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Abstract
Deterministic direct-search methods have been successfully used to address real-world chal-
lenging optimization problems, including the beam angle optimization (BAO) problem in
radiation therapy treatment planning. BAO is a highly non-convex optimization problem typi-
cally treated as the optimizationof an expensivemulti-modal black-box functionwhich results
in a computationally time consuming procedure. For the recently available modalities of radi-
ation therapy with protons (instead of photons) further efficiency in terms of computational
time is required despite the success of the different strategies developed to accelerate BAO
approaches. Introducing randomization into otherwise deterministic direct-search approaches
has been shown to lead to excellent computational performance, particularly when consider-
ing a reduced number (as low as two) of random poll directions at each iteration. In this study
several randomized direct-search strategies are tested considering different sets of polling
directions. Results obtained using a prostate and a head-and-neck cancer cases confirmed the
high-quality results obtained by deterministic direct-search methods. Randomized strategies
using a reduced number of polling directions showed difficulties for the higher dimensional
search space (head-and-neck) and, despite the excellent mean results for the prostate cancer
case, outliers were observed, a result that is often ignored in the literature. While, for general
global optimization problems, mean results (or obtaining the global optimum once) might
be enough for assessing the performance of the randomized method, in real-world problems
one should not disregard the worst-case scenario and beware of the possibility of poor results
since, many times, it is only possible to run the optimization problem once. This is even
more important in healthcare applications where the mean patient does not exist and the best
treatment possible must be assured for every patient.
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1 Introduction

Direct-search methods are an excellent alternative for finding the minimum of an objec-
tive function whose derivatives are not available. This work considers the use of directional
direct-search, a derivative-free algorithm that uses a set of (polling) directions to evaluate
the objective function on a finite number of points. At least n + 1 directions of a positive
spanning set, i.e. a set that positively spans an n-dimensional search space, are typically used
to guarantee that at least one of the polling directions is a descent direction [1]. This minimum
number of function evaluations threshold at each iteration ensures frameworks with deter-
ministic convergence but can be a burden in terms of computational time if the evaluation
of the function is expensive. Recently, numerical results have shown that introducing ran-
domization into otherwise deterministic frameworks leads to very competitive results with
enhanced computational time efficiency, particularly when considering a reduced number (as
low as two) of random poll directions at each iteration [13].

Deterministic direct-search methods have been successfully used to address real-world
challenging optimization problems, including the beam angle optimization (BAO) problem
in radiation therapy treatment planning [7, 18–21]. The objective of the BAO problem is
to find the optimal number of irradiation beams and corresponding directions. In this work,
the number of beams, n, is assumed to be defined a priori by the treatment planner as
happens in clinical practice. TheBAOproblem can thus be interpreted as the optimal selection
of n beam irradiation directions, being a highly non-convex optimization problem that is
typically treated as the optimization of an expensive multi-modal black-box function which
results in a computationally time consuming procedure [21]. Despite the high-quality of the
results already obtained, several attempts have focused on improving computational times,
including reducing the search space [7] or the use of surrogates [18]. For the recently available
modalities of radiation therapy with protons (instead of photons), the number of degrees of
freedom is increased, e.g. due to the availability of different levels of energy, making the
alreadydifficult task of obtaining optimal beam irradiation directions in a clinically acceptable
time more challenging.

The use of random strategies to address a problem in a deterministic setup is becoming
more common in optimization after its success in machine learning and artificial intelligence.
In some domains the advantages of using random strategies are known but the question here is
whether, for a deterministic setup of the optimization problem at hand, randomized methods
are true competitors with deterministic ones. In this study, the performance of randomized
direct-search approaches considering different sets (and different number) of poll directions
are assessed using the BAO problem in intensity-modulated proton therapy (IMPT). Two dif-
ferent cancer cases, one prostate and one head-and-neck cases, corresponding to optimization
search spaces with different dimensions, are used to compare the performance of the ran-
domized direct-search approaches with the performance of its deterministic counterpart.

The remaining of the paper is organized as follows. In the next section we recall the main
features of direct-search methods. IMPT treatment planning is introduced in Sect. 3. Section
4 describes the mathematical formulation of the BAO problem. Computational results are
presented in Sect. 5 and conclusions are drawn in the last section.
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2 Direct-searchmethods

Let us consider the unconstrained minimization of an objective function f : R
n → R.

Direct-search methods generate, at each iteration k, a finite number of (poll) points in the
neighborhood of the current iterate xk . Poll points are calculated by adding terms of the form
αkd to xk , where vector d is a direction selected from a finite set of directions Dk and scalar
αk is the step size. After the objective function f being evaluated at all (or some) poll points,
the next iterate xk+1 is set to one poll point that improves (decreases) f and the step size is
kept (or possibly increased). In case no poll point improves the objective function value, the
next iterate xk+1 remains equal to the current iterate xk and the step size is decreased. In this
way, direct-search methods iteratively generate a sequence of non-increasing iterates {xk}.
The set of directions Dk might be updated to obtain Dk+1.

