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Abstract
The aim of this paper is to investigate the problem of designing and building International
Environmental Agreements (IEAs) taking into account some normative properties. We con-
sider n asymmetric countries of the world, each one generating a quantity of pollutant
emissions from the production of goods and services. We assume that individual emissions
yield private benefits and negative externalities affecting all countries. To determine its own
level of pollution, each state conducts a cost-benefit analysis. The absence of a supranational
entity imposing emissions reduction makes IEAs based on voluntary participation. Examin-
ing the standard static non-cooperative game-theoretical model of coalition formation, we
discover that the resulting emissions allocations might not be equitable à la Foley. It means
that there might exist at least one player preferring to implement some other agent’s strategic
plan instead of to play her own strategy. With the goal of studying whether equity, at least
among coalesced countries, may be a criterion leading to social improvement, we introduce
a new optimization rule. We require that members of an environmental coalition have to
solve the maximization problem subject to the constraint imposing that they do not envy
each other. Analyzing the particular case of two-player games, we get that, when countries
are, in a sense, not too different from each other, our new mechanism endogenously induces
social equity. By imposing a suitable total emission cap, the same results extend to all those
games where our and standard solutions coexist and are different.

Keywords International environmental agreements · Social equity · Envy-freeness ·
Non-cooperative games

Chiara Donnini and Armando Sacco have contributed equally to this work.

B Chiara Donnini
chiara.donnini@uniparthenope.it

Armando Sacco
armando.sacco@uniparthenope.it

1 Department of Management and Quantitative Studies, University of Naples “Parthenope”, Via Parisi 13,
80132 Naples, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01368-2&domain=pdf
http://orcid.org/0000-0003-0067-6118


Journal of Global Optimization

1 Introduction

Garrett Hardin [1] in 1968 introduces for the first time the metaphor tragedy of the commons,
to describe situations in which a finite natural resource can be over-exploited if a large
number of individuals have uncontrolled access to it. This concept has been widely discussed
throughout history, starting from ancient Greek philosophers to ecologists and economists
in the modern age. The very nature of the problem suits with the tool provided by the game
theory, that generates a large literature on common pool resources (see e.g., [2–4]). Enlarging
the picture, most of the environmental problems, from the over-exploitation of common pool
resources to global warming, are transnational and required an international agreement to
be addressed. As is well known, a wide part of literature adopts a non-cooperative game-
theoretical approach to investigate the building of International Environmental Agreements
(IEAs) (see [5] for a vast survey on designing of IEAs using cooperative and non-cooperative
game-theoreticalmodels). The choice of this technique lies in two fundamental characteristics
of IEAs. The former is the strategic nature of the problem: any emissions decision made by
a country impacts on the well-being of all others states. The latter is the voluntariness with
which countries have to decide whether or not to sign the deal: since there are no external
constraints or supranational institutions imposing restrictions on emissions, states act on a
voluntary basis.

Many papers explore the effect of different mechanisms on the building of an IEA. For
instance, [6, 7] include punishments for non-member countries, [8–10] consider transfer
schemes, [11, 12] take into account issue linkage, [13, 14] analyze the impact of farsightedness
on environmental agreements and trans-boundary pollution, [15, 16] treat social externalities.

The aim of this paper is to examine IEAs taking into account some normative properties.
The huge literature on normative economics is rich of various equity notions proposed in

decades of research. Many of these concepts require absence of envy among the primitive
entities of the economy (see [17] for an extensive survey on fair allocation rules). The first
criterion based on envy-freeness is due to Foley [18], according to which each agent prefers
to consume her own bundle rather than receive the bundle of anybody else. As pointed out
on [17], from a mathematical point of view, the operation that is carried out in this kind
of evaluation of allocations allows to check “robustness under substitutions” or “under
permutations.” Indeed, according to Foley’s notion, an agent is not envious if she is not
better off after changing her bundle to someone else’s. Similarly, an allocation is envy-free
if no agent is better off after an arbitrary permutation of the components of the allocation.

Envy-freeness notion iswidely studied and investigated in several areas.Amongothers [19,
20] examine existence, refinement andproperties of envy-freeness in exchange economies and
economieswith production, while [21–23] extend the analysis on economieswith uncertainty
and asymmetric information, [24] implements inNash equilibria envy-freeness solution to the
problem of fair division, [8] introduces envy-freeness in IEA literature, while [25] considers
a weaker notion of envy-freeness requiring absence of envy only among spatial neighbours.
Interesting refinements of envy-freeness notion are those given in [26–28]. In [26] it is
introduced per-capita envy-freeness notion, according to which each agent finds her bundle
at least as desirable as the average bundle. In [27] it is defined average envy-freeness concept,
following which each individual weakly prefers her own bundle to the average of what all
the others receive. Both notions avoid “distortions” like legitimizing an agent to judge non-
equitable an allocation, because she envies another individual, despite beingmuch better than
the large majority. A strengthened notion of average envy-freeness is due to [28], according
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to which, an allocation is said to be strictly envy-free if no agent envies the average bundle
of any possible coalition she does not belong to.1

In this paper we consider n asymmetric countries of the world, each one engaged in
economic activities to produce goods and services, generating pollution.As usual,we suppose
the existence of a one to one increasing relationship between production and emission.
Moreover, we assume that the level of emissions of each country brings private benefits
and contributes to environmental damage affecting all states. As a consequence, individual
benefits levels are supposed to be dependent uniquely on private emissions, while costs that
each state has to bear are assumed to be function of the aggregate of all emissions. Each player
makes her own decisions on the level of production, considering a cost-benefit analysis. She
acts maximizing her own utility function, expressed by the difference between the benefit
and the environmental damage cost functions. Adapting Foley’s notion to our framework, an
emissions allocation (and then the corresponding vector of level of production) is considered
envy-free if each player weakly prefers to implement her own strategic plan instead of to
play another country’s strategy. The dependence of the costs on the total emission allows to
check envy-freeness focus on benefits level.

As there is no higher entity imposing restriction on emissions or forcing cooperation, each
player acts voluntarily and countries interested on environmental protection look for a stable
collaboration. In other words, they try to conclude a self-enforcing agreement, meaning that
no signatory country has incentive towithdraw and all non-signatories have no convenience to
join the coalition. According to the standard rule, an environmental coalition acts as a single
player with the aim of maximizing the joint welfare. Simultaneously, other players solve
their own optimization problem. Analyzing the resulting allocations, we get that, not for all
games, Nash equilibria pass envy-freeness test. We, then, characterize the class of games for
which there exits at least an environmental coalitionwhose cooperation guarantees absence of
envy. We conduct the same analysis requiring envy-freeness within environmental coalition,
disregarding other countries, and we obtain some interesting properties.

It is clear that, from an individualistic point of view, requiring envy-freeness within envi-
ronmental coalitionsmay be an ethic and righteous normative condition. Indeed, it avoids, for
each signatory player, a negative feeling on what is established by the agreement. Moreover,
it guarantees that each coalesced player, observing the vector of coalition emission, sees it
coinciding with her idea.

With the aim of investigate whether equity, at least among signatory countries, may be a
normative criterion inducing environmental, social and economic improvement, we introduce
a new cooperation rule, according to which coalesced players maximize the joint utility
function subject to the constraint imposing that they do not envy each other.

The analysis carried out in two-player games proves that, at the optimum, in several cases,
our rule leads to social equity. Where environmental agreements non-avoiding envy and
those imposing envy-freeness are both signable, using our mechanism, the most developed
player is willing to give up a part of her levels of production and benefits to allow the least
developed player to producemore and increase her benefits level. This balance of production,
and therefore of emissions, is obtained endogenously in games where the agents are, in a
sense, not too far apart in terms of benefit per unit of emissions and net marginal damage.
By imposing a suitable total emission cap, we achieve the same results and considerations

1 See [29] for an analysis on efficient, equitable and consistent solutions on atomless economies, [30] for a
weaker notion of strict envy-freeness imposing the comparison only among spatial neighbours, [31] for an
investigation in economies allowing the coexistence of negligible and non-negligible traders, [32] for a study
on how certain limitations imposed on coalition formation may impact the set of strictly fair allocations, and
[33] for a stronger version of strict fairness notion imposing absence of envy towards fuzzy coalitions.
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for all games in which standard and envy-free environmental agreements may be signed and
generate different emissions allocations. It means that, even for games where players are
potentially distant in parameters, envy-free environmental agreements endogenously ensure
social equity, giving the least developed country the opportunity to increase its benefits and,
potentially, its resilience to possible environmental damage.

Moreover, we identify classes of games for which standard mechanism forces to non-
cooperation, while envy-freeness rule conducts to stable cooperation, leading environmental,
social and economic improvement.

It should be underlined that, as mentioned above, absence of envy is already introduced
and analyzed in game theory framework, as well as in IEA literature. For instance, in [24] it
is conducted a very interesting analysis on equity notions in game theory framework. More
precisely, the author constructs games implementing in Nash equilibria several solutions to
the problem of equitable division. He investigates, among other concepts, envy-freeness à
la Foley, per-capita envy-freeness and average envy-freeness. Moreover, he proposes games
implementing the intersection of the Pareto solution with each of the previously mentioned
equitable solutions. The analysis carried out in our paper is different and the model inves-
tigated here can not be considered belonging to the class of games discussed in [24]. In
[24] each agent is equipped with continuous, convex and strictly increasing preferences,
while, as previously stated, we impose players making their decisions through a cost-benefit
analysis. In [8], absence of envy à la Foley is introduced in IEA literature and a very inter-
esting axiomatic analysis is carried out. Our investigation differs from that in [8] not only
in the assumptions on the utility functions, but even for another fundamental aspect. In our
games, monetary compensations are not considered. Part of our study is devoted to inves-
tigate whether a moral boost within the coalition can affect social growth and smooth out
inequities by endogenously generating greater social justice, bringing “the stronger to help
the weaker.” So, we prevent the presence of external factors, as monetary compensations,
that may force or create incentives for cooperation.

The paper is organized as follows. In Sect. 2 we introduce the model and the main defini-
tions. In Sect. 3 we analyze global envy-freeness and absence of envy within environmental
coalitions for IEAs resulting from the standard cooperation mechanism. In Sect. 4 two-stage
envy-free game is introduced and the particular case of two-player envy-free games is deeply
investigate. Section5 contains some concluding remarks. All the proofs are collected in
Appendix.

2 Themodel and themain definitions

We consider a finite number, n, of countries of the world (agents), indexed by i . Each country
produces a level of goods and services to which correspond some benefits and a positive
quantity of pollutant emission. As natural, we suppose, for each agent, the existence of a
relationship between how much she can produce and the level of benefits she can enjoy.
Furthermore, we assume that, for each country, there exists a one-to-one increasing corre-
spondence between its level of productivity and the amount of pollution it releases into the
environment. As a consequence, denoted, for each i , by yi , ei and bi , respectively, the level of
production, the amount of emissions and the degree of welfare brought about by the benefits,
we can identify yi with ei and express bi directly depending on ei , i.e., bi = Bi (ei ), where Bi
represents country i’s benefit function. On the other hand, for each agent i , pollution resulting
from production causes environmental damage and consequently some costs. As well as, for
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each i , the level of benefits bi depends uniquely on the emissions produced by i , it is natural
to assume that each agent’s damage cost depends on all countries’ emissions.

We define group’s emissions allocation (or simply emissions allocation) a vector e =
(e1, ..., en) belonging to R

n++, in which each component represents the level of emissions
of the corresponding country.2 Given a group’s emissions allocation e, we define the related
aggregate or total emissions as the positive real number E = ∑n

i=1 ei . Finally, fixed a country
i , a subset C ⊆ I and a group’s emissions allocation e, with e−i we identify the vector

(e1, ..., ei−1, ei+1, ..., en) ∈ R
n−1++ , while with e(C) we denote the vector (ei )i∈C ∈ R

|C |
++.3

For each agent i , we identify by di the level of environmental damage cost that i has to
bear. Hence, we can express di depending on e, that is, di = Di (e), where Di represents
country i’s environmental damage cost function.

