Journal of Global Optimization
https://doi.org/10.1007/510898-024-01364-6

®

Check for
updates

A K-means Supported Reinforcement Learning Framework to
Multi-dimensional Knapsack

Sabah Bushaj'® - I. Esra Biiyiiktahtakin?

Received: 26 September 2022 / Accepted: 8 January 2024
© The Author(s) 2024

Abstract

In this paper, we address the difficulty of solving large-scale multi-dimensional knapsack
instances (MKP), presenting a novel deep reinforcement learning (DRL) framework. In this
DRL framework, we train different agents compatible with a discrete action space for sequen-
tial decision-making while still satisfying any resource constraint of the MKP. This novel
framework incorporates the decision variable values in the 2D DRL where the agent is respon-
sible for assigning a value of 1 or O to each of the variables. To the best of our knowledge, this
is the first DRL model of its kind in which a 2D environment is formulated, and an element
of the DRL solution matrix represents an item of the MKP. Our framework is configured
to solve MKP instances of different dimensions and distributions. We propose a K-means
approach to obtain an initial feasible solution that is used to train the DRL agent. We train
four different agents in our framework and present the results comparing each of them with
the CPLEX commercial solver. The results show that our agents can learn and generalize
over instances with different sizes and distributions. Our DRL framework shows that it can
solve medium-sized instances at least 45 times faster in CPU solution time and at least 10
times faster for large instances, with a maximum solution gap of 0.28% compared to the
performance of CPLEX. Furthermore, at least 95% of the items are predicted in line with the
CPLEX solution. Computations with DRL also provide a better optimality gap with respect
to state-of-the-art approaches.

Keywords Multi-dimensional Knapsack problem - K-means - Deep reinforcement
learning - Combinatorial optimization - Mixed integer programming - Heuristics

Abbreviations

A2C: Advantage actor-critic

A3C: Asynchronous advantage actor-critic

ACKTR: Actor-critic with kronecker-factored trust region
BIP: Binary integer programming

B I. Esra Biiyiiktahtakin
esratoy @vt.edu

Department of Management Information Systems and Analytics, SUNY Plattsburgh, New York,
USA

Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA

Published online: 15 February 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01364-6&domain=pdf
http://orcid.org/0000-0003-0433-692X
http://orcid.org/0000-0001-8928-2638

Journal of Global Optimization

COP: Combinatorial optimization problem
DDQN: Double deep Q-network

DQN: Deep Q-network

DRL: Deep reinforcement learning

DP: Dynamic programming

FMSTS: Fitting for minimizing SubTree size
KP: Knapsack problem

MIP: Mixed integer programming

MKP: Multi-dimensional Knapsack problem
PPO: Proximal policy optimization

TSP: Traveling salesman problem

UBQO: Unconstrained binary quadratic problem

Algorithm Notations

C: Set of constraints where the respective right-hand side value is appended
to each constraint

Set of possible actions

Set of violated constraints

Set of item worth values

Set of clusters

Index for a cluster where v € T
Index for a centroid of a cluster v
Number of K-means iterations
DRL testing steps

DRL training steps

DRL trained model

O ST 3ETy

Problem Notations

Set of all items, 7 = {1,2,...,n}

Set of knapsack constraints, 7 = {1, 2, ..., m}

Set of knapsack limits, B = {by, ..., by}

Set of weights for each item of set J

Set of all P problem instances

Index for an item where j € J

Index for the knapsack constraint where i € Z
Index for the knapsack limit where b; € B

Index for the weight of the knapsack where a;; € W

VI WHQ

ST AN
T

1 Introduction

The multidimensional knapsack problem (MKP) is an intriguing, strongly NP-hard problem
[38] with multiple knapsack constraints. MKP can also be considered as a special case of
integer programming, restricting the decision variables to 0 or 1. MKP first got attention as a
capital budgeting problem [47]. MKP is a core resource allocation problem that lies as a sub-
problem in many other problems having resource allocation constraints. Thus, contributions
to solving MKP can affect a wide range of applications in various businesses, logistics, and
computer networks.

Despite many research efforts worldwide and multiple solution approaches to solve MKP,
there is still a large space for improvement, especially for efficiently solving large-scale

@ Springer

Journal of Global Optimization

instances. The recent empowerment of machine learning methods to address optimization
problems presents a wide area to explore. In particular, reinforcement learning is a promising
candidate to outperform current approaches for large MKP instances. The literature suggests
that reinforcement and deep reinforcement learning (DRL) approaches can learn solution
strategies to solve combinatorial optimization problems [5, 6, 49].

In our paper, we propose a deep reinforcement learning approach combined with a heuristic
and a K-Means algorithm to enforce the DRL in a framework to solve large MKP instances.
The heuristic reduces the MKP to a more compact representation by evaluating all items
and assigning a value of worthiness for each. Specifically, we create an RL environment that
arranges a feasible solution according to the worthiness of items suggested by the heuristic.
We use this environment as a training ground for an agent where different MKP instances are
generated. Then, we propose an iterative K-means clustering algorithm to get a reasonable
initial feasible solution that is used to train the DRL algorithm. We construct the DRL
framework as a sequential decision-making process, where at each step of the algorithm, the
agent decides whether the value of a specific item is predicted 1 or O until the problem becomes
infeasible. So, an episode of the DRL algorithm is made of sequential decisions. Our approach
is flexible to train and test using different state-of-the-art DRL models as a sub-method, such
as deep Q-learning, policy gradient, or trust region gradient-based methods, in our DRL
framework. In our framework, we account for solving MKP instances of various sizes. Our
results suggest that we can train RL agents using distinct instances and then generalize the
prediction to instances of different sizes and distributions. We improve CPLEX performance
in terms of solution time with only an average of 0.28% additional solution gap over CPLEX.
Furthermore, we offer the option of partially using the predicted MKP solutions to find better
solutions than those provided by CPLEX.

Binary Decision Variables

1 if item is selected
X =
/ 0 otherwise.
. 1 if item is in reversed item vector is selected
Xj=
! 0 otherwise.

2 Related work

Early work on MKP treats it as a budget planning problem [47, 74, 75]. Applications include,
but are not limited to, computer science [28, 66], epidemic disease control [83, 84], retail busi-
ness organization [79], and modeling invasive species [9, 10]. There exist different approaches
to solving MKP, such as exact algorithms [51, 70], approximation schema [55], heuristics
and metaheuristics [16, 26, 29, 33, 69]. The main approaches used to obtain an exact solution
of MKP are based on branch-and-bound and branch-and-cut. Different approaches have been
suggested over the years for branch and bound for the MKP (see, e.g., Thesen [67], Gavish
and Pirkul [27], Vasquez and Vimont [70], and Mansini and Speranza [51]). Several studies
have also used dynamic programming (DP) to obtain an exact solution. Among recent DP
attempts, there are methods proposed by Pisinger [57], Bertsimas and Demir [7], and Balev
et al. [4]. Others, such as Biiyiiktahtakin [12, 13], present theoretical contributions to aid
solving large stochastic multi-dimensional knapsack problems. Finding an optimal solution
is computationally very expensive, which motivates researchers to investigate approximation
algorithms. Different contributions to polynomial-time approximation solutions are due to

@ Springer

Journal of Global Optimization

Frieze and Clarke [25] and Caprara et al. [14]. Again, the computational difficulty of MKP
inspired many heuristic algorithms to compute a feasible solution in a reasonable time. We
can categorize such heuristics as greedy [20, 48, 62, 78], relaxation-based [3, 7, 34, 50], and
advanced [24, 42, 56]. The greedy approach is based on a relatively simple idea of consider-
ing items one by one until the problem becomes infeasible [23]. Even more detailed greedy
approaches do not fall far from that.

Lately, deep-reinforcement learning (DRL) has gained much attention from researchers
working on combinatorial optimization problems (COP). Despite many heuristics and exact
algorithms proposed to solve COPs, solving large instances is still impossible by the best
exact algorithms, such as branch-and-bound algorithms [76]. Despite excellent performance
in small and medium-sized models, these methods are still not efficient in handling large-
scale COPs. Other studies propose different approximation algorithms to deal with the time
complexity of these instances [71]. Although approximation algorithms improve on the solu-
tion time, they frequently involve specific properties that require change each time problem
settings are altered.

Recent studies use DRL in traveling salesmen problem (TSP) [6, 40, 54], job schedul-
ing [15, 43], bin packing [35, 72], logistic problems [19, 58] and game playing [53, 64].
These developments have shown that the DRL formulation is suitable for solving sequen-
tial decision-making problems. Although many of these applications aim to solve TSP and
vehicle routing, it is not difficult to extend these applications to the sequence-to-sequence
concept, which is then applicable to solve instances of the knapsack problem (KP) Bello et
al. [6]. Most of these studies intend to use the power of deep learning towards tackling the
curse of dimensionality. Some studies use a Pointer Network architecture [6, 31, 40, 73].
Others come up with image or matrix formulations that can represent different classes of
COP problems, such as maximum cut, minimum cover of the vertex, and knapsack [1, 5, 17,
36]. Some more recent studies use DRL to learn from state-of-the-art algorithms and improve
them further [21, 45, 65, 80, 85]. Bushaj et al. [11] present a simulation deep reinforcement
learning framework that avoids using COP for epidemic control optimization, instead using
a reinforcement learning algorithm as a decision maker.

Vinyals et al. [73] introduce a Pointer Network architecture, in which the output layer
of the deep neural network used in the pointer networks is a function of the input. Bello et
al. [6] use the pointer with reinforcement learning to solve the TSP and knapsack problem.
They use a policy gradient with an Advantage Actor-Critic (A3C) algorithm to train their
deep neural network. Although initially designed to tackle TSP problems, they report optimal
solutions for instances with up to 200 items for the knapsack problem. Gu et al. [31] present
a deep learning algorithm to learn sequential decisions in an unconstrained binary quadratic
programming problem (UBQP) since many of the COPs can be generalized into a UBQP.
Kool et al. [40] propose a model based on attention layers with benefits incorporated into the
pointer network. Using the REINFORCE algorithm, they claim to obtain a close-to-optimal
solution for two variants of TSP problems with instances up to 100 nodes of the TSP network.

Dai et al. [18] introduce a new neural network framework for graph-based combinatorial
optimization problems. They refer to structure2vec, introduced in Dai et al. [17], to derive an
embedding of the graph vertices. They claim that their approach learns effective algorithms
for TSP, Maximum Cut, and Minimum Vertex Cover problems. Barrett et al. [5] use DRL in a
different direction as they present exploratory combinatorial optimization, in which they aim
to improve agent learning even during test time continuously. In doing so, they claim they
can achieve the state-of-the-art performance, although further improvements can be made
by developing a better starting point. Afshar et al. [1] propose a DRL approach to solve
the knapsack problem. They use state aggregation to extract features and construct states.

