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Abstract
This article presents a new DIRECT-type SCABALL (scattering balls) algorithm with a new
partition method for derivation-free optimization problems. It does not focus on dividing the
region of interest into specific geometric shapes, but rather scatters several balls to cover it.
In SCABALL, several potential optimal regions are selected at each iteration, and they are
covered by smaller balls sequentially. In this way, the SCABALL ensures the everywhere
dense convergence. The center points and radii of the scattered balls significantly influence the
efficiency of SCABALL; therefore, the minimax designs are used in the initial and sequential
stages to obtain better coverage. The SCABALL parameters, including the number of balls
and their radii, were analyzed by numerical investigation. We provided the empirical choices
for those parameters and found that the balls’ radii can be contracted to balance efficiency and
global convergence. Numerical experiments show that the SCABALL algorithm is locally
biased and robust.

Keywords Derivative-free optimization · DIRECT-type algorithm · Minimax design ·
Covering radius

1 Introduction

Many problems in science and engineering can be state as derivation-free optimization prob-
lems [5, 18], such as decision-making [42], engineering design [43], molecular biology [8],
system and database design [19], power generation [1], surgery [44], and astronomy [4]. In
this paper, we focus on the global optimization problem in the following form:

min
x∈X f (x), (1.1)

where X = [a, b] = {x ∈ R
d : ai ≤ xi ≤ bi , i = 1, 2, . . . , d} is the region of interest

and f : R
d → R is a deterministic function whose derivatives are neither symbolically nor
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numerically available. There are two classes of algorithms to solve problem (1.1): the statistic
heuristic algorithms, such as genetic algorithm [11], simulated annealing algorithm [17], and
particle swarm algorithm [16]; the deterministic algorithms, such as partition-based method
[14] and space-filling-curve-based methods [35]. In general, the statistic heuristic algorithms
are flexible, but the quality of solution cannot be guaranteed. By contrast, the deterministic
algorithms can provide general methods to obtain a global or approximately global optimum.

[15] and [13] proposed a well-known deterministic algorithm, called DIRECT (dividing
rectangles). The DIRECT algorithm partitions X into several hyper-rectanglesRi , and eval-
uates f (xi ), where xi is the center of Ri . In each iteration, DIRECT selects some potential
optimal regions (POR) and partitions them into smaller ones. The simplicity and efficiency
of the DIRECT algorithm attracted considerable interest from the optimization community
[39]. Since the original algorithm was presented, many scholars have modified or extended
DIRECT in various ways. In this paper, we summarize only part of these DIRECT-type
algorithms in the following 3 aspects, and a more detailed review can be found in the recent
article [14]. First, some studies have focused on different methods for partitioning regions
[20, 29, 31, 34]. The partition methods are the focus of this paper, and will be address them in
detail in Sect. 2. Second, some articles have focused on modifying the POR selection scheme
[9, 21, 22, 24, 25, 30, 32, 34, 41]. They set the algorithm to search more locally or globally
or switch the search state regularly by redefining the set of POR. Third, hybrid methods
have been proposed to accelerate the DIRECT convergence [20, 23, 32]. These researchers
combined DIRECT with local optimizer or meta-model technique to overcome DIRECT’s
low efficiency when faced with high dimensionality or accuracy.

In this paper, we propose the SCABALL (scattering balls) algorithm, a newDIRECT-type
algorithmwith a novel partition method. The remainder of this article is organized as follows.
Section2 summarizes the schemes of DIRECT and DIRECT-type algorithms with different
partitions. Thenwe explain the idea, process, and property of SCABALL in Sect. 3. In Sect. 4,
we elaborate on the implementation and contraction of partitions in SCABALL. Section5
displays some numerical experiments, including parameter tuning and comparison results.
Finally, the main conclusions and further discussions are in Sect. 6.

2 Scheme of DIRECT-type algorithm

We summarize the main procedure for the DIRECT-type algorithms in Fig. 1. The Partition,
Sample and Evaluate steps may be mixed up in some articles, we separate them to clearly
compare different algorithms. It is worth noting that the Select and Partition of PORs depend
on the Sample and Evaluate steps in most DIRECT-type algorithms, thus the first sampling
and evaluation are included in the Initialization.