We assume that, for every i ,

– the law of the benefit function, Bi : R++ → R, may be well described by a quadratic
functional form

Bi (ei ) = αi ei − 1

2
e2i ,

where αi is a positive parameter outlining the benefit per unit of emissions;
– the law of the environmental damage cost function, Di : R

n++ → R, may be well
approximated by a linear function

Di (e) = βi

n∑

i=1

ei = βi E,

where βi is a positive parameter identifying the net marginal damage.4

The first assumption is standard in literature (see e.g., [34–38]), while the second is com-
mon (see e.g., [6, 7, 10, 37, 39–41]) and supported by empirical estimations (see e.g., [42]).
Although it may be reductive to assume that the damage cost function is well approximated
by a linear function, this requirement guarantees the orthogonality of the reaction function of
countries with standard preferences. Indeed, the linearity allows to obtain the optimal level
of emissions of a country independent of the choice of emissions of others.

Throughout the paper we make the following assumptions

(A1) for each i in I , αi > βi ;
(A2) for every i and j in I , if i is more developed than j , then αi > α j and βi < β j .

Assumptions (A1) and (A2) are not only technical requirement. The former ensures that
for each country the benefit per unit of emission level (which is equivalent to consider the
benefit per unit of production) is greater than the net marginal cost. The latter means that
the benefit per unit of production is the greater the more developed the country, while for
the marginal net damage is worth the inverse inequality. The idea behind this requirement

2 We denote by R
n++ the interior of the positive orthant of the Euclidean space R

n . In the IEA literature,
usually, emissions are assumed to be non-negative. Without loss of generality, we concentrate our analysis on
the positive ones. Let us observe that our assumption is not really a theoretical or practical restriction. Indeed,
in the literature, even if the emissions are allowed to be null, at the equilibrium, they are generally supposed
to be interior solutions of maximization problems. Moreover, it is quite unrealistic to assume that a country
might stop producing.
3 Given a subset A of I , we denote by |A| the cardinality of A.
4 With abuse of notation, Di may be considered as a function of E , i.e., Di : R++ → R, with the law
Di (E) = βi E . Through the paper, when necessary and not confusing, we stress the dependence on E .
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is that the more a country is developed, the greater its ability to build different skills and to
grow technologies and procedures for adaptation to climate change. Having more advanced
and specialized technology allows for a greater benefit from production, as well as a greater
resilience to pollution. Assumption (A2) is in line with the current literature (see e.g., [16,
39, 43–48]).

Each countrymakes its own decisions on the level of production, considering a cost-benefit
analysis. More specifically, it acts maximizing its own utility function, ui , expressed by the
difference between benefit and environmental damage cost functions, i.e., ui : R

n++ → R is
defined by the law

ui (e) = Bi (ei ) − Di (e) = αi ei − 1

2
e2i − βi E .

Formally, we consider a game � = {I = {1, ..., n}, {Si }i∈I , {ui }i∈I } in which

• each player i ∈ I represents a country of the world;
• for each i ∈ I , player i’s set of strategies of the game �, Si , coincides with R++ and

each element of Si represents a quantity of emissions ei that agent i chooses to spread in
the environment; hence a group’s emissions allocation e is a vector strategy of the game
�;

• for each i , player i’s utility, ui : R
n++ → R, is given by the difference between benefits

and costs, ui (e) = Bi (ei ) − Di (e) = αi ei − 1
2e

2
i − βi E .

We denote by G the family of games � satisfying (A1) and (A2).
The absence of external constraint or a supranational institution imposing restrictions on

the level of emissions requires that states voluntarily agree to collaborate in order to safeguard
the environment.

We define coalition a non-empty subset of I , while with the term degenerate coalition we
mean a subset of I with cardinality 1.

For every non-degenerate coalition C , for every country i in C , we denote by C−i the
coalition C \ {i}. Moreover, if C is strictly included in I , for every i in I \ C , we denote by
C+i the coalition C ∪ {i}.

We define environmental coalition a non-degenerate coalition composed by a set of coun-
tries deciding to cooperate in terms of “environmental protection.”

Formally, an environmental coalition, C ⊆ I , is a non-degenerate coalition whose mem-
bers play as a unique player with the aim to maximize the coalitional utility function
uC : R

n++ → R, describing the joint welfare and defined by the law

uC (e) =
∑

i∈C
ui (e).

Given an environmental coalition C , we denote by P(C) the partition of I composed by
C and the degenerate coalitions {i}, with i ∈ I \ C , i.e., P(C) = {C, {i}i∈I\C }. We say that
an n-dimensional vector a is a P(C)-emissions allocation if it is componentwise positive
and

1. a(C) is the solution of

arg max{ei }i∈C
uC (e) = arg max{ei }i∈C

(
∑

i∈C

(

αi ei − 1

2
e2i − βi E

))

; (1)

2. for any i ∈ I \ C , ai is the solution of

argmax
ei

ui (e) = argmax
ei

(

αi ei − 1

2
e2i − βi E

)

. (2)
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Weassume that playersmove simultaneously, namely, we look forNash equilibria (a different
analysis may be carried out investigating Stackelberg equilibria as, for instance, in [49]). We
define P(C)-equilibrium problem the problem identified by (1) and (2). We say that, if there
exists a componentwise positive solution of the P(C)-equilibrium problem, the cooperation
among members of C is admissible, and then the environmental coalition C is formable.
Otherwise, if the solution does not belong to the admissible set of strategies, the cooperation
among agents in C is not possible, and, therefore, states have to look for other partitions of
I . Indeed, allowing the solution to have some null components is equivalent to asking the
corresponding countries to stop any production activity, which is not reasonable. Moreover,
consenting to negative components is senseless, as it would require countries to have negative
production levels.

Finally, we define environmental agreement a deal signed by an environmental coalition.5

From an individualistic point of view, each country in C computes its level of production
with the aimofmaximizing the jointwelfare.Roughly speaking, it determines its contribution,
in terms of emissions, to the environmental cause. In fact, by solving the joint optimization
problem, each coalesced agent maximizes her own benefits level and minimizes her con-
tribution to the damage costs, obtaining a reduction in global emissions. Notice that, by
construction, even the states that do not participate in the environmental agreement benefit
from the actions implemented by the signatory countries. In fact, reducing emissions by
coalescing countries means lowering costs, even for non-signatory states. Consequently, for
some countries, it could be convenient to let others commit to protecting the environment,
thereby benefiting from their efforts.

To avoid this free-riding attitude, an agreement has to be self-enforcing. Following [50],
we say that an environmental coalition is stable if it satisfies internal and external stability,
meaning that no country (inside or outside the coalition) has an incentive to deviate. More
specifically, every member of the coalition has no convenience in free-riding and will keep
the agreements (internal stability) and no non-signatory player prefers to joint the coalition
(external stability).

Let C be an environmental coalition and e a P(C)-emissions allocation. The internal sta-
bility requires that for every signatory country i , if there exists aP(C−i )-emissions allocation
ẽ, then

ui (e) ≥ ui (ẽ). (3)

Condition (3)means that each player i in the coalitionC achieves a higher level of utility by
not withdrawing from the agreement. Indeed, the increased level of benefits it would derive
from playing alone is not enough to compensate for the increased damage costs deriving
from its exit from the agreement, and the consequent formation of the coalition C−i , i.e.,
Bi (ẽi ) − Bi (ei ) < Di (ẽ) − Di (e).

The external stability requires that for every non-signatory country i , if there exists a
P(C+i )-emissions allocation ẽ, then

ui (e) ≥ ui (ẽ). (4)

Condition (4) means that each player i outside C reaches a higher level of utility by
not cooperating with members of C and playing alone. Indeed, the decreased damage costs
it would derive from cooperation is not enough to compensate for the decreasing of the

5 Through the paper, where necessary to avoid confusion, we refer to this cooperation calling it standard
cooperation.
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benefits of its entry into the agreement, and the consequent formation of the coalition C+i ,
i.e., Di (e) − Di (ẽ) < Bi (ei ) − Bi (ẽi ).

3 The envy-freeness property

In this section we recall the envy-freeness notion introduced by Foley in [18] and we adapt
it into our framework, with the aim to analyze if, for every game � in G, for every formable
coalition, the resulting Nash equilibrium satisfies envy-freeness property. In addition, we
give and investigate a weaker version of equity.

Foley’s concept of absence of envy states that an allocation is said to be envy-free (or
equitable) if no agent prefers (or envies) the bundle of anybody else. In other words, each
agent prefers to consume her own bundle instead of receiving that of someone else.

In our model, as a suitable adaptation of this kind of envy notion, we introduce the
following definition.

Definition 3.1 Given a group’s emissions allocation e, a country i envies at e a country j if
it prefers j’s production level to its own.

Formally, at e, i is envious of j , if and only if αi e j − 1
2e

2
j − βi E > αi ei − 1

2e
2
i − βi E .

Hence, according to the above definition, an envious player i envies the possibility to have
player j’s level of production, since she would receive a higher level of benefits, leaving costs
unchanged. In other words, a country i is envious of a country j at an emissions allocation
e, if and only if Bi (ei ) < Bi (e j ). As a consequence, we can say that i is non-envious of j at
e, if it is impossible to find a vector strategy ê, such that Ê = E , êi = e j and ê j = ei , for
which Bi (ei ) < Bi (êi ).6 Equivalently, i does not envy j at e, if she does not prefer the vector
strategy ẽ to e, where ẽh = eh , if h /∈ {i, j}, while ẽi = e j and ẽ j = ei . Hence, by virtue
of these equivalences, to test absence of envy at e, it is enough that each player focuses on
the comparison between e and the allocation obtained by swapping her strategy with that of
someone else.

As pointed out in [17], under Foley’s notion, it could be checked “whether agent i is
better off after her bundle has been switched with agent j’s bundle, after her bundle has been
replaced by a bundle identical to agent’s j , after an arbitrary permutation of the components
of the allocation.” Notice that, in our framework, there is not a market for emissions, then
players do not have the option to exchange them. The operation that each country does
checking envy-freeness is to compare the level of utility she obtains with her own emission
(production) level with what she would get with any other’s level of emission (production).
It means that, in a sense, each player’s analysis reflects her view on how the emission levels,
and equivalently the production levels, should be “assigned.”

Given a vector a ∈ R
n++, with ui (ai , a−i ) and ui (a j , a− j ) we denote the utility level that

i obtains if it is played respectively the strategy a and the strategy defined starting by a and
swapping between them ai and a j . Hence, Definition 3.1 may be reformulated as follows: a
country i envies at e a country j , if and only if ui (ei , e−i ) < ui (e j , e− j ).

Definition 3.2 A group’s emissions allocation e is envy-free if each country, assuming cost
unchanged, prefers or is indifferent to implement its own strategic plan instead of to play an
other country’s strategy.

6 As previously observed, for every i , Di may be considered as a linear function of the total emissions, hence,
the condition Ê = E implies Di (ê) = Di (e). Therefore, in the comparison, costs may be disregarded.
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Formally, in the light of previous observations, e is envy-free if and only if for every i
and j in I , Bi (ei ) − Di (E) ≥ Bi (e j ) − Di (E), that is equivalent to Bi (ei ) ≥ Bi (e j ) and to
ui (ei , e−i ) ≥ ui (e j , e− j ).

In many cases, it might be more reasonable to allow a player to focus her comparison
only on those countries she would relate herself. For this reason, we consider a suitable
modification of the idea of “local” envy-freeness introduced in [51]. In this weaker concept
of absence of envy, we consider the set of countries partitionable into several, non-degenerate
or degenerate, coalitions and impose that each player has to look only members of group she
belongs to, disregarding the others.