@ Springer

Journal of Global Optimization

They compare the results with the implementations of the pointer network in Bello et al. [6]
and Gu et al. [31] and report that their state-aggregated approach outperforms them. Hubbs
et al. [36] develop a library of reinforcement learning environments consisting of multiple
classic optimization problems. Even though they show that DRL is capable of picking up
a policy for every problem, it was not able to outperform the heuristic models related to
off-line knapsack problems. Kong et al. [39] follow a slightly different approach to the use
of RL. They investigate whether a theoretically optimal algorithm can be found for online
optimization problems. They claim that their results are consistent with the behaviors of
optimal algorithms for problems such as AdWords problem, online knapsack, and secretary.

Another exciting ML-based approach to solving combinatorial optimization problems is
presented by Yilmaz and Biiyiiktahtakin [82]. In their study, the authors develop a bidirec-
tional long-short-term memory (LSTM) framework that can process information forward
and backward in time to learn optimal solutions to sequential combinatorial problems with a
focus on the capacitated lot-sizing problem (CLSP). Along these lines of research, Yilmaz and
Biiyiiktahtakin [81] have innovatively adapted a well-known local attention-based encoder-
decoder network that is initially designed for neural machine translation to solve multi-period
combinatorial optimization problems. Different from previous work, the authors present an
iterative algorithm to determine the optimal prediction level and eliminate any infeasible solu-
tions, and demonstrate their framework on the multi-item CLSP and multi-item knapsack
problems.

In Tang et al. [65]’s study focuses on building a configuration or classical representation of
the original models, they propose using DRL to learn state-of-the-art cutting plane methods.
They state that their model outperforms human-designed heuristics, and that their model can
also benefit from the branch-and-cut algorithm. Similarly, Liao et al. [45] involve DRL in
improving global vehicle routing algorithms. Based on their results, they claim that they can
outperform the A* algorithm, which is a benchmark on a global search. Etheve et al. [21]
show the DRL’s strength as they use it to optimize the branching strategy of a Mixed Integer
Program (MIP). The authors present Fitting for Minimizing the SubTree Size (FMSTS), a
model that learns the branching strategy from scratch, and they compare it with commercial
solvers, such as CPLEX.

To our knowledge, our DRL framework is unique with respect to the way the learning
environment is defined to represent the multi-dimensional knapsack problem. Despite the
increased complexity due to the multiple items and constraints considered in the multi-
dimensional KP, our DRL method could be generalized to solving other Binary Integer
Programming (BIP) problems.

2.1 Key contributions

In this study, we present a new DRL algorithm to tackle the computational difficulty of
solving one of the most difficult classes of problems, MKP. Our approach joins the forces of
reinforcement learning, K-means, and heuristic approaches and integrates them all intoa DRL
framework to solve a COP, such as the MKP. Because MKP forms the root of many practical
problems, Chu and Beasley [16] state that MKP can be regarded as a general zero—one integer
programming with non-negative coefficients. Therefore, improvements in solution methods
for this class of problems can be extended to any integer programming problem of zero.
Furthermore, due to the large domain of applications, this hard NP problem is frequently used
as a benchmark problem to compare general-purpose methods in combinatorial optimization
[32].

@ Springer

Journal of Global Optimization

In an attempt to simplify the problem at hand by finding a reasonably starting solution, we
propose an unsupervised learning algorithm using K-means to cluster the constraints with a
distance-based similarity matrix and relax the problem by only considering a subset of the
constraints determined by this K-means algorithm. This approach enables us to reduce the
complexity of the problem at hand and get an acceptable feasible solution even for the largest
instances to train our DRL algorithm. We also present a heuristic that helps us estimate each
item’s worth. This is a contribution to the heuristic solution approaches, combining data
analysis and a greedy strategy that can be used alone as an algorithm itself. To harness the
power of reinforcement learning, we initially formulate our problem in a 1D environment
and then extend it to a 2D environment where an agent is trained to select and deselect items.
Together with the above K-means algorithm and heuristic, a powerful DRL framework is
presented to solve large MKP instances. To our knowledge, this is the first DRL model of its
kind where a 2D environment is formulated, and an element of the matrix represents an item
of the MKP. In addition to the framework, we also create a helper generator for the MKP
instances that are randomly generated. We use this generator to produce MKP instances
with a different number of items, constraints, and varying distributions of weight and cost
parameters.

Among the powerful properties of the DRL framework is its generalization. The environ-
ment is set to extract information from different MKP instances and learn general patterns.
The K-means algorithm plays an important role in generalization as well. For every instance,
K-means and heuristic are executed, enabling a similar pattern to the DRL environment
despite the different distributions of the instances. With their help, the solution is concen-
trated in an isolated area of the 2D environment. Specifically, when we create the DRL
environment, we use sorting according to the heuristic, and for all instances, the agent learns
“focused” and “advantageous” areas in the environment and where it focuses on searching
for an optimal solution. Once trained using the initial K-means solution, the DRL model used
with the same training can solve distinct instances. We present results to show that the DRL
framework solves instances of different sizes and distributions faster than CPLEX, with a
small gap where the DRL agent is only trained once. We also benchmark our approach against
state-of-the-art heuristic approaches and show that our method provides better solutions in a
slightly longer computational time.

3 Multi-dimensional Knapsack problem formulation

Here we present the mathematical formulation of the multi-dimensional knapsack problem.
Without loss of generality, we assume that all parameters are non-negative. The multi-
dimensional knapsack problem (MKP) is formulated as a binary integer program (BIP) (1)
as follows:

n
P min) ¢jx; (1a)
j=1
n
st Y aixj=b Vi=12,....m. (1b)
j=1
x; €{0,1) Vi=1,2,...,n. (lc)

The objective function (1a) minimizes the sum of knapsack (investment) costs over all items
j €{1,2,...,n}.Constraints (1b) ensure that the total return value of the invested items must
exceed a given lower limit b; defined for each constraint i € Z, representing an investment
type i. Finally, the constraints (1c) represent binary integer restrictions on the x; variables.

@ Springer

Journal of Global Optimization

4 Deep reinforcement learning Knapsack model

To solve our multi-dimensional knapsack problem, we present a DRL framework to derive
a sequential selection policy minimizing the cost without violating any of the original con-
straints. Originally, our problem P consists of a set of items 7, a set of constraints Z with
a capacity b; for each i € Z, a set of weights a;; € W for each item j € J, and constraint
i € 7. To solve our problem, we incorporate four different state-of-the-art DRL algorithms,
as described in Sect.4.2.

To facilitate the multi-dimensional knapsack problem for the usage in the DRL algorithm,
we present a heuristic that evaluates the items and sorts them based on their importance,
considering their contribution to the objective function and the feasibility of the constraints.
The details of this heuristic are presented in Appendix A.

4.1 K-means algorithm and initial solution

We develop a K-means algorithm [46] to provide a feasible good starting solution to DRL
and a benchmark of what a solution should look like as input into the DRL training algorithm.
In our K-means algorithm, the constraints of the knapsack instance are divided into multiple
clusters, and an initial solution is generated with the help of a Cplex recursive procedure.

There are other heuristics that we can use to get a feasible solution faster and closer to
optimality than the K-means approach. But our experiments show that having a closer initial
solution to optimality does not necessarily imply that its easier to learn for the agent. While
there is a general agreement that a good initial solution can often accelerate the agent’s
learning process in reinforcement learning (RL), there are situations where an overly good
initial solution can actually hinder the capabilities of the RL agent. This phenomenon is
known as “premature convergence" and has been widely studied in the literature [22, 41,
63]. RL agents must balance exploration (trying new actions to discover better policies) with
exploitation (choosing actions that are known to be good based on current knowledge) [44].
Potential reasons for the premature convergence that arises with an excessively proficient
initial solution is that the agent may become overly confident in this initial policy and thus
may be less inclined to explore alternative strategies or actions. Furthermore, if the RL agent
is too focused on exploitation, it may get stuck in a suboptimal policy because it does not
explore enough to find better solutions.

During preliminary experiments, in addition to the K-means, we delve into a myriad
of heuristic algorithms, such as the Primal Effective Capacity Heuristic (PECH) [2] and
Adaptive Fixing (AF) [7], alongside various heuristics grounded in item ratios to find a
good initial solution to feed the RL. What became evident from our extensive exploration
was that these heuristic methods, more often than not, outperformed nested K-means in
terms of speed and solution quality. However, this efficiency came at a price - it severely
restricted the RL agent’s capacity to explore and adapt, undermining the very essence of
reinforcement learning. Moreover, it is worth noting that many of these heuristics pose the
risk of becoming ensnared in local minima, further challenging the RL agent’s ability to learn
and adapt effectively.

We provide all constraints (weights and right-hand side) as input to the K-means algorithm.
We calculate the similarity of two constraints using an n + 1-dimensional Euclidean distance
between two n 4+ 1—-dimensional vectors. Each of the vectors contains # items and the
right-hand side value of the corresponding constraint. Minkowski and Jaccard’s similarity
measures [37] are tested as well, but observed to perform worse than Euclidean’s.