Algorithm 1 describes a direct-search method, which is typically organized around two
steps at each iteration, a search step in addition to the poll step. The step size update is the
most commonly adopted: keep the same step size when an improvement of the objective
function is obtained (step 4) or halve the step size otherwise (step 3). The search step can
(potentially) improve the performance of the method, allowing the use of any strategy or
a priori knowledge of the problem at hand, as long as the number of tested points, Sk, is
finite. This search step is optional and can be left empty (Sk = ∅). While the search step
provides a more global character to the method with the possible insertion of heuristics, the
more rigorous poll step allows deterministic or probabilistic convergence results.

Algorithm 1 Direct-search method
Initialization:

– Choose initial point x0 ∈ R
n .

– Choose initial step size α0 > 0.

For k = 0, 1, 2, …

1. Search step:
Evaluate f at a finite number of points, Sk .
If ∃ xk+1 ∈ Sk: f (xk+1) < f (xk ), select xk+1 and go to step 4.
Otherwise, go to step 2.

2. Poll step:
Choose a set of poll directions, Dk .
If f (xk ) ≤ f (x), ∀x ∈ {xk + αkdi : di ∈ Dk}, xk+1 = xk and go to step 3.
Otherwise, choose xk+1 = xk + αkdi : f (xk+1) < f (xk ) and go to step 4.

3. αk+1 = 1
2 × αk .

4. αk+1 = αk .

2.1 Direct-search based on deterministic descent

The convergence of direct-search methods is ensured by the poll step. If Dk, in Algorithm 1,
is a positive spanning set, then [9]:

∀ v ∈ R
n, ∃ d ∈ Dk,

dT v
‖d‖‖v‖ > 0. (1)

In particular, for v equal to the negative gradient,−∇ f (xk), global convergence to stationary
points holds [9]. This result is valid when Dk is chosen from a finite number of positive
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spanning sets. When using an infinite number of positive spanning sets, an uniform bound
must be imposed in (1), considering the cosine measure of all the positive spanning sets [15].

Deterministic versions typically use the directions of a positive spanning set in the poll step
to guarantee a deterministic descent method. A positive spanning set for Rn can be defined
as a set of nonzero vectors of Rn whose positive combinations span Rn . It can be shown that
a positive spanning set for Rn contains at least n + 1 vectors [9]. A positive spanning set
contains at least one positive basis. A positive basis is a positive spanning set that does not
contain any subset that is also a positive spanning set. It can be shown that a positive basis
for Rn contains at most 2n vectors [9]. Positive bases with 2n and n + 1 vectors are known
as maximal and minimal positive basis, respectively. Maximal and minimal positive bases
commonly used forRn are [e1 . . . en −e1 . . .−en] and [e1 . . . en −e], respectively, where
ei is the i th column of the identity matrix in Rn and e = [1 . . . 1]
. Deterministic versions
using the previous maximal and minimal positive bases are denominated in this study as
Det_2n and Det_n+1, respectively.

The main feature of positive spanning sets, that motivates its use in optimization frame-
works, is that unless the current iterate xk is at a stationary point, there is always a direction
d in a positive spanning set that is a descent direction (forms an acute angle with the neg-
ative gradient), i.e., there is an α > 0 such that f (xk + αd) < f (xk). The selection of the
poll directions to use at each iteration is one of the key elements that shape a direct-search
algorithm. If all poll directions of a positive spanning set are tested at each iteration, polling
is called complete. Polling is called opportunistic if the first direction leading to an improve-
ment of the objective function value is taken. In this case, the order of the poll directions at
each iteration can play an important role in the computational performance of the method
[3].

2.2 Direct-search based on probabilistic descent

The driving force to explore probabilistic versions of different methods is the success demon-
strated by randomized approaches in machine learning and artificial intelligence. In the
context of direct-search, the question that arises is whether the use of random directions
(instead of polling directions from a positive spanning set) allows obtaining a descent direc-
tion often enough. Knowing that at least n + 1 evaluations of the objective function are
required to guarantee deterministic convergence, allowing the use of a smaller number of
polling directions at each iteration by probabilistic methods is particularly appealing for
functions that are expensive to evaluate. Probabilistic direct-search methods consider polling
directions randomly generated that may not fulfill the positive spanning property.

Deterministic direct-search methods were extended by assuming that the set of polling
directions Dk includes only a descent direction with a certain probability [13]. Nevertheless,
that probabilistic approach enjoys almost-sure global convergence (convergent with proba-
bility one) provided the polling directions Dk are uniformly distributed on the unit ball [13].
Furthermore, probabilistic approaches testing a reduced number (as low as two) of random
poll directions at each iteration reported excellent numerical results [13]. The best theoretical
choice (maximizing the probability of having a good direction among two directions uni-
formly drawn on the unit sphere) with best practical performance corresponds to the selection
of a random vector and its negative [14].