Definition 3.3 Given a partitionP of I , a group’s emissions allocation is P-envy-free if there
is no envy within each coalition composing P .

Notice that, by definition, given the partitionP = {{i}i∈I }, the non-cooperative emissions
allocation is P-envy-free.

According to Definition 3.3 we say that, given an environmental coalition C , a P(C)-
emissions allocation is P(C)-envy-free if agents in C do not envy each other; in this case we
say that the cooperation among agents in C is envy-free.

As previously pointed out, if an emissions allocation is envy-free, each agent, observing
it, sees it coinciding with her idea of how production levels should be distributed. Since
this property is very interesting from economic and ethical point of view, we want to find
the conditions under which an equilibrium is envy-free. Hence, the aim of the remaining
part of this section is to consider emissions allocations resulting from agreements signed by
environmental coalitions, C , investigate the conditions under which they satisfy P(C)-envy-
freeness and envy-freeness properties and deduce some interesting characteristics.

In the following two propositions, the proofs of which are collected in the Appendix,
we analyze the existence and some properties of P(C)-emissions allocations satisfying
P(C)-envy-freeness. More precisely, in Proposition 3.4 we determine the conditions on
the parameters αi and βi under which cooperation ensures absence of envy among coalesced
countries. It means that, we establish the conditions that a game has to satisfy for the exis-
tence of at least one P(C)-envy-free emissions allocation. In other words, we characterize
the subfamily G′ of G
G′ = {� ∈ G s.t. ∃C ⊆ I for which theP(C)−emissions allocation isP(C)−envy − free}.

In Proposition 3.5 we show that P(C)-envy-freeness solution is consistent, meaning that,
if the cooperation for a given non-degenerate environmental coalition C is envy-free, then
the cooperation for any subcoalition C ′ ⊆ C is still envy-free. Formally, we prove that
given a P(C)-envy-free emissions allocation, for every C ′ ⊆ C , the solution of the P(C ′)-
equilibrium problem is a P(C ′)-envy-free emissions allocation.

Proposition 3.4 Given a game � ∈ G and a non-degenerate environmental coalition C, the
solution of the P(C)-equilibrium problem is a P(C)-envy-free emissions allocation if and
only if

(a) for every i in C, αi >
∑

h∈C
βh,

(b) for every i and j in C such that i is more developed than j , α j ≤ αi − 2
∑

h∈C
βh.

Condition (a) ensures the existence of a componentwise positive solution of the P(C)-
equilibrium problem, and then the admissibility of the cooperation. As observed in the proof,
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for every game � in G, each signatory player is non-envious, at e, of any cooperator less
developed than her.However, if condition (b) is not satisfied, there exists at least one coalesced
player envying at e some members of the coalition more developed than her. In other words,
Proposition 3.4 states that there might exist games for which Nash equilibria are notP-envy-
free and, a fortiori, envy-free.

Proposition 3.5 Let � belong to G′. Let C be a non-degenerate environmental coalition,
for which the P(C)-emissions allocation is P(C)-envy-free. Then, for every environmental
subcoalition C ′ ⊆ C the solution of the P(C ′)-equilibrium problem is a P(C ′)-envy-free
emissions allocation.

Actually, the previous proposition allows the following characterization: for a game �,
the full cooperation is envy-free if and only if for any environmental coalition the coop-
eration is envy-free. The proof of the following corollary is an immediate consequence of
Proposition 3.5.

Corollary 3.6 Let � belong to G. The solution of the P(I )-equilibrium problem is an envy-
free emissions allocation if and only if for any non-degenerate environmental coalition C,
the solution of the P(C)-equilibrium problem is a P(C)-envy-free emissions allocation.

We can observe that in cases of supcoalitions it is not possible to obtain results similar
to those of the Proposition 3.5, meaning that P(C)-envy-freeness solution is not converse
consistent. As shown in Example 3.7, given two environmental coalitionsC andC ′, such that
C � C ′, the solution of theP(C ′)-equilibrium problem, e′, might be not an emissions alloca-
tion, even if the solution of the P(C)-equilibrium problem, e, is P(C)-envy-free. Indeed, the
positivity of the components of e′ is not guaranteed, even if e ∈ R

n++ and e isP(C)-envy-free.
Moreover, Example 3.8 proves that, even in cases where e′ is an emissions allocation, it may
be non P(C ′)-envy-free. By adding agents to the coalition, individual countries’ emissions
decrease. As a consequence, some state i , non-envious at e of any j in C , might envy some
j at e′, since it could obtain a higher level of benefits through j’s production level. As a
consequence, it would prefer to e′ the strategy where e′

i and e
′
j are swapped.

Example 3.7 Let� = {I , {Si }i∈I , {ui }i∈I }, with I = {1, 2, 3}, Si = R
3++, ui = αi ei − 1

2e
2
i −

βi E , where α1 = 4, α2 = 5
2 , α3 = 2, β1 = 1

4 , β2 = 1
2 , β3 = 7

4 .

Considering C = {1, 2}, the solution of the P(C)-equilibrium problem,

e = (α1 − β1 − β2, α2 − β1 − β2, α3 − β3) =
(
13

4
,
7

4
,
1

4

)

,

is a P(C)-envy-free emissions allocation, indeed, u1(e1, e2, e3) > u1(e2, e1, e3) and
u2(e1, e2, e3) = u2(e2, e1, e3). However, the solution of the P(I )-equilibrium problem,

e′ = (α1 − β1 − β2 − β3, α2 − β1 − β2 − β3, α3 − β1 − β2 − β3) =
(
3

2
, 0,−1

2

)

,

is not an emissions allocation.

Example 3.8 Let� = {I , {Si }i∈I , {ui }i∈I }, with I = {1, 2, 3}, Si = R
3++, ui = αi ei − 1

2e
2
i −

βi E , where α1 = 9
2 , α2 = 5

2 , α3 = 2, β1 = 1
4 , β2 = 1

2 , β3 = 1.
Considering C = {1, 2}, the solution of the P(C)-equilibrium problem,

e = (α1 − β1 − β2, α2 − β1 − β2, α3 − β3) =
(
15

4
,
7

4
, 1

)

,
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is a P(C)-envy-free emissions allocation, since u1(e1, e2, e3) > u1(e2, e1, e3) and
u2(e1, e2, e3) > u2(e2, e1, e3). However, the solution of the P(I )-equilibrium problem,

e′ = (α1 − β1 − β2 − β3, α2 − β1 − β2 − β3, α3 − β1 − β2 − β3) =
(
11

4
,
3

4
,
1

4

)

,

is an emissions allocation non satisfying P(I )-envy-freeness, since u2(e′
1, e

′
2, e

′
3) <

u2(e′
2, e

′
1, e

′
3), meaning that 2 envies 1 at e′.

In the following we conduct the same analysis on envy-freeness of P(C)-emissions allo-
cations. More specifically, in Proposition 3.10 we determine the conditions on the parameter
αi and βi under which, given an environmental coalition C , the P(C)-equilibrium problem
admits solution satisfying envy-freeness. In other words, we find a characterization of games
� for which there exists at least one non-degenerate environmental coalition C such that the
P(C)-emissions allocation is envy-free. We denote by G′′ the subfamily of G composed by
such games. Formally,

G′′ = {� ∈ G s.t. ∃C ⊆ I for which theP(C)−emissions allocation is envy−free}.
By construction G′′ ⊆ G′. In Example 3.9 we show that the inclusion might be strict. After
Proposition 3.10, in which we characterize games in G′′, we analyze the consistency of the
envy-freeness property.

Example 3.9 Let us consider the same game� introduced in Example 3.7. As already proved,
� ∈ G′ since, for instance, considering C = {1, 2}, the P(C)-emissions allocation is P(C)-
envy-free.

Let us show that � /∈ G′′.
Considering C = {1, 2}, the solution of the P(C)-equilibrium problem, e = ( 13

4 , 7
4 ,

1
4

)
,

is not envy-free since, for instance, 3 envies 2 at e, i.e., u3(e1, e2, e3) < u3(e1, e3, e2).
Any other cooperation is not admissible, since for every non degenerated coalitionC ′ 
= C ,

the solution of the P(C ′)-equilibrium problem is not an emissions allocation.
Finally, if we consider the full non-cooperation, i.e., P = {{1}, {2}, {3}}, the non cooper-

ative emissions allocation eNC =
(
15
4 , 2, 1

4

)
is not envy-free, since, for instance, 3 envies 2

at eNC , u3(eNC
1 , eNC

2 , eNC
3 ) < u3(eNC

1 , eNC
3 , eNC

2 ).

In the following proposition, which proof is shown in the Appendix, we determine the
conditions for the existence of environmental agreement ensuring global absence of envy.

Proposition 3.10 Given a game � in G and a non-degenerate environmental coalition C, the
solution of the P(C)-equilibrium problem is an envy-free emissions allocation if and only if

(a) for every i in C, αi >
∑

h∈C
βh,

(b) for every i and j such that i is more developed than j ,

(b1) if i and j belong to C, α j ≤ αi − 2
∑

h∈C
βh,

(b2) if i and j belong to I \ C, α j ≤ αi − βi − β j ,

(b3) if i ∈ I \ C and j ∈ C, α j ≤ αi − βi −
∑

h∈C
βh,

(b4) if i ∈ C and j ∈ I\C, (b4.1)α j = αi + β j −
∑

h∈C
βh or (b4.2)α j ≤ αi − β j −

∑

h∈C
βh.
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As well as for Proposition 3.4, condition (a) guarantees the admissibility of coopera-
tion, that is the existence of an admissible solution of the P(C)-equilibrium problem, while
condition (b) ensures absence of envy among player.

Actually, Proposition 3.10 proves somethingmore, allowing the following considerations.
Given an environmental coalitionC and aP(C)-emissions allocation e, each signatory (non-
signatory) does not envy at e any less developed signatory (non-signatory), meaning that
each country does not envy at e anyone less developed who made the same choice in terms of
cooperation. Moreover, each non-signatory does not envy at e any less developed signatory.
Therefore, we get that a non-signatory player does not envy at e any less developed player.

The following example shows that, in case of global absence of envy, consistency might
fail. It means that even if the cooperation for a given environmental coalitionC ensures global
absence of envy, the cooperation for a subcoalitionC ′ ofC does not avoid envy. Indeed, given
an envy-free P(C)-emissions allocation, there might exist a subcoalition C ′ of C for which
the P(C ′)-emissions allocation is not envy-free.

Example 3.11 Let � = {I , {Si }i∈I , {ui }i∈I }, with I = {1, 2, 3, 4}, Si = R
4++, ui = αi ei −

1
2e

2
i − βi E , where α1 = 11, α2 = 6, α3 = 3

2 , α4 = 1, β1 = 3
14 , β2 = 5

14 , β3 = 3
7 , β4 = 1

2 .

Considering C = {1, 2, 3}, the solution of the P(C)-equilibrium problem,

e = (α1 − β1 − β2 − β3, α2 − β1 − β2 − β3, α3 − β1 − β2 − β3, α4 − β4)

=
(

10, 5,
1

2
,
1

2

)

,

is an envy-free emissions allocation, since, for every i and j in I , ui (ei , e−i ) ≥ ui (e j , e− j ).
Consider, now, C ′ = {1, 2}. The solution of the P(C ′)-equilibrium problem

e′ = (α1 − β1 − β2, α2 − β1 − β2, α3 − β3, α4 − β4) =
(
73

7
,
38

7
,
15

14
,
1

2

)

,

is an emissions allocation non-satisfying envy-freeness, since u4(e′
4, e

′−4) < u4(e′
3, e

′−3),

meaning that 4 envies 3 at e′.

