1   Catchment thresholds 
for each store size

Size Store area Threshold 
crow fly-
distance

Small Less than 280m2 800 m
Medium small 280m2 to 1400m2 1600 m
Medium large 1400m2 to 2800m2 3200 m
Large Greater than 2800m2 4800 m
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Riaghaltas na h-Alba, 2017; Office for National Statistics, 2020b) and deprivation (Lly-
wodraeth Cymru/Welsh Government, 2019; Ministry of Housing, 2019; Scottish Govern-
ment/Riaghaltas na h-Alba, 2020) are available, they are inconsistently derived across the 
three home nations of GB making them unsuitable for this analysis. Instead the commer-
cial ACORN (CACI, 2020) classification of postcodes for the whole of the UK is used 
to measure neighbourhood affluence. This classification allocates postcodes a label based 
on knowledge of local demographics, social factors, population, and consumer behaviour. 
Here the top level with six categories is used: ‘Affluent Achievers’, ‘Rising Prosperity’, 
‘Comfortable Communities’,’Financially Stretched’,’Urban Adversity’, and’Not Private 
Households’. The percentage mix of postcodes, and hence ACORN categories, within each 
neighbourhood are calculated (using a lookup of postcodes to neighbourhoods (Office for 
National Statistics, 2018)), plus an additional category is created for postcodes that do not 
have an ACORN category.

4.3.3 � Neighbourhood environment

Whilst the affluence measure tells us something about the nature of the residents in a 
neighbourhood, some additional information on the physical character of the neighbour-
hood would be insightful. Such aspects include the access to leisure opportunities, health 
services, green space and the level of air quality or crime. In this study a composite indica-
tor ‘Access to Healthy Assets and Hazards’ (AHAH) is used which scores the healthiness 
of areas on four domains (Green et al., 2018). These domains are: retail, for example the 
presence of gambling outlets, pubs and fast-food retailers; health, including the ease of 
access to general practitioner surgeries, chemists and hospitals; environment, measured by 
amount of green and blue space; and the quality of the air. These scores are provided at 
a smaller population geography than our neighbourhoods, that of lower level super out-
put areas (LSOA’s) or data zones in Scotland (DZ). Since LSOA’s/DZ’s nest within our 
neighbourhoods, to arrive at a score for our neighbourhoods, the constituent LSOA’s/DZ’s 
2015/2016 mid-year population estimates are used to calculate a population weighted score 
(Office for National Statistics, 2020c; National Records of Scotland, 2020b). Larger scores 
represent neighbourhoods that have poorer health-related environments.

4.3.4 � Access to facilities

London is regarded as a ‘hot-spot’ for the property market (Office for National Statistics, 
2020d). To capture this gradient in property prices a crow-fly distance of the neighbour-
hood’s population weighted centroid from central London is measured, separately as a dis-
tance north/south and east/west. This distance is logged so that the further from London, 
the differential effect of this term for a given change in distance diminishes. The logarithm 
of the crow-fly distance to the nearest large employment centre (an LSOA/DZ with 5000 or 
more jobs) is used to reflect ease of access to employment opportunities (Department for 
Transport, 2015). The final facility included is the crow-fly distance to the nearest mainline 
railway or underground station, to capture the availability of travel options.

4.3.5 � A sense check on the co‑variates

To ensure that these co-variates have the potential to influence the outcome, a regression 
model is estimated, where the outcome is the neighbourhood rental price and the regressors 
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are each of these co-variates. This approach is not ideal, since as discussed at the start, any 
estimates from such a model may be subject to selection bias, but notwithstanding this, an 
expectation is that these co-variates will be of the correct sign and be significant.

4.4 � Retail competition

A final consideration is to ensure that when investigating the impact of a particular brand, 
and looking for similar neighbourhoods, proper account is taken of all the retail options for 
the neighbourhood. Thus the outcome is measured against areas with a similar retail mix of 
competing brands. For example, if a discounter retailer tends to locate in neighbourhoods 
that also contain a considerable number of freezer type stores but few premium stores, then 
it is important that due consideration is given to this aspect by the up-weighting of similar 
neighbourhoods with freezer type stores and a down-weighting of neighbourhoods with 
premium stores. In effect here we are controlling for any spatial heterogeneity and interac-
tions in store locations by introducing competitor stores’ presence as co-variates.

4.5 � Data Availability

In designing this study, we have tried to use open sources of data. The rental and retail 
data are provided as download links from their respective web sites. Almost all of the co-
variate data are also freely available with the exception of the ACORN classification which 
is commercial, but available to accredited academics (UK Data Service, 2017).