@ Springer

Journal of Global Optimization

Algorithm 1 K-means Constraint Clustering

1: Procedure: Generate Clusters

2: Input: ¢, Y,C=ZUB {Number of iterations, set of clusters, set of constraint vectors
for problem P.}

3301 =41, 02 =82, -4, Uy =) {Assign first constraints as centroids for each
cluster v € Y, where U is a centroid of a cluster v and ¢ € C}

4: for each:do

5. for¢ € Cdo

6: for v € Y do

T D{,L'J =4 Znil (e

8: end for

9: end for

10: for¢ e Cdo

11: Assign ¢ to the closest cluster v € Y {Reassign constraints to the closest cluster v

with centroid v.}

12: end for

13: for v € Y do {for each cluster}

14: for ¢ € vdo

15: U= [lefll ey %] {Recalculate the mean distance for each cluster
dimension and assign it as the new centroid.}

16: end for

17: end for

18: end for

19: Output: v, v2, ..., V7| {Output | Y| clusters.}

20:

21: Procedure: Cplex Recursive Selection

22: Input: vy, V2, ..., UjY|

23: Define: P { P is the unconstrained original problem.}

24: Define: V {Set of violated constraints. }

25: for v € T do _

26: Append the farthest pair of vectors of v to P

27: end for _

28: Solve P +— V {Solve P and determine the set of the violated constraints).}
29: while V is not ¥ do

30: if V| > 10 then

31: Append five most violated constraints to P

32: else _

33: Append all the remaining constraints to P

34: endif

35: Solve P+— V {Recalculate violation set V. }

36: end while _

37: Output: X, Z {Feasible solution and objective value of P.}
Considering two vectors dy = [afl, ey Afp, bf] and dy = lag1, - .., agn, bx] where f

and k € 7, we calculate each distance between d ¢ and di, Dy /oy @S

n+1

Ddf«dkz = Z (dfj - dkj)z ’ @
j=1

where d;; is the j™" element of the constraint vector d; for i € 7.
At the starting point, we assign a centroid for each cluster by randomly selecting one
of the constraints for each cluster. A distance map is populated by calculating the distance

@ Springer

Journal of Global Optimization

between each vector d; for i € 7 and the centroid vectors vy € Y, using Eq. (2). Using
this distance map, we reassign the vector d; to the closest centroid or cluster. With the new
assignment of the cluster, we recalculate the means of the cluster and the new centroids. We
repeat this procedure for a pre-set number of iterations. We limit the number of iterations
since we do not want to spend too much time on the K-means algorithm and only a good
enough feasible solution is needed to design our RL environment. A good enough solution
is a feasible solution obtained by using the least number of the constraints from the original
problem. For each cluster, we select two of the farthest constraints from the centroid to serve
as initial constraints in the following recursive Cplex procedure. If not feasible from the start,
we calculate the highest violations in the constraint set and add them to resolve the problem.

4.2 DRL model

In recent years, different algorithmic approaches using neural network approximators for RL
have been proposed to tackle large problems, especially COPs. Among the most popular ones
are deep Q-learning, policy gradient methods, and trust region gradient methods. For each
algorithm, we serve the state and possible actions as input, and we get back an action as an
output. We perform training and testing using four state-of-the-art algorithms. For example,
we train the model and test it using the Advantage Actor-Critic (A2C) method introduced
in Mnih et al. [52]. The authors propose a DRL framework that uses asynchronous gradient
descent to optimize deep neural network controllers. They use parallel actor-learners to update
a shared model instead of experience replay used in Deep Q Network (DQN) to achieve a
stable learning process. We also train and test our knapsack framework using a double DQN
with a replay of the experience presented in Schaul et al. [60]. Although using too much
memory and computational power, experience replay can correlate episode updates. Among
the trust region policy optimization algorithms, we also tested our results in Actor-Critic
using the Kronecker-Factored Trust Region (ACKTR) developed by Wu et al. [77]. ACKTR
is a scalable trust region optimization algorithm for actor-critic methods. The authors use
a Kronecker-factored approximation to the natural policy gradient, allowing the covariance
matrix of the gradient to be inverted efficiently. Their paper is among the first to try to
combine the benefits of different groups of algorithms (trust region policy optimization and
the policy gradient). Another such algorithm is proposed by Schulman et al. [61] to achieve
data efficiency and reliable performance of trust region policy optimization while only using
the first-order optimization. Raffin et al. [59] implement reliable learning algorithms that
make them reusable for the average developer. The selected algorithms (ACKTR, DQN,
PPO, A2C) work well in discrete learning environments; hence, we tune each one and train
our agents to identify the best learning agent.

4.3 1D Knapsack environment

In this section, we describe a one-dimensional vector representation of potential solutions of
the multi-dimensional knapsack problem. We represent the states of the DRL algorithm as the
combination of all possible binary selections in the vector where each element of the vector
represents an item. Figure 1 shows the environment used to describe the one-dimensional
formulation achieved using our heuristic in Algorithm 3. Our heuristic provides the order of
the items in a vector based on their importance, and when sorting it, the agents will learn to
concentrate on searching for the solution in a slightly isolated area. For example, when we
sort the items according to the item’s worth, the first items are more likely to be selected, and

@ Springer

Journal of Global Optimization

5\Cn—E‘»‘xn—Zl 557;—1’ 5\Cn

v
n

Fig. 1 One-dimensional vector representation of our problem

the last items are more likely to be ignored. This approach creates a focus area of decisions.
Our aim is to train the agent to learn “swimming” in that area. Below, we describe episodes,
state, action, and a reward function in our deep reinforcement learning algorithm using this
1D knapsack environment.

Episode: We define an episode as the steps taken from a current state until we find an
infeasible solution or the maximum number of steps per episode is reached. In each episode,
we aim to maximize the average reward.

State s(P): Each state describes the current selection of an item j € 7, as either O or 1.
The heuristic defined in Algorithm 3 simplifies our states from the collective combination
of items with their costs and weights and knapsack constraints to a simple state space of 2"
where n represents the number of items, and each item can take a value of O or 1. Thus, the
state space is only defined by the selection of items free of the structure of constraints. We
denote a state of the problem by s(P).

Actions: We allow the agent to select / de-select an item at a step of each episode based
on the current state. Therefore, we have n potential actions where 7 is the number of items at
each step of the algorithm. We denote each action as A ; where j denotes a specific item. For
each step, our algorithms are fed a certain state that describes whether an item j is selected
or deselected, and an action is taken in that state. For example, if action A is taken in state
s(P), then if item j was selected, we deselect it, or if an item was not selected, we select it.
This will form a new state s'(P). At each step, we take only one action A for a particular
item j.

Reward Function: Our reward function is guided by the original problem. Since we
minimize the objective function, we aim to reduce the objective value without violating any
constraints. Therefore, we give rewards based on four different situations. First, if the action
reduces the objective value and leads to another feasible state, the agent is given a positive
reward. Second, if the objective is increased and the problem remains feasible, then a small
negative reward is given. Third, if an action leads to infeasibility, then a high negative reward
is given. Lastly, if an action leads to a better solution than the starting solution, we give a
higher positive reward, and if the solution is still feasible, we continue to the next step. Let
Z be the objective value of a certain state s and j be the item currently selected in a step.
We can then formulate the reward function as follows:

+Z; if a better solution than the starting solution is found

+c; if the objective is reduced and feasibility is maintained

r(s(P), Aj) = &)

—c; if the objective is increased and feasibility is maintained

—Z, otherwise

Based on our results, there are some disadvantages in using the 1D representation of the
model. First, as instances’ size increases, the number of states and actions increases, thus
considerably affecting training time. Therefore, the model training time and the time the
agent needs to learn will also increase. We reformulate our model using a two-dimensional

@ Springer

Journal of Global Optimization

{ >
% . i R A
Vi=2yfn+1 Xm,/hz : x\/pnTlf-l X n—l\/t_l
VTl X it - oo 1 Xn=1 | Xp
\ y,

Fig.2 Two-dimensional matrix representation of the state space

representation to overcome these weak points, gaining more advantage of the heuristic and
lower action space, as presented in the next section.

4.4 2D Knapsack environment

Here, we develop a novel two-dimensional knapsack environment and formulation to over-
come the weaknesses of the one-dimensional representation described in Sect.4.3. The
heuristic is used in this representation as well, but in addition, we reshape a vector of n
items into a square two-dimensional matrix of \/n, as shown in Fig.2.

The reshape of the 1D representation is done after using the sorting heuristic. Here, the
items are sorted according to their worthiness, starting from the top-left first cell to the
bottom-right last cell. Similar to the isolated area of the solution on the 1D representation,
sorting and locating the items based on their worthiness in the 2D matrix will help the agent
learn faster to select or deselect items.

As an extension of the 1D formulation, some of the design properties are inherited. Chang-
ing the shape of the environment does not change our state space. Instead, it reduces the action
space and also provides a path-like movement in selecting and deselecting items.

Episode: Similar to the 1D formulation, the episode starts with a feasible solution and
moves on the 2D matrix until the solution (state) becomes infeasible or the maximum number
of steps for each episode is reached.

States s: Changing the dimensions of the representation does not change our state space.
For example, consider a 1D representation with 100 items. In our 2D representation, the
solutions will be represented as a 10x10 matrix, where each element of the matrix represents
an item’s location. Again, state space would amount to 2".

@ Springer

Journal of Global Optimization

A2C DQN
Isit (Untrained) (Untrained)

f =p Initial Solution
Jeesible? ACKTR PPO2
(Untrained) (Untrained)

K-means Solve with No “ u
Clustering — Cplex “

RL Environment
(Re-ordered Initial Solution 2D)

Add three
most violated

constraints

A2C DQN
(Trained) (Trained)
ACKTR PPO2
Heuristic Re-ordered Variables {Trained) {{rained)
Instances

Multiple Training

Fig.3 Training DRL Flowchart

Actions: In this formulation, the primary benefit is seen in the action space. From having
a representation where the action space increases with the size of the problem, we move to
a formulation where the action space is the same for different-sized instances. We model the
actions as movements in the matrix. We have four (4) discrete actions at any step. Up, Down,
Right, and Left. Whenever the agent moves from one cell to another at each step, it reverts
an item’s selection or deselection decision and moves to another item to make a decision for
the next step.

Reward Function: The reward structure also does not change with our structure. So, for
the 2D formulation, we still use the reward function shown in Eq. (3).

4.5 Main DRL algorithm

To train and test both the 1D and 2D knapsack environments, we use a similar algorithm. The
environments differ internally, but the general steps of the algorithm are the same. Combining
the above structures, we build our training framework, as shown in Fig. 3. We use the same
testing framework as in the training framework shown in Fig. 3. Using ten knapsack training
instances of different sizes, we process each one in our K-means cluster to get a close-to-
optimal feasible solution and also feed these instances to our heuristic to create a 1D ratio
representation for each of the instances. Both of these results are used to prepare the DRL
environment. Converting the 1D representation of ratios to a 2D matrix and organizing the
K-means solution according to the ratios make up our initial DRL environment. We reset
the training environment for every new knapsack instance. Each of the MKP instances for
training is generated randomly and has different sizes. Independent of the sizes, the learning
is controlled by a set number of steps that we define in the algorithm. Each of the instances
is used to train the DRL model until the set number of steps is done. When all training is
finished, the model is stored to be used for testing.

For testing, a similar flow to the training algorithm is followed, using a different set of
instances for testing. Different from training, we perform three tests. For each of the tests,
we generate ten instances for each size considered: small, medium, and large. Therefore, in
total, 30 instances are tested based on the same loaded model from the training.