However, as we prove in the following proposition, given an environmental coalition C ,
if the P(C)-equilibrium problem admits envy-free solution, then, for any subcoalition C ′
of C , the solution of the P(C ′)-equilibrium problem, e′, ensures absence of envy within
C ′, C\C ′ and I\C, meaning that e′ is {C ′,C \ C ′, I \ C}-envy-free. Moreover, at e′, any
agent in C is non-envious at all. This result is quite interesting, since it allows to state the
following sentence. If in a game there exists an environmental coalition whose agreement
guarantees global absence of envy, if no external country chooses to cooperate, a member
of that coalition, choosing to withdraw or remain even if others retreat, is still non-envious.
The proof of the following proposition is given in the Appendix.

Proposition 3.12 Given a game � ∈ G and a non-degenerate environmental coalition C, if
the solution of the P(C)-equilibrium problem is an envy-free emissions allocation, then, for
every C ′

� C, the solution of the P(C ′)-equilibrium problem, e′, is an emissions allocation
such that

(1) e′ is P-envy-free, where P = {C ′,C \ C ′, I \ C};
(2) every i in C is not envious at e′.

Analyzing Example 3.11 and the proof of Proposition 3.12, we can remark that for envy-
freeness solution the consistencymight fail only if one of the cooperating countries, i , leaving
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the coalition envies a more developed player, j , who has not coalesced from the beginning.
Moreover, we can observe that this could happen only if α j = αi +β j −∑

h∈C βh . Hence, we
can state that in games for which there exists an environmental coalition satisfying conditions
(a), (b1), (b2), (b3) and (b4.2) of Proposition 3.12, envy-freeness solution is consistent. The
proof of the following proposition is shown in the Appendix.

Proposition 3.13 Let � ∈ G′′. Fixed a non-degenerate environmental coalition C, satisfying
conditions (a), (b1), (b2), (b3) and (b4.2) of Proposition 3.12, for each C ′ ⊆ C, the solution
of the P(C ′)-equilibrium problem is envy-free.

As predictable, as well as for the P(C)-envy-freeness solution, the previous results can
not be obtained considering supcoalitions. Example 3.14 shows that given two environmental
coalitions C and C ′, such that C � C ′, the solution of the P(C ′)-equilibrium problem, e′,
might be not an emissions allocation, even if the P(C)-emissions allocation is envy-free.
Example 3.15 proves that, even in cases where e′ is an emissions allocation, it might be
non-envy-free.

Example 3.14 Let � = {I , {Si }i∈I , {ui }i∈I }, with I = {1, 2, 3}, Si = R
3++, ui = αi ei −

1
2e

2
i − βi E , where α1 = 6, α2 = 4, α3 = 2, β1 = 1

3 , β2 = 2
3 , β3 = 1.

Considering C = {1, 2}, the solution of the P(C)-equilibrium problem,

e = (α1 − β1 − β2, α2 − β1 − β2, α3 − β3) = (5, 3, 1) ,

is an envy-free emissions allocation, since for every i and j in I with i 
= j , ui (ei , e−i ) ≥
ui (e j , e− j ).

However, the solution of the P(I )-equilibrium problem,

e′ = (α1 − β1 − β2 − β3, α2 − β1 − β2 − β3, α3 − β1 − β2 − β3) = (4, 2, 0) ,

is not an emissions allocation.

Example 3.15 Let � = {I , {Si }i∈I , {ui }i∈I }, with I = {1, 2, 3}, Si = R
3++, ui = αi ei −

1
2e

2
i − βi E , where α1 = 6, α2 = 4, α3 = 3, β1 = 1

8 , β2 = 1
4 , β3 = 1

2 .

Considering C = {1, 3}, the solution of the P(C)-equilibrium problem,

e = (α1 − β1 − β3, α2 − β2, α3 − β1 − β3) =
(
43

8
,
15

4
,
19

8

)

,

is an envy-free emissions allocation, since for every i and j in I with i 
= j , ui (ei , e−i ) >

ui (e j , e− j ).
However, the solution of the P(I )-equilibrium problem,

e′ = (α1 − β1 − β2 − β3, α2 − β1 − β2 − β3, α3 − β1 − β2 − β3) =
(
41

8
,
25

8
,
17

8

)

,

is not envy-free, since u3(e′
3, e

′−3) < u3(e′
2, e

′−2), meaning that 3 envies 2 at e′.

For the sake of completeness we remind the conditions under which an environmental
coalition is stable, that is it satisfies internal and external stability conditions (3) and (4).

Proposition 3.16 Given a game � in G, a formable environmental coalition C is stable if and
only if

(a) for each i in C, βi ≥ (2|C−i |)−0.5 ∑
h∈C−i

βh;
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(b) for each i in I \ C, for which the solution of the P(C+i )-equilibrium problem is an
emissions allocation,7 0 < βi ≤ (2|C |)−0.5 ∑

h∈C βh.

4 The two stage envy-free game

In the light of the results obtained in the previous section, we can state that not all environmen-
tal agreements ensure global absence of envy nor envy-freeness among coalesced countries.
As observed, P(C)-envy-freeness may be interpreted as a check whether the agreement
reflects each coalesced player’s idea on how much each member of the coalition should pro-
duce and therefore emit. Hence, it seems interesting to emphasize this criterion to ensure that
each player feels properly recognized her effort within the coalition. Moreover, we believe
that equity at least among cooperators may be a normative rule generating economic, social
and human justice. For this reason, our investigation carries on by introducing a new type
of game. We assume that, once decided to cooperate, agents have to solve a maximization
problem subject to the constraint imposing envy-freeness among them. Therefore, we ana-
lyze how requiring absence of envy à la Foley inside the coalitional optimization problem
may impact the agreement.

Definition 4.1 An envy-free environmental coalition is a set of countries, C ⊆ I , deciding
to cooperate with the aim of maximizing the joint welfare uC (e) = ∑

i∈C ui (e) under the
constraints imposing absence of envy inside the coalition: ui (ei , e−i ) ≥ ui (e j , e− j ) for every

i and j in ∈ C .8

Each country acts individually, voluntarily and without any kind of external constraint.
Each one chooses whether to try to join the coalition and sign an envy-free environmental
agreement. Assuming that agents want to try to consider a possible partition P(C) of I ,
members ofC play as a unique player optimizing the joint utility function subject to the envy-
freeness constraint. From an individualistic point of view, each player in C acts assuming
that every cooperator maximizes the joint utility making sure not to envy each other. On the
contrary, each country outside C maximizes its own utility function not caring to compare
its level of utility with the one it would have if it emitted like someone else. If the coalitional
maximization problem has an admissible solution, then the coalition should be formed,
otherwise, agents have to look for other possible partitions of I ,P(C), withC non degenerate
or degenerate coalition. As usual in IEA literature, we refer to this stage of the game as
emissions stage. IfC is formable, players have to check if it is self-enforcing and consequently
the agreement is signable. As usual in IEA literature, we call this step of the gamemembership
stage.

Emissions stage
Assuming that agents agree to test the admissibility of the partition P(C) of I , in order to
determine the level of emissions to produce, members of C solve the following optimization
problem

7 Note that if for every i in I \ C the P(C+i )-equilibrium problem has not admissible solution, no coalition
C+i is formable and then C is external stable.
8 As previously observed the constraints may be written as Bi (ei ) ≥ Bi (e j ), ∀i, j ∈ C .
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{ei }i∈C
uC (e) = max{ei }i∈C

(
∑

i∈C

(

αi ei − 1

2
e2i − βi E

))

subject to
ui (ei , e−i ) = αi ei − 1

2e
2
i − βi E ≥ αi e j − 1

2e
2
j − βi E = ui (e j , e− j ), ∀i, j ∈ C

; (5)

simultaneously, any country outside the coalition, that is any i ∈ I \ C , solves its own
optimization problem

max
ei

ui (e) = max
ei

(

αi ei − 1

2
e2i − βi E

)

. (6)

Given an envy-free environmental coalition C , we define
− P(C) envy-free equilibrium problem, or e f -P(C) equilibrium problem, the problem

composed by (5) and (6);
− e f -P(C) emissions allocation, if there exists, a componentwise positive vector e such

that in e(C) the maximum required in the problem (5) is achieved, while, for each i in I \C ,
ei is the point in which the solution of the maximization problem (6) is realized.

Notice that, for each envy-free environmental coalition C ⊆ I for which the P(C)-
equilibrium problem has an admissible solution, the resulting e f -P(C) emissions allocation
is P(C)-envy-free. In particular, if there exists, the e f -emissions allocation is envy-free.

Membership stage
Assuming that the envy-free environmental coalition C is formable, in the membership
stage it is tested its stability. In accordance with the standard case, an admissible envy-
free environmental coalition C is stable if the e f -P(C) emissions allocation satisfies the
envy-free internal and external stability conditions.

In linewith the literature and the previous section, the envy-free internal stability condition
requires that for every i in C for which there exists the e f -P(C−i ) emissions allocation, ẽ,

ui (e) ≥ ui (ẽ); (7)

while the envy-free external stability requires that for every i in I \C for which there exists
the e f -P(C+i ) emissions allocation, ẽ,

ui (e) ≥ ui (ẽ). (8)

We define envy-free environmental agreement a deal signed by an admissible stable
environmental coalition, that is an agreement in which the emissions allocation is a compo-
nentwise positive vector obtained solving (5) and (6), and satisfying (7) and (8).

4.1 The two-player envy-free game

In order to analyze how the absence of envy within the optimization problem impacts on the
choice of emissions, let us consider the particular case in which I = {1, 2}. Without loss of
generality, we assume that 1 is more developed than 2. Then, by assumption (A2), α1 > α2

and β1 < β2. Hence,

G = {� = {{1, 2}, {Si }i=1,2, {ui }i=1,2} : ∀i = 1, 2, Si = R
2++, ui = αi ei − 1

2
e2i − βi E,

satisfying (A1) and (A2)}.
In line with Proposition 3.4, solving the e f -P(I )-equilibrium problem we get that adding
the envy-freeness constraint in the maximization problem affects emissions decisions only if
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the set of parameters does not satisfy the conditions β1 + β2 < α2 ≤ α1 − 2β1 − 2β2. In the
following proposition we determine the functional form of e f -P(I )-emissions allocation.
The proof is shown in the Appendix.

Proposition 4.2 Let � belong to G. The solution, e∗, of the e f -P(I )-equilibrium problem is
an emissions allocation defined as

e∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(α1 − β1 − β2, α2 − β1 − β2), if β1 + β2 < α2 ≤ α1 − 2β1 − 2β2,

1
2 (α1 + α2, 3α2 − α1), if max{α1 − 2β1 − 2β2,

1
3α1, β2} < α2 ≤ α1 − β1 − β2,

1
2 (α1 + α2 − 2β1 − 2β2, α1 + α2 − 2β1 − 2β2),

if max{2β1 + 2β2 − α1, α1 − β1 − β2, β2} < α2 < α1.

Let e∗ and eNC be respectively the solution of the P(I ) envy-free equilibrium problem
and the vector (α1 − β1, α2 − β2), solution of the non-cooperative game.

Let us define the following subfamilies of G
G1 = {� ∈ G : β1 + β2 < α2 ≤ α1 − 2β1 − 2β2},
G2 =

{

� ∈ G : max

{

α1 − 2β1 − 2β2,
1

3
α1, β2

}

< α2 ≤ α1 − β1 − β2

}

,

G3 = {� ∈ G : max {2β1 + 2β2 − α1, α1 − β1 − β2, β2} < α2 < α1} .

Since, as already noted, for any� ∈ G1, e∗ coincides with the standard cooperative emissions
allocation, we focus in other cases.

