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Abstract
The role of an expert in the decision-making process is crucial. If we ask an expert to help
us to make a decision we assume their honesty. But what if the expert is dishonest? Then,
the answer on how difficult it is for an expert to provide manipulated data in a given case of
decision-making process becomes essential. In the presentedwork, we considermanipulation
of a ranking obtained by the Geometric Mean Method applied to a pairwise comparisons
matrix. More specifically, we propose an algorithm for finding an almost optimal way to
swap the positions of two selected alternatives in a ranking. We also define a new index
which measures how difficult such manipulation is in a given case.

Keywords Pairwise comparisons · Data manipulation · Rank reversal · Orthogonal
projection

1 Introduction

The popularity of the pairwise comparisons methods in the field of multi-criteria decision
analysis is largely due to their simplicity. It is easier for a decision maker to compare two
objects at the same time, as opposed to comparing larger quantities of them. Although the first
systematic use of pairwise comparisons is attributed to Ramon Llull [9], thirteenth-century
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alchemist and mathematician, it can be assumed that also prehistoric people used this method
in practice. In the beginning, people were interested in qualitative comparisons. Over time,
however, this method gained a quantitative character. The twentieth-century precursor of
the quantitative use of pairwise comparisons was Thurstone, who harnessed this method to
compare social values [52]. Continuation of studies on the pairwise comparisons method [16,
44, 53] resulted the seminal work written by Saaty [49]. In his article, Saaty proposed the
Analytic Hierarchy Process (AHP)—a new multiple-criteria decision-making method based
on pairwise comparisons. Thanks to the popularity of AHP, the pairwise comparisonsmethod
has become one of the most frequently used decision-making techniques. Numerous variants
and extensions of the pairwise comparisons method have found application in economy
[46], consumer research [20], management [41, 45, 54], construction [15], military science
[24], education and science [28, 42], chemical engineering [14], oil industry [23] and others.
The pairwise comparisons method is still under development and inspires researchers who
conduct work on the inconsistency of the paired comparisons [2, 4, 7, 33, 37], incompleteness
of decision data [13, 18, 39, 40], data accuracy [27], priority calculations [5, 25, 34, 36, 43],
representation of uncertain knowledge [1, 47, 57] as well as new methods based on the
pairwise comparisons principle [32, 35, 47, 48].

Popularity of the decision-making methods makes them vulnerable to attacks and manip-
ulations. This problem has been studied by several researchers including Yager [55, 56] who
considered strategic preferential manipulations, Dong et al. [17], who addressed manipula-
tion in the group decision-making or Sasaki [50], on strategic manipulation in the context of
in group decisions with pairwise comparisons. Recently, two heuristics enabling detection
of manipulators and minimizing their effect on the group consensus have been introduced
in [38]. In [30] the risk of incorrect extrapolation of the number of COVID cases caused
by misreported data has been reduced by considering data from various countries. Some
aspects of decision manipulation in the context of electoral systems are presented in [21, 22,
51]. Faramondi et al. [19] addresses the problem of rank reversal for pairwise comparisons
method equipped with information on judgments uncertainty.

In the presentedwork,we take a step towards determining the degree of difficulty ofmanip-
ulating in the pairwise comparisons method. For this purpose, we will propose an algorithm
for calculating the closest approximation of the pairwise comparisons matrix (PCM), which
equates the priorities of two selected alternatives. We apply a similar technique of orthogonal
projections to that used in [26, 31]. The difference between the weights of alternatives shows
the degree of difficulty of a given manipulation. Although the reasoning is done for additive
matrices, the obtained result is also valid for multiplicative matrices.

It must be stressed that recently Faramondi et al. [19] have proposed an optimisation
model to identify a suitable perturbation of the available pairwise comparisons to alter the
ordinal ranking for a selected pair of alternatives. Their idea was to express the solution to
this problem as the minimum of the appropriate function subject to some constrains. This
can be done by resorting to commercial solvers.

In fact, [19] solves a more general problem than stated here, including the case of incom-
plete PCMs. Furthermore, it allows different levels of element-wise perturbance intensities.
On the other hand, we reformulate the problem in algebraic terms. Then we show and prove
the explicit formulas for the solution, which is the main advantage of the presented work.