It is worth to emphasize that Algorithm 1 can describe both deterministic and probabilistic
direct-search approaches. The only difference is the choice of the set of polling directions,
Dk, in the poll step.
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3 IMPT treatment planning

Radiation therapy (RT) is one of the main cancer treatments, being used in more than 50%
of cancer patients, either with curative or palliative intent [2]. The goal of RT is to deliver
a dose of ionizing radiation to the tumor capable of eradicating the tumor cells while trying
to minimize the damage to surrounding healthy tissues which are also inevitably irradiated.
Hence, the success of a treatment is closely related to the ability of delivering the prescribed
dose to the tumor while simultaneously sparing, as much as possible, the healthy organs and
tissues.

Radiation therapy with photon beams is clearly mainstream but the use of proton beams,
in particular intensity-modulated proton therapy (IMPT), has steadily increased in clinical
practice due to the advantageous depth-dose characteristics of protons: a maximum energy is
deposited in a very precise location, called the Bragg peak, which contributes to obtain better
trade-offs between tumor irradiation and sparing of the adjacent organs and tissues. IMPT
is a sophisticated RT technique, first introduced in the late 1990s by Lomax [16], where
proton beams are discretized into a large number of beamlets, i.e. narrow pencil beams, with
a sequence of appropriate energies. The intensities of all beamlets are jointly optimized in a
large-scale optimization problem called fluence map optimization (FMO).

Both proton and photon modalities share a common treatment planning workflow, typi-
cally resorting to a treatment planning system (TPS), to calculate the beam directions and
intensities that best fulfill the clinical requirements for the treatment. RT treatment planning
starts with the radiation oncologist delineating all the structures of interest on the patient’s
computed tomography (CT) scans: the planning target volume(s) (PTVs, that correspond
to the tumor volume(s) expanded by a safety margin), and the surrounding organs-at-risk
(OARs). Depending on patient specific characteristics (e.g., cancer type, stage) a medical
prescription is then defined by the radiation oncologist, establishing the (prescribed) radia-
tion doses that should be delivered to the PTV and also tolerance dose values for all OARs.

In clinical practice, a treatment planner steers a TPS in an interactive way aiming to
generate a treatment plan that fulfills the prescribed and tolerance doses. Theplannermanually
tests several different parameters that shape a (black-box) optimization objective function.
Typical parameters include gantry and couch angles, structure (importance) weights and dose
objectives/bounds. If the dose distribution obtained is not satisfactory, the planner updates
one or more parameters, based on the outcome and mostly on experience, in an iterative
process that can be very time consuming (can take several days of workload for complicated
cases). The proposed dose distribution needs to be reviewed by the radiation oncologist and,
in case of disapproval, the trial-and-error planning process restarts.

Optimization has been playing a decisive role in improving treatment planning optimiza-
tion [4, 8, 10–12, 18]. Breedveld et al. [5] presented an excellent overview of optimization
methods applied to RT planning. Automation in the planning of radiotherapy treatments is
essentially based on optimization methods, aiming at releasing the planner for other impor-
tant tasks, e.g. quality assurance, and tries to consistently ensure high-quality plans. While
the optimization of intensities (FMO problem) has been satisfactorily solved by different
optimization methods/models, the selection of the best irradiation directions—beam angle
optimization (BAO) problem—still does not have a resolution method/model that simulta-
neously satisfies the criteria of quality of solutions and acceptable computational time. One
of the reasons is the difficulty of this problem, a highly non-convex optimization problem
with many local minima. In IMPT planning current practice, the number of beams and their
directions are chosen subjectively based on prior trial-and-error experience and practical con-

123



Journal of Global Optimization

Fig. 1 Illustration of a gantry
rotating around the treatment
couch that can also rotate

siderations (e.g., efficiency of quality assurance and treatment delivery). However, optimal
selection of beam directions can have profound impact on the quality of dose distributions
and on patients’ outcomes [6].

4 Beam angle optimization problem

In IMPT, proton beams exit the head of a gantry that is capable of rotating along a central
axis while the patient is immobilized on a couch that can also rotate. Figure 1 illustrates the
gantry rotating around the treatment couch. If the couch is fixed at zero degrees, as in Fig.
1, all beams are coplanar as they lay in the plane of rotation of the gantry. When the couch
rotates, noncoplanar irradiation directions are possible. Irradiating the tumor from different
beam directions allows to deliver a high dose to the tumor, towards which the different beams
converge, while maintaining a lower dose outside the tumor. Optimization of beamlets, i.e.
narrowpencil beams,with independent intensities allowsobtainingbeamswith a non-uniform
intensity, resulting in intensity-modulated proton therapy. The number of IMPT beams is
usually 2 or 3 and rarely more than 4 or 5 [6]. Since this involves a smaller number of beams
than RT treatments with photons, appropriate selection of incidence directions is even more
important.

