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Abstract

This article proposes new practical methods for furnishing generalized derivative information
of optimal-value functions with embedded parameterized convex programs, with potential
applications in nonsmooth equation-solving and optimization. We consider three cases of
parameterized convex programs: (1) partial convexity—functions in the convex programs are
convex with respect to decision variables for fixed values of parameters, (2) joint convexity—
the functions are convex with respect to both decision variables and parameters, and (3) linear
programs where the parameters appear in the objective function. These new methods calculate
an LD-derivative, which is a recently established useful generalized derivative concept, by
constructing and solving a sequence of auxiliary linear programs. In the general partial
convexity case, our new method requires that the strong Slater conditions are satisfied for
the embedded convex program’s decision space, and requires that the convex program has a
unique optimal solution. It is shown that these conditions are essentially less stringent than
the regularity conditions required by certain established methods, and our new method is at
the same time computationally preferable over these methods. In the joint convexity case,
the uniqueness requirement of an optimal solution is further relaxed, and to our knowledge,
there is no established method for computing generalized derivatives prior to this work. In
the linear program case, both the Slater conditions and the uniqueness of an optimal solution
are not required by our new method.
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1 Introduction

This article considers parameterized convex programs of the form
¢(y) :=min f(x,y)
xeX

s.t. g(x,y) <0, (D
hx,y) =0,

where the functions f, g, h are continuously differentiable, ¢ is an optimal-value function
in the sense of Thibault [51], and for each fixed y, the optimization problem is convex. It
is well-known that even if the optimization problem in (1) is convex and if the functions
f, g, and h are sufficiently smooth, the function ¢ is still nonsmooth and nonconvex in
general, or even discontinuous without certain regularity conditions (c.f. [4]). Due to such
nonsmoothness, algorithms for equation-solving [10, 15, 40, 52] and optimization [31, 32,
53, 55] with ¢ embedded typically require furnishing ¢’s generalized derivatives, which
are sensitivity concepts for nonsmooth functions generalized from smooth functions. This
article will propose new implementable methods for furnishing the generalized derivatives
of ¢, under mild conditions that can be satisfied in practice.

(Clarke’s) generalized Jacobian [6] is a point-to-set generalization of the classical
derivative to locally Lipschitz continuous functions that are not differentiable everywhere,
and is useful in methods for nonsmooth equation-solving or optimization. Semismooth
Newton methods [40, 52] for equation-solving replace the usual derivatives employed
in the classical Newton method with elements of the generalized Jacobian, and can
exhibit Q-quadratic local convergence properties [39] similarly to their smooth counter-
parts [36]. Recently, a linear program (LP-)based Newton method [10, 15] even relaxes
the non-singularity requirement of sensitivities in both classical and semismooth Newton
methods, while keeping the same local convergence properties. Besides, bundle methods
[31, 32] for nonsmooth optimization utilize generalized Jacobian elements to approximate
the original nonsmooth functions locally at each iteration. Elements of the generalized
Jacobian were also supplied to the smooth optimization solver IPOPT [54] to solve non-
smooth programs [53, 55], which turned out to outperform the bundle methods in some
cases.

Though the generalized Jacobian elements are useful, they are typically difficult to com-
pute in practice. One reason is that the generalized Jacobian only satisfy calculus rules as
inclusions (see [5, Theorem 2.6.6]); often strict inclusions [1]. Nesterov’s lexicographic
derivative (L-derivative) [35] and the lexicographic directional derivative (LD-derivative)
[27] are useful for mitigating this problem. The L-derivative is another generalized deriva-
tive concept for nonsmooth functions. It has been shown in [26] that the L-derivatives are
elements of the plenary hull of the generalized Jacobian whenever they exist. As a result, the
L-derivatives are no less useful than generalized Jacobian elements in methods for equation-
solving or optimization, in the sense that using L-derivatives in place of these elements does
not affect the desirable convergence properties of these methods (c.f. [27, Sect. 2.2]). More-
over, for piecewise-differentiable functions (in the sense of Scholtes [47]) or scalar-valued
functions such as ¢ above, L-derivatives are guaranteed to comprise a subset of the gener-
alized Jacobian (c.f. [27, Sect. 3] and [35, Theorem 11], respectively). The LD-derivative
[27] is a nonsmooth extension of the classical directional derivative, which provides a prac-
tical way for calculating the L-derivatives. From an LD-derivative, an L-derivative can be
computed by solving a simple linear equation system. Unlike the generalized Jacobian, the
LD-derivatives follow a sharp chain rule for composite functions, which enables a vector for-
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ward mode of automatic differentiation (AD) [27] or a reverse AD mode via branch-locking
[25].

The goal of this article is to propose implementable methods for furnishing useful gener-
alized derivative information for ¢ in (1). Unfortunately, established methods for estimating,
characterizing, or computing generalized derivatives of optimal-value functions are of lim-
ited scope for parameterized nonlinear programs (NLPs). For parameterized NLPs whose
parameters only appear in the objective function, sufficient conditions under which the
optimal-value function is differentiable were given in [4, 38]. When the optimal-value func-
tion is not differentiable, Clarke [S] gave a characterization of the generalized Jacobian.
For the situation where parameters only appear at constraints’ right-hand sides, Gauvin
[16] estimated the generalized Jacobian as a subset of the convex hull of all KKT multi-
pliers. If assuming parameterized convex NLPs and that the strong Slater conditions ([20,
Definition 2.3.1]) hold, then the corresponding optimal-value function is convex, and the
generalized Jacobian is identical to the set of all KKT multipliers (follows from [5, Propo-
sition 1.2] and [20, Theorems 3.3.2 and 3.3.3]). For linear programs (LPs) parameterized
by the constraints’ right-hand-side vectors, Hoffner et al. [21] proposed a practical method
for computing an LD-derivative by solving a sequence of auxiliary LPs. This method was
extended to compute LD-derivatives for lexicographic LPs [18] and dynamic systems with
LPs embedded [21]. The situation where parameters appear at the left-hand side of con-
straints, such as in (1), is in general more difficult to handle (and can readily cover the
right-hand-side perturbations). Some results for estimating the Fréchet subgradients can be
found in [34]. Rockafellar [43, 44] estimated the generalized Jacobian based on Lagrange
multipliers (treat active inequality constraints as equalities) and the concept of proximal sub-
gradients. When the decision space is closed and convex for fixed parameters, Thibault [51]
estimated the generalized Jacobian of the optimal-value function using generalized Jaco-
bians of the support functions of the decision space. De Wolf and Smeers [9] characterized
the generalized Jacobian of LPs parameterized by the matrix coefficients in constraints,
which were then applied to solve nonsmooth NLPs arising in the applications of nat-
ural gas transmission networks. Other studies (e.g. [4, 7, 8, 22, 41, 45], among many)
focus on directional differentiability of optimal-value functions. However, such directional
derivatives are not enough for furnishing an L-derivative or an element in the generalized
Jacobian [1], which are in turn useful in algorithms for nonsmooth equation-solving and
optimization.