We demonstrate the steps of the training DRL framework given in Algorithm 2 in Fig. 3.
The steps of the Testing DRL framework given in Algorithm 2 are also similar to the steps
of the training procedure. We use K-means Constraint Clustering (Algorithm 1) to obtain a

@ Springer

Journal of Global Optimization

close-to-optimal and feasible solution and a suboptimal objective value. The variable indices
for each instance are re-ordered based on a list of item-worth values, using the heuristic shown
in Algorithm 3. Using the initial solution combined with the item worthiness values, we can
create the 1D and 2D environments with re-ordered items. After creating the environment,
we train our agent for a pre-set number of steps and use one of the training DRL algorithms,
A2C, ACKTR, DQN, and PPO2. Internally, 1D and 2D environments have their differences
and similarities. When it comes to state space, reward strategy, and episode concept, they are
similar. But the action space changes. In a 2D environment, we have reduced the number of
possible actions in each step to four (4) of n possible actions in a 1D environment, where n
is the number of items in the knapsack.

Algorithm 2 describes the training and testing procedures of the DRL framework. Both
training and testing procedures make use of Algorithms 3 and 1 to prepare the ground for
training DRL agents. The training loop is configured to run a set number of steps for each
training instance. Although having the same number of steps, larger instances contribute
mainly to the training time. In addition, the testing loop runs for a set number of steps for
each MKP instance. The number of steps for testing is calculated based on the MKP instance
size because of the huge range of the instance sizes we solve. During a set number of steps,
multiple episodes can occur. Due to selection and deselection decisions, we keep track of the
best solution achieved throughout all episodes.

4.6 Generalization to larger instances

Another essential property of every machine learning model is knowledge transfer. Knowl-
edge/Learning transfer is a machine learning technique in which a model trained on one task
is repurposed on a second related task [30]. With the current methods, similar instances can be
easily implemented and the agent learns fast in a stable environment. In our model, we do not
aim to solve only instances of the same size. We model our environment in a 30x30 matrix,
despite the size of the instances. Our initial environment has all cells (items) assigned as -1.
With this environment, we aim to solve instances as large as 900 items and 900 constraints.

For large instances, the values of -1 are replaced by assigning the item values of 1 or 0
in all cells. For smaller instances, we put the formulation of the square matrix in the top left
corner of the environment as 0 and 1 s of an initial state obtained from K-means while leaving
the other cells at -1 as initially assigned. Figures4(a), (b), and (c) show how the environment
is filled in different instance sizes. We expect the agent to learn a path that leads to the best
solution. In the case of (a) and (b), we expect the agent to learn not to move around cells
assigned with -1. This representation is used to generalize the framework to instances with
different sizes, as it orders items in the matrix, and the RL agent learns to focus on a certain
search area that is more advantageous in terms of finding the best set of solutions. In addition
to the preprocessing of the instances before creating the RL environment, this formulation
also reduces our action space, as mentioned in Sect. 4.4.

5 Experiments
5.1 Instance generation and implementation

To evaluate the computational performance of the DRL algorithm, we generate three types
of instances with different sizes. We classify instances as small, medium, and large, based on

@ Springer

Journal of Global Optimization

Algorithm 2 DRL Framework Algorithm
1: Procedure: Training DRL Framework

2: Input: t {DRL training steps.}

3: Input: P {Set of problems P for training.}
4: for p € P do

5:)E’ <— Heuristic {Get 2D ratio representation using heuristic Algorithm 3.}

6: X, Zp <— K-means {Solution and objective obtained using K-means Algorithm 1.}

7. Bnv<— X +X { Using heuristic result and K-means initial solution build DRL

environment (Env). }
8: for each 7 do

9: Predict actiona € A {For each step we only perform one action.}

10: Perform action a — obs, rew, done {After action get the new state (obs), reward
(rew), and episode end flag (done).}

11: end for

12: end for

13: Output: Q {DRL trained model. }

14:

15: Procedure: Testing DRL Framework

16: Input: 0 {DRL testing steps.}

17: Input: Pz, Q {Set of test problems Py, DRL trained model. }

18: for p € P7 do

19:):(<— Heuristic {Get 2D ratio representation using Algorithm 3.}

20: X, Zp, <— K-means {Solution and objective obtained using Algorithm 1.}

21: Env «<— X + X { Using heuristic result and K-means initial solution build DRL

environment. }
22: for each 0 do

23: Predict actiona € A { For each step we only perform one action.}

24: Perform action a — obs, rew, done {After action get the new state (obs), reward
(rew), and episode end flag (done).}

25: Store X* and Zp, {Keep the solution and objective if it is the best found.}

26: end for

27: end for

28: «— X*, Zp, {Return best solution and objective value from DRL.}

29: Output: X*, ZpT {Solution and objective value at the end of the testing procedure. }

their sizes. A small instance is made up of 100 items and 100 constraints. A medium instance
has 400 items and 400 constraints. Finally, a large instance is made up of 900 items and 900
constraints. For each size of the instance, we generate ten testing instances. The training set
of 9 instances is made up of instances of different sizes, with three instances of each size.
Using instances of different sizes has a significant impact on the results in terms of scalability
and generalization. By training our methodology in varying instances, we can evaluate its
ability to handle different practical problems. In addition, it helps us assess whether our DRL
framework can generalize and adapt to different sizes and complexities of problems.

We generate each of the test instances for the MKP with the following distributions:

The parameters c¢; and a;; are independent and identically distributed (i.i.d.) random
variables sampled from the uniform distribution over {1, ..., 10}, e.g. U [1, R], where R =

10. We set b; = % (Z;L] aij)~

@ Springer

Journal of Global Optimization

0

0

0

0

0

1

0:0:0

0i0:0:0:0

0:0:0:0:0

0;0:0:0:0

0i0:0:i0:0

1

1

1

0

0

1

0:0

0:0

GG

1

1

0:0:0:0

0i0:0:0:0

0:0:0:0:0

0:0:0

[+)

0i0:0i0:0

I I T L I I e U LI LI e U I LI LIRS I I e LI EI e L LI LI e e |

1

1

1

1

0:0

0:0

1

1

0:0i0

1

0:0i0

1

1

AiAiaiaiaia

1

0:0:0

0:0:0:0:0:0

0:0

1

')

1

0:0:0

1

1

1

0:0i0:0:0:0:0:0:0:0:0

0:0

0:io0

0:0

0:0:0:0

0:0:0:0:0:0:0:0:0:0:0:0

1

1

1

1

1

1

0:0

1

0i0:0:0:0:0i0:i0:0i0i0i0i0:0:0

1

A A A A i

EIE S i

R RV

S R

AT At aiaiataiaiaiaiaaiaiaiaiaiaiaia

Fig. 4 2D DRL Environment for a 100 items and 100 constraints (small) b 400 items and 400 constraints

(medium), and ¢ 900 items and 900 constraints (large)

5.2 Implementation details

We implement our DRL algorithm using Python v3.7 and CPLEX v12.71 on a machine

running Windows 10 with an Intel i7 CPU, 64 GB of RAM, and NVIDIA GeForce GTX

1070 GPU. CPLEX v12.71 was the state-of-the-art solver at the time of the implementation

and provided exact solutions for most of the MKP problems tested. Thus

we use CPLEX as

)

a benchmark and further investigate the quality of the solution with respect to the CPLEX

solution. We first evaluate the performance of the DRL algorithm in terms of the objective
function value, where we calculate % items predicted that are in line with the CPLEX solution,

then we investigate further to understand how different our solutions are in terms of the

selected elements.

Our DRL models were trained on a Windows 10 machine equipped with an Intel i7 CPU, 64

GB of RAM, and an NVIDIA GeForce GTX 1070 GPU. The software environment utilized

during the training comprised industry standard deep learning frameworks and libraries,

including TensorFlow 2.0 and Python 3.7. We used GPU acceleration to optimize the training
process, leveraging the capabilities of the NVIDIA GeForce GTX 1070 GPU. During training,

pringer

Qs

Journal of Global Optimization

Table 1 DRL, K-means, and Heuristic Parameters

Parameter Description Value

n Number of items 100;400;900
m Number of constraints 100;400;900
L Number of iterations for the K-means algorithm 30

T Set of clusters for each instance size n/25

T Number of DRL steps for training 100,000

6 Number of DRL steps for testing 100

Gap' CPLEX optimality gap preset to solve the original problem 0.001 %
Gap2 CPLEX optimality gap preset to solve the K-means reduced problem 0.01 %

we feed different-sized instances in a random order and perform iterative training cycles. We
used a stopping criterion based on a predefined threshold level to ensure that our models
achieved convergence while avoiding overfitting.

Table 1 shows the parameter values used in the heuristic, K-means, and DRL algorithms
with their symbol, description, and experimental value. We run our K-means algorithm for 30
iterations. The number of iterations is not set in a way that provides us with a very good initial
solution; rather, we want it to be time effective and obtain a good enough initial solution by
using only a subset of constraints, hence reducing complexity. We define a different number
of clusters in the K-means for each instance size. As the size of the instance increases, the
number of clusters in the K-means algorithm also increases.

5.3 Results

To report computational results for each considered approach, we describe the following
abbreviations:

cpx: solving the original problem (1a)-(1c) using CLPEX

ppo: training and testing our DRL algorithm using PPO

acktr: training and testing our DRL algorithm using ACKTR

a2c: training and testing our DRL algorithm using A2C

dqgn: training and testing our DRL algorithm using DQN

obhj: objective function value based on the best solution found for all instances for its

specific size averaged over 10 instances

ttime: training time in CPU hours

e soltime: solution time in CPU seconds averaged over 10 instances

e ipred (%): percentage of item values correctly predicted with respect to the optimal
solution averaged over 10 instances

o gapdiff (%): the average percentage change in the objective value compared with CPLEX

objective (rl_obj — cpx_obj)/cpx_obj % 100 where rl_obj and cpx_obj represent the

objective found by DRL agent and CPLEX, respectively, averaged over 10 instances.

The gapdiff value for cpx refers to the CPLEX MIP gap.