5 � Results

There is rental listing data for at least one quarter for 5221 of the 8480 neighbourhoods 
in GB. The ‘Statistic’ column in Table 2 shows summary statistics for each of the balanc-
ing co-variates. By way of explanation: the average rent is £867; the mean proportion of 
detached properties in each neighbourhood is 11.2%; there is a mean of 1.9% of properties 
with one room; on average, neighbourhoods have 15.7% of their postcodes classified as 
Affluent Achievers; the mean composite AHAH score is 22.69; and the mean (logged) east/
west distance from central London is 3.93.

The hedonic regression results in Table 2 show that neighbourhoods with higher pro-
portions of semi-detached and terraced rental properties have lower rents, and those with 
larger percentages of properties with more rooms have higher rents. As affluence decreases 
then so do the rents. Surprisingly as the unheathiness of the neighbourhood increases then 
so do the rental values, but this effect is only significant at the 10% level. Greater distances 
from London, employment centres and railway/underground stations all result in lower 
rents. With the exception of the AHAH parameter (which is insignificant at the 95% level), 
these parameters have expected signs.

Turning to the propensity score analysis results, the outcome of the estimation is 
reported in supplementary figures  S1 to S9 using the standard graphs provided by the 
TWANG package and the balance tables from the propensity score weightings are reported 
in supplementary Tables S1 to S9. The GBRF models have primarily achieved good bal-
ancing scores, with only some co-variates in the models for Sainsbury’s and the Premium 
group of retailers showing poor balance for some co-variates (with a standardised effect 
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size greater than 0.20), and as a consequence these co-variates are used for the doubly-
robust estimation for these two models (see the footnote to Table 5).

To see the impact on the sample sizes of the propensity score analysis, the ESS for each 
of the stopping criteria are given in Table 3. The process of deriving the propensity score 

Table 2   Parameter estimates from hedonic investigation

Note Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1

Co-variate Summary Estimate se t-ratio Pr(> 0)

Intercept £867 7.1292 0.3425 20.82 0.0000***
Detached (%) 11.2%
Semi-detached (%) 22.4% − 0.0041 0.0018 − 2.37 0.0178*
Terraced (%) 26.1% − 0.0055 0.0016 − 3.47 0.0005***
Flats (%) 40.4% 0.0016 0.0016 1.01 0.3102
1 room (%) 1.9%
2 or 3 rooms (%) 23.3% 0.0039 0.0029 1.36 0.1742
4 or 5 rooms (%) 51.0% 0.0065 0.0029 2.23 0.0260*
6 rooms (%) 23.8% 0.0144 0.0033 4.30 0.0000***
Affluent Achievers (%) 15.7%
Rising Prosperity (%) 7.2% − 0.0012 0.0008 − 1.62 0.1061
Comfortable Communities (%) 17.2% − 0.0034 0.0007 − 5.12 0.0000***
Financially Stretched (%) 13.9% − 0.0033 0.0008 − 3.91 0.0001***
Urban Adversity (%) 12.1% − 0.0030 0.0007 − 4.44 0.0000***
Not Private Households (%) 6.5% − 0.0057 0.0010 − 5.69 0.0000***
Not Found (%) 27.4% − 0.0022 0.0005 − 4.36 0.0000***
AHAH (score) 22.69 0.0028 0.0016 1.74 0.0811
East or West of London (log km) 3.93 − 0.1025 0.0107 − 9.60 0.0000***
North or South of London (log km) 3.91 − 0.1023 0.0091 − 11.18 0.0000***
Distance to large employment (log km) 1.13 − 0.0394 0.0079 − 5.00 0.0000***
Distance to railway/underground (log km) 0.34 − 0.0250 0.0063 − 4.00 0.0001***

Table 3   Effective sample sizes from each stopping criteria (ESS and (% of N)) with the criteria with the 
largest ESS shown in bold

N Control is the number of neighbourhoods in the control group, i.e. those that do not have the retailer or 
the group in their catchment