There are also extensive studies (refer to [4, 11, 12, 14, 29]) focusing on generalized sen-
sitivity information of the optimal-solution mapping of parameterized programs. Given such
information, generalized derivatives of the optimal-value function may be easily computed.
Recent works computed an LD-derivative of the optimal-solution mapping of parametric
NLPs by solving a nonsmooth and nonlinear equation system [49], or by solving a sequence of
quadratic programs [48], both under the linear independence constraint qualification (LICQ)
and strong second-order sufficient condition. Under these conditions, the optimal solution
is guaranteed to be unique around the parameter values of interest. Then, an LD-derivative
of the optimal-value function follows from the sharp chain rule for LD-derivatives [27].
These methods could in principle be used to compute an LD-derivative of ¢ in (1). How-
ever, these methods cannot deal with parameterized convex NLPs with non-unique optimal
solutions, and the LICQ cannot be verified unless the original NLP is solved, and is also
somewhat stringent in convex optimization. For example, LICQ is not satisfied at any degen-
erate vertex (c.f. [3, Sect. 2.4]) of a polyhedral decision space. However, to the authors’
knowledge, these are the only established methods that may be used to achieve the goal of
this article.
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In this article, we propose new practical methods for evaluating useful LD-derivatives of
the optimal-value function ¢ with parameterized convex NLPs embedded of the form (1). As
mentioned, LD-derivatives can be used for computing L-derivatives, and the L-derivatives
are guaranteed to be valid generalized Jacobian elements for optimal-value functions, which
are in turn useful for nonsmooth equation-solving and optimization. Moreover, such LD-
derivatives follow a sharp chain rule for composite functions, and thus allowing treatment
of complex problems with ¢ embedded (in contrary to methods only computing generalized
Jacobian elements e.g. [5, 9]). We consider three cases of parameterized convex NLPs of the
form (1):

— Partial convexity — the functions f, g, and h are convex with respect to x, for each fixed
y.

— Joint convexity — the functions f, g, and h are jointly convex with respect to both x and
y.

— Parameterized LP’s objective function — the optimization problem in (1) is an LP wherein
y only appears in the objective function.

We propose new methods for computing the LD-derivatives for each of the three cases
mentioned above. In each case, the new method computes the LD-derivatives by solving a
sequence of LPs, of which the computational complexity grows polynomially with the size
of the problem. In the partial convexity case, our new method is in general computationally
preferable over the established methods [48, 49], which solve a nonsmooth and nonlinear
equation system or a sequence of quadratic programs. The new method requires that the
strong Slater conditions hold for the parameterized convex NLPs and requires that there
exists exactly one optimal solution at the parameter value of interest. These conditions are
essentially less stringent than the regularity conditions in [48, 49] (as will be discussed in
Sect.3.1), and thus our new method is applicable to a broader class of problems with partial
convexity. We nevertheless note that [48, 49] primarily aim at calculating LD-derivatives
of the optimal-solution mapping for general nonconvex parameterized NLPs, which intu-
itively needs more restrictive assumptions than our purpose. In the joint convexity case,
the uniqueness requirement of an optimal solution is further relaxed; our new method only
assumes a nonempty and bounded optimal solutions set for the parameters’ values of inter-
est. Due to such non-uniqueness of optimal solutions, the methods in [48, 49] are no longer
applicable. To the authors’ knowledge, prior to this article, there is no established method
for furnishing computationally relevant generalized derivatives in this case. In the case of
parameterized LP’s objective function, both the Slater conditions and the uniqueness require-
ment of an optimal solution are not required, and the new method necessarily yields an
element of the B-subdifferential (see Definition 1 below). It has been shown [27] that the
B-subdifferential-based Newton method [30] exhibits local Q-quadratic convergence under
less stringent conditions than the semismooth Newton method [40] based on the generalized
Jacobian.

The rest of this article is structured as follows. Section 2 presents mathematical preliminar-
ies including notational convention, Clarke generalized Jacobian, lexicographic derivative,
and set-valued mapping. Sections 3.1, 3.2, and 3.3 respectively present the new methods for
computing an LD-derivative of ¢ in the partial convexity, joint convexity, and parameterized
LP’s objective function cases.
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2 Preliminaries
2.1 Notation

Throughout this article, scalars are denoted as lowercase letters (e.g. x € R), vectors are
denoted as boldface lowercase letters (e.g. x € R"), and the i component of a vector x
is denoted as x;. 0 denotes a vector with all elements to be 0, whose dimensions are clear
from the context. Matrices are denoted as boldface uppercase letters (e.g. M € R"*"). The
j™ column of a matrix M is denoted as m ;). Sets are denoted as uppercase letters (e.g.
X C R"). The interior of a set X is denoted as int(X). Inequalities involving vectors are to
be interpreted componentwise. The standard Euclidean norm || - || is considered on R”". For
a function f : R” — R™ that is (Fréchet) differentiable at x € R", Jf(x) € R™*" denotes
the Jacobian of f at x. For a scalar-valued differentiable function f of (x,y), Vxf € R™
and Vy f € R" denote the partial derivative of f with respect to x and y, respectively. A
vector-valued function f is said to be convex if each component f; is convex.

2.2 Generalized Jacobian

Clarke’s generalized Jacobian [6] defined below is a pertinent generalized derivative concept
for locally Lipschitz continuous functions that are not differentiable everywhere.

Definition 1 (from [27], originally from [6]) Given an open set X C R” and a locally
Lipschitz continuous function f : X — R, let S C X be the set on which f is differentiable.
The B-subdifferential of f at x € X is defined as

apf(x) ;= (H e R™" :H = lim Jfx"), x= lim x?), x¥ e, vi e N}.
1—> 00 1—> 00

The (Clarke) generalized Jacobian of f at x, denoted as 0f (x), is the convex hull of dgf(x),
and is nonempty, compact, and convex.

As introduced in Sect. 1, elements of the generalized Jacobian are used in the semismooth
Newton method [40] and LP-Newton method [10, 15] for nonsmooth equation-solving, and
in bundle methods [31, 32] for nonsmooth optimization.

2.3 Lexicographic derivatives

This section introduces Nesterov’s lexicographic derivatives [35], which have been shown
to be no less useful than the generalized Jacobian for nonsmooth equation-solving and opti-
mization [26, 35].

Definition 2 (from [47]) Given an open set X C R", a function f : X — R, some x € X,
and some d € R”, the limit

. x4+ ad) —f(x)
lim——mMm—
al0 o
is called the directional derivative of f at x if and only if it exists, and is denoted as f'(x; d).
The function f is directionally differentiable at x if and only if f'(x; d) exists and is finite for

each d € R". The function f is directionally differentiable if and only if it is directionally
differentiable at each point in its domain.
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Definition 3 (from [27], originally from [35]) Let X C R” be open and f : X — R”
be locally Lipschitz continuous and directionally differentiable at x € X. The function f
is lexicographically smooth (L-smooth) at x if and only if for any p € N and any matrix
M :=[m() mg) --- my] € R"™7, the following homogenization sequence of functions
is well defined:

f R > R td > f(xi d),
£ R = R td s (1 Tmgy:d), Vje{l....p).