Fig. 1 Flow chart of DIRECT-type algorithms

123



Journal of Global Optimization (2024) 88:171–197 173

The key idea of DIRECT is the selection of POR, which is based on f (Ri ) and d(Ri ),
where

f (Ri ) � f (xi ), d(Ri ) � sup
x∈Ri

‖xi − x‖, (2.1)

‖ · ‖ denotes the Euclidean norm. Assume f is Lipschitz continuous:

| f (x1) − f (x2)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ X, (2.2)

where K ≥ 0 is the Lipschitz constant. Then we get a lower bound of f in Ri :

f (x) ≥ f (Ri ) − K · d(Ri ), ∀x ∈ Ri . (2.3)

Since we cannot use the derivatives of f , the Lipschitz constant K is assumed to be unknown.
Define the POR as thoseRi whose lower bound is minimized under some K̂ . That is to say,
Ri is a POR if there exists a constant K̂ so that

f (Ri ) − K̂ · d(Ri ) ≤ f (R j ) − K̂ · d(R j ), ∀ j �= i . (2.4)

To avoid the algorithm focusing on a trivial solution, [15] added another condition:

f (Ri ) − K̂ · d(Ri ) ≤ fmin − ε| fmin|, (2.5)

where fmin is the minimum evaluation so far and ε is a balance parameter. The benefit of Eq.
(2.1) is that both d(Ri ) and f (xi ) can be taken as the properties ofRi . Then everyRi can be
represented by a dot in two-dimensional diagram (see Fig. 2). The horizontal and vertical axes
represent d(R) and f (R), respectively. Note that there is an extra dot at (0, fmin − ε| fmin|)
that does not represent any region but is determined by condition (2.5). The potential PORs
satisfying conditions (2.4) and (2.5) are those on the lower right area of the convex hull of
the dot cloud. The upper right Ri have larger size, which tends towards global exploration,
while the lower left Ri have better responses, which tends towards local exploitation. This
scheme is an effective trade-off between global exploration and local exploitation. Notably
the Ri with the best evaluation is always selected [9]. As the iterations approach to infinity,
the maxi d(Ri ) must approach zero. As a result, the points sampled by DIRECT will be
“everywhere dense” [14].

In this paper, we focus on the following five variants with different partitions: the
revised DIRECT [13], adaptive diagonal curves (ADC) [34], dividing simplices at vertices
(DISIMPL-V), dividing simplices at centers (DISIMPL-C) [29, 30], bisecting rectangles
(BIRECT) [31, 32]. DIRECT and ADC both divide the region of interest into three hyper-
rectangles, thenDIRECT evaluates f at the center of the hyper-rectangles, while ADC does it
at two vertices of the main diagonal. DISIMPL-V and DISIMPL-C divide the region of inter-
est into simplices, then evaluate f at the vertices and centroid of each simplex respectively.
BIRECT divides the region of interest into two rectangles, then evaluates f at the diago-
nal trines. Although the geometric shapes of Ri in DIRECT-type algorithms are different,
one thing they have in common is that they all select PORs according to f (Ri ) and d(Ri ).
We summarize the definitions of f (Ri ) and d(Ri ) as follows. For the definition of f (Ri ),
DIRECT and DISIMPL-C allocate only one point xi in eachRi ; therefore, f (Ri ) = f (xi ).
Conversely, there are multiple points in eachRi when either ADC, DISIMPL-V, or BIRECT
is used. ADC defines f (Ri ) = [ f (vi1) + f (vi2)]/2 where vi1 and vi2 are the vertices of the
main diagonal of Ri . DISIMPL-V and BIRECT define f (Ri ) = minx j∈Ri f (x j ) to obtain
the lower bound of f . For the definition of d(Ri ), DIRECT and DISIMPL-C share a similar
definition as Eq. (2.1). ADC defines d(Ri ) = ‖vi1 − vi2‖/2, which is virtually identical to
DIRECT and DIRECT. BIRECT defines d(Ri ) = 2‖vi1 − vi2‖/3, and DISIMPL-V defines
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Fig. 2 Identifying potentially optimal hyper-rectangles in DIRECT

d(Ri ) as the largest side length ofRi . All these DIRECT-type algorithms follow the scheme
in Fig. 1. For clarity, the main steps of these algorithms are included in columns 2–6 of
Table 1. The numbers in parentheses in the Initialize row represent the quantity of initial
evaluations, and the numbers in parentheses in the Evaluate row represent the quantity of
evaluations in each POR. The demonstrations of the 4-th iteration of DIRECT-type algo-
rithms are shown in Fig. 3a–e, where the contour corresponds to the Branin function [38].
The regions bordered in red represent the selected PORs, the red dots denote the new sampled
points, the red dash lines display the partitions of sub-regions. In this article, we focus on the
influence of different partitions on the algorithm. Therefore, we selected the PORs uniformly
using Eq. (2.4) and (2.5) in the above algorithms.