@ Springer

Journal of Global Optimization

Gap Violated Constraints

6 12 18 38 42

z
H
g
F
S
4 =~ 60
- 4
S 5 50
2 6]
& £ a0
° S 30
8 "
H 20
10 20
“ 0
- 6 12 18 34 38 a2
Number of Constraints Added Number of Constraints Added
(a) Percent gap for small instances (b) Violated constraints for small instances
Gap Violated Constraints
1 2 250
05 5
0 £ 200
=
-05 S
4 2 150
S 3
s £ 10
© s T
P
3 2 50
- :
- _; 2,
s 0 3 4 48 4 M 0 08
L Number of Constraints Added Number of Constraints Added
(c) Percent gap for medium instances (d) Violated constraints for medium instances
Gap
0.5 Violated Constraints
- 300
0 £
; 250
- g
S 05 S 200
bt T
B <
6 § 150
1 =
5 100
15 £ s
H
z
0
2 70 76 82 88 94 100 106 112 118 130 140
Number of Constraints Added Number of Constraints Added
(e) Percent gap for large instances (f) Violated constraints for large instances

Fig. 5 Percent gap and the number of violated constraints for small, medium, and large instances using the
iterative K-means Algorithm 1

5.3.1 K-means algorithm evaluation

To evaluate the performance of our K-means algorithm presented in Sect. 1, we investigate
the rate of improvement and the progress after each CPLEX loop. Starting with clustered
constraints, we solve our relaxation, namely the reduced K-means problem, check for violated
constraints and calculate the gap between the objectives of the original and the reduced
problem, as described in Algorithm 1. Since we start with a low number of constraints
included from the clusters, the first solution found from the relaxed problem is often infeasible
for the original problem. Figure 5 shows how the percent gap between the original and the
K-means reduced problem’s objectives, and the number of violated constraints changes after
each loop to the point where a subset of constraints is reached to result in feasibility in the

@ Springer

Journal of Global Optimization

Episodes and Gap

31

26

21

1 l

f MJA l lMlllh.u.M-h.hnhllnl hadbe. . A‘l bl ke o m‘—lnl‘li u.l-n ihauw, ¥

LR N P o O o O S
P PR EEF NP PP RO PO F O RPE RN D EE RSP EP SO F PP P

Gap with CPLEX Solution (%)
5

&

Reward
s b

Reward for Episode

Fig. 6 Training gap and rewards for each episode where a negative reward represents a positive contribution
to reducing the minimization objective function

original problem. For each instance size, we can see that this solution helps us identify a
feasible solution (with a small gap on large instances) in a timely manner.

Figures 5(a),5(c), and 5(e) show how the gap changes between the objectives of the original
and K-means reduced problems after each iteration for small, medium, and large instances,
respectively. For small instances, an optimal solution is reached in most cases, but for medium
and large instances, when a feasible solution is found, its objective value has a positive gap of
around 0.5% compared to the best objective value of the original problem found by CPLEX.

Figures 5(b),5(d), and 5(f) also show how the number of violated constraints changes over
each iteration of the K-means algorithm for small, medium, and large instances, respectively.
Initially, the K-means algorithm starts by violating a big subset of the constraints, but very
fast, it converges to a feasible solution. We will use the solution found by K-means to train
the DRL agent. The performance of the agent’s learning with respect to the initial K-means
solution is discussed in the next section.

5.3.2 Instance learning and reward performance

To evaluate the learning process of an agent and the performance of our reward function, we
plot the reward results of the training process against the respective values of the gap between
DRL'’s updated objective value and the objective value of the initial solution provided by the
K-means algorithm using CPLEX. We use the initial solution and the initial objective value
found by the K-means approach given in Algorithm 1 to guide the DRL agents in the learning
process. Figure 6 shows how the reward function reacts to the percent gap between the DRL
solution and the K-means solution. The top y-axis presents the percent gap between the DRL
and initial K-means objectives, while the down y-axis shows the reward for each respective
episode, where a negative reward represents a positive contribution to reducing the objective
function. Notice in Fig. 6 that as the gap increases, the rewards given to the agent decrease.
However, the improvement is not completely smooth during the training episodes due to
training using different-sized instances. We can still see that the model is learning to get
higher rewards and, consequently, getting close to or better than the initial objective value
found by the K-means algorithm.

As with general applications of the DRL, the learning or training process is the most
time-consuming. To evaluate the results regarding generalization, we only train one model
for each of the DRL algorithms (a2c¢, acktr, dqn, and ppo) where the parameters of the MKP

@ Springer

Journal of Global Optimization

model are sampled using U[1, R], where R = 10. Then, each of these DRL models will be
used to predict MKP instances of different sizes and distributions. The training time (ttime)
for a2¢ and dqn is 39 CPU hours, while for ppo and acktr, training takes 38 and 33 CPU
hours, respectively.

5.3.3 Comparing Four DRL algorithms and CPLEX performances

In this section, we compare the performance of each DRL algorithm with that of the CPLEX
commercial solver. Each row of Table 2 shows results that are averaged over 10 test instances
with a specific instance size.

The agent is trained only once for each DLR algorithm (a2c, acktr, dqn, and ppo), and then
we predict small, medium, and large instances with the same respective agent. The percentage
difference (gapdiff) is calculated with respect to the best solution found by CPLEX. For the
results in Table 2, the gap (gapdiff) and solution time (soltime) depend on the number of
iterations used in the K-means algorithm ¢ and the number of DRL steps used for testing 6.

Our primary aim in this study is to benefit in solving harder instances faster, but we present
results for small instances to show a wide range of applicability of our approach. For small
instances, the DRL agents are able to find an optimal solution, although each of the agents
takes longer to solve than cpx. Also, the percentage of item values correctly predicted with
respect to the optimal solution is consistently above 97%. For medium instances, we notice
that we have small gaps with respect to cpx, but they do come with a significant improvement
in the solution time. In terms of solution time and gap with respect to ¢px, acktr is a clear
winner for medium instances. Each DRL solution requires at least 45 times less CPU solution
time in CPU seconds and only has a max gapdiff of 0.28 %. Despite this, acktr is closely
followed by the other algorithms with a slightly larger gap and solution time. With respect to
the number of item values correctly predicted, a2c is slightly ahead with a small percentage.

For large instances, trained DRL agents still show some gaps, but in the worst-case sce-
nario, we improve ten times over cpx in terms of solution time. dgn seems a clear winner
over other DRL algorithms with respect to the solution time, the gap, and the percentage of
item values correctly predicted. The dgn provides a solution that predicts 97. 8% of the same
items as cpx using at least 14 times less time and only having a gapdiff of 0.22%.

In this section, we address the generalization of the proposed DRL algorithms by training
each of the agents with a mix of varying-size instances and then using that agent to predict
instances with different sizes. In the next section, we show the generalization of our DRL
approach to solving instances with not only different sizes, but also different distributions.

5.3.4 Generalization to different distributions

To further expand the generalization, we want to use the same trained agents to predict
instances generated from different distributions. For this set of generalization experiments,
we generate groups of 10 small, medium, and large instances with a uniform distribution
U[1, R], where R = 25 and R = 100, to test the trained DRL models.

Each row of Table 3 shows the test results for an average of 10 instances generated with
U[1, R], where R = 25, using the DRL models that are formerly trained using instances
with U[1 : R], where R = 10. Thus, for these generalization experiments, we do not perform
any additional training. Our results show that for small instances, the DRL framework finds
the optimal solution using each of the four RL algorithms, and a high percentage of items
are predicted to be the same as the solution from cpx. In medium and large instances, we

@ Springer

Journal of Global Optimization

Table 2 Comparison of DRL algorithms and CPLEX performances

Instance Algorithm obj soltime (CPU sec.) gapdiff % ipred %
Small cpx 359.9 4 0 -
a2c 359.9 7 0 98.2
acktr 359.9 8 0 97.8
dgn 359.9 5 0 97.0
ppo2 359.9 7 0 97.2
Medium cpx 1355.1 7206 0.26 -
a2c 1358.8 159 0.27 97.6
acktr 1358.7 135 0.26 96.8
dqn 1398.9 136 0.28 96.6
ppo2 1358.8 147 0.27 96.8
Large cpx 2994.2 7209 0.25 -
a2c 3002.9 715 0.29 97.4
acktr 3002.8 607 0.28 97.3
dqn 3002.6 494 0.22 97.8
ppo2 3002.9 680 0.29 97.2

notice a slight increase in the cpx optimality gap and the solution time compared to similar
results shown in Table 2, implying that the testing instances with R = 25 are harder than the
training instances with R = 10. Despite the change in distribution (R = 10 to R = 25), the
gap gapdiff and the percentage of items’ values correctly predicted ipred still perform well.
Specifically, the gapdiff (%) values provided by DRL algorithms are improved in Table 3
compared to Table 2. This shows that the solution found by our DRL algorithm is closer to
the CPLEX solution for those more difficult instances when evaluating the gapdiff. Thus,
using a distribution for the test instances than those used in training instances does not impact
the good solution performance of our DRL approach.

Table 4 shows further results for our generalization to different distributions. Again, using
models trained with instances with U[1, R], where R = 10, we predict ten instances for
instances generated with U[1, R], where R = 100 and varying sizes. Once again, our results
show that the DRL framework can scale to different distributions without any significant loss
in soltime or gapdiff. Although we notice an increase in time of absence for small instances,
the percentage of item values correctly predicted pred is better compared to those in Tables
2 and 3. In the case of medium and large instances, despite a small increase in soltime, the
significant improvement with respect to ¢px is still maintained. For large instances, while
soltime increases, a 7-fold improvement by the DRL algorithms is preserved. Hence, our
generalization experiments prove that the DRL framework retains a good performance even
if the distribution of the test instances is varied.

5.3.5 RL partial prediction

To search for better solutions in large instances, we propose a partial prediction that can be
used to guide CPLEX and offer a better and more time-efficient solution. By utilizing the
DRL framework properties, we can decide on what items the framework selects and deselects
with high certainty. On the basis of this information, we can tailor a partial prediction guided

@ Springer

Journal of Global Optimization

Table 3 Comparison of DRL algorithms with CPLEX for test instances with R = 25

Instance Algorithm obj soltime (CPU sec.) gapdiff % ipred %
Small cpx 818.5 4 0 -
a2c 818.5 7 0 97.2
acktr 818.5 8 0 98.6
dgn 818.5 5 0 98.6
ppo2 818.5 6 0 98.6
Medium cpx 3157.6 7206 0.43 -
a2c 3166.5 203 0.28 95.5
acktr 3164.8 176 0.22 96.0
dqgn 3163.5 177 0.18 96.0
ppo2 3163.5 173 0.18 96.3
Large cpx 6811.1 7209 0.33 -
a2c 6826.0 727 0.22 96.9
acktr 6824.7 637 0.20 97.1
dqn 6822.7 533 0.17 97.7
ppo2 6828.5 721 0.25 97.4