The function f is L-smooth if and only if it is L-smooth at each point in its domain. When
the columns of M span R", fipl\),l is guaranteed to be linear. If p = n and M € R"*" is
non-singular, then a lexicographic derivative (L-derivative) of f at X in the directions M,

denoted as Jp.f(x; M), is defined as
JLE( M) 1= JEUR (0) € R,
and the lexicographic subdifferential o f(x) is defined as
oLf(x) ;= {JLf(x; M) € R™*" : VM € R"*" and non-singular}.

It has been shown that 9 f(x) C of (x) if f is piecewise differentiable in the sense of Scholtes
[47] ( [27, Sect. 3]), or if f is a scalar-valued function ([35, Theorem 11]). Moreover, for
vector-valued functions but not necessarily piecewise differentiable, Khan and Barton [26]
showed that the L-derivatives are elements of the plenary hull [50] of the generalized Jacobian
whenever they exists. These elements are no less useful than the generalized Jacobian in
methods for nonsmooth equation-solving and optimization, in the sense that using these in
place of the generalized Jacobian elements will not affect the convergence results of these
methods (c.f. [26, Sect. 2.4]).

The following definition of lexicographic directional derivative provides a convenient
way for evaluating an L-derivative.

Definition 4 (from [27]) Given an open set X C R”", a locally Lipschitz continuous function
f: X — R™ thatis L-smooth at x € X, and a matrix M := [m(yy --- m(,)] € R"*7, define
the lexicographic directional derivative (LD-derivative) as

£ M) = [£ 0 mq1)) £3mey) - £ me))1.

As shown in [27], such LD-derivatives are particularly useful for evaluating the L-derivatives.
Firstly, it holds that

£ M) = [£0 me1y) -~ £ mp)].

Furthermore, since fi”ﬁ,[ is linear, if M € R"*" is non-singular, f’(x; M) and J.f(x; M) are
related by '

f'(x; M) = J_f(x; M)M. 2)

Secondly, the LD-derivatives follow a sharp chain rule (c.f. [27, Proposition 2.2] and [18,
Theorems 2.1 and 2.2]) for L-smooth composite functions, which enables a vector forward
mode of automatic differentiation [27].
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2.4 Set-valued mappings

This section summarizes some closedness, boundedness, and Lipschitzian properties of set-
valued mappings.

Definition 5 (from [46]) Given Y C R" and X C R™, a set-valued mapping Q : Y = X
maps each element of Y to a subset of X.

Definition 6 (from [23]) Given Y C R” and X C R™, a set-valued mapping Q : ¥ = X
is closed at § € Y if for some sequence {y*} C Y such that § = limj_, o y¥, and some
sequence {x*} such that x* € Q (yk) and X = limg_, o X, it follows that X € Q y).

Definition 7 (from [23]) Given X C R™,anopenY C R",anday € Y, aset-valued mapping
Q : Y = X is uniformly bounded near Yy, if there exists a neighborhood Ny C Y of y such
that Uye NyQ (y) is bounded.

Definition 8 (from [28]) For some x € R” and Z C R”, let
dx,Z) :=inf{||x — z| : z € Z}.
Then, given X A XB c R, define the Hausdorff distance between X Aand XB as
du(X?, XB) ;= inf{k : d(x*, XB) <k, d(xB, X?) <k, x* € X2 xB € xB).

Definition 9 (from [28]) Given X € R, anopen Y C R”,andy € Y, a set-valued mapping
Q : Y = X is Lipschitzian near y if there exist a neighborhood Ny of y and a/ > 0 such
that

da(Qy™), QB <1y* —yBI, vyt ¥R e Ny

3 Computing generalized derivatives

This section presents our new methods for computing an LD-derivative of ¢ of the form (1),
which is specialized to the partial convexity, joint convexity, and parameterized LP’s objective
function cases as introduced in Sect. 1. These new methods compute an LD-derivative by
solving a sequence of easily-constructed LPs. From an LD-derivative, an L-derivative of ¢
is readily computed via (2), provided a non-singular directions matrix M € R™*"y (the
simplest is to employ an identity matrix M := I). Since ¢ is scalar-valued, [35, Theorem 11]
indicates that the L-derivatives are elements of Clarke generalized Jacobian, which are in
turn useful in nonsmooth equation-solving and optimization. Moreover, the sharp chain rule
of LD-derivatives allows to evaluate generalized derivatives for more complex problems with
¢ embedded.

With a slightly abuse of notation, the same letters may be used to represent different
quantities in different subsections. Nevertheless, these letters will have consistent meanings
in each subsection.

3.1 Partial convexity

The following assumption formalizes a parameterized convex NLP with partial convexity
considered in this subsection.
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Assumption1 Let X C R™ be open and convex, and let Y C R" be open. Consider
functions f: X xY > R,g: X xY -> R", andh: X xY — R!. Consider the following
parameterized NLP:

¢(y) :==min f(x,y)
xeX

s.t. g(x,y) <0, 3)
hx,y) =0.

For some y € Y and some neighborhood Ny C Y of y, define the parameterized decision
space as a set-valued mapping €2 : Ny = X such that for each 'y € Ny,

Q(y) :={x€ X:gx,y) <0andh(x,y) =0}.
Suppose that the following conditions hold:

L1 the functions f, g, and h are continuously differentiable on X x Ny,
1.2 the optimization problem in (3) for y := y has exactly one optimal solution, denoted as
X",

1.3 there exists a closed set X C X such that Uye NyQ(y) C X,
and for each y € Ny,

L4 ¢(y) is finite,

1.5 the mappings f(-,y) and g(-, y) are convex,

1.6 the function h(-, y) is affine,

1.7 the strong Slater conditions hold for €2 (y): since Condition 1.6 holds, for each i €
{1,...,1}, let ag, = Vyhi(X,y), VX € X, suppose that the vectors ag, Viel{l, ...
are linearly independent and there exists a §, € X (can be dependent on y) such that
g€y, y) < 0 and hg,, y) = 0.

Observe that for each y € Ny, the optimization problem in (3) is convex. Then, (3) is called
a parameterized convex NLP with partial convexity.

Condition 1.3 can often be satisfied in practice, and if X = R”"~, this condition is always
satisfied with X := R"s. Condition 1.2 can be satisfied if the objective function f(-,y)
is strictly convex, or if certain regularity conditions are satisfied (e.g. [41, 48, 49]). This
condition can be relaxed in both the joint convexity and parameterized LP cases, as will be
seen in Sects. 3.2 and 3.3.

For a special case where the parameters y only appear in the objective function, [4,
Remark 4.14] indicates that the optimal-value function ¢ in Assumption 1 is differentiable,
and gives a practical method for calculating the gradients. In other general nonsmooth cases,
[48, 49] are the only established methods that can be used for calculating a generalized
derivative of ¢. These methods compute an LD-derivative of a unique optimal-solution func-
tion, and the LD-derivative of ¢ follows from a sharp chain rule. We note that in the partial
convexity setting (i.e., Conditions [.4-1.6 hold), Conditions I.1, 1.2 and 1.7 are essentially less
stringent than the required regularity conditions in [48, 49] for the following reasons. [48,
49] require that the linear independence constraint qualification and the strong second-order
sufficient condition hold at an optimal solution, and that the functions f, g, and h to be second-
order continuously differentiable. Under these conditions, the parameterized primal optimal
solution and dual optimal solution are guaranteed to be unique near y, and to be piecewise-
differentiable functions on Ny. Notably, this directly implies Conditions .1, 1.2, and 1.7 (see
[20, Theorem 2.3.2] for satisfaction of Condition 1.7), but not the converse. Interestingly,
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our method requires the optimal solution at y to be unique, but not necessarily around y. We
nevertheless note that [48, 49] primarily aim at calculating LD-derivatives of the optimal-
solution mapping for general nonconvex parameterized NLPs, which intuitively needs more
restrictive assumptions than our purpose.