For optimization purposes, each delineated structure is discretized into voxels (small
volume elements) and the radiation dose deposited in each voxel, measured in Gray (Gy), is
computed using the superposition principle, i.e., considering the contribution of each beamlet.
Typically, a dose matrix D, known as dose-influence matrix, mapping beamlet intensities to
voxel doses is constructed, indexing the rows of D to the voxels and the columns to the
beamlets. The total dose received by the voxel i , di , is given by di = ∑N

j=1 Di jw j , where
w j is the weight (intensity) of beamlet j . These are the decision variables when the radiation
intensity optimization problem is considered. The number of voxels (V ) is typically on the
order of 106 and the number of beamlets (N ) is typically on the order of 104 leading to large-
scale optimization problems. In addition, each set of beam directions, �, has a different
influence-dose matrix D�. A basic radiation therapy optimization problem, for a given beam
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ensemble � is:

minw� f (d�)

s.t . d�
i = ∑N�

j=1 D
�
i jw

�
j , i = 1, . . . , V

d� ∈ �

w�
j ≥ 0, j = 1, . . . , N�,

(2)

where w� are the decision variables and dose d� must be admissible, i.e., it must belong
to a set � that can be split into several subsets corresponding to different sets of voxels
(structures) that must comply with different prescription (PTVs) or tolerance (OARs) doses.

Typically, the measure used to assess the quality of a given beam ensemble, f , is the
optimal value of the FMO problem [21]. In this work, the FMO objective function, f , is
presented in Eq. (3):
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where S represents the set of structures considered, Vs is the number of voxels of structure
s, Ls and Us are the lower and upper bounds associated with structure s, λs and λs are the
lower and upper weights for the structure s and (·)+ = max{0, ·}.

In this study the optimal value of the FMO problem is calculated by matRad [22]. matRad
is a research-oriented TPS, developed at the German Cancer Research Center. In this TPS,
after loading a patient and selecting appropriate parameters (e.g., beam angles, objectives,
constraints, etc.) it is possible to calculate the optimal solution of the FMO problem. For
each beam angle set, obtaining the optimal value of the FMO problem resorting to matRad
takes between one to five minutes depending on the cancer case and the number of beams
considered. Thus, BAO can be simply seen as the optimization of an expensive multi-modal
black-box function, f .

In contrast with RT with photons, IMPT combines a low number of proton beams incident
fromcarefully selected directions. Furthermore, IMPThas extra degrees of freedom, provided
by different levels of energy. Therefore, computational time efficiency becomes even more
critical in IMPT treatment planning optimization, in particular in the selection of optimal
proton beam directions (BAO) that can deeply impact the quality of dose distributions.

5 Computational results

Two different cancer cases are considered in the computational tests, corresponding to opti-
mization problems of different dimension. The first one is a prostate cancer case where only
two proton beams have to be optimized. As a noncoplanar setting was considered, the direc-
tion of each proton beam is defined by the gantry angle, θ , and the couch angle, φ. Thus, a
four-dimensional search space is explored for the optimal selection of beam directions for
the prostate cancer case. The second one is an head-and-neck cancer case where five proton
beams have to be optimized, corresponding to a ten-dimensional BAO search space. The
first case is less challenging (far from being easy) not only because it is smaller but also
because the number of structures at stake in a prostate case is much smaller than in a head-
and-neck case. The objective of this first case is, on one hand, to further validate the quality
of the solutions obtained by deterministic direct-search algorithms, comparing them with a
proxy of the global optimum obtained by exhaustive search. On the other hand, compare the
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Fig. 2 IMPT for the prostate cancer case from matRad package [22]. (Color figure online)

performance of randomized strategies for different sets of poll directions with deterministic
algorithms and this pseudo global optimum. In the second case, given the impossibility of
using exhaustive search (it would take months of computational time), the objective is just to
compare the performance of randomized strategies for different sets of poll directions with
the performance of deterministic algorithms.

5.1 Prostate cancer case

The prostate cancer case included in the matRad package [22], was used in this study. The
OARs included in the treatment planning optimization are the rectum and the bladder as they
are near the prostate. A tolerance dose of 50 Gy is considered for these OARs. The prescribed
dose for the tumor is 68 Gy. In order to avoid dose accumulation elsewhere, a structure called
Body, including all the remaining normal tissue, is also included in the treatment planning
optimization. The optimal FMO value for this prostate cancer case was obtained by matRad,
selecting the appropriate options as displayed in Fig. 2. A common beam angle configuration
for prostate IMPT corresponds to two lateral parallel opposed beams as illustrated in Fig. 2.
The reasoning for this beam angle choice in the clinical setting has to do with the behavior
of the traversed tissues: these are the directions that try to avoid paths with tissues that can
behave differently from one session to the other due, for instance, to weight loss or inter
fraction mobility. This beam angle configuration, widely used in clinical practice for prostate
IMPT [6], is used as clinical benchmark.