Table4 Comparison of DRL algorithms with CPLEX for test instances with R = 100

Instance Algorithm obj soltime (CPU sec.) gapdiff % ipred %
Small cpx 3179.3 6 0 -
a2c 3179.3 11 0 100
acktr 3179.3 12 0 100
dqgn 3179.3 7 0 100
ppo2 3179.3 10 0 96.7
Medium cpx 12209.1 7201 0.36 -
a2c 12236.6 215 0.22 96.0
acktr 12699.0 205 0.27 96.0
dgn 12324.9 192 0.24 96.0
ppo2 12691.6 201 0.21 95.0
Large cpx 26864.3 7209 0.35 -
a2c 26937.3 1012 0.27 97.5
acktr 26945.0 978 0.30 97.6
dqn 26930.3 882 0.24 97.1
ppo2 26930.6 961 0.24 97.3

by a threshold level or solely based on the DRL certainty on selection. We show results
for three tested partial predictions: default, 85%, and 95%. The default partial prediction
only fixes items that DRL agents predict with high confidence. This is done by ordering
the solution of the DRL agent according to the worthiness of items defined by the Knap-
sack Transformation Heuristic given in Algorithm 3. Such a solution would have the form
L,1,1,1,1,...,0,1,1,0,0,1,...,0,0,0. The default prediction is defined by selecting
items starting from the left with the most rated until a deselected item is found and starting

@ Springer

Journal of Global Optimization

from the right with the least rated item until a selected item is found. Our goal is to have
the DRL agent predict only a subset of all items and to let CPLEX work on the uncertainty
region of the solution. Once the values of the predicted items are fixed in the optimization
model (1), we solve it by CPLEX in its default settings. Due to this, for different instance
sizes, the prediction percentage changes for the default method (see, e.g., Table 5, 70%, 78%
and 72%). To predict at the 85% and 95% levels, we still fix a set of items from the right and
left of the solution vector and then use CPLEX to solve for the remaining items. For 85%
partial prediction, we use 75% of the predictions starting from the left of the solution vector
and 10% of the predictions starting from the right of the solution vector, while for the 95%
partial prediction, we fix 80% of the items starting from the left and /5% starting from the
right leaving only 5% of the total item values for CPLEX to decide.

Table 5 shows the results for three partial predictions for each instance size and each
algorithm used. PredPerc is the percentage of items that are predicted using the DRL solution.
For small instances that are solved in a few seconds, cpx has a time advantage, sometimes
even two-fold. However, all DRL agents are able to find the optimal solution. Notice that
soltime for all partial predictions does not increase compared to soltime reported in Table 2,
despite solving an additional model where the partial predictions are fixed. This is because
the additional time to solve each of the models with partial predictions using cpx is quite
small, on average 0.01 CPU seconds. For medium instances, in the case of prediction at
95%, the solution time is insignificant. Therefore, no additional time is needed in addition
to the solution time of the DRL algorithm. In the case of the prediction at 85%, a short
period of time is required for cpx to solve it further, but a great improvement is seen with
respect to gapdiff. Even on the default case, which takes the longest time among the partial
predictions, an average gap of 0.001% with cpx is achieved in considerably lower soltime.
For large instances, the default partial prediction not only achieves an average of 0.0005%
gapdiff with cpx but also provides a slightly better solution in the case of a2¢. Larger
instances take more time to solve compared to medium instances using all methods. Among
them, 85% consumes more cpx time, while 95% partial prediction model with fixed variables
uses, on average, around 10 CPU seconds. Based on our results in Table 5, a manager would
not benefit much from partial predictions at 95% but would gain at least a two-fold decrease in
gapdiff if they decided to use partial prediction at 85%. Meanwhile, certain decision-makers
who need a close-to-optimal solution and would allow more time to get a better solution
might find the default partial prediction most useful.

Partial prediction is a useful feature that serves as a trade-off between reductions in compu-
tational time and solution gap. In situations requiring a fast solution of large problems, a partial
prediction with a high percentage of fixed items can be used, while in situations demanding
close-to-optimal solutions, a default partial prediction can be the preferable approach.

5.3.6 Comparison to other heuristics

We compare our DRL framework with other state-of-the-art heuristics, such as the Primal
Effective Capacity Heuristic (PECH) [2] and Adaptive Fixing (AF) [7]. The algorithms
considered were benchmarked against other state-of-the-art heuristics such as [16, 48, 50,
62, 68].

Both PECH and AF algorithms consider a minimization formulation; therefore, we adapt
them accordingly to our maximization formulation. We do so by referring to the origi-
nal papers and only mentioning the necessary changes in the algorithms. In the case of
PECH, we redefine |a| as the smallest integer that exceeds a real number a. In turn,
this changes the way effective capacity, denoted as y;, is calculated for each item j,

@ Springer

Journal of Global Optimization

Table 5 Three levels of partial prediction for four DRL algorithms and CPLEX

Instance Algorithm PredPerc% obj soltime (CPU sec.)* gapdiff % ipred%
85% 359.9 8 0 97.0
acktr 95% 359.9 8 0 97.0
72% 359.9 5 0 99.0
85% 359.9 5 0 98.0
Small dqn 95% 359.9 5 0 98.0
70% 359.9 7 0 97.6
85% 359.9 7 0 97.6
ppo2 95% 359.9 7 0 97.6
cpx - 1355.1 7206 0.26 -
78% 1355.5 2284 0.02 97.0
85% 1356.4 416 0.09 96.0
a2c 95% 1358.8 159 0.27 97.0
81% 1355.9 657 0.05 97.4
85% 1357.9 145 0.2 96.5
acktr 95% 1358.7 135 0.26 96.8
75% 1355.2 2112 0.007 97.2
85% 1356.4 373 0.11 96.6
Medium dgn 95% 1358.9 136 0.28 97.0
73% 1355.4 1235 0.02 96.7
85% 1357.2 389 0.15 96.0
ppo2 95% 1358.8 147 0.27 96.7
cpx - 2994.2 7209 0.25 -
72% 2994.1 5570 —0.003 98.1
85% 2995.2 2583 0.03 98.0
a2c 95% 2997.1 716.2 0.09 97.4
81% 2994.6 2823 0.01 97.6
85% 2997.1 1730 0.09 97.3
acktr 95% 3002.8 615 0.28 97.3
64% 2994.3 2710 0.003 98.1
85% 2997 1617 0.09 97.6
Large dgn 95% 3002.6 504 0.22 97.6
72% 2995.2 2896 0.03 97.5
85% 2996.5 1803 0.07 97.2
ppo2 95% 3002.9 688 0.29 97.6

* Solution time is calculated by summing up the time needed to find a solution with a DRL algorithm and the
model solution with fixed predictions using CPLEX

where j € E = {j |x; =0, Vj}. Then we select the item with the lowest cost, j*, as
j* = argmin icE {c XY } where c; represents the cost coefficient of an item j. After j* is
computed, the algorithm update process continues, where if the set of effective capacities is
empty (E =), we end the heuristic; else we go back to calculating the effective capacities
again.

@ Springer

Journal of Global Optimization

Table 6 Comparison of DRL algorithms with CPLEX and other heuristics for test instances with R = 10

Instance Algorithm obj soltime (CPU sec.) gapdiff % ipred %
Small cpx 359.9 4.0 0.0 -
dqn 359.9 5.0 0.0 97.0
pech 376.1 0.3 4.5 86.0
af | 372.4 0.1 35 93.0
af, 365.6 0.1 1.5 93.0
Medium cpx 1355.1 7206.0 0.26 -
dqn 1358.9 136.0 0.28 96.6
pech 1464.5 14.4 7.5 90.0
af | 1368.1 2.6 0.96 97.0
af, 1363.9 2.7 0.66 97.0
Large cpx 2994.2 7209.0 0.25 -
dqgn 3002.6 494.0 0.22 97.8
pech 3222.0 171.3 7.7 79.0
af| 3012.2 5.5 0.60 97.0
af; 3009.8 6.5 0.51 97.0

In the case of AF, we develop two different approaches, one the same as described in
Bertsimas and Demir [7] (af), and another where we consider a maximization formulation
(af,). In af,, we use the same notation as in the original algorithm, where X and X denote
the set of variables that are fixed at 0 and 1, respectively, and y represents the user-specified
threshold parameter. The difference between af| and af, is that in af, we use y = 0.75,
which is decided as an analog value to y = 0.75 in the af within the range 0 to 1 and
modify the iteration process. Specifically, we update the equations to calculate X and X

c c .
jLP < 1}, where xfp is

the optimal solution obtained by solving the linear-programming relaxation of the problem,
LP¢ (Step 3 in Figure 2 of Bertsimas and Demir [7]). In addition, we also modify the

iteration process in which we update the argmin equation to j* = arg max {xJLP } and

X <— X1 U j*. We show the solution results for PECH and AF in Tables 6, 7, and 8 with
the acronym pech, af, and af,, respectively.

We solve the same set of instances with cpx, dgqn, pech, af;, and af,. In Tables 6, 7,
and 8 we show results for small, medium, and large problems averaged over ten instances
for distributions R = 10, R = 25, and R = 100, respectively. We compare the developed
heuristics with dqn and cpx, as presented in Table 2. For cpx we present the solution gap
after a two-hour time limit, and for the other algorithms, we present the gap of their best
objective from the best cpx solution.

As shown in Table 6, pech, af |, and af; are quite fast due to their simplistic structure. For
all algorithms, in terms of percentage gap difference gapdiff, dqn dominates for all different
instance sizes. We notice that in small instances, dqn has the advantage over the others
that provide optimal solutions. Interestingly, af | and af, seem to perform slightly better on
medium and large instances, rather than on small ones. Unlike af; and af,, gappdif of pech
highly increases as we move from small to medium and large instances.

as Xo «— XoU{jlijPC=0} and X| «— XlU{j|V<x

@ Springer

Journal of Global Optimization

Table 7 Comparison of DRL algorithms with CPLEX and other heuristics for test instances with R = 25

Instance Algorithm obj soltime (CPU sec.) gapdiff % ipred %
Small cpx 818.5 4.0 0.0 -
dgn 818.5 5.0 0.0 98.6
pech 898.5 0.3 8.9 84.0
af | 841.1 0.1 2.68 92.0
af, 833.9 0.1 1.84 94.0
Medium cpx 3157.6 7206.0 0.43 -
dqn 3166.5 177.0 0.18 96.0
pech 4040.3 14.9 21.8 84.0
af | 3195.3 2.6 1.18 96.0
af, 3182.3 2.7 0.77 96.0
Large cpx 6811.1 7209.0 0.33 -
dqgn 6822.7 533 0.17 97.7
pech 8326.8 182.2 18.2 88.0
af 6875.1 7.2 0.93 98.0
af; 6859.2 8.7 0.70 98.0

In Table 7, we compare the experimental results with instances that have a distribution
R = 25. As stated previously, dqn, even though trained from a mix of instances having
different sizes and only of distribution R = 10, performs in the same way in terms of the
solution gap gapdiff, preserving the closeness to cpx objective. In the case of pech we
notice that the effect of shifting distributions strongly affects the solution gap gapdiff and
slightly the solution time soltime as well. Differently, for af; and af», solving instances of
different distributions does not significantly affect solution gaps gapdiff in any of the sizes
of instances.