The following proposition establishes the locally Lipschitz continuity of ¢ in Assump-
tion 1, which is essential for ¢ to be L-smooth.

Proposition 1 Under Assumption 1, the function ¢ is locally Lipschitz continuous at y.

Proof Let W C X be a bounded open convex set such that X* € W. Let ]\75, C Ny be
a neighborhood of y. Since Condition 1.1 holds, it follows that the functions f, g, and h
are (globally) Lipschitz continuous on W x Ny. Since Condition 1.2 holds, the optimal
solutions set of the NLP for y :=y in (3) is nonempty and bounded. Combining these with
Conditions 1.3 ,I.5, 1.6, and 1.7 in Assumption 1, according to [28, Theorem 1], we obtain
that the infimum function

$(y) := inf  f(x,y)
xeX
st. g(x,y) <0, )
h(x,y) =0,

is locally Lipschitz continuous at y. Since o) = ¢(y),Vy € Ny due to Condition L4, it
follows that ¢ is locally Lipschitz continuous at y. O

Remark 1 Note that [28, Theorem 1] used in the proof above requires that the set X = R,
while here X is an open set. However, since the decision variables x never leave X, relevant
properties of f, g, and h only need to be held on X. Moreover, since Condition 1.3 holds,
[28, Theorem 1] is indeed applicable here with the justification above.

The following Lemmata establish important regularity properties of the primal and dual
optimal solutions mappings of the optimization problem near y in (3).

Lemma 1 Suppose that Assumption 1 holds. Define M : Ny = R"* so that for each'y € Ny,
M (y) is the set of optimal solutions of the optimization problem in (3), i.e.,

M(y) ={xe Q) : ¢y = fX Yy}

Then, M is nonempty and uniformly bounded neary.

Proof Condition 1.4 implies that M is nonempty near y.
For some € > 0, define M, : Ny = R"* such that for each 'y € Ny, M,(y) is the set of all
e-optimal solutions of the NLP in (3), i.e.,

Mc(y) = {x € Q) : f(X,y) < o(y) +¢€}.

Following the arguments in proof of Proposition 1 and applying [28, Theorem 1], we obtain
that M. is Lipschitzian near y as in Definition 9. Moreover, since M (y) is bounded due
to Condition 1.2, according to [42, Corollary 8.7.1], M. (y) is bounded. Now, according to
Definition 9, there exist a neighborhood Ny C Nyofy,al > 0,and ao > 0 such that

dy(Me(y), Mc@) <1lly =3Il <lo, Vy e Ny.
This implies that for eachy € Ny and each x® € M, (y),

d(x®, Mc(y)) = inf{||Ix® — x| : x* € Mc(§)} < lo.
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Since M(y) is bounded, define ]\;IE (¥) to be the closure of M, (y). Then, we have
d(x®, Mc()) = min{||x® — 54 : %* € M (§)} < lo.

Now, consider an arbitrary y € Ny and an arbitrary x® € M, (y). We may find a %** € M, )
such that

d(x®, M (¥)) = |Ix® — x4

Moreover, since M. (¥) is bounded, there exists an > 0 such that X4 || < o, VX4 € M, y).
Then, it follows that

Pl = 154 < 1x® = %) < lo
IXPI| < lo + X)) < lo + e
Since both the choices of y € Ny and xB € M, (y) are arbitrary above, it implies that M, is

uniformly bounded on Ny. Since M (y) C M(y), Vy € Ny, it follows that M is uniformly
bounded on Ny too. O

Remark 2 The proof of Lemma 1 implies that in general, if a set-valued mapping is bounded
at a point, and if the mapping is also locally Lipschitzian at this point, then the mapping must
also be locally bounded.

Lemma 2 Under Assumption 1, the set-valued mapping M in Lemma 1 is closed at y as in
Definition 6.

Proof Since Condition 1.3 holds, for each y € Ny,
Qy)={xeX: g(x,y) <0andh(x,y) = 0}.

Moreover, since the functions g and h are continuous by assumption, the set-valued mapping
Q is closed at y due to [22, Theorem A.5].

Since it has been established that M is nonempty near y in Lemma 1, we may choose a
sequence {y¥} Ny such that limg_, y* = ¥ and sequence {x*} such that x* € M (y*) and
limg— o0 X¥ = X. Then, we have

f& ) = lim fx5y5) = lim ¢yh).
k— 00 k—o00
Since ¢ is continuous near ¥ due to Proposition 1 and since limg—oo y¥ = ¥, we have

limg_, 00 ¢ (¥5) = ¢ (¥), which implies that f (X, ¥) = ¢ (§). Moreover, since € is closed at
y, it follows that X € Q(y). Thus, X € M (y) and M is closed at y. O

Lemma 3 Suppose that Assumption 1 holds. Define the Lagrange dual function £ : X x Ny x
R” x Rl — R of the parameterized convex NLP in (3) such that for each (X,y,\, p) €
X x Ny x R™ x R/,

X,y A 1) = f(x,y) +ATgx, y) + nThx, y).

Define U : Ny = R such that for each'y € Ny, U(y) is the set of dual optimal solutions
of the optimization problem in (3), i.e.,

U(y) :=arg max o(y,A,pn)str>0,
AeR™ peR!
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where
o(y, A, p) := inf £(X,y, A, ).
xeX
Then, U is closed aty, and is nonempty and uniformly bounded neary.

Proof This proof proceeds similarly to the proof of [22, Lemma 2].

Since it has been shown in Lemma 1 that the optimal-solution set-valued mapping M is
nonempty and unlformly bounded near y and smce X is assumed to be open, we may choose
a compact set X C X such that M(y) C mt(X) for all y in some neighborhood Ny C Ny of

y. Then, define the following optimal-value function on Ny
$(y) :=min f(x,y)
xeX
st. gx,y) <0, ®)
h(x,y) = 0.

It is straightforward that for each 'y € Ny, oy = $(y), and the optimization problems in (3)
and (5) have identical primal optimal solutions. Define U : 1\7; = R”* such that for each
y € Ny, U (y) is the set of dual optimal solutions of the optimization problem in (5), that is

U(y) := arg max o(y,A, p)s.t. A >0, 6)
AeR™ peR!
where
o(y, A, p) := inf £(x,y, A, ). @)
xeX

Now, we show that for each 'y € Ny, Ul = U (y). We will show later that U is uniformly
bounded near y and is closed at y. Since Conditions 1.4, 1.5, 1.6, and 1.7 hold, [20, Theo-
rem 2.3.2] shows that U is bounded at y, is nonempty near y, and strong duality holds near
y. Thus, foreach 'y € Ny,

AeR™ peR!