In the following propositions, whose proofs are collected in the Appendix, we analyze the
stability of the coalition C = I . Since I \ C = ∅, only condition (7) has to be checked. It is
equivalent to requiring that no country prefers to act alone instead of cooperating. In other
words, I is stable, and therefore players sign the agreement, if the level of utility that each
one achieves if the coalition is formed is not lower than if everyone acted alone. Formally,
the coalition I is stable if and only if, for i = 1, 2, ui (e∗) ≥ ui (eNC ).

Proposition 4.3 Given a game � in G2, the envy-free cooperation is stable if and only if the
parameters satisfy the following conditions

β1 >

√
2 − 1

2
(α1 − α2) and β2 <

−4β2
1 + 8(α1 − α2)β1 − (α1 − α2)

2

8β1
. (9)

Analyzing the proof of Proposition 4.3, we can observe that for any game in G2 the least
developed player has no incentive to leave the coalition. The envy-free agreement, indeed,
guarantees her a higher level of utility than non-cooperation. Therefore, the agreement is
stable only for games in which the combination of parameters satisfies the stability condition
of the most developed player.

Proposition 4.4 Given a game � in G3, the envy-free cooperation is stable if and only if the
parameters satisfy the following condition

2 + √
5

2
(α1 − α2) < β1 < β2 ≤ 1

2
(α2 − α1) + √

β1(α2 − α1 + 2β1). (10)

Looking at the computations made in the proof of Proposition 4.4 we can remark that for
some game in G3 the least developed country has incentive to withdraw from the envy-free

123



Journal of Global Optimization

agreement. The level of utility she achieves by non-cooperating is, in fact, greater than she
would receive if the coalition is formed. Moreover, in any game in which the least developed
player would not cooperate, neither would themost developed. In addition, there are games in
which the least developed player would agree to cooperate, while the most developed player
would veto it. So, once again, in a sense, we could say that the most developed player has
the power to determine cooperation.

Envy-free cooperation VS non-cooperation
Assuming as status quo the scenario that would occur without cooperation, the following
considerations can be taken into account.

For any game � ∈ G, the aggregate of the e f -cooperative emissions allocation is lower
than equal to the aggregate of non-cooperative one, i.e., E∗ ≤ ENC . This means that, even
by adding the envy-freeness constraint to the optimization problem, cooperation ensures
environmental protection. More specifically,9 for every � in G2, E∗ = 2α2 ≤ α1+α2−β1−
β2 = ENC , while for every� in G3, E∗ = α1+α2−2β1−2β2 < α1+α2−β1−β2 = ENC .

However, unlike the standard case, and then for games in G1, the lowering of the total
emissions is not always dictated by the lowering of each individual player’s emissions.
Indeed, for any game in G2 ∪ G3, under envy-free cooperation, the most developed country
has to reduce its production level, but the same might not happen for the least developed
player. Specifically, for each game � in G2, the level of coalitional emissions of the most
developed player, e∗

1 = 1
2 (α1 + α2), is lower than what she would have chosen if she had

not cooperated, eNC
1 = α1 − β1. On the other hand, the level of coalitional emissions of the

least developed player, e∗
2 = 1

2 (3α2 − α1), is lower than what she would have chosen if she
had not cooperated, e∗

2 < eNC
2 = α2 − β2, if α1 − 2β2 < α2 < α1 − β1 − β2, while is

greater, e∗
2 > eNC

2 , if α1 − 2β1 − 2β2 < α2 < α1 − 2β2. Similarly, for each game � in G3,
e∗
1 = 1

2 (α1 + α2 − 2β1 − 2β2) < α1 − β1 = eNC
1 , but e∗

2 = 1
2 (α1 + α2 − 2β1 − 2β2) <

α2 −β2 = eNC
2 , if α1 −2β1 < α2 < α1, while e∗

2 > eNC
2 , if α1 −β1 −β2 < α2 < α1 −2β1.

For any game � in G2, e∗ and eNC guarantee absence of envy among countries. Indeed,
by construction, e∗ is P(I )-envy free, and then envy-free, while at eNC no player envy the
other. More precisely, u1(eNC

1 , eNC
2 ) ≥ u1(eNC

2 , eNC
1 ) is satisfied for every � in G; while

u2(eNC
1 , eNC

2 ) ≥ u2(eNC
2 , eNC

1 ) is satisfied for every � in G1 ∪ G2.10
On the other hand, for any game � in G3, e∗, by construction, ensures no envy among

players, while eNC is not envy-free. As previously observed, even in games belonging to G3,
the most developed country does not envy the least developed one, but the vice versa is not
true.

Envy-free cooperation VS standard cooperation
Let us make a comparison between envy-free cooperation - with emissions allocation e∗ -
and standard cooperation, according to which the emissions allocation is the vector eC =
(α1 − β1 − β2, α2 − β1 − β2), solution of the P(I )-equilibrium problem.

9 This result is already known in the case of standard cooperation and, therefore, it is not necessary to observe
it for games in G1.
10 Condition u1(e

NC
1 , eNC

2 ) ≥ u1(e
NC
2 , eNC

1 ) is equivalent to B1(e
NC
1 ) = α1(α1 − β1) − 1

2 (α1 − β1)
2 ≥

α1(α2−β2)− 1
2 (α2−β2)

2 = B1(e
NC
2 ), that can be reformulated as (α1−α2−β1+β2)(α1−α2+β1+β2) ≥ 0.

It is easy to note that it is satisfied for every � in G. Condition u2(eNC
1 , eNC

2 ) ≥ u2(e
NC
2 , eNC

1 ) is equivalent

to B2(e
NC
2 ) = α2(α2 − β2) − 1

2 (α2 − β2)
2 ≥ α2(α1 − β1) − 1

2 (α1 − β1)
2 = B2(e

NC
1 ), that can be

reformulated as (α2 − α1 + β1 − β2)(α2 − α1 + β1 + β2) ≥ 0 that is satisfied only if � belongs to G1 ∪ G2.
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Let us start with the family G2 and let us partition it in G′
2 ∪ G′′

2 , where

G′
2 =

{

� ∈ G2 : max

{

α1 − 2β1 − 2β2,
1

3
α1, β2

}

< α2 ≤ β1 + β2

}

and G′′
2 = G2 \ G′

2.

Notice that for every game � in G′
2 standard cooperation is not admissible, since the second

component of the solution of the P(I )-equilibrium problem is non-positive, eC2 ≤ 0. Hence,
imposing envy-freeness constraint within the optimization problem allows environmental
cooperation that otherwise would not occur. Indeed, for any game � in G′

2 satisfying (9), with
the standard mechanism, countries would act alone, while with the rule imposing no envy
between them, both have convenience to cooperate, and then the envy-free environmental
agreement is signed.

Let us remark that, for every game � in G′
2, our criterion leads to environmental and

economic improvement. Indeed, with the standard mechanism the players are forced not
to cooperate, generating a growing pollution and a reduction of individual and social well-
being. In detail, for an environmental point of view, using our rule, the total emission is
less than equal to the non-cooperative one, and therefore, greater environmental protection
is guaranteed. On the other hand, from an economic and social point of view, each country
is better off, receiving a level of utility greater than the one it obtained non-cooperating.
Therefore, even joint welfare increases.

For each game � in G′′
2 , the standard and envy-free cooperation are both admissible,

since eC and e∗ belong to R
2++. Following Proposition 3.16, the standard environmental

cooperation is stable if and only if

0 < β1 < β2 ≤ √
2β1. (11)

Then, comparing conditions (9) and (11) we get that for some games, both standard and
envy-free cooperation are stable, while there exist games where stability is guaranteed only
under one of the two mechanisms. In the following table we summarize the results obtained
through algebraic computations.

Conditions on parameters Standard EA Envy-free EA

β1 ∈
(√

2−1
2 (α1 − α2),

1
2 (α1 − α2)

)
and β2 ∈ (a, b]

where a = max
{
1
2 (α1 − α2 − 2β1), β1

}
, Stable Stable

b = min

{−4β2
1+8(α1−α2)β1−(α1−α2)

2

8β1
,
√
2β1

}

β1 ∈
(
0,

√
2−1
2 (α1 − α2)

]
and β2 ∈ (β1,

√
2β1)

or Stable Non-stable

β1 ∈
[
3+√

2
14 (α1 − α2),

1
2 (α1 − α2)

)
and

β2 ∈
(−4β2

1+8(α1−α2)β1−(α1−α2)
2

8β1
,
√
2β1

)

β1 ∈
(√

2−1
2 (α1 − α2),

3+√
2

14 (α1 − α2)
)
and

β2 ∈
(√

2β1,
−4β2

1+8(α1−α2)β1−(α1−α2)
2

8β1

)

Non-stable Stable

Let us denote by G̃′′
2 the subfamily of G′′

2 composed by games for which standard and
envy-free cooperation are both stable.
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The aggregate of the e f -cooperation emissions allocation is greater than the aggregate of
standard cooperative one, i.e., EC = α1 +α2 − 2β1 − 2β2 < 2α2 = E∗. Moreover, for each
player i , the relationship eCi < e∗

i holds,11 indeed, eC1 = α1 − β1 − β2 < 1
2 (α1 + α2) =

e∗
1 and eC2 = α2 − β1 − β2 < 1

2 (3α2 − α1) = e∗
2. It means that by signing an envy-

free environmental agreement, each country emits a higher level of pollution than it would
by subscribing an environmental agreement that allows for envy between cooperators. The
central point is that, by not cooperating, players do not envy each other, while with a standard
environmental agreement the least developed country envies the most developed one. In
the standard cooperation, in fact, each player reduces her level of production and the least
developed country lowers it to such an extent that she ends up envying the more developed
one. Under no-envy constraint, therefore, the least developed player has to be able to produce
more than eC2 . As a consequence, the production level of the least developed country goes
up to the point of forcing the most developed player to produce more than eC1 , otherwise she
would envy the least developed country. However, these production increases cause higher
costs for both players. The second player, to reach the level of production required by the
envy-free environmental agreement, faces a cost increase, D2(e∗)−D2(eC ), that is not offset
by the benefit increase, B2(e∗

2) − B2(eC2 ). Therefore u2(e∗) < u2(eC ). On the other hand,
for the most developed player B1(e∗

1)− B1(eC1 ) does not compensate D1(e∗)− D1(eC ), and
then u1(e∗) < u1(eC ), if and only if α2 < α1 − 6β1 + β2. Hence e∗ is Pareto improved by
eC for any � in G̃′′

2 for which α2 < α1 −6β1 +β2. See Remark 5.1 for computational details.
Summing up the results obtained from previous comparisons, we get the following propo-

sition.

Proposition 4.5 (i) For any game � in G′
2, the P(I )-equilibrium problem has no admissible

solution, while the e f -P(I )-equilibrium problem has admissible solution. Moreover, for
games satisfying (9) the solution of the e f -P(I ) equilibrium problem is stable.

(ii) For any game � in G′′
2 both equilibrium problems have admissible solution, moreover,

denoting by eC and e∗ respectively the solution of the P(I )-equilibrium problem and the
solution of the e f -P(I ) equilibrium problem

(a) the following relationships hold

(a1) EC < E∗,
(a2) for any i = 1, 2, eCi < e∗

i ,
(a3) u2(e∗) < u2(eC ),
(a4) u1(e∗) < u1(eC ) if and only if α2 < α1 − 6β1 + β2;

(b) there exist games for which I is stable under eC , while it is not stable under e∗;
(c) there exist games for which I is stable under e∗, while it is not stable under eC .

Let us now consider the family G3 and let us partition it in G′
3 ∪ G′′

3 , where

G′
3 = {� ∈ G3 : max {2β1 + 2β2 − α1, α1 − β1 − β2, β2} < α2 ≤ β1 + β2} and G′′

3 = G3 \ G′
3.