Retailer/Grouping ES Mean ES Max KS Mean KS Max N Control

Discount 977.3 (37.1%) 981.0 (37.2%) 1003.4 (38.1%) 1006.7 (38.2%) 2635
Freezer 632.9 (24.2%) 607.2 (23.2%) 633.1 (24.2%) 760.0 (29.0%) 2618
Budgens/Spar 3353.4 (81.3%) 3130.9 (75.9%) 3338.4 (81.0%) 3254.5 (78.9%) 4124
Co-op 1536.5 (60.5%) 1534.2 (60.4%) 1530.2 (60.2%) 1535.1 (60.4%) 2540
ASDA 636.5 (34.2%) 535.2 (28.7%) 613.4 (32.9%) 599.7 (32.2%) 1863
Morrisons 1079.4 (47.3%) 1081.0 (47.4%) 1079.8 (47.4%) 1061.6 (46.6%) 2280
Sainsbury’s 181.5 (11.5%) 203.4 (12.9%) 213.2 (13.5%) 239.8 (15.2%) 1574
Tesco 200.6 (17.4%) 227.1 (19.7%) 235.8 (20.5%) 200.1 (17.4%) 1150
Premium 717.5 (26.5%) 644.7 (23.8%) 765.4 (28.3%) 828.3 (30.6%) 2709
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has caused a substantial reduction in some of the sample sizes, and reflect the challenge 
required to make the neighbourhoods in the control group appear like those in the treat-
ment group. The Spar/Budgens group has the largest unweighted sample size, with 4,124 
control neighbourhoods without such a store in their catchment, and this sizeable number 
of control areas has made the process of deriving propensity score weights a relatively 
easy task, hence the corresponding large ESS when mean effect size (ES Mean) is used 
as the stopping criterion. By contrast, there are few neighbourhoods without a Tesco store 
in their catchment, meaning that using these 1,150 available control areas, the calculation 
of weights has been a challenge and the ESS is considerably reduced, to a percentage in 
the low to mid-teens. Whilst there is no set rule for choosing one stopping criterion over 
another, a desire to use the maximum ESS possible to provide the estimated control group 
outcome is a sensible rule. So for each retail brand or grouping, the stopping criteria that 
has the largest ESS, and is therefore the one used to derive the propensity score weights, is 
highlighted in bold.

As outlined in Sect. 3.3 the primary treatment effects are obtained in two stages, the first 
stage is to derive weights for our data, based on the propensity scores from GBRF models 
(as described above). These weights are then used in a regression equation where the y-var-
iate is the weighted median rental price and the explanatory variables are, firstly a binary 
variable to indicate if the observation (i.e. neighbourhood) has the retailer present (i.e. is 
‘treated’), and secondly (in a doubly –robust framework) any co-variates with sizeable 
standardised differences. It is the regression estimate from the binary variable in this for-
mulation that provides the estimate of the percentage impact of the presence of the retailer 
on rental prices. To illustrate this second stage, the output from the weighted quasi-poisson 
regression Eq.  (1) for the Premium brand of retail stores is shown in Table 4, where the 
estimated impact of having a Premium store present in the neighbourhood is significant 
at an estimated value of 10.05%, whilst also controlling for the proportion of flats in the 
neighbourhood and two of the ACORN the designations.

where yi is the weighted median rental price for neighbourhood i; α is the intercept; Ti = 0 
if the retailer does not have a store in neighbourhood i’s catchment; = 1 if the retailer does 
have a store in neighbourhood i’s catchment; β the estimated percentage impact of the pres-
ence of the retailer on the weighted median rental price; Ci are a series of j  co-variates 
whose standardised differences are greater than 0.20; γj are the estimate impacts of the co-
variate on the weighted median rental price.

(1)yi = � + �Ti +
∑

j∈co−variates

�jCj,i

Table 4   Regression output for Premium brand stores

Regression term Estimate Std. Error t-vale Pr(> t)

Intercept 6.4774 0.0662 97.84 0.0000
Premium presence 0.1005 0.0299 3.36 0.0008
Flats 0.0037 0.0012 3.11 0.0018
ACORN: Rising Prosperity 0.0111 0.0010 10.86 0.0000
ACORN: Comfortable Communities 0.0005 0.0014 0.38 0.7007
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Running such models for all nine retail groupings provides the estimates listed in 
Table 5, ordered by the estimated percentage impact of the retailer on rental prices.

The Freezer group of retailers has the largest negative (but insignificant) impact on 
rental prices in those neighbours with such a retailer. Further negative, and insignificant, 
impacts are estimated for ASDA, the Discounters, Budgens/Spars and Morrisons. How-
ever, for Sainsbury’s, Tesco, the Co-operative group and the Premium retailers, the impacts 
are positive, but only positive and significant for the Premium group. The ordering in this 
table reflects a general understanding of the perceived ‘attractiveness’ of retail brands in 
the UK (see Thompson et al. (2012) who used opinion poll data to profile UK retailers), 
although other considerations, such as ‘value for money’ might produce different rankings. 
These results indicate that whilst there are some impacts of retail brand on residential pri-
vate rents, the effect is not generally significant, except for the Premium grouping of retail-
ers where the effective is positive, large and significant.

6 � Discussion

This article has estimated the impact of the presence of retail brands on the average rental 
price for residential properties in neighbourhoods. We found a significant, large, positive 
effect for the presence of a Premium grocery retailer on residential rental prices. Whilst 
impacts in line with previous research into brand attractiveness (although not concerning 
housing prices) were found for other brands/store types (see Thompson et al., 2012), these 
were not significant. In terms of scale, compared to a related study of the Finnish housing 
market by Kurvinen and Wiley (2019), we find larger impacts (both positive and negative, 
although insignificant for many brands), which is perhaps to be expected when capturing 
grocery availability by a heterogeneous collection of brands, rather than by undifferenti-
ated presence. The GB grocery retail market is also characterised by far greater choice in 
retailer than the Finnish market, which is oligopolistic and dominated by two retail brands, 
together controlling nearly 83% of the market between them (Finnish Grocery Trade, 
2020). Also here we have a different housing market, rental rather than sales.