P(y) = ( sup oy, A, p) s.t. A > 0) . 8)

Similarly to [28, Theorem 1] mentioned in the proof of Proposition 1, [20, Theorem 2.3.2]
also requires X = R"+. However, since Condition 1.3 holds, this result is applicable here.
The weak duality theorem [2, Proposition 5.1.3] indicates that for each y € Ny,

DY) =d(y) = ( sup Oy, A, p)st.A=0]. €]
AeR™ peR!
Consider an arbitrary fixed y € ﬁy. Since X C X, we have that
Oy, A, ) > o(y, A, p), VA >0,Vu e R

Moreover, since (8) holds, for each (A*, u*) € U(y),

oy, A", 1) = o(y, A", *) = ¢ (y).
Combinir}g this with (9), we have that sup{o(y,A, ) : A > 0, € R} = ¢(y) and
U(y) cU(®).
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To arrive a contradiction, assume that U(y) C U (y). This implies that there exists a
(A, 1) € U(y) such that o(y, &, ft) < ¢(y) = O(y,k ), ie.,

inf{e(x,y, A, ) 1 x € X} < inf{l(x,y,A, ) : x € X}.

Thus there must exist apomtx S (X\X) such that E(x .y, l i) < ((x*,y, X 1), where
(M(y) - 1nt(X)) Since the mapping £(-,y, A, 1) is convex, it follows that for any
0 <y < 1, with xB := yx® + (1 — y)x*, we have that £(xB,y, A, ) < e(x*,y, A, ).
Moreover, since x* minimizes the NLP in (5), [2, Proposition 5.1.1] indicates that x* also
minimizes £(-, y, i, 1) on X. This implies that xB must be not in )A(, which contradicts the
fact that x* € (M(y) C int(X)). Thus, Combining this with U(y) C U(y), we have that
Uly) =U(y).
Since X is compact, applying [22, Theorem A.1] to (7) yields that ¢ is continuous. Since
U y) =U(y), Ui is also nonempty near y and bounded aty. Then, applying [22, Theorem A.4]
to (6) yields that Uis uniformly bounded near y. Finally [22, Theorem A.2] shows that Uis
closed at y. All these properties also hold for U. O

The following theorem shows that the function ¢ in Assumption 1 is directionally differen-
tiable at y, and the directional derivative can be computed by constructing and solving an
LP.

Theorem 1 Under Assumption 1, the directional derivative ¢'(y; d) exists and is finite for
all d € R", and moreover,

¢'(F: d) = [Vy f &, PI'd + ¥ (), (10)

where the function ¥ : R" — R is defined as follows:

Y(d) = min [Vyxf&* )]'w
welRm
st [Vxgi &, 91Tw<—[Vyg (X", $)1Td, Vi such that g;(x*,§)=0, (1D
[Vxh ;& $)1"W = —[Vyh; X, )17d, Vjell,... 0}

Proof Under Assumption 1, Lemmata 1, 2, and 3 above show that both the primal optimal
solutions mapping M and the dual optimal solutions mapping U are closed at y and are
nonempty and uniformly bounded near y. Then, we reformulate (3) to a maximization prob-
lem and reformulate each equality constraint 4;(x,y) = 0 as two inequalities. Since X is
open, it must be that M(y) C int(X). Then, following the arguments in the proof of [22,
Theorem 2 and Corollary 2.1], we obtain that ¢’ (y; d) exists and is finite for alld € R"> and

L5 d) = : \1T T
¢ (y: d) = e [VyfEDId+[Vxf(x, Y] W

28 €R™ 2" R

st 25gi(x, §) + [Vxgi (X, PI'W < —[Vygi(x, H1Td, Vi € {1,...,m},

By, 9) + [Vahj 6 DITW < [V, 91T, Ve 1,0, 00
— 2 hj (X, §) + [ Vxhj(x, )W
< —[-Vyhj(x,P)1'd, Vje{l,...,1}.
Since M (y) := {x*} as in Condition 1.2, (12) reduces to (10) and (11). m]
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Remark 3 The proof above utilizes arguments of [22, Theorem 2 and Corollary 2.1], and these
results’ statements require X to be closed and convex, and require a parameterized convex
program with only inequality constraints and the Slater conditions must hold. However,
these requirements are only to guarantee that the mappings M and U in [22]’s case have the
properties as in Lemmata 1, 2, and 3. Since these properties have already been established
in our case without satisfying [22]’s conditions, it is verified that the arguments in the proof
of [22, Theorem 2 and Corollary 2.1] are sufficient to obtain (12).

Remark 4 Theorem 1 provides a characterization of the directional derivative of param-
eterized convex NLPs with both inequality and equality constraints. This is a nontrivial
generalization of [22, Theorem 2 and Corollary 2.1] which only deal with parameterized
convex NLPs with inequality constraints, and deal with a closed X. We allow an open X
by imposing Condition 1.3, which opens up the theory to a broader class of functions in
practice. The main difficulties for including affine equality constraints is to establish the
uniform boundedness of M near y and the closedness of M at y. In [22], the justifications
of these properties (c.f. Theorems A.2 and A.4) rely heavily on the fact that the decision
space mapping €2 is open at y (in the sense of Hogan [22, 23]). This is true for €2 only
defined by inequality constraints (see [23, Theorem 12]), but does not necessarily hold if
also considering equality constraints. In our work, based on a later result [28, Theorem 1],
Lemmata 1 and 2 establish these properties without requiring €2 to be open at y.

Observe that the function ¢ in (10) is an LP parameterized by the constraints’ right-hand
side. To proceed, we reformulate the optimization problem of v (d) for each d € R"™ to a
standard form of LP (c.f. [3]). Let n; be the number of active constraints of (3) fory :=y at
x*, and then we have for each d € R" that

v(d) = q(B(d)) 13)
where g : R"¢ — R U {+00, —00} such that
q(b) := ir‘llf cTy
s.t. Av=Db,
v >0,

with appropriate dimensions for ¢, v and A, and 8 : R — R" : d — Gd is a linear
function where G € R"*" is the stacked [—Vyg; (X*, §)]T for all i such that g;(X*,§) = 0
and all [—Vyh;(X*, ¥)1T. With this preparation, the following proposition shows that ¥ is
L-smooth whose LD-derivatives can be computed by solving a sequence of LPs.

Proposition 2 Consider the functions ¥, q, B as in (13). Then, the function  is L-smooth,
and foranyd € R and any K € R™>"| the following sequence of functions is well-defined:
Vjiel{o,...,r}

Yk R > R:d > max [Gd]™A

AeRe
AT c
—[B@]1" —¥(d) (14)
st | Gk |3 < | — (k)
~IGkyI" Vi k)

@ Springer



368 Journal of Global Optimization (2024) 89:355-378

where for j = 0, the constraint —[Gk(j]TA < —\/fglzl)(k(j)) is understood to be vacuous.
Moreover, associated to the sequence (14), define a sequence of sets Dé{ ;( c R such
that for each j € {0,...,r — 1}, Dé{;( is the optimal solution set of the LP for evaluating
1//511)( (K(j+1)) in (14). Then, it follows that

(0) T
D :=arg max [GKk A
aK g ).eA(Gd)[ ol

where A(GA) is the optimal solution set of the dual problem (c.f. [3]) of ¢ (Gd), and for each
je{l,...,r—1},

: -
Dfl{%( = (arg max 1)[Gk(/url)]T)») C Dé{K ), (15)

reDyg
Furthermore, the LD-derivative of Y at d in the directions K is given by
V' d; K) :=ATGK, foranyi € Déf]_(l).