Following the rationale that led to the choice of the clinical benchmark directions, all
the (continuous) beam directions in the neighborhood of the clinical benchmark directions
(±20◦) are considered in the BAO procedure. Although all possible directions around the
tumor can be considered, as we do in our approach, a common alternative is to consider
a discretization of all possible angles with a step of five or ten degrees. Figure 3 displays
the clinical benchmark directions (in red) and a discretization (using a step of five degrees)
of all beam directions included in the BAO procedure (in blue). Coplanar beams (black
beams) corresponds to beams with a fixed couch at zero degrees (φ = 0◦). The total number
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Fig. 3 Coplanar beam directions
are displayed in black while a
discretization of the possible
noncoplanar beam directions are
displayed in blue. Clinical
benchmark 2-beam ensemble is
displayed in red

Fig. 4 Comparison of results obtained by deterministic direct-search approaches with clinical benchmark and
pseudo-optimal solution

of different 2-beam ensembles is 6561. Exhaustive search testing each of these 2-beam
ensembles was performed in order to obtain another benchmark that can be considered a
pseudo-optimal one.

For this prostate cancer case, two deterministic approacheswith opportunistic pollingwere
tested considering a minimal and a maximal positive basis, [e1 . . . en − e] and [e1 . . . en −
e1 . . .−en], respectively. One of the objectives of this first test casewas to validate the quality
of BAO solutions obtained by deterministic direct-search approaches. Figure 4 presents the
optimal FMO value (in descending order) for all 6561 beam ensembles calculated in the
exhaustive search, as well as the solutions obtained by the deterministic direct-search using
the minimal basis (Det_n+1) and the maximal basis (Det_2n). The clinical benchmark and
the pseudo-optimal solution corresponding to the solution of the exhaustive search are also
displayed. It can be seen that the deterministic approach Det_2n obtains a near-pseudo-
optimal solution, validating the excellent results previously obtained with this approach [7,
18–20].

The main goal of the randomized strategies is to obtain solutions with quality similar to
the solutions obtained by the deterministic strategies (in particular Det_2n) but in a more
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competitive computational time. It should be noted that although Det_n+1 did not obtain a
solution as good as Det_2n, it manages to obtain a solution at a level clearly better than that
of the clinical benchmark which is, in itself, a very good result even if the global optimum is
not reached. Deterministic approaches were compared against three randomized approaches
that test a maximum (opportunistic approach) of 2n, n + 1, 2 and 2 symmetric (2sim) direc-
tions at each iteration, considering Dk constituted by: (i) Unif – random polling directions
uniformly distributed on the unit ball [13], (ii) Max – polling directions randomly selected
from the maximal positive basis [e1 . . . en − e1 . . . − en], (iii) Move2 – polling direc-
tions corresponding to the sum of two randomly selected directions of the maximal positive
basis [e1 . . . en − e1 . . . − en] (e.g., polling direction [1 1 0 . . . 0]
 if the first two vec-
tors were randomly selected). Other randomized approaches were tested, including random
polling directions from uniformly distributed directions by quadrants [21] or random polling
directions from all linear combinations of the vectors of the maximal positive basis with
coefficients in {0, 1}. Note that these last two strategies, as well as theUnif strategy, typically
change all directions of a given beam ensemble when testing new points (beam ensembles)
from the best found so far. On the other hand, the Max and Move2 strategies change only
one or two directions, respectively, when testing new beam ensembles from the best found so
far. This strategy of only moving one (or two) directions iteratively is followed by treatment
planners when performing (trial-and-error) manual planning. For the sake of better reading
of the results, only the best performing strategies (Unif,Max andMove2) are presented. The
deterministic approaches only need to be run once, since they will always lead to the same
result. However, due to the random behavior of the randomized approaches, these should
be run more than once since different runs can lead to different results. If the values of the
objective function span over a wide interval this can be seen as a serious disadvantage for
the optimization algorithm since, in real practice, most of the time the algorithm will be run
only once. All randomized approaches were run twenty times.

The results of all the different approaches, including the clinical benchmark and the
exhaustive search approach, are depicted in Table 1. The best minimum, mean and maximum
objective function values as well as the best computational time obtained by the probabilistic
approaches are highlighted with a darker cell color in the table. We can observe that all the
three probabilistic approaches obtained the same minimum value, near the best theoretical
value (exhaustive search) and outperforming the deterministic approaches. However, both
the mean and maximum objective function values obtained by the probabilistic approaches
are worse than the values obtained by the deterministic approach with the maximal basis.

Although inspection of Table 1 gives a good overview of the results, there is relevant
missing information for the randomized approaches. Often only mean values are reported or,
alternatively, the information ofwhether the optimum is obtained after a given number of runs.
Although, inmany cases, this is enough to assess themethod performance, in real-world cases,
in particular in real-world healthcare problems, it is important that each run is scrutinized. In
this way, all runs of randomized approaches are reported in Figs. 5 and 6 through boxplots for
the randomized approaches. Figure 5 displays the results obtained by the different approaches
considering 2n polling directions, both in terms of optimal FMO value (5a) and in terms of
computational times (5b). In terms of optimal FMO value Fig. 5a), all approaches managed
to obtain excellent results and very competitive with the deterministic approach Det_2n.
In terms of computational times (Fig. 5b) no approach outperform the others (note that
clinical benchmark is almost for free as no beam angle optimization takes place). Note that
the computational time of the exhaustive approach is not plotted otherwise the differences
between the remaining approacheswouldnot bevisible.Despite these interesting resultswhen
using 2n polling directions directions, the main goal is to assess the behavior of randomized