In Table 8, we also compare the results for instances generated with R = 100. Although
dgn needs more time than the previous distributions, it still preserves the proximity to the
best solution provided by cpx. The pech still shows a similar trend. Especially, it shows a
huge gapdiff for large instances. In this distribution, af | and af, only show a slight increase
in terms of soltime and gapdiff.

Overall, pech, af |, and af, are faster than dgn; however, dqn performs the best in terms of
percent deviation from the best cpx solution. af; and af, perform better as the instances get
larger, while dgn performance does not change much with respect to the size of the instance
or its distribution.

6 Discussion and future work

We present a DRL framework to solve MKP instances of different sizes and distributions. The
framework consists of a heuristic to analyze and generalize MKP properties to estimate item
worthiness and an unsupervised clustering algorithm based on K-means to reduce the problem
size and obtain an initial feasible solution. Four different state-of-the-art RL algorithms are
used to learn patterns in a two-dimensional environment where items can be selected or

@ Springer

Journal of Global Optimization

Table 8 Comparison of DRL algorithms with CPLEX and other heuristics for test instances with R = 100

Instance Algorithm obj soltime (CPU sec.) gapdiff % ipred %
Small cpx 3179.3 6.0 0.0 -
dgn 3179.3 7.0 0.0 100
pech 3373.0 0.3 5.7 80.0
af | 3268.7 0.1 2.73 92.0
af, 3235.5 0.1 1.73 92.0
Medium cpx 12209.1 7201.0 0.36 -
dgqn 123249 192.0 0.24 96.0
pech 13531.7 22.1 9.7 86.0
af 12329.1 3.1 0.97 96.0
af, 12293.1 3.5 0.68 96.0
Large cpx 26864.3 7209.0 0.35 -
dqgn 26930.3 882.0 0.24 97.1
pech 41922.5 194.8 3591 79.0
af| 27102.5 8.9 0.88 97.0
af, 27025.2 10.1 0.60 98.0

deselected. Our design is based on a lot of testing while identifying fast and efficient ways
to feed the main RL learning process.

Our results show that COPs can highly benefit from the power of deep learning method-
ologies. Specifically, reformulating hard problems into convenient general deep learning
environments allows one to generalize over the solution of a broad class of problems, such
as MKP. Based on our experiments, DRL agents can learn and generalize solution strategies
for the MKP. Furthermore, commercial solvers can benefit from the computational power of
deep learning and form hybrid frameworks that reflect the best side of each methodology.

As a general framework, future work can include improvements anywhere in the frame-
work. For example, another way can be found to gain an initial solution and an objective value
faster. A more accurate representation of the MKP, rather than using the heuristic, could lead
to an improvement in time and accuracy. Future improvements could be introduced to the
RL parts. The reward function is a key point in training; therefore, a multi-objective reward
function could be designed to look at different aspects of a solution, such as a gap, feasibility,
or small violations. A new DRL algorithm designed specifically for the MKP environment
can improve sequential decision making and also contribute to faster and more accurate
prediction. Lastly, the developed MKP environment can be further extended to incorporate
stochasticity in sequential decision making.

Acknowledgements We gratefully acknowledge the support of the National Science Foundation CAREER
Award co-funded by the CBET/ENG Environmental Sustainability program and the Division of Mathematical
Science in MPS/NSF under Grand No. CBET-1554018.

Data Availability The data and the codes are publicly available on this GitHub website: RL for MKP Frame-
work Repository (https://github.com/sbushaj93/rl-mkp-framework).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the

@ Springer

https://github.com/sbushaj93/rl-mkp-framework
https://github.com/sbushaj93/rl-mkp-framework

Journal of Global Optimization

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Journal of Global Optimization

Appendix A: Heuristic Transformation

To facilitate the multidimensional knapsack problem for usage in the DRL algorithm, we
present a heuristic that evaluates the items and sorts them based on their importance, consid-
ering their contribution to the objective function and the feasibility of the constraints.

We build our analysis by a worthiness formulation considering the effect of cost val-
ues, weights of each item, and the sizes of each knapsack. Despite many different heuristic
approaches in the literature used to solve knapsack and multi-dimensional knapsack prob-
lems [8, 56], we develop a new heuristic used before the DRL algorithm to improve its
performance. We perform experiments with multiple heuristics, but eventually our results
show that the normalization procedure sets a ground truth that the DRL agent picks up dur-
ing training. In our heuristic, we consider every component of the problem that affects the
decision regarding a certain item, such as the item cost, the item weight for each constraint,
the respective right-hand-side value, and normalize all parameters used. We only aim to
transform our multidimensional knapsack into a one- or two-dimensional vector representa-
tion. We do not consider any duality properties or multipliers, but only consider proportions
between the problem components.

Algorithm 3 shows the step-by-step procedures of the heuristic algorithm. Initially, we
calculate the item worth for each item in the knapsack and store them in a vector. Then in a
second procedure, we sort them in ascending order, but we maintain their original position.
We use some utility methods to convert from the sorted items to the original problem.

Algorithm 3 Knapsack Transformation Heuristic
1: Procedure: Calculate Item Worth

2: Input: ¢, a;;, b; {Item cost, item weight, and constraint i right-hand side.}
3: Output: ¥ {The item worth set.}
4: for j € J do {for each item}
5. for i € Z do {for each knapsack}
6: rji=+ € { Calculate worthiness ratio. }
aij/bi
7: end for o
8: append —L to W
pp 7] to
9: end for
10:
11: Procedure: Sort Elements According to Item Worth
12: Input: W {Item worth list.}
13: Output: S, S’ (S - sorted values, S’ keeps re-ordered indices for items according to

worthiness ratio. }
14: S, §" «<— sortAscending(W¥)

References

1. Afshar,R.R.,Zhang, Y., Firat, M., Kaymak, U.: A state aggregation approach for solving knapsack problem
with deep reinforcement learning. In: Asian Conference on Machine Learning, pp. 81-96. PMLR (2020)

2. Akgay, Y., Li, H., Xu, S.H.: Greedy algorithm for the general multidimensional knapsack problem. Ann.
Oper. Res. 150(1), 17-29 (2007)

@ Springer

Journal of Global Optimization

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Balas, E., Martin, C.H.: Pivot and complement-a heuristic for 0-1 programming. Manag. Sci. 26(1),
86-96 (1980)

Balev, S., Yanev, N., Fréville, A., Andonov, R.: A dynamic programming based reduction procedure for
the multidimensional 0-1 knapsack problem. Eur. J. Oper. Res. 186(1), 63—76 (2008)

Barrett, T., Clements, W., Foerster, J., Lvovsky, A.: Exploratory combinatorial optimization with rein-
forcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34(04), pp.
3243-3250 (2020)

Bello, I., Pham, H., Le, Q. V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforce-
ment learning. CoRR arXiv:1611.09940 (2016)

Bertsimas, D., Demir, R.: An approximate dynamic programming approach to multidimensional knapsack
problems. Manag. Sci. 48(4), 550-565 (2002)

Boyer, V., Elkihel, M., El Baz, D.: Heuristics for the 0—1 multidimensional knapsack problem. Eur. J.
Oper. Res. 199(3), 658-664 (2009)

Bushaj, S., Biiyiiktahtakin, iE., Haight, R.G.: Risk-averse multi-stage stochastic optimization for surveil-
lance and operations planning of a forest insect infestation. Eur. J. Oper. Res. 299(3), 1094-1110 (2022)
Bushaj, S., Biiyiiktahtakin, iE., Yemshanov, D., Haight, R.G.: Optimizing surveillance and management
of emerald ash borer in urban environments. Nat. Resour. Model. 34(1), e12267 (2020)

. Bushaj, S., Yin, X., Beqiri, A., Andrews, D., Biiyiiktahtakin, IE.: A simulation-deep reinforcement learning

(sirl) approach for epidemic control optimization. Ann. Oper. Res. 328(1), 245-277 (2023)
Biiyiiktahtakin, IE.: Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer pro-
grams. Ann. Oper. Res. 309(1), 1-35 (2022)

Biiyiiktahtakin, IE.: Scenario-dominance to multi-stage stochastic lot-sizing and knapsack problems.
Comput. Oper. Res. 153, 106149 (2023)

Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems
with cardinality constraints. Eur. J. Oper. Res. 123(2), 333-345 (2000)

. Chen, W., Xu, Y., Wu, X.: Deep reinforcement learning for multi-resource multi-machine job scheduling.

arXiv preprint arXiv:1711.07440 (2017)

Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heurist. 4(1),
63-86 (1998)

Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured data. CoORR
arXiv:1603.05629 (2016)

Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms
over graphs. CoRR arXiv:1704.01665 (2017)

Delarue, A., Anderson, R., Tjandraatmadja, C.: Reinforcement learning with combinatorial actions: an
application to vehicle routing. arXiv preprint arXiv:2010.12001 (2020)

Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonnegative data.
Math. Oper. Res. 7(4), 515-531 (1982)

Etheve, M., Ales, Z., Bissuel, C., Juan, O., Kedad-Sidhoum, S.: Reinforcement learning for variable
selection in a branch and bound algorithm. In: International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pp. 176-185. Springer (2020)
Eysenbach, B., Gupta, A., Ibarz, J., Levine, S.: Diversity is all you need: Learning skills without a reward
function. arXiv preprint arXiv:1802.06070 (2018)

Fox, G.E., Scudder, G.D.: A heuristic with tie breaking for certain O—1 integer programming models. Nav.
Res. Logist. Q. 32(4), 613-623 (1985)

Fréville, A., Plateau, G.: An exact search for the solution of the surrogate dual of the 0—1 bidimensional
knapsack problem. Eur. J. Oper. Res. 68(3), 413421 (1993)

Frieze, A., Clarke, M.: Approximation algorithms for the m-dimensional O—1 knapsack problem: Worst-
case and probabilistic analyses. Eur. J. Oper. Res. 15(1), 100-109 (1984)

Gaspar, D., Lu, Y., Song, M.S., Vasko, FJ.: Simple population-based metaheuristics for the multiple
demand multiple-choice multidimensional knapsack problem. Int. J. Metaheurist. 7(4), 330-351 (2020)
Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one knapsack problems to
optimality. Math. Program. 31(1), 78-105 (1985)

Gavish, B., Pirkul, H.: Computer and database location in distributed computer systems. IEEE Trans.
Comput. 35(7), 583-590 (1986)

Glover, F., Kochenberger, G.A.: Critical event Tabu search for multidimensional knapsack problems. In:
Meta-heuristics, pp. 407—427. Springer (1996)

Goodfellow, 1., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge
(2016)

Gu, S., Hao, T., Yao, H.: A pointer network based deep learning algorithm for unconstrained binary
quadratic programming problem. Neurocomputing 390, 1-11 (2020)

@ Springer

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1711.07440
http://arxiv.org/abs/1603.05629
http://arxiv.org/abs/1704.01665
http://arxiv.org/abs/2010.12001
http://arxiv.org/abs/1802.06070

Journal of Global Optimization

32.