Proof From Theorem 1, ¥ is finite for any d € R™, i.e., F = R™ where F := {d € R :
—00 < ¥(d) < 400}, and thus d € int(F). Moreover, since § is linear and (13) holds, the
claimed results follow from [21, Proposition 3.7]. ]

Remark 5 Analogously to [21, Remark 3.4], evaluating ¥’ (d; K) requires solving at most
ny LPs, because w((ﬁ( is guaranteed to be linear if the columns {k(), ..., Kq)} span R">.

However, if atai < ny such that Dg)K is a singleton, then (15) implies that D((l’-)K = D((li;r(l) =

.. -D(({I_(l); no need to solve more LPs. Moreover, since the computational complexity of

solViné each LP grows polynomially with the size of the problem, computational complexity
for evaluation of the LD-derivative also grows polynomially with the size of the problem.

Motivated by Remark 5, we employ the following result from [33] to examine whether an
obtained optimal solution for an LP is unique or not. This result examines LP solutions’
uniqueness by constructing and solving an auxiliary LP. This result provides a practical way
to terminate solving the sequence of LPs in Proposition 2 effectively when one LP in the
sequence turns out to have a unique solution.

Proposition 3 (Adapted from [33]) Consider an LP of the general form:
min pTx
X
st Ax = f), <« multipliers u (16)

Cx > (1, <« multipliers v.

Let x* be a primal optimal solution and (0*, v*) be a dual optimal solution of (16). Let ¢;
denote the i™ row of C. Define index sets

K :={i : &x* = d; and v} > 0},

and L :={i:&x* =d; and v =0}
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Let é;c and C ¢ denote matrices whose rows are ¢;,¥i € K and are ¢;, Vi € L, respectively.
Consider the following LP:

max eTC£X
X

s.t. ~Ax =0, a7
Crx =0,
ng >0,

where e is a vector of appropriate dimension with all components being one. Then, X* is a
unique optimal solution of (16) if and only if the optimal objective value of (17) is zero. For
any LP of the form (16), (17) will be called its (optimal) solutions’ uniqueness examination
LP.

Proof This result follows from [33, Theorem 2 and Remark 2]. O

The following theorem shows that the function ¢ defined in (3) is L-smooth at y, whose
LD-derivatives can be evaluated by solving a sequence of LPs.

Theorem 2 Suppose that Assumption 1 holds, and consider the formulation of the directional

derivative ¢'(¥; d) established in Theorem 1 and the sequence of functions wéjl)( and sets

D‘(ij %( defined in Proposition 2. Then, the function ¢ is L-smooth at y, and the following
statements hold for any M € R"»*7:

II.1 The following sequence of functions
pynp R > R:d > ¢/(3: d),
p R > Red e oy T meyd), Yje(l,... p)
are well-defined and given by:
pyar(d) = ¢'(§: d) is given in (10),
S = [Vy fE& P+ v N @), Vel ph

m(1),M):(p)
where M(z);(p) denotes [m(z) cee m(p)].
I1.2 The LD derivative ¢’ (y; M) is given by
¢'(F: M) = [¢'(F: m@1)) ([Vy /& DI +1TG) M (p)] (18)
T (r=2)
forany A" € Dm(])’M(z):(p).

Proof Observe that the term [Vy f (X*, y)]Td in (10) is affine w.r.t. d, and then Statement II.1
follows from Theorem 1 and Proposition 2. Moreover, since Proposition 1 holds and according
to Definition 3, ¢ is L-smooth at y. Then, Statement II.2 again follows from Theorem 1 and
Proposition 2. O

With the theoretical results established above, the following algorithm computes an LD-
derivative of ¢ aty in Assumption 1 by solving a sequence of LPs.

Remark 6 1In the best case, the algorithm above requires solving two LPs to evaluate ¢’ (y; M),
namely the LP in (13) for evaluating v (im(1)) and the solutions’ uniqueness examination LP
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Algorithm 1 Computes an LD-derivative ¢’ (y; M) of ¢ at y in Assumption 1

Require: ¢(¥) and X* as in Assumption 1, M := [m(j) - --m(p)] € R"*P.
Compute ¥ (m(q)) by solving the LP in (13) with d := my),
and set v* < a primal optimal solution, A* < a dual optimal solution
Use (A*, v¥) to construct and solve the solutions’ uniqueness examination LP of the dual problem of this
LP,
and set ¢ < the optimal objective value
Compute ¢’ (§; m(})) defined in (10)
if t = 0 then
Compute ¢’ (y; M) by (18) with A := A*
return ¢’ (y; M)
else
continue
end if
Set j « 1.
while j < p do
Compute w.g{lzl)(k(j)) by solving the LP in (14) with d := m(y), K := M(2).(;), and

d:= k(j), and set A* < a primal optimal solution, §* < a dual optimal solution
if j < p—1then
Use (A*, 5*) to construct and solve the solutions’ uniqueness examination LP of
the LP defined for 1//51 ﬁl) (K(j)), and set < the optimal objective value
if 1 = 0 then
break
else
continue
end if
else
continue
end if
Setj <« j+1
end while
Compute ¢’ (y; M) by (18) with A := A*
return ¢’ (y; M)

of the dual problem of this LP. If this solutions’ uniqueness examination LP has a maximum
zero, i.e., when the dual problem of the LP in (13) has a unique solution, then Proposition 2
implies that this solution must solve all LPs in the sequence defined in (14). Thus, this solution
can be used directly to evaluate ¢’ (y; M) using (18), as the algorithm above shows. We also
note that Algorithm 1 requires solving at most (2p — 1) LPs, of which the computational
cost grows polynomially with p.

We believe that the best case mentioned above may happen frequently in practice for the
following reasons. Since ¢ is locally Lipschitz continuous, Rademacher’s theorem ( [19,
Theorem 3.1]) implies that ¢ is differentiable almost everywhere in the Lebesgue sense.
Note that the non-differentiable points of measure-zero are indeed reachable during problem-
solving on a finite precision machine (c.f. [1, Sect. 4]). If ¢ is differentiable at y, then [37,
Proposition 1] implies that the function ¥ in (10) must be linear. Since ¥ is an optimal-
value function with embedded LP parameterized by its constraints’ right-hand side vector,
[3, Theorem 5.2] shows that the subdifferential (in the sense of convex analysis [42]) of ¥
at any d € R is identical to the dual optimal solutions set of the corresponding LP. Thus,
for any m(y € R, the dual optimal solutions set of the LP in (13) with d := m;) must be
a singleton, and Algorithm 1 computes an LD-derivative by solving two LPs as discussed.
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Then, an L-derivative, which reduces to the Jacobian of ¢ at y in this case, can be readily
computed via (2).

To implement Algorithm 1, an LP solver that can return both primal and dual opti-
mal solutions is favorable; this is hardly a problem for prevalent LP solvers such as
CPLEX [24]. If such solver is unavailable, then extra efforts need to be taken to com-
pute a dual optimal solution. Given a primal optimal solution, a practical approach may
be to identify an extreme point of the dual optimal solutions set represented by the KKT
conditions.