The article consists of four sections. Introduction (Sect. 1) and Preliminaries (Sect. 2)
present the state of research and introduce basic concepts and definitions in the field of the
pairwise comparisons method. The third section, Towards optimal manipulation of a pair of
alternatives, defines the procedure to construct a manipulated pairwise comparisons matrix.
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It also contains a method for determining the difficulty of manipulation. The article ends with
Conclusion (Sect. 4), summarizing the achieved results.

2 Preliminaries

2.1 Multiplicative pairwise comparisonsmatrices

Let us assume that we want perform pairwise comparisons of a finite set E = {e1, . . . , en}
of alternatives. The comparisons can be expressed by a pairwise comparisons matrix (PCM)
M = [mi j ] with positive elements satisfying the reciprocity condition

mi j · m ji = 1, (1)

for i, j ∈ {1, . . . , n}. Let us denote the set of all PCMs by M.
Given M ∈ M, we can apply different procedures to assign a positive weight wk to each

alternative ek (k ∈ {1, . . . , n}). The weight of an alternative determinate its position in the
ranking of the alternatives (see [8] for their survey).

A popular weighting method is the Geometric Mean Method (GMM), introduced in [10].
Then, the formula for wk can be calculated as the geometric mean of the k-th row elements:

wk = n

√
√
√
√

n
∏

j=1

mkj . (2)

Normalization of the resulting weight vector is needed for a number of reasons (see [29]).
If we want to standardize it, we divide each coordinate by the sum of all of them:

ŵk = wk
∑n

j=1 w j
.

Another popular method introduced in [49] is the EigenvectorMethod (EVM).We choose
the normalized right eigenvector corresponding to the principle eigenvalue ofM as the priority
vector. The vector can be obtained by means of the power iteration.

However, the main advantage of the GMMover the EVM is its simplicity. Furthermore, as
[11] and [12] show, rank monotonicity and weight monotonicity axioms are satisfied by the
GMM but violated by the EVM. Since monotonicity is very strongly related to the concept
of manipulation (see e.g. [50]), we consider the GMM as the weighting method in our paper.

2.2 Additive pairwise comparisons matrices

The family M is not a linear space. However, we can easily transform every multiplicative
PCM M into an additive one using the following map:

ϕ : M � [mi j ] �→ [ln(mi j )] ∈ A,

where

A := {[ai j ] : ∀i, j ∈ {1, . . . , n} ai j ∈ R and ai j + a ji = 0},
is a linear space of additive PCMs.

Obviously, we can define the map

μ : A � [ai j ] �→ [eai j ] ∈ M,
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such that

μ ◦ ϕ = idM

and

ϕ ◦ μ = idA.

Since ϕ and μ are mutually reverse, from now on we will consider only the additive case in
order to use the algebraic structure of A.

If we treat an additive PCM A as the image of M ∈ M by the map ϕ, we can also obtain
the vector of weights v by use of the logarithmic mapping:

vk = ln(wk).

By applying (2) we get

vk = ln

⎛

⎝ n

√
√
√
√

n
∏

j=1

mkj

⎞

⎠ =
ln

(
∏n

j=1 mkj

)

n
=

∑n
j=1 ln(mkj )

n
=

∑n
j=1 akj

n
,

so the k-th coordinate of A can be calculated as the arithmetic mean of the k-th row of A.

3 Towards optimal manipulation of a pair of alternatives

Let us start with a simple example.

Example 1 Consider a family of additive pairwise comparisons matrices

Aε =
⎡

⎣

0 1 + ε −1
−1 − ε 0 1

1 −1 0

⎤

⎦ .

If we take ε = 1
n and ε = − 1

n (n ∈ N), we obtain two PCMs, whose weight vectors are

v 1
n

=
(

1

3n
,− 1

3n
, 0

)T

and

v− 1
n

=
(

− 1

3n
,
1

3n
, 0

)T

,

respectively.
It implies that the order of alternatives is (a1, a3, a2) in the first case and (a2, a3, a1) in

the second case.
Since the standard Frobenius distance of the matrices is

∣
∣
∣

∣
∣
∣A 1

n
− A− 1

n

∣
∣
∣

∣
∣
∣ =

√
(
2

n

)2

+
(
2

n

)2

= 2
√
2

n
,

they can be arbitrarily close.