Notice that for every game � in G′
3 standard cooperation is not admissible, since eC2 ≤

0. Hence, even for game in G3 imposing envy-freeness constraint within the optimization
problem might allow environmental cooperations that otherwise would not occur. Indeed,

11 Notice that eC1 < e∗1, eC2 < e∗2, and then EC < E∗, are true for any game in G2. We focus on games � in

G̃′′
2 , since it is not interesting to compare between them agreements if it is known that one of these would not

be signed.
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for any game � in G′
3 satisfying (10), with the standard rule countries are forced to non-

cooperation, while with envy-free mechanism both have interest to cooperate, signing and
maintaining the envy-free environmental agreement. Once again, we identify a family of
games for which our criterion generates environmental and economic-social improvement.

For each game � in G′′
3 , the standard and envy-free cooperation are both admissible, since

eC and e∗ belong to R
2++. Comparing conditions (10) and (11), we get that for any game

in which envy-free cooperation is stable, so is standard cooperation, while the reverse is not
true.

The aggregate of the e f -cooperation emissions allocation is equal to the aggregate of
standard cooperative one, i.e., EC = E∗. Moreover, the relationships e∗

1 < eC1 and eC2 < e∗
2

hold,12 indeed, e∗
1 = 1

2 (α1+α2−2β1−2β2) < α1−β1−β2 = eC1 and eC2 = α2−β1−β2 <
1
2 (α1+α2−2β1−2β2) = e∗

2. It means that by signing an envy-free environmental agreement,
the most developed country agrees to emit less, letting the least developed country emit more.
In other words, the first player is willing to decrease her production level allowing the second
player to produce more.

At the equilibrium e∗, the most developed country gets a lower level of benefits than it
would get in standard cooperation, B1(e∗

1) < B1(eC1 ), while the least developed country sees
its benefits level grows, B2(e∗

2) > B2(eC2 ). Therefore, since e∗ and eC generate the same
costs, i.e., Di (e∗) = Di (eC ) for i = 1, 2, then u1(e∗) < u1(eC ) and u2(e∗) > u2(eC ).
Hence, imposing envy-freeness constraint in the maximization problem ensures a kind of
social equity. The most developed country is willing to lower its utility level and to allow the
least developed country to increase its production and benefits levels. See Remark 5.2 in the
Appendix for computational details.

The substantial difference between games in G2 and in G3 lies in the absence/presence of
envy in non-cooperation. For any game in G3 where standard cooperation is allowed, it is
not envy-free, nor is non-cooperation. In both cases, the least developed country envies the
most developed. Therefore, in order not to be envied and, at the same time, not to become
envious, the most developed player is willing to balance the production growth of the least
developed player with a decrease in her own level of production.

We can observe that, for each game belonging to G3 and satisfying (10), our approach
ensures environmental preservation and social gain. In particular, for games in G′

3, compared
with our mechanism, the standard rule causes an increasing in pollution and a lowering of
the level of individual and social utility. For games in G′′

3 , our criterion, compared with the
standard one, ensures the same environmental safety and generates social equity, allowing a
balance of the level of production and a consequent growth, in terms of welfare, of the least
developed country.

Summarizing the results obtained from previous comparisons we have the following
proposition.

Proposition 4.6 (i) For any game � in G′
3, the P(I )-equilibrium problem has no admissible

solution, while the e f -P(I )-equilibrium problem has admissible solution. Moreover, for
games satisfying (10) the solution of the e f -P(I ) equilibrium problem is stable.

(ii) For any game � in G′′
3 both equilibrium problems have admissible solution, moreover,

denoting by eC and e∗ respectively the solution of the P(I )-equilibrium problem and the
solution of the e f -P(I ) equilibrium problem

(a) EC = E∗, eC1 < e∗
1, e

∗
2 < eC2 , u1(e

∗) < u1(eC ), and u2(eC ) < u2(e∗);

12 Notice that e∗1 < eC1 and eC2 < e∗2 are satisfied for any game inG3, but, once again, we focus our comparison
only on games � where both agreements would be signed.
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(b) if I is stable under e∗, then I is stable under eC .

Focusing on the aggregate emissions allocations, considering envy-freeness constraint in
the maximization problem leads to solutions whose aggregate, E∗, satisfies the inequalities
EC ≤ E∗ ≤ ENC . More precisely, for any game � in G1 ∪G3, EC = E∗ < ENC , while, for
every � in G2, EC < E∗ ≤ ENC . In order to avoid the inequality EC < E∗, we may impose
EC as an envy-free cooperative total emission cap. In a sense, we assume that members of
an envy-free environmental coalition dictate a constraint requiring a threshold beyond which
the level of emissions is judged unacceptable. Requiring the existence of a cap is in line with
a branch of IEA literature (see among others [52]).

Formally, we ask that in the emission stage the signatories solve the following optimization
problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
(e1,e2)

uC (e)

subject to
ui (ei , e−i ) ≥ ui (e j , e− j ), ∀i, j ∈ {1, 2}
e1 + e2 ≤ EC

(12)

In linewith Propositions 3.10 and 4.2,we get that adding the boundary condition e1+e2 ≤ EC

affects emissions decisions only for games in G2. Indeed, the solution of the problem (12)
has the following functional form

e∗ =

⎧
⎪⎪⎨

⎪⎪⎩

(α1 − β1 − β2, α2 − β1 − β2), if β1 + β2 < α2 ≤ α1 − 2β1 − 2β2,

1
2 (α1 + α2 − 2β1 − 2β2, α1 + α2 − 2β1 − 2β2),

if max{α1 − 2β1 − 2β2, 2β1 + 2β2 − α1, β2} < α2 < α1.

Defining G̃ := {� ∈ G : max{α1 − 2β1 − 2β2, 2β1 + 2β2 − α1, β2} < α2 < α1}, it is easy
to show that, fixed a game � in G̃, the cooperation under e∗ is stable if and only if (10) holds.
Moreover, any game in which envy-free cooperation is stable, so is standard cooperation,
while the reverse is not true. With algebraic computation, we can show that u1(e∗) < u1(eC )

and u2(e∗) > u2(eC ). Then, by signing the agreement, countries protect the environment
and guarantee social equity.

As previously observed, indeed, for any game � in G̃ for which conditions α2 < β1 + β2

and (10) hold, the standard criterion forces to non-cooperation, while the rule imposing to
solve (12) leads players to an equal sharing of EC . This enables better protection of the
environment and an increase in individual and joint welfare. For other games in G̃ satisfying
(10), the new rule ensures the same environmental safety guaranteed by standard cooperation
and generates social equity, allowing the least developed country a growth in terms of level
of production, benefits and welfare.

5 Conclusion

In this paper we analyze envy-freeness notions in international environmental agreements
framework. In particular, we focus on deal in which no country envies à la Foley another state,
and on those inwhich absence of envy is satisfied at least among players belonging to the same
coalition.We show that not all agreements resulting from the standard environmental coalition
formation rule satisfy these equity conditions. We, then, characterize games guaranteeing the
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existence of at least one formable environmental coalition generating an emissions allocation
ensuring global absence of envy or at least among coalesced players.

From an individual point of view envy-freeness among players is relevant for a double
motivation. On the one hand, it is equivalent to excluding, for each country, a negative feeling
on the emission level established by the agreement. On the other hand, it ensures that each
member of the coalition sees her own idea of emissions allocation reflected in the deal.
With the spirit of testing if equity at least among coalesced countries may be a normative
criterion inducing environmental, social and economic improvement, we introduce a new
mechanism for cooperation. We require that signatory countries maximize the joint utility
function subject to the constraint imposing that they do not envy each other.

The analysis carried out in two-player games shows that imposing envy-freeness as a
constraint in the optimization problem provides advantages from both the individual and the
social point of view. Considering the social aspect, at the optimum, in several cases, our rule
leads to social equity. Comparing the results of environmental agreements non-avoiding envy
with those imposing envy-freeness, we get that, in order to be neither envious nor envied,
the most developed player is willing to give up a part of her levels of production and benefits
to allow the least developed player to produce more and increase her benefits level. This
balance of production, and therefore of emissions, is obtained endogenously in games where
the agents are, in a sense, not too far apart in terms of benefit per unit of emissions and
net marginal damage. In these games, players agree to share standard coalitional aggregate,
producing the same quantity of emissions. This result is in line with the well known equal
treatment property satisfied by envy-free allocation, i.e., identical agents are treated equally.
Indeed, it is easy to note that, when the parameters pair (α2, β2) converges to (α1, β1), and
then players are similar in characteristics and tend to be of the same type, the envy-free
allocation e∗ = 1

2 (α1 + α2 − 2β1 − 2β2, α1 + α2 − 2β1 − 2β2) collapses to the standard
cooperative allocation in games with homogeneous players, i.e., eC = (α1 −2β1, α1 −2β1).

By requiring that total emissions should not exceed the standard cooperative aggregate,
we achieve the same results and considerations for all games in which standard and envy-free
environmental agreements are signable and comparable, although different. It means that,
even for games where players are potentially distant in parameters, envy-free environmental
agreements endogenously ensure social equity, causing agents to share emissions, balancing
production level. This equal sharing of standard cooperative emissions gives the least devel-
oped country the opportunity to increase its level of production, its benefits and, in the future,
its resilience to possible environmental damage.

It would be interesting to analyze n-player games (with n > 2) and investigate how the
envy-freeness constraint inside the rule impacts on the size of stable coalitions, discovering
if it can help to solve the small coalitions puzzle in IEA.

Moreover, it would be interesting to conduct an analysis in line with [24], that is inves-
tigate on various equity notions, compare them with each other and analyze their impact in
terms of social equity and size of stable coalition. For example, we can extend per-capita
envy-freeness notion, due to Pazner [26], and average envy-freness notion introduced by
Thomson [27]. Following Pazner’s idea, a per-capita envy-free environmental agreement is a
deal for which each signatory weakly prefers her production level to the average level of the
entire coalition. On the other hand, according to Thomson’s idea, an average envy-free envi-
ronmental agreement is a deal for which each coalesced player does not prefer the average
level of all other members of coalition to her own.

Funding Open access funding provided by Università Parthenope di Napoli within the CRUI-CARE Agree-
ment.
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Appendix

Proof of Proposition 3.4 LetC be an environmental coalition. Let e be a solution of theP(C)-
equilibrium problem. By definition, e(C) solves (1), while for every i ∈ I \C , ei solves (2).
Therefore, by the first order equilibrium conditions, ei = αi − ∑

h∈C βh, for each i ∈ C ,
and ei = αi − βi , for each i ∈ I \ C .

Notice that by (A1) and (a), e ∈ R
n++, then e is an emissions allocation.13

Let us prove that e is P(C)-envy-free.
By Definition 3.3, for every i and j in C , the envy-freeness condition, ui (ei , e−i ) ≥

ui (e j , e− j ), that is equivalent to Bi (ei ) ≥ Bi (e j ), has to be satisfied, i.e.,

αi

(

αi −
∑

h∈C
βh

)

− 1

2

(

αi −
∑

h∈C
βh

)2

≥ αi

(

α j −
∑

h∈C
βh

)

− 1

2

(

α j −
∑

h∈C
βh

)2

.

By algebraic computation it leads

1

2
(αi − α j )

(

αi − α j + 2
∑

h∈C
βh

)

≥ 0. (13)

By (A2), if i is more developed than j , (13) is always satisfied, since αi > α j and then
αi − α j + 2

∑
h∈C βh > 0. On the other hand, if i is less developed than j , since α j > αi ,

(13) holds if and only if αi ≤ α j − 2
∑

h∈C βh , i.e., condition (b), appropriately rewritten,
is satisfied. ��
Proof of Proposition 3.5 Let C be an environmental coalition for which the P(C)-emissions
allocation, e, is P(C)-envy-free. Let C ′ ⊆ C and e′ be the solution of the P(C ′)-equilibrium
problem. As already proved, for any i and j in C , conditions (a) and (b) of Proposition 3.4
hold and

ei =
⎧
⎨

⎩

αi −
∑

h∈C
βh, if i ∈ C

αi − βi , if i ∈ I \ C
e′
i =

⎧
⎨

⎩

αi −
∑

h∈C ′
βh, if i ∈ C ′

αi − βi , if i ∈ I \ C ′
.