3.2 Joint convexity

In this subsection, we show that if the functions f, g, and h in Assumption 1 are jointly
convex with respect to (x, y). Then, with Condition 1.2 being relaxed, we can still calculate
an LD-derivative of ¢ using Algorithm 1 with easy modifications. Such parameterized convex
NLPs with joint convexity are formalized as follows.

Assumption 2 Consider the setup in Assumption 1, suppose that Condition 1.5 is strengthened
to:

L1 f, g, and h are convex on X x Ny,
and Condition 1.2 is relaxed to

III.2 M(y) is nonempty and bounded, where M is the primal solution mapping defined in
Lemma 1.

Then, (3) is a parameterized convex NLP with joint convexity.

Roughly, under Assumption 2, Theorem 2 still holds with the unique optimal solution X*
replaced by any X € M(y) for evaluating v, and thus Algorithm 1 is valid for this joint
convexity case with X* replaced by X. This result requires significantly simpler justification
than in the previous section, due to the joint convexity of f, g, and h. When the optimal
solutions are non-unique, this result (which is formalized below) is particularly beneficial
for implementation, since any optimal solution of (3) obtained by numerical solver can
be used directly to evaluate an LD-derivative. Note that since the optimal solution is non-
unique here, the methods in [48, 49] cannot be applied to compute an LD-derivative of ¢.

Theorem 3 Suppose that Assumption 2 holds, and consider an arbitrary X € M(y). Then,
Algorithm 1 can be used for computing an LD-derivative ¢'(y; M) with X in place of X*
wherever X* appears.

Proof Since Condition III.2 holds, following the same arguments in the proof of Proposition 1,
we have ¢ is locally Lipschitz continuous at y.
Define a set

Vi={yeNy:3Ixe X,g(x,y) <0and h(x,y) = 0}.

Then, Condition I.7 implies thaty € int(V). Since Assumption 2 holds, by reformulating each
equality constraint /2; (x, y) = 0 as two inequalities and applying [22, Corollaries 3.2 and 3.1],
we have that for each d € R"™, ¢'(y;d) is given by (10) and (11) with X in place of

X*.
Then, Proposition 2 and Theorem 2 follow immediately with X in place of x*. Con-
sequently, Algorithm 1 is valid for this joint convexity case with X in place of X*.
O
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Remark 7 1In the joint convexity case, ¢ is convex on Ny due to [13, Corollary 2.1]. Thus, an
L-derivative is a subgradient in the context of convex analysis [42].

3.3 Parameterized LP’s objective function

In this subsection, we propose a new method for computing LD-derivatives of optimal-value
functions with embedded an LP whose parameters appear in the objective function. Similarly
to the methods in the previous subsections, this new method also computes an LD-derivative
by solving a sequence of LPs. The following assumption formalizes such parameterized LP.

Assumption3 Let ¥ C R™ be open and consider a function ¢ : ¥ — R"x. Consider a
parameterized LP of the form:

() := min  [e(y)]'x

st. AX =«, 19)
Bx < 8,

with appropriate dimensions for the matrices (A, B) and the vectors («, ). Suppose that the
following conditions hold:

IV.1 the decision space X := {x € R"™ : Ax = o and Bx < B} is compact, and
IV.2 the function c is continuously differentiable.

Unlike the partial and joint convexity cases in the previous subsections, here we
do not assume the Slater conditions for the decision space X, and do not assume
uniqueness of an optimal solution of the LP. Instead, X is assumed to be compact.
This requirement is guaranteed to be satisfied if the decision variables x have known
lower and upper bounds. Moreover, for a well-posed problem where ¢ (y) is finite for
each y € Y, even if X is not compact, one can always impose sufficiently large
bounds on x to make the decision space compact, yet without affecting the value of
d ).

We first introduce a classical result by Danskin [8] for describing directional derivatives
of optimal-value functions with parameter—independent decision space.

Proposition 4 (Originally from [8], summarized in [22]) Let X CR" and Y C R™ be open,
andlet & C X be compact. Consider a function f : XxY >R of (x,y), for which suppose
that f and the partial derivative mapping Vy f : X x Y — R™ are continuous. Consider an

optimal-value function v : Y — R such that for each'y € Y,
v(y) := min f(x,y).
Xeo
Then, v is directionally differentiable on Y, and foreachy € Y andd € R™,
v'(yrd) := min [Vyf(x,y)I"d, (20)
XeM(y)

-

where M(y) := {x € E : v(y) = f(X,Y)} is the optimal solutions set of the optimization
problem in (20).
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The following result provides a method for computing the directional derivatives of ¢ in
Assumption 3, by applying Theorem 4.

Proposition 5 Consider the setup in Assumption 3. Then, for eachy € Y and eachd € R",
the directional derivative ¢’ (y; d) is well-defined and given by

¢'(y; d) := min [Je(y)d]"x
xeRnx

s.t. AX = «a,

2n
Bx < 8,
[e]'x = ).
Proof Under Assumption 3, this result follows immediately from Theorem 4. O

Observe that the decision space of the optimization problem in (21) is d-independent and
is compact, and the mapping d +— Je(y)d is linear. This enables using Proposition 4 to
compute the directional derivatives of the mapping d — ¢'(y; d). Based on this intuition,
the following result shows that the function ¢ in Assumption 3 is L-smooth, and moreover,
is piecewise differentiable. Besides, for any y € Y and directions matrix M € R"*7_ the
LD-derivative ¢ (y; M) can be computed by solving a sequence of LPs.

Theorem 4 Consider the setup in Assumption 3. Then, the function ¢ is piecewise differen-
tiable and is L-smooth on Y. Moreover, for each'y € Y and each M € R™*P, the following
sequence of functions

pya R > Rid > ¢/(y:d),
Oy R = Rod e o)y g d), Vel p)
are well-defined and given by: for each j € {0, ..., p},
() M T
¢ym(d) = min - [Je(y)d]'x
s.t. AX=a,
Bx < B,
[C(Y)]TX = ¢(y), (22)
Je(y)m)]'x = ¢;?R,[(m(1)),

Jemy1"x = ¢y " ;).

where the constraint [Jc(y)m(l)]Tx = 4))(,01)\,[ (m(y)) is vacuous for j = 0. Associated to the
sequence (22), define a sequence of sets D)(,jg/[ c R"™ such that for each j € {0, ..., p — 1},

D;jl)vl is the optimal solution set of the LP for evaluating ¢>)(,{1)v[(m( j+1)) in (22). Then, it
follows that

D)(,Ol)VI ‘= arg XIenlve[lz(y)[Jc(y)m(l)]Tx (23)
where M (y) is the optimal solution set of the LP in (19), and for each j € {1, ..., p — 1},
) .-
DYy = (arg max [Je(y)m j+1>]Tx) c piy". (24)

i
xeDy‘M
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Furthermore, an LD-derivative ¢’ (y; M) is given by

¢'(y: M) :=x"Je()M, foranyx € Dy (25)

Proof Consider a function qS R — R:
#© = min [¢]"x
xeR"x

s.t. AX = «,

Bx < 8.