Assume that wi and w j are the weights of A ∈ A such that wi < w j . Example 1 shows
that is impossible to find A′ ∈ A such that w′

i > w′
j , where w′

i and w′
j are the weights of A

′,
and A′ is the closest PCM to A satisfying this property.

However, it is possible to find A′ ∈ A minimizing the distance to A such that w′
i = w′

j .
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3.1 The tie spaces

Fix i, j ∈ {1, . . . , n}.
Let us define the subspace Ai j of all additive PCMs which induce the ranking such that

alternatives i and j are equal:

Ai j =
{

A ∈ A : 1
n

n
∑

k=1

aik = 1

n

n
∑

k=1

a jk

}

.

We will call such a linear space a tie space.

Lemma 1 dimAi j = n2−n
2 − 1.

Proof A reciprocal additive matrix is uniquely defined by n2−n
2 independent numbers above

the diagonal, and by changing one of them (e.g. aik where k 
= i, j), the matrix can be placed
in the tie space Ai j . ��
Now let us define a basis for the tie space Ai j . Without loss of generality, we can assume
that i < j < n. Let

Zi j := {(q, r) : 1 ≤ q < r ≤ n, {q, r} ∩ {i, j} = ∅}.

Lemma 2 The set Zi j has
(n−2)(n−3)

2 elements.

Proof The number of all elements above the main diagonal is n2−n
2 . There are:

• i − 1 elements in the i-th column,
• j − 1 elements in the j-th column,
• n − i − 1 elements (excluding ai j ) in the i-th row,
• n − j elements in the j-th row.

Thus, the total number of Zi j elements equals

Zi j = n2 − n

2
− (i − 1) − ( j − 1) − (n − i − 1) − (n − j)

= n2 − n

2
− 2n + 3 = n2 − n − 4n + 6

2
= (n − 2)(n − 3)

2
.

��
At first, for each (q, r) ∈ Zi j let us define Cqr ∈ A, whose elements are given by

cqrkl =
⎧

⎨

⎩

1, k = q, l = r
−1, k = r , l = q
0, otherwise

.

Next, we define the elements of additive PCMs Dp for p ∈ {1, . . . , i − 1}, E p for p ∈
{1, . . . , j−1}, F p for p ∈ {i+1, . . . , j−1, j+1, . . . , n} andGp for p ∈ { j+1, . . . , n−1}
by formulas:

d p
kl =

⎧

⎨

⎩

1, (k = p, l = i) or (k = n, l = j)
−1, (k = i, l = p) or (k = j, l = n)

0, otherwise
,
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epkl =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1, (k = p, l = j) or (k = j, l = n, p 
= i)
−1, (k = j, l = p) or (k = n, l = j, p 
= i)
2, k = j, l = n, p = i

−2, k = n, l = j, p = i
0, otherwise

,

f pkl =
⎧

⎨

⎩

1, (k = i, l = p) or (k = j, l = n)

−1, (k = p, l = i) or (k = n, l = j)
0, otherwise

,

and

gp
kl =

⎧

⎨

⎩

1, (k = j, l = p) or (k = n, l = j)
−1, (k = p, l = j) or (k = j, l = n)

0, otherwise
.

Lemma 3 The total number of matrices Cq,r , Dp, E p, F p and G p is n2−n
2 − 1.

Proof Summing up the numbers of the consecutive matrices, we get the number (n−2)(n−3)
2 +

(i−1)+( j−1)+(n−i−1)+(n− j−1) = (n−2)(n−3)
2 +2n−4 = n2−5n+6+4n−8

2 = n2−n
2 −1.

��
Theorem 1 A family of matrices

B := {Cqr }(q,r)∈Zi j ∪ {Dp}i−1
p=1 ∪ {E p} j−1

p=1 ∪ {F p} j−1
p=i−1 ∪ {F p}np= j+1 ∪ {Gp}n−1

p= j+1

is a basis of Ai j .

Proof By Propositions 1 and 3, the cardinality of B is equal to the dimension of Ai j , so it is
enough to show that each matrix A ∈ Ai j is generated by matrices from B.

For this purpose, let us define a matrix H as a linear combination of matrices from B:

H :=
∑

(q,r)∈Zi j
aqrC

qr +
i−1
∑

p=1

api D
p +

j−1
∑

p=1

apj E
p +

j−1
∑

p=i+1

aipF
p

+
n

∑

p= j+1

aipF
p +

n−1
∑

p= j+1

a jpG
p.