3 SCABALL algorithm

Let us start with the basic idea of SCABALL. Note that all existing partition methods intro-
duced in Sect. 2 follow the two principles [34]:

X = ∪n
i=1Ri , Ri ∩ R j = ∂Ri ∩ ∂R j , i �= j, (3.1)

where ∂ denotes the boundary. Namely, all Ri form X exactly, and different Ri intersect
only at the boundary. SCABALL is a new partition method based on the Voronoi tessellation
of sampled points. The Voronoi tessellation divides X into sub-regions Ri , where Ri is
consisting of points closer to xi than to any other samples. The left of Fig. 4 demonstrates the
Voronoi tessellation of 5 random samples. Clearly, Voronoi tessellation follows the principles
(3.1). The usage of the Voronoi tessellation of the search domain is not a new idea: this
technique is often used in interpolation [2], simulation-based optimization [20], and linear
constrained optimization [3]. However, due to the high computational costs involved, such
methods could be suitable for low-dimensional problems only. To handle this problem, we
first note that the selection of POR is not related to the shape of Ri but only to d(Ri ), then
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Fig. 3 Demonstrations of different DIRECT-type algorithms at 4-th iteration

Fig. 4 Examples of the Voronoi tessellation and ball coverage

we relax the principles (3.1) as

X ⊆ ∪n
i=1Ri . (3.2)

The proposed SCABALL algorithm does not concentrate on dividing X into specific geom-
etry, but rather scatters several balls to cover the region of interest, see the right of Fig. 4.
This reduces the calculation and make it possible to solve problems with higher dimension
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(relatively). The complete description of the SCABALL is shown in Algorithm 1. The rest
of this section will elaborate the process of SCABALL and its convergence.

Algorithm 1: SCABALL
Input: f , X, ε, nini, nseq, γ

1 Preparation: construct or read X ini
nini and X

seq
nseq , calculate d

ini
mM and dseqmM;

2 Initialization:
3 Normalize X to the unit hyper-cube X̄;
4 Initialize k ← 0, R(0)

0 ← X̄, S(0)
0 ← X ini

nini , and I (0)0 ← {1, 2, . . . , nini};
5 Evaluate f at all xi ∈ S(0)

0 , andR(1)
i = B(xi , d inimM), ∀i ∈ I (0)0 ;

6 f (R(1)
i ) ← f (xi ), d(R(1)

i ) ← d inimM, ∀i ∈ I (0)0 , find fmin, and xmin;
7 while stopping criteria not met do
8 k ← k + 1;

9 Select POR based on f (R(k)
i ), d(R(k)

i ), and ε ; // equations (2.4) and (2.5)

10 for each j∗ ∈ POR do

11 S(k)
j∗ ← T (X

seq
nseq ; a(k)

j∗ , b(k)
j∗ ) ; // equations (3.11) and (3.12)

12 Evaluate f at new xi ∈ S(k)
j∗ , andR(k+1)

i = B(xi , r
(k+1)
i ), ∀i ∈ I (k)j∗ ;

13 Update f (R(k+1)
i ), d(R(k+1)

i ), fmin, and xmin ; // equation (4.6)

14 end
15 end

Output: fmin and xmin

3.1 Overall scheme

As a DIRECT-type algorithm, SCABALL follows the scheme summarized in Fig. 1. To
clarify the process of iteration, we denote the i-th region at k-th iteration by R(k)

i , the set of

points sampled inR(k)
i by S(k)

i , and the index of points in S(k)
i by I (k)

i .

In initialization, we first normalize X to a unit hyper-cube X̄ � [0, 1]. Let R(0)
0 � X̄ and

S(0)
0 denote the sampled points in initialization, andB(x, r) denote the closed ball with center
x and radius r . According to the principle (3.2),

R(0)
0 � X̄ ⊆

⋃

xi∈S(0)
0

B(xi , r
(1)
i ) �

⋃

i∈I (0)
0

R(1)
i . (3.3)

We evaluate f (xi ), and define

f (R(k)
i ) � f (xi ), d(R(k)

i ) � sup
x∈R(k)

i

‖xi − x‖ = r (k)
i . (3.4)

With the definition (3.4), the selection of POR can be carried out according to equations
(2.4) and (2.5). AssumeR(k)

j∗ is one of the POR selected at k-th iteration. In the partition step,

several balls are scattered to coverR(k)
j∗ iteratively, i.e.

R(k)
j∗ ⊆

⋃

xi∈S(k)
j∗

B(xi , r
(k+1)
i ) �

⋃

i∈I (k)
j∗

R(k+1)
i . (3.5)
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Since x j∗ already exists inR(k)
j∗ , we set x j∗ ∈ S(k)

j∗ to obtain better coverage.Althoughother x j

may exist inR(k)
j∗ , we ignore it for simplicity. Then we sample S(k)

j∗ inR(k)
j∗ , evaluate f (xi ) at

all points in S(k)
j∗ except x j∗ , and update f (R(k+1)

i ) = f (xi ), d(R(k+1)
i ) = r (k+1)

i , ∀i ∈ I (k)
j∗ .