33.

34.
35.
36.

37.
38.

39.
40.
41.
42.

43.

50.
SI.

52.

53.
54.
55.
56.

57.
. Pontrandolfo, P., Gosavi, A., Okogbaa, O.G., Das, T.K.: Global supply chain management: a reinforcement

59.
60.
61.

62.

Hanafi, S., Freville, A.: An efficient tabu search approach for the O—1 multidimensional knapsack problem.
Eur. J. Oper. Res. 106(2-3), 659-675 (1998)

Haul, C., Voss, S.: Using surrogate constraints in genetic algorithms for solving multidimensional knap-
sack problems. In: Advances in Computational and Stochastic Optimization, Logic Programming, and
Heuristic Search, pp. 235-251. Springer (1998)

Hillier, E.S.: Efficient heuristic procedures for integer linear programming with an interior. Oper. Res.
17(4), 600-637 (1969)

Hu, H., Zhang, X., Yan, X., Wang, L., Xu, Y.: Solving a new 3d bin packing problem with deep reinforce-
ment learning method. arXiv preprint arXiv:1708.05930 (2017)

Hubbs, C.D., Perez, H.D., Sarwar, O., Sahinidis, N.V., Grossmann, LE., Wassick, J.M.: Or-gym: A
reinforcement learning library for operations research problem. arXiv preprint arXiv:2008.06319 (2020)
Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytol. 11(2), 37-50 (1912)
Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. In: Knapsack Problems,
pp. 235-283. Springer (2004)

Kong, W., Liaw, C., Mehta, A., Sivakumar, D.: A new dog learns old tricks: Rl finds classic optimization
algorithms. In: Proceedings of International Conference on Learning Representations, pp. 1-25 (2019)
Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! Proceedings of Interna-
tional Conference on Learning Representations 3499, 3508 (2019)

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: Pomo: Policy optimization with multiple
optima for reinforcement learning. Adv. Neural. Inf. Process. Syst. 33, 21188-21198 (2020)

Lee, J.S., Guignard, M.: Note-an approximate algorithm for multidimensional zero-one knapsack
problems-a parametric approach. Manag. Sci. 34(3), 402—410 (1988)

Li, F, Hu, B.: Deepjs: Job scheduling based on deep reinforcement learning in cloud data center. In:
Proceedings of the 2019 4th International Conference on Big Data and Computing, pp. 48-53 (2019)

. Li, Y.: Deep reinforcement learning: an overview. arXiv preprint arXiv:1701.07274 (2017)
. Liao, H., Zhang, W., Dong, X., Poczos, B., Shimada, K., Burak Kara, L.: A deep reinforcement learning

approach for global routing. J. Mech. Des. 142(6) (2020)
Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129-137 (1982)

. Lorie, J.H., Savage, L.J.: Three problems in rationing capital. J. Bus. 28, 229-229 (1955)
. Loulou, R., Michaelides, E.: New greedy-like heuristics for the multidimensional 0—1 knapsack problem.

Oper. Res. 27(6), 1101-1114 (1979)

. Ma, Q., Ge, S. He, D., Thaker, D., Drori, I.: Combinatorial optimization by graph pointer networks and

hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936 (2019)

Magazine, M., Oguz, O.: A heuristic algorithm for the multidimensional zero-one knapsack problem.
Eur. J. Oper. Res. 16(3), 319-326 (1984)

Mansini, R., Speranza, M.G.: Coral: An exact algorithm for the multidimensional knapsack problem.
INFORMS J. Comput. 24(3), 399-415 (2012)

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asyn-
chronous methods for deep reinforcement learning. In: International Conference on Machine Learning,
pp. 1928-1937. PMLR (2016)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solving the vehicle routing
problem. In: Advances in Neural Information Processing Systems, pp. 9839-9849 (2018)

Nomer, H.A., Alnowibet, K.A., Elsayed, A., Mohamed, A.W.: Neural knapsack: a neural network based
solver for the knapsack problem. IEEE Access 8, 224200-224210 (2020)

Pirkul, H.: A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Nav. Res.
Logist. 34(2), 161-172 (1987)

Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res. 45(5), 758-767 (1997)

learning approach. Int. J. Prod. Res. 40(6), 1299-1317 (2002)

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: Reliable
reinforcement learning implementations. J. Mach. Learn. Res. 22(268), 1-8 (2021)

Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint
arXiv:1511.05952 (2015)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 (2017)

Senju, S., Toyoda, Y.: An approach to linear programming with 0-1 variables. Manag. Sci. B196-B207
(1968)

@ Springer

http://arxiv.org/abs/1708.05930
http://arxiv.org/abs/2008.06319
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1911.04936
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347

Journal of Global Optimization

63.

64.

65.

66.
. Thesen, A.: A recursive branch and bound algorithm for the multidimensional knapsack problem. Nav.

68.
69.
70.
71.
72.
73.
74.
75.
76.
71.
78.

79.
80.

81.

82.

83.

84.

85.

Shehab, M., Khader, A.T., Alia, M.A.: Enhancing cuckoo search algorithm by using reinforcement learn-
ing for constrained engineering optimization problems. In 2019 IEEE Jordan international joint conference
on electrical engineering and information technology (JEEIT), pp. 812-816. IEEE (2019)

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., etal.: A general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science 362(6419), 1140-1144 (2018)

Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming: Learning to cut. In
International Conference on Machine Learning, pp. 9367-9376. PMLR (2020)

Thesen, A.: Scheduling of computer programs in a multiprogramming environment (1974)

Res. Logist. Q. 22(2), 341-353 (1975)

Toyoda, Y.: A simplified algorithm for obtaining approximate solutions to zero-one programming prob-
lems. Manag. Sci. 21(12), 1417-1427 (1975)

Vasquez, M., Hao, J.-K.: A hybrid approach for the 0-1 multidimensional knapsack problem. In: IJCAI,
pp- 328-333 (2001)

Vasquez, M., Vimont, Y.: Improved results on the O—1 multidimensional knapsack problem. Eur. J. Oper.
Res. 165(1), 70-81 (2005)

Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2013)

Verma, R., Singhal, A., Khadilkar, H., Basumatary, A., Nayak, S., Singh, H.V., Kumar, S., Sinha, R.: A
generalized reinforcement learning algorithm for online 3d bin-packing. arXiv preprint arXiv:2007.00463
(2020)

Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. arXiv preprint arXiv:1506.03134 (2015)
Weingartner, H.M.: Capital budgeting of interrelated projects: survey and synthesis. Manag. Sci. 12(7),
485-516 (1966)

Weingartner, H.M., Ness, D.N.: Methods for the solution of the multidimensional 0/1 knapsack problem.
Oper. Res. 15(1), 83-103 (1967)

Woeginger, G.J.: Exact algorithms for np-hard problems: a survey. In: Combinatorial Optimization-
Eureka, You Shrink!, pp. 185-207. Springer (2003)

Wu, Y., Mansimov, E., Grosse, R.B., Liao, S., Ba, J.: Scalable trust-region method for deep reinforcement
learning using kronecker-factored approximation. Adv. Neural. Inf. Process. Syst. 30, 5279-5288 (2017)
Yang, Yan, Shengjian Liu, Y.Z.: Greedy binary lion swarm optimization algorithm for solving multidi-
mensional knapsack problem. J. Comput. Appl. 40(5), 1291-1294 (2020)

Yang, M.-H.: An efficient algorithm to allocate shelf space. Eur. J. Oper. Res. 131(1), 107-118 (2001)
Yang, Y., Rajgopal, J.: Learning combined set covering and traveling salesman problem. arXiv preprint
arXiv:2007.03203 (2020)

Yilmaz, D., Biiyiiktahtakin, I.E.: An expandable learning-optimization framework for sequentially depen-
dent decision-making. Eur. J. Oper. Res. 314(1), 280-296 (2024). https://doi.org/10.1016/j.ejor.2023.10.
045

Yilmaz, D., Biiyiiktahtakin, I.E.: Learning optimal solutions via an LSTM-optimization framework. Oper.
Res. Forum 4(2), 28 (2023)

Yin, X., Biiyiiktahtakin, iE.: Risk-averse multi-stage stochastic programming to optimizing vaccine allo-
cation and treatment logistics for effective epidemic response. IISE Trans. Healthc. Syst. Eng. 12(1),
52-74 (2022)

Yin, X., Biiyiiktahtakin, IE., Patel, B.: COVID-19: Data-driven optimal allocation of ventilator supply
under uncertainty and risk. Eur. J. Oper. Res. 304(1), 255-275 (2023)

Yilmaz, Dogacan and Biiyiiktahtakin, [Esra.: A deep reinforcement learning framework for solving two-
stage stochastic programs. Optimization Letters, 1-28 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/2007.00463
http://arxiv.org/abs/1506.03134
http://arxiv.org/abs/2007.03203
https://doi.org/10.1016/j.ejor.2023.10.045
https://doi.org/10.1016/j.ejor.2023.10.045

	A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack
	Abstract
	1 Introduction
	2 Related work
	2.1 Key contributions

	3 Multi-dimensional Knapsack problem formulation
	4 Deep reinforcement learning Knapsack model
	4.1 K-means algorithm and initial solution
	4.2 DRL model
	4.3 1D Knapsack environment
	4.4 2D Knapsack environment
	4.5 Main DRL algorithm
	4.6 Generalization to larger instances

	5 Experiments
	5.1 Instance generation and implementation
	5.2 Implementation details
	5.3 Results
	5.3.1 K-means algorithm evaluation
	5.3.2 Instance learning and reward performance
	5.3.3 Comparing Four DRL algorithms and CPLEX performances
	5.3.4 Generalization to different distributions
	5.3.5 RL partial prediction
	5.3.6 Comparison to other heuristics

	6 Discussion and future work
	Acknowledgements
	Appendix A: Heuristic Transformation
	References