It is straightforward (as all but one addends of the sum are zeros) that for (q, r) /∈
{( j, n), (n, j)} we have

hqr = aqr .

Likewise,

h jn =
∑

(q,r)∈Zi j
aqr · 0 +

i−1
∑

p=1

api · (−1) +
i−1
∑

p=1

apj · 1 + ai j · 2 +
j−1
∑

p=i+1

apj · 1

+
j−1
∑

p=i+1

aip · 1 +
n

∑

p= j+1

aip · 1 +
n−1
∑

p= j+1

a jp · (−1)
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=
j−1
∑

p=1

apj −
i−1
∑

p=1

api +
n

∑

p=i+1

aip −
n−1
∑

p= j+1

a jp = a jn .

The last equality follows from the equation

n
∑

p=1

aip =
n

∑

p=1

a jp.

By analogy, hnj = anj , so A = H , which completes the proof. ��
Let us redefine B as a family of matrices

B = {B p}
n2−n
2 −1

p=1

as follows:

We set {B p}
(n−2)(n−3)

2
p=1 as matrices {Cqr }(q,r)∈Zi j , ordered lexicografically, i.e.

B1 := C12, B2 := C13, . . . , Bi−2 := C1,i−1, Bi−1 := C1,i+1, . . . ,

B j−3 := C1, j−1, B j−2 := C1, j+1, . . . , Bn−3 := C1,n, . . . , B
(n−2)(n−3)

2 := Cn−1,n . (3)

Next, we define

B
(n−2)(n−3)

2 +p := Dp, p = 1, . . . , i − 1, (4)

B
(n−2)(n−3)

2 +i−1+p := E p, p = 1, . . . , j − 1, (5)

B
(n−2)(n−3)

2 +i+ j−2+p := F p, p = i + 1, . . . , j − 1, (6)

B
(n−2)(n−3)

2 + j−3+p := F p, p = j + 1, . . . , n, (7)

B
(n−2)(n−3)

2 +n−3+p := Gp, p = j + 1, . . . , n − 1. (8)

Example 2 Consider n = 5, i = 2 and j = 3.
Since Z23 = {(1, 4), (1, 5), (4, 5)}, we get the following basis of A23:

B1 = C14 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

−1 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, B2 = C15 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

B3 = C45 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

⎞

⎟
⎟
⎟
⎟
⎠

, B4 = D1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

B5 = E1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1 0 0
0 0 0 0 0

−1 0 0 0 1
0 0 0 0 0
0 0 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, B6 = E2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 1 0 0
0 −1 0 0 2
0 0 0 0 0
0 0 −2 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,
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B7 = F4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, B8 = F5 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0
0 −1 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

B9 = G4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1
0 0 −1 0 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

3.2 Orthogonalization

By Boyd [3], any basis of an inner product space can be transformed into an orthogonal basis
by a standard Gram–Schmidt process.

In particular, if we apply that to the basis B1, . . . , B
n2−n
2 −1 of the Ai j vector space

equipped with a standard Frobenius inner product 〈·, ·〉 then we obtain a pairwise orthogonal
basis

H1, . . . , H
n2−n
2 −1

as follows:

H1 = B1,

H2 = B2 − 〈H1, B2〉
〈H1, H1〉H

1,

H3 = B3 − 〈H1, B3〉
〈H1, H1〉H

1 − 〈H2, B3〉
〈H2, H2〉H

2,

· · · = · · ·

H
n2−n
2 −1 = B

n2−n
2 −1 −

n2−n
2 −2
∑

p=1

〈H p, B
n2−n
2 −1〉

〈H p, H p〉 H p.