[3, Sect. 5.4] shows that ¢ is a piecewise linear concave function. Since ¢ is continuously
differentiable and ¢ = q; oc, ¢ is piecewise differentiable according to [47, Sect. 4.1]. Then,
it follows that ¢ is L-smooth according to [27, Proposition 3.1].

The function ¢( is obtained by applying Proposition 4 to ¢(0) = ¢/(y; -) established
in Proposition 5. Then the rest functions in the sequence (22) are obtained by applying
Proposition 4 inductively.

The relations (23) and (24) follow immediately from the structure of the sequence of
functions (22).

Consider an arbitrary x € D;f’ 1\7[1). Since (24) holds and following from [27, Defini-
tion 2.1],

¢ (v: M) = [py (M) o mey) - oy mp)]
= [x"Je(y)mq) x"Je(y)me) - -+ x"Je(y)my)]
= XTJc(y)M.
[m}

Theorem 4 shows that under Assumption 3, an LD-derivative ¢’(y; M) can be computed
by solving a sequence of LPs defined in (22). Since (24) holds, similarly to Remark 5, if
one LP in the sequence has a unique solution, then there is no need to solve the rest LPs
in the sequence. Thus, the method for examining the uniqueness of LPs’ optimal solutions
described in Proposition 3 is also useful here. Embedded with this solutions’ uniqueness
examination method, the complete algorithm for computing ¢'(y; M) in Assumption 3 is
presented below.

If the original LP in (19) for some y € Y has a unique solution, then [5, Proposi-
tion 1.13 and Theorem 2.1] imply that ¢ is differentiable at y. In this case, Algorithm 2
only requires solving one LP to furnish the desired LD-derivative, namely the solutions’
uniqueness examination LP of this original LP. Similarly to the discussion after Algorithm 1,
we expect this to happen frequently in practice, since ¢ is differentiable almost everywhere.
Algorithm 2 requires solving at most 2p LPs.

Now, we compare Algorithm 2 to an established method [5] which can be used to compute
a generalized Jacobian element of ¢ in Assumption 3. According to [5, Theorem 2.1], an
element s € d¢(y) is given by:

s=[Je(3]"x, foranyx € M(¥), (26)

where M(y) is the optimal solution set of the LP in (19) for y := y. Both this method
and Algorithm 2 can compute a valid element of the generalized Jacobian. Recall that an
L-derivative can be computed from an LD-derivative via (2), and an L-derivative in this
scalar-valued function case is an element of the generalized Jacobian. It appears that (26) is
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Algorithm 2 Computes an LD-derivative ¢’ (y; M) of ¢ for some y € Y in Assumption 3

Require: ¢(¥) for some y € Y in Assumption 3, a primal optimal solution x* and a dual optimal solution A*
of the LP in (19) fory := §, and M := [m(1) ---m(,)] € R™*P.
Use (x*, 1*) to construct and solve the solutions’ uniqueness examination LP (as in Proposition 3) of the
LPin (19), and set t < the optimal objective value.
if 1 = 0 then
Compute ¢’ (y; M) by (25) with x := x*
return ¢’ (y; M)
else
continue
end if
Set j < 0.
while j < p do
Compute ¢)(,’§/[ (m;41)) by solving the LP in (22), and set x* « a primal optimal
solution, A* <— a dual optimal solution
if j < p— 1 then
Use (x*, A*) to construct and solve the solutions’ uniqueness examination LP of
the LP defined for ¢;J 1{,[ (mj 1)), and set t < the optimal objective value
if 7 = 0 then
break
else
continue
end if
else
continue
end if
Setj <« j+1
end while
Compute ¢’ (y; M) by (25) with x := x*
return ¢’ (y; M)

more efficient since no auxiliary LP needs to be solved. However, Algorithm 2 offers two
advantages. Firstly, unlike the generalized Jacobian, the LD-derivatives obtained by Algo-
rithm 3 satisfy a sharp chain rule [27], and thus allow dealing with more complex problems
with ¢ embedded. Secondly, since ¢ is piecewise differentiable as shown in Theorem 4, in
this case, an L-derivative is also guaranteed to be an element of the B-subdifferential in Def-
inition 1 ( [27, Corollary 3.6]). Such element enables solving nonsmooth equation systems
with ¢ embedded using the B-subdifferential-based Newton method [30]. It has been shown
in [27] that for piecewise differentiable functions, this generalized Newton method exhibits
local Q-quadratic convergence under less stringent conditions than the semismooth Newton
method [40] based on elements of the generalized Jacobian.

4 Conclusions and future work

This article has proposed new methods for computing LD-derivatives of optimal-value
functions with embedded parameterized convex programs, with potential applications in
nonsmooth equation solving and optimization. We have considered three cases of parame-
terized convex programs, namely the partial convexity case, the joint convexity case, and the
case where the parameters appear in the objective function of LPs. In each case, our new
method computes an LD-derivative by solving a sequence of LPs. In the partial convexity
case, the key assumptions of the new method are that the strong Slater conditions hold for
the embedded convex NLP’s decision space, and this convex NLP has a unique optimal
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solution for the parameters’ values of interest. It has been shown that these assumptions are
essentially less stringent than the conditions required by the only established methods [48,
49] that may be used for our purpose. Moreover, under these less stringent conditions, our
new Algorithm 1 is also evidently computationally preferable over these methods. We then
showed in Theorem 3 that in the joint convexity case, the proposed method does not require
a unique optimal solution of the embedded convex programs, and any optimal solution can
be used for furnishing the desired LD-derivatives. This feature is particularly beneficial for
implementation. Prior to this article, there is no established method for furnishing compu-
tationally relevant generalized derivatives in this case. In the case of parameterized LP’s
objective function, our new method does not require Slater conditions for the decision space,
does not require a unique optimal solution, and yields valid B-subdifferential elements for
facilitating piecewise differentiable equation-solving. Lastly, Algorithms 1 and 2 employ an
LP’s solutions’ uniqueness examination scheme as described in Proposition 3, which may
significantly reduce computational effort for evaluating LD-derivatives in practice.

An interesting application of the proposed results is to design convergent algorithms for
solving large-scale decomposable programs of the form

e f&Y)
st gx,y) <0, @7)
h(x,y) =0,

where y are the complicating variables, and the functions f, g, and h are convex with respect
to x for each fixed y. This problem is equivalent to

;Iéiyq o(y). (28)

where Y* is the projection of the original decision space onto y-space [17], and ¢ (y) :=
min{f(x,y) : g(x,y) < 0,h(x,y) = 0,x € X}. The generalized Benders decomposition
[17] is a prevalent approach for solving such problems. This approach progressively refines
upper and lower bounds of the globally optimal objective value, by solving certain auxiliary
subproblems. The results of this article may open a new avenue for solving such NLPs with
partial convexity. When y are continuous variables, the proposed results may be applied
to evaluate a generalized derivative of ¢(y), and thus enables solving (28) directly using
nonsmooth optimization methods, while still exploiting any decomposable structure when
evaluating ¢ (y). Such methods would not require the functions in (27) to have Property P
(c.f. [17]), which is crucial to apply the generalized Benders decomposition.
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