For thoseR(k)
j that are not POR, we set

R(k+1)
j = R(k)

j , S(k)
j = {x j }, d(R(k+1)

j ) = d(R(k)
j ). (3.6)

The overall scheme of SCABALL is complete. In order to compare with other algorithms,
the main steps of the SCABALL are tabulated in the last column of Table 1, and the demon-
stration of SCABALL is shown in Fig. 3f.

3.2 Partitions in initialization and iterations

The most important part of SCABALL is the partition denoted by Eqs. (3.3) and (3.5). The
xi and ri significantly influence the efficiency of the SCABALL algorithm. Thus, they are
not arbitrary and need delicate design. To explain this, the lower bound of f in SCABALL
can also be expressed as

f (x) ≥ f (Ri ) − K · d(Ri ), ∀x ∈ Ri , (3.7)

which is consistent with Eq. (2.3). In order to get a larger, which is more favorable, lower
bound of f inRi , a smaller d(Ri ) is preferred. To achieve this, we introduced the minimax
(mM) design.

Let Xn = {xi , i = 1, 2, . . . , n} be a subset with n points on a convex regionR ⊆ X̄, which
represents a design onR. The mM design is a well-known space-filling design proposed by
[12]. The mM-distance criterion of a design Xn in R is defined as follows:

dmM(Xn) � dmM(Xn,R) = max
x∈R d(x, Xn) = max

x∈R min
i=1,...,n

‖x − xi‖ . (3.8)

dmM(Xn) corresponds to the Hausdorff distance between Xn and R, and is also called the
dispersion of Xn [27]. dmM(Xn) can also be described as:

dmM(Xn) = inf
{
r ≥ 0 | R ⊆ ∪n

i=1B(xi , r)
}
. (3.9)

This means that the balls centered on xi with same radius dmM(Xn) cover R exactly. X∗
n is

called the mM design onR if

dmM(X∗
n) = min

Xn∈Rn
dmM(Xn). (3.10)

Namely, the mM design covers the region of interest with equal and minimum radii, which
is a suitable partition for SCABALL.

Note that there are two differences between partitions (3.3) and (3.5): one is the geometry,
and the other is the structure. First,R(0)

1 is a hyper-cube, but allR(k)
j∗ are hyper-balls. Second,

S(0)
0 is completely free in R(0)

1 , but S(k)
j∗ should take into account the relationship with x j∗ .

Because of these differences, we need two kinds of mM design. One is the initial design
X ini
nini , which is freely designed onRini � X̄. The other is the sequential design X seq

nseq , which

is designed on Rseq � B(1/2, 1/2) ⊂ X̄ and with one point fixed at 1/2. The nini and
nseq on the subscript indicate the quantity of points in the design, and the ini and seq on
the superscript indicate the geometry and structure of the design. Figure5 demonstrates the
examples of X ini

10 and X seq
8 in 2 dimensions. The construction of mM design will be detailed

in Sect. 4.1, we next explain how to sample and update by mM design.
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Fig. 5 Examples of the mM design in 2 dimensions

3.3 Sampling and updating

For the convenience, we define a linear mapping T : [0, 1] �→ [a, b] as follows:
T (x) � T (x; a, b) = a + x ◦ (b − a),

where ◦ denotes the Hadamard product and T (Xn) � {T (x1), T (x2), . . . , T (xn)}. We only
design X ini

nini and X seq
nseq once beforehand, then all sample points S(k)

i can be obtained by T with
proper parameters. Since the mM designs are response-free, the constructed mM designs can
be read in preparation (see Algorithm 1 Line 1). Note that R(0)

1 = X̄, we get samples as
follows:

S(0)
0 = X ini

nini , S(k)
j∗ = T (X seq

nseq ; a(k)
j∗ , b(k)

j∗ ), (3.11)

where

a(k)
j∗ = x(k)

j∗ − 1 · d(R(k)
j∗ )/2, b(k)

j∗ = x(k)
j∗ + 1 · d(R(k)

j∗ )/2. (3.12)

Further more, d(R(k)
i ) can be easily updated due to the property of dmM. According to Eq.