123



Journal of Global Optimization

Table 1 Computational results obtained by the different approaches for the prostate case. Best results are
displayed in bold

# of poll f T ime(s)

Directions Min Mean Max Mean

Benchmark – 5115 5115 5115 30

Exhaustive – 3029 3029 3029 131683

Deterministic 2n 3137 3137 3137 763

n + 1 3503 3503 3503 310

Probabilistic 2n 3076 3189 3449 739

Move2 n + 1 3089 3227 3449 542

2 3099 3283 3531 233

2sim 3118 3357 4845 206

2n 3089 3223 3449 674

Max n + 1 3076 3216 3449 590

2 3089 3292 3531 222

2sim 3137 3362 4845 210

2n 3076 3168 3449 774

Unif n + 1 3089 3187 3370 579

2 3089 3386 5115 290

2sim 3125 3266 3442 230

Fig. 5 Optimal FMO obtained by the different approaches considering 2n polling directions (a) and the
corresponding computational times in seconds (b)

direct-search approaches when the number of polling directions is greatly reduced at each
iteration. Figure 6 displays the results obtained by the different approaches considering only 2
polling directions. The results are in linewith those reported in the literature, not deteriorating
the performance in terms of optimal FMO value (Fig. 6a). It should be noted however, and
this is not documented in the literature, that there are outliers whose quality of solutions is
clearly inferior not even improving the clinical benchmark solution. In terms of computational
times all randomized approaches with 2 polling directions (Fig. 6b) clearly outperform the
approaches with 2n polling directions (Fig. 5b) which validates the interest in this type of
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Fig. 6 Optimal FMO obtained by the different approaches considering 2 polling directions (a) and the corre-
sponding computational times in seconds (b)

Fig. 7 Cumulative dose volume histogram comparing the results obtained byBenchmark,Det_2n andUnif_2
treatment plans

approaches. The complete results for each of the randomized approaches (Unif, Max and
Move2) can be found in “Appendix A”.

Despite the improvement in FMO value, the quality of the results can be perceived con-
sidering a variety of metrics. Typically, results are judged by their cumulative dose-volume
histogram (DVH). The DVH displays the fraction of a structure’s volume that receives at
least a given dose. DVH results for the treatment plans obtained by the benchmark solution
– Benchmark, by the deterministic approach – Det_2n, and by the probabilistic approach
(corresponding to a run with an average objective function value) – Unif_2, are displayed
in Fig. 7. Both treatment plans with optimized beam directions outperform the benchmark
solution. Det_2n have better target coverage at the expense of increased rectum sparing
but decreased bladder sparing. Unif_2 have better target coverage at the expense of rectum
sparing. The dose difference occurs predominantly in the < 30 Gy portion of the DVH.
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Fig. 8 IMPT for the head-and-neck cancer case from matRad package [22]. (Color figure online)

5.2 Head-and-neck cancer case

The head-and-neck cancer case included in the matRad package [22], was used in this study.
Head-and-neck cancer cases are difficult cases to plan and treat because the number of sen-
sitive OARs in that region is large. Two of the most sensitive OARs included in the treatment
planning optimization are the spinal cord and the brainstem for which the tolerance dose is
a maximum dose of 45 Gy and 54 Gy, respectively. Other OARs included in planning opti-
mization are the parotid (salivary) glands which, when over-irradiated, may cause xerostomia
(difficulty in swallowing) with consequences for the treatment outcome. The tolerance dose
for the parotids is a mean dose of 26 Gy. The prescribed dose for the tumor is 70 Gy. The
remaining normal tissue (called Skin in this case), is also included in the treatment planning
optimization. The optimal FMO value for this head-and-neck cancer case was also obtained
by matRad, selecting the appropriate options as displayed in Fig. 8. A common beam angle
configuration for head-and-neck corresponds to coplanar equispaced beams, typically used
in clinical practice. A treatment plan with five coplanar equispaced beams, as illustrated in
Fig. 8, is used as clinical benchmark.

For this head-and-neck cancer case, all the (continuous) feasible (that avoid couch and
gantry collision) noncoplanar beam directions are considered in the BAO procedure. Even
for a sparse discretization, the total number of combinations of five beams would be so large
that it would take months to run an exhaustive search. Thus, for this case, in addition to the
clinical benchmark, the solutions obtained by the deterministic algorithms will be used as
a benchmark given their excellent performance, not only for the prostate case but also in
previous head-and-neck cases [7, 18–20]. Two deterministic approaches with opportunistic
polling were tested considering a minimal and a maximal positive basis, [e1 . . . en − e] and
[e1 . . . en − e1 . . . − en], respectively. Deterministic approaches were compared against the
same three randomized approaches (Unif, Max and Move2) that test a maximum (oppor-
tunistic approach) of 2n, n + 1, n/2, 2 and 2 symmetric (2sim) directions at each iteration.