Table 5   Parameter estimates form the propensity score analysis

1 The percentage of neighbourhood with a store of this brand in its catchment
2 A doubly-robust estimate that includes: Flats; One Room; East/West of London; Rising Prosperity; and the 
AHAH score
3 A doubly-robust estimate that includes: Flats; Rising Prosperity; Comfortable Communities

Retail brand/Group Summary1 Estimate se t-ratio Pr(> 0)

Freezer 50.0% − 5.13% 0.0353 − 1.455 0.1458
ASDA 64.0% − 3.38% 0.0496 − 0.682 0.4953
Discounter 50.0% − 1.64% 0.0268 − 0.610 0.5421
Budgens/Spar 21.0% − 1.33% 0.0342 − 0.389 0.6970
Morrisons 56.0% − 0.59% 0.0472 − 0.125 0.9008
Sainsbury’s 2 70.0% 1.56% 0.0291 0.535 0.5925
Tesco 78.0% 3.07% 0.0668 0.459 0.6463
Co-op 51.0% 3.72% 0.0285 1.302 0.1929
Premium 3 48.0% 10.05% 0.0299 3.362 0.0008***
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Methodologically, the technique of propensity score matching has been used to con-
trol for selection-bias where the outcome of interest here, rental prices, may also influence 
where brands chose to locate. In deriving the propensity scores for this method, good bal-
ance was achieved for many of the co-variates used, providing confidence that the compari-
son in outcome between the treated and ‘control’ group is valid. For some brands and for 
some co-variates where balance was not achieved a doubly-robust approach was used to 
provide consistent estimators.

We also had to simplify the structure of the data to make it amenable to analysis. No 
software package that we are aware of is able to recognise the complex nature of a partial 
panel multiple dose treatments that best typifies these data. In simplifying these data for 
analysis, we have also reduced the influence of outlying observations making the models 
estimated more robust.

Growth in grocery retail e-commerce for some retail brands possibly means that store 
access is becoming less important for shoppers, but ‘geography to delivery’ networks also 
exist and studies have shown that these can reflect the existing store networks for many 
retailers (Clarke et al., 2015). Even in an era of ‘omni-channel retailing’ store location can 
still be critical, especially so if these services are fulfilled by a ‘pick and pack in store’ on-
line distribution strategy (e.g. Sainsbury’s), where on-line orders are sourced from in store 
inventory; or by click-and-collect, where on-line orders are picked in store by a member of 
staff, but collected by the customer (Mou et al., 2018). These dynamics could be further 
explored in future work on house and rental prices, both taking into account that differ-
ent consumer types (e.g. by age) exhibit varying rates of uptake/dependence on different 
e-commerce services (Hood et al., 2020), and the variable impact of location on retail foot-
fall rates depending on context, as exemplified by different patterns of home working dur-
ing the Covid-19 pandemic (e.g. see Kirk and Gutiérrez (2020)).

Whilst compiling the data set for this study, the spatial relationship between co-variates 
has been of paramount importance, be it the establishment of catchments for neighbour-
hoods or various proximity measures (e.g. to Central London or transport access points), 
the regression model used has not explicitly recognised these proximities (as Montero-Lor-
enzo et al. (2009) did in a study of commercial property rental prices in Toledo, Spain). 
There are such models available, for example spatial error or lagged models (Anselin, 
2009) or geographically weighted regression (GWR) (Brunsdon et al., 1998), that incorpo-
rate the spatial arrangement of terms within a regression model. However it is unclear how, 
especially in terms of GWR, the spatial and propensity score weights would interact. Thus 
in light of the current lack of understanding of this issue, we have not added this level of 
complexity to our analysis.

The findings of this research allow local planning officers to further understand the 
impact of planning applications, particularly of Premium brand retailers, on the built envi-
ronment and specifically the demand and affordability of housing for rent. Higher rental 
prices on locations where a Premium retailer establishes a presence is consistent with the 
process of retail gentrification (Hubbard, 2018), but one that does not just apply to resi-
dential property sales prices but also demonstrably applies here for rents too. Whilst those 
who are asset rich would welcome this boost to their capital and income, this process can 
have negative effects, pricing out established families and communities (Paccoud, 2017). 
Additionally, King (2018) identified (also using propensity score matching) a link between 
food insecurity and housing instability, and it is arguably the case for GB that the private 
rented housing market is the most insecure housing market (Clarke et al., 2017), possibly 
compounding already challenging housing issues for private rental tenants.
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