(3.9), all sub-regions in mM design have the same radius dmM. Since X̄ = [0, 1], dmM can
also be viewed as half the size ratio of sub-regions to original regions. Let d inimM � dmM(X ini

nini)

and dseqmM � dmM(X seq
nseq ), we have

d(R(1)
i ) = r (1)

i = d inimM, ∀i ∈ I (0)
0 ,

d(R(k+1)
i ) = r (k+1)

i = 2dseqmM · d(R(k)
j∗ ), ∀i ∈ I (k)

j∗ .
(3.13)

In this way, for any region at k-th iteration, d(R(k)
i ) has the form of

d(R(k)
i ) = d inimM(2dseqmM)k

−
, (3.14)

where k− ≤ k indicates the number of times thatR(k)
i was partitioned.

The initialization and first two iterations of SCABALL are illustrated in Fig. 6. The red
solid lines denote the selected PORs in current stage, which is hyper-cube in initialization and
hyper-ball in iterations. The red dash lines denote the sub-regions partitioned by SCABALL.
The red dots denote the new sampled points in POR. It is worth noting that there could be
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Fig. 6 Illustration of the partition method of SCABALL in 2 dimensions

some sampled points xi /∈ X̄, see the lower right corner of Iteration 2 in Fig. 6. In this case,
we choose x′

i = argminx∈X̄ ‖xi − x‖ to replace xi . This replacement is detailed in the last
graph of Fig. 6, the black star point and black dash line denote x′

i andR′
i respectively, where

R′
i = B(x′

i , ri ). It is easy to prove thatRi ∩X̄ ⊆ R′
i ∩X̄, if X̄ is convex and closed. Thus, this

replacement does not break the coverage in Eq. (3.18), which is important to the following
proof of convergence.

3.4 Global convergence

Let S(0) � S(0)
0 , I (k) denotes the index of the points in S(k), where S(k) = ⋃

i∈I (k−1) S
(k)
i

denotes the set of all points sampled by SCABALL after k iterations. Clearly, I (k) =⋃
i∈I (k−1) I

(k)
i . Since the selection of POR is similar to DIRECT, SCABALL always selects

the largest region with the best evaluation. This guarantees the density of S(k), and further
guarantees the global convergence of SCABALL under the assumption of continuity of f .
We formally state this property as a theorem.

Theorem 3.1 If dseqmM < 1/2, then ∀x ∈ X̄

d(x, S(k)) = min
xi∈S(k)

d(x, xi ) → 0, as k → ∞.

Proof According to Eq. (3.3)

X̄ ⊆
⋃

i∈I (0)

R(1)
i . (3.15)

From Eqs. (3.5) and (3.6), we have

R(k)
j ⊆

⋃

i∈I (k)
j

R(k+1)
i , ∀ j ∈ I (k−1), (3.16)

which indicates that
⋃

j∈I (k−1)

R(k)
j ⊆

⋃

i∈I (k)

R(k+1)
i . (3.17)

By recursion, we obtain

X̄ ⊆
⋃

i∈I (k−1)

R(k)
i , ∀k ≥ 1. (3.18)
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Let d(k) = maxi∈I (k−1) d(R(k)
i ) denote the largest radius ofR(k)

i at the k-th iteration, then

d(x, S(k)) ≤ d(k), ∀x ∈ X̄, k ≥ 1. (3.19)

Let I (k)
max = {i |d(R(k)

i ) = d(k)} denote the index of the largest region at k-th iteration, and

I (k)∗ = {i ∈ I (k)
max| argmini f (R(k)

i )}. For those R(k)
i , i ∈ I (k)∗ , there is always K̂ large

enough that conditions (2.4) and (2.5) are satisfied, which means they are POR at the k-th
iteration. According to Eq. (3.13), the POR will be partitioned into smaller regions at a rate
of 2dseqmM < 1. Since I (k)

max is finite, d(k) → 0 as k → ∞, which completes the proof. ��
For the sequential design X seq

1 = {1/2} on B(1/2, 1/2), we have dmM(X seq
1 ) = 1/2.

Since dmM(·) is a non-decreasing set function, dmM(X seq
nseq ) ≤ 1/2. Therefore, the condition

dseqmM < 1/2 in Theorem 3.1 is not difficult to achieve if nseq is large enough.

4 Implementation and contraction of partition

4.1 Construction of mM design

The theoretical mM design X∗
n in Eq. (3.10) is extremely difficult to construct, because

evaluating dmM(Xn) in Eq. (3.8) requires maximizing d(x, Xn) with respect to x ∈ R.
There is a geometric method based on Voronoi tessellation to evaluate dmM(Xn) [6, 7], and a
corresponding algorithm to obtain X∗

n [33]. ThemMdesigns in Fig. 5 were constructed by the
geometric algorithm. While this kind of method requires calculating the Voronoi tessellation
and its Chebyshev center at each iteration, which is computationally expensive and difficult to
apply to the situation whenR is a hyper-ball. In this article, we introduce a fast, approximate,
and random method to obtain X ini

nini and X seq
nseq .