By (A1) and (a), e′ ∈ R
n++ and therefore is a P(C ′)-emissions allocation.

13 If (a) is not satisfied, coalitionC can not formed. Indeed, it is impossible for agent inC to sign an agreement,
since it would ask someone not to produce (which is not reasonable) or to emit a negative amount of pollution
(which is impossible).
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It remains to prove that each country i in C ′ does not envy any j in C ′. As observed in
the previous proposition, it is equivalent to require that

1

2
(αi − α j )

(

αi − α j + 2
∑

h∈C ′
βh

)

≥ 0. (14)

By (A2), if i is more developed than j , (14) is satisfied, while if i is less developed than j ,
condition (b) of Proposition 3.4 implies αi < α j −2

∑
h∈C ′ βh and then (14), that concludes

the proof. ��
Proof of Proposition 3.10 Let C be an environmental coalition. By Proposition 3.4, under
(A1), (A2), (a) and (b1), the solution of the P(C)-equilibrium problem, e, is a P(C)-envy-
free emissions allocation. Let us prove that there is no envy among countries outside C and
between i and j with i ∈ C and j ∈ I\C .

We remind that, for every i in C , ei = αi − ∑
h∈C βh , while, for every i in I \ C ,

ei = αi − βi .
Let i and j belong to I \ C . Envy-freeness condition Bi (ei ) ≥ Bi (e j ) is equivalent to

αi (αi − βi ) − 1

2
(αi − βi )

2 ≥ αi (α j − β j ) − 1

2
(α j − β j )

2.

By algebraic computation it leads

1

2
(αi − βi − α j + β j )(αi + βi − α j + β j ) ≥ 0. (15)

By (A2), if i is more developed than j , (15) is always satisfied, since αi − βi − α j + β j

and αi +βi −α j +β j are both positive. On the other hand, if i is less developed than j , (15)
is satisfied if and only if αi ≤ α j − βi − β j , i.e., (b2), appropriately rewritten, holds.

Let i ∈ C and j ∈ I \ C .
Country i does not envy country j if and only if Bi (ei ) ≥ Bi (e j ), that is equivalent to

αi

(

αi −
∑

h∈C
βh

)

− 1

2

(

αi −
∑

h∈C
βh

)2

≥ αi (α j − β j ) − 1

2
(α j − β j )

2.

By algebraic computation it gives

1

2

(

αi − α j + β j −
∑

h∈C
βh

) (

αi − α j + β j +
∑

h∈C
βh

)

≥ 0. (16)

The absence of envy of j against i , Bj (e j ) ≥ Bj (ei ), is equivalent to

α j (α j − β j ) − 1

2
(α j − β j )

2 ≥ α j

(

αi −
∑

h∈C
βh

)

− 1

2

(

αi −
∑

h∈C
βh

)2

and leads

1

2

(

α j − αi − β j +
∑

h∈C
βh

) (

α j − αi + β j +
∑

h∈C
βh

)

≥ 0. (17)

Therefore, if i is more developed than j , since αi − α j + β j + ∑
h∈C βh > 0, i does

not envy j if and only if α j ≤ αi + β j − ∑
h∈C βh , while j does not envy i if and only if

α j ≤ αi − β j − ∑
h∈C βh or α j ≥ αi + β j − ∑

h∈C βh .
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Hence, there is no envy between i and j , if and only if (b4) is satisfied.
If j is more developed than i , meaning that the more developed country belongs to I \C ,

since both α j − αi − β j + ∑
h∈C βh and α j − αi + β j + ∑

h∈C βh are positive, j does not
envy i .

On the other hand, since αi − α j + β j − ∑
h∈C βh is negative, i does not envy j if and

only if αi − α j + β j + ∑
h∈C βh is non-positive, that is if and only if (b3), appropriately

rewritten, holds. ��
As observed in the proof, condition (13) is always satisfied if i is more developed than j .

It allows to say that, under cooperation, each player in the coalition is not envious at e of any
other cooperating player less developed than her. On the other hand, condition (15) always
holds if i is more developed than j, as well as condition (17) holds if j is more developed
than i . Therefore, a non-signatory country does not envy at e any less developed state.

Proof of Proposition 3.12 Let C be a non-degenerate coalition for which the solution of the
P(C)-equilibrium problem, e, is an envy-free emissions allocation.

Let C ′
� C and e′ be the solution of the P(C ′)-equilibrium problem.

By Proposition 3.12, e′ is P(C ′)-envy-free, hence there is no envy within C ′.
Let us start proving the statement 1).
For every i in I \ C , since i does not belong to C nor to C ′, then e′

i = αi − βi = ei .
By assumption e is envy-free, hence, for every j ∈ I \ C , Bi (ei ) ≥ Bi (e j ) and then
Bi (e′

i ) ≥ Bi (e′
j ), meaning that i does not envy j at e′. Therefore, there is no envy within

I \ C .
Let i, j belong to C\C ′. Since they do not belong to C ′, e′

i = αi − βi and e′
j = α j − β j .

Hence the envy-freeness condition Bi (e′
i ) ≥ Bi (e′

j ) is equivalent to

(αi − βi − α j + β j )(αi + βi − α j + β j ) ≥ 0. (18)

As previously observed, if i is more developed than j , (18) is always satisfied. On the
other hand, if i is less developed than j , since e is envy-free, condition (b1) of Proposition
3.10 is satisfied, that implies (18). Therefore, there is no envy within C \ C ′, that concludes
the proof of the statement (1).

Let us now prove the statement (2).
By (1), each country in C ′ does not envy at e′ any other in C ′, while each agent in C \C ′

does not envy at e′ any other in C \ C ′. Hence, in order to prove that they are not envious at
e′, we have to check that

(a) every country in C ′ does not envy at e′ any j ∈ I \ C ;
(b) every country in C \ C ′ does not envy at e′ any j ∈ (I \ C) ∪ C ′.

Let us prove (a).
Mimicking the computations of the previous proposition, a country i in C ′ does not envy

at e′ a country j in I \ C ′ if and only if
(

αi − α j + β j −
∑

h∈C ′
βh

) (

αi − α j + β j +
∑

h∈C ′
βh

)

≥ 0. (19)

If i is more developed than j , (19) is equivalent to

α j ≤ αi + β j −
∑

h∈C ′
βh . (20)
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Since e is envy-free, if j ∈ I \C , α j ≤ αi +β j −∑
h∈C βh implying (20), while if j ∈ C\C ′,

α j ≤ αi − 2
∑

h∈C βh from which (20) derives.
If i is less developed than j , (19) is equivalent to

αi ≤ α j − β j −
∑

h∈C ′
βh . (21)

Since e is envy-free, if j ∈ I \ C , α j ≤ αi − βi − ∑
h∈C βh , and hence (21), while if

j ∈ C\C ′, αi ≤ α j − 2
∑

h∈C βh , and then (21).
Therefore, (a) is proved.
Let us prove (b).
Consider i ∈ C\C ′ and j ∈ I\C , hence e′

i = αi − βi and e′
j = α j − β j . As previously

observed i does not envy j if and only if (18) is satisfied. One more time, if i is more
developed than j , (18) is always satisfied. On the other hand, if i is less developed than j ,
envy-freeness of e implies (18).

Finally, let i ∈ C\C ′ and j ∈ C ′. Then, i does not envy j at e′ if and only if

(

αi − α j − βi +
∑

h∈C ′
βh

) (

αi − α j + βi +
∑

h∈C ′
βh

)

≥ 0. (22)

Condition (22) is always satisfied if i is more developed than j .
If i is less developed than j , by envy-freeness of e, αi ≤ α j − 2

∑
h∈C βh that implies

αi ≤ α j − βi − ∑
h∈C ′ βh , under which (22) holds. That concludes the proof.

Proof of Proposition 3.13 Let us denote by e the solution of the P(C)-equilibrium problem.
By Proposition 3.12 e is envy-free. Let us consider C ′

� C and let us denote e′ the solution
of theP(C ′)-equilibrium problem. In Proposition 3.12 we have shown that, at e′, any country
in C is non-envious at all, and that any i in I \C does not envy any j in I \C . It remains to
prove that i does not envy at e′ any country j in C .

If j belongs to C \C ′, i does not envy j at e′ if and only if (18) is verified. Notice that if i
is more developed than j , (18) is always true, while, if i is less developed than j , condition
(b3) implies (18).

If j belongs to C ′, i does not envy j at e′ if and only if

(

αi − α j − β j +
∑

h∈C ′
βh

) (

αi − α j + β j +
∑

h∈C ′
βh

)

≥ 0. (23)

Notice that (23) is always satisfied if i is more developed than j , while it derives by (b4.2)
if i is less developed than j .

Proof of Proposition 4.2 The e f -P(I )-equilibrium problem assumes the following form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
(e1,e2)

uC (e) = max
(e1,e2)

(

α1e1 + α2e2 − 1

2
(e21 + e22) − (β1 + β2)(e1 + e2)

)

subject to
B1(e1) = α1e1 − 1

2e
2
1 ≥ α1e2 − 1

2e
2
2 = B1(e2)

B2(e2) = α2e2 − 1
2e

2
2 ≥ α2e1 − 1

2e
2
1 = B2(e1)
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Let us rewrite the constraints as−α1(e1−e2)+ 1
2 (e

2
1−e22) ≤ 0 and−α2(e2−e1)+ 1

2 (e
2
2−e21) ≤

0 and consider the Lagrangian function

L(e1, e2, λ1, λ2)
= α1e1 + α2e2 − 1

2 (e
2
1 + e22) − (β1 + β2)(e1 + e2) − λ1

(−α1(e1 − e2) + 1
2 (e

2
1 − e22)

)

− λ2
(−α2(e2 − e1) + 1

2 (e
2
2 − e21)

)
.

Then, the first-order conditions generate the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 − e1 − β1 − β2 + λ1α1 − λ1e1 − λ2α2 + λ2e1 = 0
α2 − e2 − β1 − β2 − λ1α1 + λ1e2 + λ2α2 − λ2e2 = 0
λ1

(−α1(e1 − e2) + 1
2 (e

2
1 − e22)

) = 0
λ2

(−α2(e2 − e1) + 1
2 (e

2
2 − e21)

) = 0
λ1 ≥ 0
λ2 ≥ 0
α1(e1 − e2) − 1

2 (e
2
1 − e22) ≥ 0

α2(e2 − e1) − 1
2 (e

2
2 − e21) ≥ 0

Under (A2), by algebraic computation the solution is given by

e∗ =
⎧
⎨

⎩

(α1 − β1 − β2, α2 − β1 − β2), if 0 < α2 ≤ α1 − 2β1 − 2β2,
1
2 (α1 + α2, 3α2 − α1), if α1 − 2β1 − 2β2 < α2 ≤ α1 − β1 − β2,
1
2 (α1 + α2 − 2β1 − 2β2, α1 + α2 − 2β1 − 2β2), if α1 − β1 − β2 < α2 < α1.

For e∗ be an emissions allocation, the condition e∗ ∈ R
2++ has to be satisfied. Therefore,

under (A1), we get

e∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(α1 − β1 − β2, α2 − β1 − β2), if β1 + β2 < α2 ≤ α1 − 2β1 − 2β2,

1
2 (α1 + α2, 3α2 − α1), if max{α1 − 2β1 − 2β2,

1
3α1, β2} < α2 ≤ α1 − β1 − β2,

1
2 (α1 + α2 − 2β1 − 2β2, α1 + α2 − 2β1 − 2β2),

if max{2β1 + 2β2 − α1, α1 − β1 − β2, β2} < α2 < α1

that is the thesis.