Example 3 Let us consider matrices B1, . . . , B9 from Example 2. We will apply the Gram–
Schmidt process to obtain an orthogonal basis H1, . . . , H9 of A23:

H1 = B1,

〈H1, B2〉 = 0 ⇒ H2 = B2,

〈H1, B3〉 = 〈H2, B3〉 = 0 ⇒ H3 = B3,

〈H1, B4〉 = 〈H2, B4〉 = 〈H3, B4〉 = 0 ⇒ H4 = B4,

〈H1, B5〉 = 〈H2, B5〉 = 〈H3, B5〉 = 0, 〈H4, B5〉 = −2, 〈H4, H4〉 = 4

⇒ H5 = B5 + 1

2
H4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1
2 1 0 0

− 1
2 0 0 0 0

−1 0 0 0 1
2

0 0 0 0 0
0 0 − 1

2 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,
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〈H1, B6〉 = 〈H2, B6〉 = 〈H3, B6〉 = 0, 〈H4, B6〉 = −4, 〈H5, B6〉 = 2,

〈H5, H5〉 = 3 ⇒ H6 = B6 + H4 − 2

3
H5 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2
3 − 2

3 0 0
− 2

3 0 1 0 0
2
3 −1 0 0 2

3
0 0 0 0 0
0 0 − 2

3 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

〈H1, B7〉 = 〈H2, B7〉 = 〈H3, B7〉 = 0, 〈H4, B7〉 = −2, 〈H5, B7〉 = 1,

〈H6, B7〉 = 4

3
, 〈H6, H6〉 = 14

3

⇒ H7 = B7 + 1

2
H4 − 1

3
H5 − 2

7
H6 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1
7 − 1

7 0 0
− 1

7 0 − 2
7 1 0

1
7

2
7 0 0 1

7
0 −1 0 0 0
0 0 − 1

7 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

〈H1, B8〉 = 〈H2, B8〉 = 〈H3, B8〉 = 0, 〈H4, B8〉 = −2, 〈H5, B8〉 = 1,

〈H6, B8〉 = 4

3
, 〈H7, B8〉 = 2

7
, 〈H7, H7〉 = 16

7

⇒ H8 = B8 + 1

2
H4 − 1

3
H5 − 2

7
H6 − 1

8
H7

=

⎛

⎜
⎜
⎜
⎜
⎝

0 1
8 − 1

8 0 0
− 1

8 0 − 1
4 − 1

8 1
1
8

1
4 0 0 1

8
0 1

8 0 0 0
0 −1 − 1

8 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

〈H1, B9〉 = 〈H2, B9〉 = 〈H3, B9〉 = 0, 〈H4, B9〉 = 2, 〈H5, B9〉 = −1,

〈H6, B9〉 = −4

3
, 〈H7, B9〉 = −2

7
, 〈H8, B9〉 = −1

4
, 〈H8, H8〉 = 9

4

⇒ H9 = B9 − 1

2
H4 + 1

3
H5 + 2

7
H6 + 1

8
H7 + 1

9
H8

=

⎛

⎜
⎜
⎜
⎜
⎝

0 − 1
9

1
9 0 0

1
9 0 2

9
1
9

1
9− 1

9 − 2
9 0 1 − 1

9
0 − 1

9 −1 0 0
0 − 1

9
1
9 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

3.3 The best approximation of a PCM equating two alternatives

Consider an additive PCM A. In order to find its projection A′ onto the subspace Ai j we
present A′ as a linear combination of the orthogonal basis vectors

H1, . . . , H
n2−n
2 −1.

We will look for the factors
ε1, . . . , ε n2−n

2 −1

such that A′ = ε1H1 + . . . ε n2−n
2 −1

H
n2−n
2 −1.
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Then, ∀C ∈ Ai j , 〈A−A′,C〉F = 0, which is equivalent to the system of linear equations:
⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

〈A, H1〉F − ε1〈H1, H1〉F = 0,
〈A, H2〉F − ε2〈H2, H2〉F = 0,
· · ·
〈

A, H
n2−n
2 −1

〉

F
− ε n2−n

2 −1

〈

H
n2−n
2 −1, H

n2−n
2 −1

〉

F
= 0,

Its solutions:

εk = 〈A, Hk〉F
〈Hk, Hk〉F , k = 1, . . . ,

n2 − n

2
− 1.

Thus, the PCM A′ which generates a ranking equating the i-th and j-th alternatives and
which is the closest to A can be calculated from the formula

A′ =
n2−n
2 −1
∑

k=1

〈A, Hk〉F
〈Hk, Hk〉F Hk . (9)

Example 4 Let us consider the following additive PCM

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 −5 2 0 4
5 0 2 5 −6

−2 −2 0 4 −9
0 −5 −4 0 −8

−4 6 9 8 0

⎞

⎟
⎟
⎟
⎟
⎠

. (10)

The weights in a ranking vector obtained as the arithmetic means of row elements of A
are

w = (0.2, 1.2,−1.8,−3.4, 3.8)T .