A fully-sequential space-filling design in [37] was constructed iteratively by greedily
maximizing Dβ(x, Xk), where Dβ(x, Xk) is defined by

Dβ(x, Xk) � min{d(x, Xk), β · d(x, ∂R)}, x ∈ R. (4.1)

d(x, Xk) in Dβ(x, Xk) corresponds to the coffee-house design criterion in [26], and β ·
d(x, ∂R) reflects the phobia of boundary. The design constructed using the above method is
denoted as the boundary-phobic coffee-house (BPCH) design.

Algorithm 2: BPCH design

Input: Xori, nmax, RN
1 Xk ← Xori;
2 while |Xk | < nmax do
3 x∗ ← argmaxx∈RN \Xk Dβ(x, Xk );
4 Xk ← Xk ∪ x∗;
5 end
Output: XBPCH

nmax = Xk

The pseudo-code of BPCH design are summarized in Algorithm 2. Xori is the original
design needed to start the algorithm, nmax is large enough to obtain a desired design, and
RN is a subset of N point inR, with N � nmax, which is well spread overR. In this paper,
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Fig. 7 Examples of initial designs in 2 dimensions

we set β = 2
√
2d (chosen in [37] by trial and error), d(x, ∂Rini) = min{‖x‖∞, ‖1− x‖∞},

and d(x, ∂Rseq) = 1/2 − ‖x − 1/2‖, where ‖ · ‖∞ denotes the infinite norm. Xori is set
to be {1/2} in the initial and sequential designs. In addition, for the initial design, Xori can
be set as some user-defined starting points, which is not permitted in most DIRECT-type
algorithms [14]. Because the maxx∈R d(x, Xn) in Eq. (3.8) is always obtained at x ∈ ∂R,
we setRN = RU ∪RC to better representR, whereRU is uniformly sampled inR andRC

is the complementary points on ∂R. For uniformity ofRN ,RC should bemuch less thanRU.
In this paper, we set Rini

C as the 2d vertices of Rini and Rseq
C as 104 uniform samples on the

hyper-sphere ∂Rseq, setRini
U andRseq

U as 105 uniform samples inRini andRseq, respectively.
Figure 7 provides the two-dimensional examples of X ini

nini and d
ini
mM in sequence, and Fig. 8

shows the counterparts of X seq
nseq . Compared with Fig. 5, the BPCH designs have larger dmM

than the theoretical ones under the condition of same number of points. Nevertheless, the
BPCH design has many advantages. First, it generates acceptable designs in relatively short
periods, even in high dimensions. Second, setting Xori provides the flexibility to arrange
points. Third, the nested structure (XBPCH

n1 ⊆ XBPCH
n2 , n1 ≤ n2) permits us to choose a suitable

number for the prefix of XBPCH
nmax

. We next give some experiential guidance for choosing nini
and nseq.

In the right panel of Fig. 7 we can see that when nini = 5, 9, 13, there are steep drops in
dmM. We plotted X ini

5 , X ini
9 , and X ini

13 using different markers in the left panel of Fig. 7 and
found that those points with specific numbers have relative symmetry. Furthermore, there
are steep drops of dmM from nseq = 5, . . . , 8 in the right panel of Fig. 8, and dmM remained
unchanged for many integers after nseq = 8. Similar things occurred at nseq = 13. X seq

5 ,
X seq
8 , and X seq

13 are plotted with different markers in the left panel of Fig. 8, and we believe
that X seq

8 and X seq
13 are more symmetrical than X seq

5 . Based on the above analyses, we suggest
choosing the appropriate nini and nseq tomeet the following two empirical conditions: (i) dmM

has a steep drop at nini(nseq), or (ii) dmM is unchanged for several integers after nini(nseq).
We will analyze the influence of nini and nseq in Sect. 5.
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Fig. 8 Examples of sequential designs in 2 dimensions

4.2 Covering and overlapping rates

From the demonstration of SCABALL in Fig. 3(f), we draw the following three facts: (i)
sub-regions scattered from the same region, namely R(k+1)

i , i ∈ I (k)
j∗ , may overlap; (ii) sub-

regions scattered from different regions, namelyR(k)
i andR(k)

j , may overlap; (iii) the union

of the sub-regions exceeds the original region, namely
⋃

i∈I (k)
j∗

R(k+1)
i � R(k)

j∗ . Due to these

three facts, R(k+1)
i can be contracted to obtain a more favorable lower boundary defined

in Eq. (3.7). We will show that appropriate contraction can accelerate the convergence of
SCABALL with little influence on the global convergence.