The results of all the different approaches, including the clinical benchmark, are depicted in
Table 2. The best minimum, mean and maximum objective function values as well as the best
computational time obtained by the probabilistic approaches are highlighted with a darker
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Table 2 Computational results obtained by the different approaches for the H & N case. Best results are
displayed in bold

# of poll f Time (s)

Directions Min Mean Max Mean

Benchmark – 4965 4965 4965 60

Deterministic 2n 4125 4125 4125 5353

n + 1 4210 4210 4210 1993

Probabilistic 2n 3937 4173 4427 4971

n + 1 3823 4256 4748 2533

Move2 n/2 4169 4509 4820 1205

2 4269 4733 4965 444

2sim 4313 4691 4918 408

2n 3798 4102 4357 4467

n + 1 3780 4349 4767 2593

Max n/2 4161 4576 4804 1147

2 4483 4724 4902 461

2sim 4258 4719 4912 423

2n 4178 4557 4886 3587

n + 1 4438 4663 4915 1879

Unif n/2 4619 4823 4965 858

2 4636 4827 4965 341

2sim 4661 4865 4965 339

cell color in the table. It is interesting to note that the best results of probabilistic approaches
in terms of objective function values were always obtained considering the directions of
the maximal basis. Moreover, similarly to the prostate case, the best results were obtained
considering a large number of polling directions, 2n or n + 1. While the results of the
probabilistic approaches are competitive with the deterministic approaches in terms of the
minimum objective function value, that is not the case in terms of the mean or maximum
value (or worst case), particularly when considering a reduced number of polling directions.

To complement the information given in Table 2, all the results obtained by the randomized
approximations are reported in Figs. 9 and 10 through boxplots. Figure 9 displays the results
obtained by the different approaches considering 2n polling directions, both in terms of
optimal FMO value (9a) and in terms of computational times (9b). In terms of optimal FMO
value (Fig. 9a), while Max and Move2 approaches obtained excellent results competitive
with the deterministic approach Det_2n, Unif clearly underperformed barely improving the
clinical benchmark. This result is very interesting as it contradicts previous studies and shows
that the choice of polling directions can be greatly influenced by the problem at hand. In this
case, choosing polling directions that change one or two beams (instead of all at the same
time) as done by the treatment planners seems to be a better strategy. In terms of computational
times (Fig. 9b) no approach clearly outperform the others.

Although the conclusions drawn for 2n polling directions are interesting, considering
a reduced number of polling directions at each iteration remains the focus of this study.
Figure 10 displays the results obtained by the different approaches considering only 2 polling
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Fig. 9 Optimal FMO obtained by the different approaches considering 2n polling directions (a) and the
corresponding computational times in seconds (b)

Fig. 10 Optimal FMO obtained by the different approaches considering 2 polling directions (a) and the
corresponding computational times in seconds (b)

directions. In this case, it is clearly seen that the results deteriorated when a reduced number
of polling directions was considered at each iteration (Fig. 10a), which, on the one hand,
contradicts the results reported in the literature stating that a reduced number of polling
directions obtains very competitive results and, on the other hand, it is in line with the
literature that reports results deterioration for instances of increased dimensions. In terms of
computational times the gains of all randomized approaches with 2 polling directions (Fig.
10b) are more pronounced also due to the increase in dimension: the difference between 2
and 2n increases for larger values of n. The complete results for each of the randomized
approaches (Unif,Max andMove2) can be found in “Appendix B”, being clearly visible, on
one hand, the deterioration of the quality of the solutions as the number of polling directions
decreases at each iteration and, on the other hand, the increasing advantage in terms of
computational times for lower number of polling directions.

The existence of a marked computational time gap between the use of 2 and 2n polling
directions gives room for testing strategies that might enhance the quality of the results
obtained for the reduced number of polling directions, within the available computational
budget. One of the possible strategies is to run the algorithm successively, starting each run
of the algorithm at the previous optimal angular configuration. Figure 11 presents the results
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Fig. 11 Optimal FMO obtained by the different approaches considering ten runs (a) and the corresponding
computational times in seconds (b)

Fig. 12 Cumulative dose volume histogram comparing the results obtained by Benchmark, Det_2n and
Max_2 treatment plans

considering ten runs ofMax andMove2 when using only two polling directions. For bench-
mark purposes, the 2n counterparts are also displayed, as well as the deterministic approach
and the clinical benchmark. Results using only two polling directions clearly improved while
being still advantageous in terms of computational time. However, despite clearly outper-
forming now the clinical benchmark (main goal of BAO) using a reduced number of polling
directions even with multiple runs falls short of the performance of the approaches that use
2n polling directions.

Figure 12 displays the DVH results for the treatment plans obtained by the benchmark
solution—Benchmark, by the deterministic approach—Det_2n, and by the probabilistic
approach (corresponding to a run with an average objective function value)—Max_2. Target
coverage is similar for the different plans with a slight advantage for Det_2n. In terms of
organ sparing advantage for Det_2n is clear.
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6 Conclusions

The optimal selection of beam directions in radiation therapy is a very difficult highly non-
convex optimization problem.Deterministic direct-search approaches have been successfully
used to address this problem [7, 18–20]. Despite the different strategies developed to accel-
erate these approaches, further efficiency in terms of computational time is still required
for proton radiotherapy. Given the excellent computational performance reported by direct-
search approaches that use a reduced number of polling directions, in this study several
randomized direct-search strategies were tested, considering different sets of polling direc-
tions. The main interest was in testing non-deterministic direct-search approaches that use a
reduced number of polling directions at each iteration aiming to maximize potential gains in
computational time.