In order to find the PCM closest to A which generates a ranking equating the second and
the third alternative, we take the orthogonal basis H1, . . . , H9 described in Example 3. Next,
we calculate the coefficients in (9):

Finally, we obtain the orthogonal projection of A onto A23:

A′ =

⎛

⎜
⎜
⎜
⎜
⎝

0 −3.5 0.5 0 4
3.5 0 −1 3.5 −7.5

−0.5 1 0 5.5 −7.5
0 −3.5 −5.5 0 −8

−4 7.5 7.5 8 0

⎞

⎟
⎟
⎟
⎟
⎠

. (11)

The corresponding vector of weights is

w′ = (0.2,−0.3,−0.3,−3.4, 3.8)T .

Let us notice that the weights of the second and third alternatives are actually equal. Further-
more, the weights of the rest of alternatives have not changed. The common weight of the
second and the third alternative in w′ is the arithmetic mean of the corresponding weights in
w.

It appears that the remark above is true regardless of the dimension of the PCM and of the
choice of the two alternatives whose weights are equalized, i.e the following theorem is true:

123



Journal of Global Optimization

Theorem 2 Let A = [akl ] ∈ A, i, j ∈ {1, . . . , n}, and A′ = [a′
kl ] be the orthogonal

projection of A onto Ai j . Then
(1) For each k /∈ {i, j}

n
∑

l=1

a′
kl =

n
∑

l=1

akl , (12)

(2)
n

∑

l=1

a′
il =

n
∑

l=1

a′
jl =

∑n
l=1 ail + ∑n

l=1 a jl

2
. (13)

Proof Let us assume, without loss of generality, that i < j .
Note that (A′ − A) ⊥ Ai j , which implies that (A′ − A) ⊥ Bs for s = 1 . . . ,

(n−2)(n−3)
2 ,

where {Bs} is a base of Ai j defined in (3)–(8). Thus, for each B p we can write the equality

〈A′ − A, Bs〉 = 0,

which is equivalent to:
(1qr) a′

qr − aqr = 0, for (q, r) ∈ Zi j , 1 ≤ s ≤ (n−2)(n−3)
2 ;

(2p) a′
pi − api − a′

jn + a jn = 0, for p < i , (n−2)(n−3)
2 + 1 ≤ s ≤ (n−2)(n−3)

2 + i − 1;

(3p)a′
pj−apj+a′

jn−a jn = 0, for i 
= p < j , (n−2)(n−3)
2 +i ≤ s ≤ (n−2)(n−3)

2 ++i+ j−2

and s 
= (n−2)(n−3)
2 + 2i − 1;

(3i) a′
i j − ai j + 2a′

jn − 2a jn = 0, for s = (n−2)(n−3)
2 + 2i − 1;

(4p) a′
i p − aip + a′

jn − a jn = 0, for i < p 
= j , (n−2)(n−3)
2 + i + j − 1 ≤ s ≤

≤ (n−2)(n−3)
2 + n + j − 2;

(5p) a′
j p − a jp − a′

jn + a jn = 0, for p > j , (n−2)(n−3)
2 + n + j − 1 ≤ s ≤ n2−n

2 − 1.
Now, for the proof of (12) assume that k /∈ {i, j}. Then

S :=
n

∑

l=1

a′
kl −

n
∑

l=1

akl =
n

∑

l=1

(a′
kl − akl)

=
∑

l<i

(a′
kl − akl) + a′

ki − aki +
∑

i<l< j

(a′
kl − akl) + a′

k j − akj

+
∑

l> j

(a′
kl − akl).

.

From (1kl) for l /∈ {i, j} we get
∑

l<i

(a′
kl − akl) +

∑

i<l< j

(a′
kl − akl) +

∑

l> j

(a′
kl − akl) = 0,

so

S = a′
ki − aki + a′

k j − akj .

Consider three cases:

(a) If k < i , we add equations (2k) and (3k) and we get S = 0.
(b) If i < k < j , we subtract equation (4k) from (3k) and we get S = 0.
(c) If k > j , we add equations (4k) and (5k) and we get S = 0.