For a design Xn in R, we define the covering rate function of r as

CR(r) � CR(r; Xn,R) = vol(
⋃

xi∈Xn
B(xi , r) ∩ R)

vol(R)
. (4.2)

Clearly, CR(r) is non-decreasing with r . Define the α-distance by

dα(Xn) � dα(Xn;R) = CR−1(α) = inf{r |CR(r) ≥ α}. (4.3)

dα(Xn) is the minimum radius r that
⋃

xi∈Xn
B(xi , r) covers at least 100α% of R, and

d1(Xn) = dmM(Xn), obviously. We denote d iniα � dα(X ini
nini), d

seq
α � dα(X seq

nseq ), and d ini0.99,
dseq0.99 are plotted in the right panel of Figs. 7 and 8, and they are extremely close to d inimM
and dseqmM in 2 dimensions. However, d ini0.99(d

seq
0.99) is much smaller than d inimM(dseqmM) in higher

dimensions (see Figs. 9 and 10). This can be interpreted as that dmM being significantly
reduced by ignoring extreme points in high dimensions. This property is also termed “do not
try to cover the vertices” in [45]. Additionally, the numerical study of [28] confirmed that
XBPCH
n with proper β has strong properties when measured by dα .
In practice, we would take the sub-region Ri = B(xi , dα) for some α < 1. On the

one hand, dα is smaller than dmM, which provides a better lower bound and accelerates the
algorithm. On the other hand, the global convergence in Theorem 3.1 may not hold. It is
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Fig. 9 dmM, d0.99, d∗ of X ini
nini , and X

seq
nseq in 5 dimensions

Fig. 10 dmM, d0.99, d∗ of X ini
nini , and X

seq
nseq in 10 dimensions

importance to choose an appropriate α to balance efficiency and global convergence. To do
so, we define the overlapping rate function of r for a design Xn in R using

OR(r) � OR(r; Xn,R) =
vol(

⋃
xi ,x j∈Xn ,x j �=xi (B(xi , r) ∩ B(x j , r)) ∩ R)

vol(R)
. (4.4)

OR(r) is also non-decreasing and OR(r) ≤ CR(r). To obtain an appropriate contraction, we
define the star-distance as

d∗(Xn) � d∗(Xn;R) = inf{r |OR(r) = 1 − CR(r)}. (4.5)
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We denoted d ini∗ � d∗(X ini
nini), d

seq∗ � d∗(X seq
nseq ), and plotted them in Fig. 7, 8, 9, and 10. d∗

corresponds to the radius such that the non-covering rate is equal to the overlapping rate. If
the uncovered region happens to be replenished by the overlapped region exactly, which is
impossible, d∗ may be the best choice for contraction. In this sense, d∗ is an underestimate
of the best contracted radius. For flexibility, we introduce a parameter γ , and replace the
updating in Eq. (3.13) as

d(R(1)
i ) = r (1)

i = d ini∗ , ∀i ∈ I (0)
0 ,

d(R(k+1)
i ) = r (k+1)

i = 2γ dseq∗ · d(R(k)
j∗ ), ∀i ∈ I (k)

j∗ .
(4.6)

We will analyze the influence of nini, nseq, and γ in next section.

5 Numerical results

In this section, we first present some numerical analyses of the parameters in SCABALL, then
make some comparisons with other DIRECT-type algorithms. We use the GKLS-generator
[10] to provide a large number of random test functions. The parameters of the GKLS-
generator include (i) the problem dimension d; (ii) the global minimum value f ∗; (iii) the
number of local minima m; (iv) the radius of the attraction region of the global minimum
ρ∗; and (v) the distance from the global minimum to the quadratic function vertex r∗. For
more details about the GKLS-generator and related analysis, please refer to [10, 36]. For
each dimension, we generated 100 multi-modal and non-differentiable functions for testing.
The stopping criteria are as follows: (i) the minimum achieves the specified relative error
(δ = |( fmin − f ∗)/ f ∗| ≤ 0.01)1; and (ii) the number of function evaluations exceeds the
limit (Nmax = 104d). When criterion (ii) is met, we believe the problem is not solved with
limited evaluations.