Proof of Proposition 4.3 Let � belong to G2.
As previously observed, in order to study the stability of I , only the internal stability

condition has to be checked.
Let us start analyzing condition (7) for the more developed player.
By definition, u1(e∗) ≥ u1(eNC ) can be written as B1(e∗

1) − B1(eNC
1 ) − D1(e∗) +

D1(eNC ) ≥ 0, that is 1
2α1(α1 + α2) − 1

2

[ 1
2 (α1 + α2)

]2 − α1(α1 − β1) + 1
2 (α1 − β1)

2 −
β1(α2 − α1 + β1 + β2) ≥ 0.

By algebraic computation, it is easy to show that the previous inequality can be refor-
mulated as 1

8 (α2 − α1 + 2β2)(α1 − α2 + 2β1) − β1(α2 − α1 + β1 + β2) ≥ 0, that is
1
8 [−4β2

1 + 8(α1 − α2 − β2)β1 − (α1 − α2)
2] ≥ 0.

Hence, condition u1(e∗) ≥ u1(eNC ) is satisfied if and only if
√
2 − 1

2
(α1 − α2) < β1 <

1

2
(α1 − α2)

and max

{
1

2
(α1 − α2 − 2β1), β1

}

< β2 <
−4β2

1 + 8(α1 − α2)β1 − (α1 − α2)
2

8β1
.

(24)
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Since � belongs to G2, conditions α2 < α1 − β1 − β2 and β1 < β2 hold and imply β1 <
1
2 (α1 − α2) and β2 > max

{ 1
2 (α1 − α2 − 2β1), β1

}
. Then, in G2, (24) is equivalent to (9). It

means that, in G2 the most developed player prefers envy-free cooperation than acting alone,
only in games for which (9) holds.

Let us now consider condition (7) for the less developed player.
By definition, u2(e∗) ≥ u2(eNC ) can be written as B2(e∗

2) − B2(eNC
2 ) − D2(e∗) +

D2(eNC ) ≥ 0, that is 1
2α2(3α2 − α1) − 1

2

[ 1
2 (3α2 − α1)

]2 − α2(α2 − β2) + 1
2 (α2 − β2)

2 −
β2(α2 − α1 + β1 + β2) ≥ 0.

By algebraic computation, it is easy to obtain that the previous inequality can be refor-
mulated as 1

8 (α2 − α1 + 2β2)(α1 − α2 + 2β2) − β2(α2 − α1 + β1 + β2) ≥ 0, that is
1
8 [−4β2

2 + 8(α1 − α2 − β1)β2 − (α1 − α2)
2] ≥ 0.

Hence, condition u2(e∗) ≥ u2(eNC ) is satisfied if and only if

0 < β1 <
1

2
(α1 − α2) and max

{
1

2
(α1 − α2 − 2β1), β1

}

< β2 < α1 − α2 − β1.

Theprevious conditions hold, since� belongs toG2. Therefore,u2(e∗) ≥ u2(eNC ) is fulfilled,
meaning that, in each game � ∈ G2, the less developed player prefers envy-free cooperation
than acting alone.

Hence, we can conclude that, given a game� in G2, I is stable if and only if the parameters
of � meet condition (9). ��

Proof of Proposition 4.4 Let � belong to G3.
In order to investigate condition (7), let us analyze the differences Bi (e∗

i ) − Bi (eNC
i ) and

Di (e∗) − Di (eNC ), for i = 1, 2.
Notice that, since E∗ < ENC , envy-free cooperation leads to lower costs. Hence, we can

focus on the differences between the benefit levels generated by e∗ and eNC .

B1(e∗
1)− B1(eNC

1 ) = 1
2α1(α1+α2−2β1−2β2)− 1

2

[ 1
2 (α1 + α2 − 2β1 − 2β2)

]2−α1(α1−
β1) + 1

2 (α1 − β1)
2 < 0 is equivalent 1

8 (α2 − α1 − 2β2)(α1 − α2 + 4β1 + 2β2) < 0, that is
satisfied for each game in G2. Hence, envy-free cooperation induces, for the more developed
player, a decreasing of benefit level.

The inequality u1(e∗) − u1(eNC ) = B1(e∗
1) − B1(eNC

1 ) − D1(e∗) + D1(eNC ) ≥ 0 is
equivalent to 1

8 [−4β2
2 +8β2

1 +4(α2 −α1)(β1 +β2)− (α1 −α2)
2] ≥ 0, that is satisfied if and

only if the set of parameters of the game � meet (10). Hence, the most developed country
prefers to cooperate if and only if (10) holds.

B2(e∗
2) − B2(eNC

2 ) = 1
2α2(α1 + α2 − 2β1 − 2β2) − 1

2

[ 1
2 (α1 + α2 − 2β1 − 2β2)

]2 −
α2(α2 − β2) + 1

2 (α2 − β2)
2 is equivalent 1

8 (α1 − α2 − 2β1)(α2 − α1 + 2β1 + 4β2).
Since for every game in G3, α2 − α1 + 2β1 + 4β2 > 0, then B2(e∗

2) − B2(eNC
2 ) > 0 if

and only if α1 −α2 − 2β1 > 0. Hence, for the least developed player, envy-free cooperation,
compared with the status quo eNC , induces an increasing of benefit level if the parameters
satisfy the conditions α1−β1−β2 < α2 < α1−2β2, while generates a decreasing of benefit
level if α1 − 2β1 < α2 < α1.

Investigating the inequality u2(e∗) − u2(eNC ) = B2(e∗
2) − B2(eNC

2 ) − D2(e∗) +
D2(eNC ) ≥ 0, we get that it is equivalent to 1

8 [−4β2
1 + 8β2

2 + 4(α1 − α2)(β1 + β2)
2 +

(α1 −α2)
2] ≥ 0. By algebraic computation, we show that the previous inequality is satisfied
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if and only if

0 < β1 <

√
5 − 2

2
(α1 − α2)

and
1

2
(α1 − α2) − √

β1(α1 − α2 + 2β1) < β2 <
1

2
(α1 − α2) + √

β1(α1 − α2 + 2β1)

(25)

or
√
5 − 2

2
(α1 − α2) < β1 < β2 <

1

2
(α1 − α2) + √

β1(α1 − α2 + 2β1). (26)

Hence, the less developed country prefers to cooperate if and only if for the set of parameters
of the game � one between (25) and (26) holds.

We can conclude that, given a game � in G3, I is stable if and only if the parameters of �

meet condition (10). ��
Remark 5.1 Let us consider a game � in G̃′′

2 and compare the utility levels generated by
emissions allocations e∗ and eC .

Notice that, since EC < E∗, envy-free cooperation, compared to standard cooperation,
leads to greater costs.

Let us start investigating the benefit levels and the utility levels generated by e∗ and eNC

for the most developed player.

B1(eC1 )−B1(e∗
1) = α1(α1−β1−β2)− 1

2 (α1−β1−β2)
2− 1

2α1(α1+α2)+ 1
2

[ 1
2 (α1 + α2)

]2

is equivalent to 1
8

[
(α1 − α2)

2 − 4(β1 + β2)
2
]
that can be reformulated as 1

8 (α1−α2−2β1−
2β2)(α1 − α2 + 2β1 + 2β2).

Since for every � in G2, α1 − α2 − 2β1 − 2β2 < 0, while α1 − α2 + 2β1 + 2β2 > 0, we
get B1(e∗

1)− B1(eC1 ) < 0,meaning that, to the most developed player, envy-free cooperation
brings a benefit level lower than that guaranteed from the standard cooperation.

Comparing the utility levels u1(eC ) and u1(e∗), by the previous computation, we get that
the difference u1(eC ) − u1(e∗) may be written as 1

8 (α1 − α2 − 2β1 − 2β2)(α1 − α2 + 2β1 +
2β2)−β1(α1 −α2 − 2β1 − 2β2), that can be reformulated as 1

8 (α1 −α2 − 2β1 − 2β2)(α1 −
α2 − 6β1 + 2β2). Notice that it is positive if and only if α2 > α1 − 6β1 + 2β2. It means that
envy-free cooperation brings, to the most developed player, a utility level greater than that
guaranteed from the standard cooperation if and only if α2 > α1 − 6β1 + 2β2.

Let us now consider the least developed player.
B2(eC2 ) − B2(e∗

2) = α2(α2 − β1 − β2) − 1
2 (α2 − β1 − β2)

2 − 1
2α1(3α2 − α1) +

1
2

[ 1
2 (3α2 − α1)

]2
is equivalent to 1

8

[
(α1 − α2)

2 − 4(β1 + β2)
2
]
, that can be reformulated

as 1
8 (α1 − α2 − 2β1 − 2β2)(α1 − α2 + 2β1 + 2β2).
Since for every � in G2, α1 − α2 − 2β1 − 2β2 < 0, while α1 − α2 + 2β1 + 2β2 > 0, we

get B1(e∗
1)− B1(eC1 ) < 0, meaning that envy-free cooperation brings, to the least developed

player, a benefit level lower than that guaranteed from the standard cooperation.
Comparing the utility levels u2(eC ) and u2(e∗), by the previous computation, we get that

the difference u2(eC ) − u2(e∗) can be written as 1
8 (α1 − α2 − 2β1 − 2β2)(α1 − α2 + 2β1 +

2β2) − β2(α1 − α2 − 2β1 − 2β2) that can be reformulated as 1
8 (α1 − α2 − 2β1 − 2β2)(α1 −

α2 + 2β1 − 6β2). It is easy to see that this product is negative for any game in G2. This
points out that, compared with standard cooperation, envy-free cooperation brings, to the
least developed player, a lower utility level.

As a consequence, envy-free cooperation is Pareto dominated by standard cooperation in
every game � in G̃′′

2 for which α2 < α1 − 6β1 + 2β2.
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Remark 5.2 Let us consider a game � in G′′
3 and compare the utility levels generated by

emissions allocations e∗ and eC .
Notice that, since EC = E∗, the analysis attempts to compare the levels of benefits

induced by e∗ and eNC .
By construction, for themost developed player, the difference between B1(e∗

1) and B1(eC1 )

is explicable as α1
1
2 (α1 +α2 −2β1 −2β2)− 1

2

[ 1
2 (α1 + α2 − 2β1 − 2β2)

]2 −α1(α1 +α2 −
β1 − β2) + 1

2 (α1 + α2 − β1 − β2)
2 that is equivalent to 1

8 (α2 − α1)(α1 − α2 + 4β1 + 4β2).
Since for every � in G3, α1 − α2 + 4β1 + 4β2 > 0, while α2 − α1 < 0, we get B1(e∗

1) −
B1(eC1 ) < 0, meaning that envy-free cooperation brings, to the most developed player, a
benefit level (and then utility level) lower than that guaranteed from the standard cooperation.

By construction, for the least developed player, the difference between B2(e∗
2) and B2(eC2 )

is explicable as α2
1
2 (α1 +α2 −2β1 −2β2)− 1

2

( 1
2 (α1 + α2 − 2β1 − 2β2)

)2 −α2(α2 −β1 −
β2) + 1

2 [α2 − β1 − β2]2 that is equivalent to 1
8 (α1 − α2)(α2 − α1 + 4β1 + 4β2).

Since for every � in G3, α1 − α2 + 4β1 + 4β2 and α1 − α2 are both positive, we get
B2(e∗

2) − B2(eC2 ) > 0, meaning that envy-free cooperation brings, to the least developed
player, a benefit level (and then utility level) greater than that guaranteed from the standard
cooperation.
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