This concludes the proof of (12).
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Now, let us calculate

T :=
n

∑

l=1

a′
il +

n
∑

l=1

a′
jl −

n
∑

l=1

ail −
n

∑

l=1

a jl

=
∑

l<i

(a′
il − ail) +

∑

l<i

(a′
jl − a jl) + a′

i i − aii + a′
j i − a ji

+
∑

i<l< j

(a′
il − ail) +

∑

i<l< j

(a′
jl − a jl) + a′

i j − ai j + a′
j j − a j j

+
∑

l> j

(a′
il − ail) +

∑

l> j

(a′
jl − a jl).

.

Since

a′
i i = aii = a′

j j = a j j = a′
i j + a′

j i = ai j + a ji = 0,

it follows that

T =
∑

l<i

(a′
il − ail) +

∑

l<i

(a′
jl − a jl) +

∑

i<l< j

(a′
il − ail) +

∑

i<l< j

(a′
jl − a jl)

+
∑

l> j

(a′
il − ail) +

∑

l> j

(a′
jl − a jl).

.

From (2l) and (3l) we get
∑

l<i

(a′
il − ail) +

∑

l<i

(a′
jl − a jl) =

∑

l<i

(−a′
jn + a jn) +

∑

l<i

(a′
jn − a jn) = 0. (14)

From (4l) and (3l) we get
∑

i<l< j

(a′
il − ail) +

∑

i<l< j

(a′
jl − a jl) =

∑

i<l< j

(−a′
jn + a jn) +

∑

i<l< j

(a′
jn − a jn) = 0. (15)

From (4l) and (5l) we get
∑

l> j

(a′
il − ail) +

∑

l> j

(a′
jl − a jl) =

∑

l> j

(−a′
jn + a jn) +

∑

l> j

(a′
jn − a jn) = 0. (16)

Equations (14), (15) and (16) imply that

T = 0.

On the other hand, A′ ∈ Ai j , which means that

n
∑

l=1

a′
il =

n
∑

l=1

a′
jl ,

so

T = 2
n

∑

l=1

a′
il −

n
∑

l=1

ail −
n

∑

l=1

a jl = 2
n

∑

l=1

a′
jl −

n
∑

l=1

ail −
n

∑

l=1

a jl = 0,

which proves (13). ��
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Theorem 2 states that the weights of the k-th alternative (the k-th coordinates of priority
vectors) induced by a given PCM A and its ortogonal projection A′ onto Ai j do not change
for k /∈ {i, j}. For k ∈ {i, j} they both become equal to the arithmetic mean of the original
alternatives ei and e j . This is consistent with our intuition that the smallest change we can
do to equalize the weights of alternatives ei and e j is to take their arithmetic mean and leave
the rest of alternatives unchanged.

3.4 Measuring the ease of manipulation

We would like to create a tool for detecting the possibility of manipulation carried out by
an expert. Of course, the smaller the difference between the weights of alternatives derived
from the PCM created by experts, the lower the chances of dishonest answers being detected,
and thus the easier the manipulation. Therefore, the minimum distance between the weights
of two alternatives can be considered as the indicator of the hierarchy stability. Notice that
this concept is similar to the robustness to rank reversal (see [19] for details).

Let us assume that there exists M > 0 such that for all i, j ∈ {1, . . . , n} the elements of
a given PCM A satisfy |ai j | ≤ M . Then, for any i, j ∈ {1, . . . , n} we define the number

RSI Mi j = |∑n
k=1(aik − a jk)|

2M
,

which expresses a rescaled distance of the weights of the i-th and j-th alternatives. Let us
notice that ∀i, j

0 ≤ RSI Mi j ≤ n − 1, (17)

since the numerator is the highest if the i-th (or the j-th) row consists of n − 1 numbers M
and one 0 in the main diagonal, while the other row has n − 1 numbers −M and one 0.

Now we are ready to define the Ranking Stability Index:

RSI M (A) = min
1≤i≤ j≤n

RSI Mi j .

It appears that RSI is bounded by 1:

Theorem 3 For every A ∈ A if

∀i, j ∈ {1, . . . , n} |ai j | ≤ M,

then

0 ≤ RSI M (A) ≤ 1.