Three different randomized strategies were tested, considering different sets of polling
directions: Unif,Max andMove2. The first strategy, with good results reported in the litera-
ture [13], considers in practice the change of all angles of a given beam angular configuration,
while the other two strategies correspond in practice to a change of only one or two angles at
each iteration, in linewith the procedure followed by the treatment planner in clinical practice.
These strategies were tested using a prostate cancer case (corresponding to a 4-dimensional
search space) and a head-and-neck cancer case (corresponding to a 10-dimensional search
space).

The prostate cancer case confirmed the high-quality results obtained by deterministic
direct-search methods, in particular when using the maximal basis [18]. The results for this
case are in line with those reported in the literature, with randomized strategies obtaining
very competitive results even when the number of polling directions used is reduced. How-
ever, probabilistic descent shows differences from deterministic descent as for few runs of
randomized strategies the quality of solutions is clearly inferior not improving the clini-
cal benchmark solution. While for general global optimization problems, mean results (or
obtaining the global optimum once) might be enough for assessing the performance of the
randomized method, in real-world problems one should look at the worst-case scenario and
beware of the possibility of poor results when a reduced number of polling directions is
considered at each iteration. This is even more important for healthcare problems where the
mean patient does not exist and the best treatment possible must be assured for every patient
and it is not possible to repeatedly run the optimization algorithm, choosing then the best
solution.

The head-and-neck cancer case highlights the difficulties of direct-search approaches
for larger dimensional search spaces. Even using 2n polling directions at each iteration,
not all randomized strategies obtained high-quality results. While the randomized strategies
using polling directions that change one or two angles are competitive with the deterministic
approach that obtain a significant improvement with respect to the clinical benchmark, the
randomized approach that uses random polling directions uniformly distributed on the unit
ball behavedworst. On the other hand, reducing the number of polling directions led to a clear
deterioration of the results for all the randomized approaches. As expected the computational
time gap between approaches using 2 and 2n polling directions increased which leaves room
for creative strategies that, using the computational budget of this gap, allow mitigating the
loss of quality of the results.

Despite the difficulties presented by randomized strategies that use a small number of
polling directions, whether due to the existence of outliers or the deterioration of results,
knowledge of the problem in question can help to mitigate these setbacks. On one hand,
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choosing the polling directions that best fit the problem at hand can help maintain high-
quality solutions even when using a reduced number of polling directions at each iteration.
On the other hand, the computational gap can be used to obtain better solutions. Optimization
of real-world problems, in particular healthcare problems, raises different issues, e.g. requires
all solutions to be of good quality, whichmakes the discussion different fromwhat is typically
done in the literature and that is another reason why the conclusions are not fully aligned
with those previously reported.

Despite the possible existence of outliers, the use of a reduced number of random polling
directions continues to be an attractive approach to explore in future works, as long as
measures are developed to mitigate this issue, e.g., risk measures. One might also consider
exploring the best of deterministic and probabilistic approaches. On one hand, a numerical
characteristic of deterministic directional direct-search is that most of the improvement in
the objective function value occurs in the first iterations but then a long time is required to
terminate with small improvements in the objective function value [17]. On the other hand, a
numerical characteristic of probabilistic directional direct-search, particularly using a reduced
number of polling directions, is enhanced computational times [13]. To take advantage of
these characteristics, one can think of considering a hybridmethodwhere, in the first iterations
a positive spanning set is used (deterministic descent) and in the final iterations, in order to
accelerate termination, a small number (two) of random polling directions is considered
(probabilistic descent). Consistent quality of results and enhanced computational times can
be guaranteed by the initial deterministic part and the final probabilistic part, respectively.
To see if this holds in general, or if it holds only for this problem, in future work, hybrid
directional direct-search approaches performance need to be assessed for a set of benchmark
optimization problems.

A Prostate cancer case results obtained by the randomized approaches

See Figs. 13, 14 and 15.

Fig. 13 Optimal FMO obtained by Unif (a) and the corresponding computational times in seconds (b)
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Fig. 14 Optimal FMO obtained byMax (a) and the corresponding computational times in seconds (b)

Fig. 15 Optimal FMO obtained byMove2 (a) and the corresponding computational times in seconds (b)

B Head-and-neck cancer case results obtained by the randomized
approaches

See Figs. 16, 17 and 18.
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Fig. 16 Optimal FMO obtained by Unif (a) and the corresponding computational times in seconds (b)

Fig. 17 Optimal FMO obtained byMax (a) and the corresponding computational times in seconds (b)

Fig. 18 Optimal FMO obtained byMove2 (a) and the corresponding computational times in seconds (b)
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