Proof The first inequality is obvious. For the proof of the second one, let us assume that
RSI M (A) > 1, which implies that

∀i, j ∈ {1, . . . , n} RSI Mi j (A) > 1. (18)

There exists such permutation

σ : {1, . . . , n} → {1, . . . , n}
that

n
∑

k=1

aσ(1)k ≥
n

∑

k=1

aσ(2)k ≥ · · · ≥
n

∑

k=1

aσ(n)k .
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Therefore,

RSI Mσ(1)σ (n) = |∑n
k=1(aσ(1)k − aσ(n)k)|

2M
= |∑n−1

l=1
∑n

k=1(aσ(l)k − aσ(l+1)k)|
2M

=
n−1
∑

l=1

|∑n
k=1(aσ(l)k − aσ(l+1)k)|

2M
=

n−1
∑

l=1

RSI Mσ(l)σ (l+1)(A) > n − 1,

which contradicts (17). ��
The following example shows that the bounds in (18) are sharp.

Example 5 Let us consider two matrices:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

and

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 M · · · M M
−M 0 · · · M M

...
...

. . .
...

...

−M −M · · · 0 M
−M −M · · · −M 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It is easy to check that

RSI M (A) = 0

and

RSI M (B) = 1.

Remark 1 The intuition concerning the notion of RSI M is as follows: the higher value of
RSI M , the more clearly the weights of alternatives differ, so the more difficult the manip-
ulation is. In particular, RSI M (A) = 0 if and only if at least two alternatives are of equal
importance. Then a tiny change of the input data may result in an advantage for one of
them. The value of RSI M (A) ≈ 1 means that the weights of all alternatives are uniformly
distributed, so the ranking is stable.

Twomatrices inducing the same priority weights have equal values of RSI M . Hence, they
are equally susceptible to manipulation.

We end this section with the case of a 3 × 3 PCM.

Example 6 For a, b, c ∈ [−M, M] let us consider a PCM:

C =
⎛

⎝

0 a b
−a 0 c
−b −c 0

⎞

⎠ .

Its Ranking Stability Index equals

RSI M (C) = min{|2a + b − c|, |2c + b − a|, |a + 2b + c|}
2M

.
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4 Conclusion and summary

In the presented work, we have introduced a method to find the closest approximation of
a PCM which equates the weights of two given alternatives. We have also proved that the
weights of all of the other alternatives do not change, while the new weights of the equated
alternatives are equal to the arithmetic mean of the original ones.

Example 1 shows that it is impossible to find the best approximation of a PCM such that
the positions of the i-th and the j-th alternatives in a ranking are reversed. However, if two
alternatives have the same ranking, we may slightly change the element ai j in order to tip the
scales of victory in favor of one of them. The resulting matrix will satisfy the manipulation
condition.

We have also proposed “Ranking Stability Index” (RSI), which allows us to determine the
difficulty of switching the positions of two alternatives. We have also proved that this index
takes values from the range [0, 1]. Obviously, two matrices are vulnerable to manipulation
to the same degree if they induce the same priorities. In some cases this might be a weakness
of the introduced measure.

One possible generalization could be incomplete PCMs analyzed in [39]. In [5] and [6] the
problem of finding the optimal weights for an incomplete PCM whose missing elements can
be inserted by indirect comparisons has been solved. The wanted vector is determined from
the unique solution of a linear system of equations. It means that using a similar technique
to the one presented here, one should obtain the formulas for the optimal PCM equating two
alternatives also in the incomplete case. This is a promising subject for the future research.
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28. Koczkodaj, W.W., Kułakowski, K., Ligęza, A.: On the quality evaluation of scientific entities in Poland
supported by consistency-driven pairwise comparisons method. Scientometrics 99(3), 911–926 (2014)

29. Koczkodaj, W.W., Magnot, J.P., Mazurek, J., Peters, J.F., Rakhshani, H., Soltys, M., Strzałka, D., Szy-
bowski, J., Tozzi,A.:Onnormalization of inconsistency indicators in pairwise comparisons. Int. J.Approx.
Reason. 86, 73–79 (2017)

30. Koczkodaj, W.W., Mansournia, M.A., Pedrycz, W., Wolny-Dominiak, A., Zabrodskii, P.F., Strzałka, D.,
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