5.1 Choice of parameters

In order to study the influence of nini, nseq, and γ on SCABALL, we divided them into three
levels to perform a full factor experiment. As analyzed in Sect. 4, we set nini = 5, 9, 13,
nseq = 5, 8, 13, and γ = 0.9, 1.1, dmM/d∗, respectively, for d = 2. The level γ = dmM/d∗
corresponds to the uncontracted version of SCABALL, and dmM/d∗ > 1.1 for all the designs.
The parameter ε in Eq. (2.5) is a general parameter in DIRECT-type algorithms to avoid
excessive refinement of the local minima. The influence of ε is not the focus of our work,
thus we fixed ε = 10−4 for all DIRECT-type algorithms in this paper, see [14] for more
details of ε. For every 27 parameter combinations, we uses SCABALL to solve the 100
problems generated by GKLS with parameters

f ∗ = −1, m = 5d, ρ∗ = 1/3, r∗ = 2/3. (5.1)

The number of evaluations (Neva) and the number of solved problems (Nsol) are recorded.
We performed a profile analysis of each parameter; all the results are classified as profiles
according parameter level. As a result, there are 9 profiles each containing 900 results.

1 Due to the “everywhere dense” convergence, the calculation burden of DIRECT-type algorithms grows
geometrically with the dimension, and it is difficult to achieve a finer solution [14]. Therefore, we set the
relative error δ = 0.1 for d ≥ 6 to reduce calculations.
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Fig. 11 Profile analyses of nini, nseq, and γ in SCABALL

For d = 2, we made box-plots of Neva and line-plots of Nsol in Fig. 11(a). The outliers
of Neva are omitted for clarity. It can be seen that nini = 13, nseq = 8 are good choices for
d = 2, considering that they both have less Neva and more Nsol. Notably, that Neva = 2×104

is enough for d = 2 and δ = 0.01, this can be verified by the magnitude of Neva in the solved
problems. Therefore, the unsolved problems in SCABALL are caused by the loss of global
convergence. For the choice of γ , we should balance efficiency and global convergence. On
the one hand, Neva increases with γ , which means that a small γ accelerates convergence.
On the other hand, Nsol decreases significantly when γ is too small. To balance efficiency
and global convergence, we chose γ = 1.1. Note that the Nsol of the profile γ = 1.1 is 897.
This illustrates that appropriate contraction can accelerate the convergence of SCABALL
with little influence on global convergence.

Regrettably, mM designs do not have nested structures in different dimensions, which
means we need to construct X ini

nini(X
seq
nseq ) for each dimension, and so does the analysis above.

The profile analyses of other dimensions are shown in Fig. 11. We summarize some general
rules as follows. The sensitivity of the SCABALL algorithm to nini, nseq, and γ increases
successively. The effect of nini and nseq on Nsol is not obvious, while they have some effect
on Neva. This means that the number of designs only influences the convergence rate. The
best nini and nseq we found grow with the dimension, and nini increases faster than nseq.
Conversely, γ has significant influence on both Neva and Nsol. In general, both Neva and Nsol

increase with γ , but too large an Neva may lead to a decrease in Nsol. This phenomenon begins
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to occur at d = 5 and higher dimensions. In high dimensions, the contraction of SCABALL
is necessary to reduce the calculations. In addition, too small a γ makes Neva spread more
extreme, which means the algorithm is becoming unstable. Therefore, the choice of γ must
be careful. Fortunately, γ = 1 ∼ 1.2 is always a good choice for a fairly wide range of
dimensions. This confirms that the d∗ that we defined in Eq. (4.5) is a good underestimate of
the best contracted radius. Considering that the construction of mM design is stochastic, we
provide the empirical formulae to choose nini, nseq, and γ , as follows:

nini = 5d2 − 7, nseq = d2 + 5d − 6, γ = 1.1. (5.2)

Since the SCABALL algorithm is not sensitive to nini and nseq, one can choose suitable
numbers of design points near the formulae (5.2) by referring to the two suggestions at
the end of Sect. 4.1. Although constructing X ini

nini and X seq
nseq is time consuming, it is only

implemented once, and consequently will not influence the efficiency of SCABALL.

5.2 Comparisons with original partitionmethods

In this subsection, we first compare the performance of SCABALL and some DIRECT-type
algorithmswith other kinds of partitions. TheDIRECT,ADC,DISIMPL-V,DISIMPL-C, and
BIRECT algorithms are under consideration; we call these as the original partition methods.
The details of the original partition methods are introduced in Sect. 2, and the parameters in
SCABALL refer to Eq. (5.2). We used these algorithms to solve the problems generated by
GKLS with parameters in Eq. (5.1) and made the line-plots of Neva-Nsol, which is also called
as the operational characteristics, in Fig. 12. The operational characteristics is a common used
visual comparison of deterministic algorithms, more details can be found in Chapter 3 of
[42] and [36]. All computations were performed on Intel(R) Core(TM) i7-9750H 2.60GHz
processors running Matlab R2017b. The DIRECT-type algorithms mentioned here and later
are all implemented using the dynamic version of the MATLAB toolbox in DIRECTGO
v1.0.0 [40].

For d = 2 ∼ 5, the efficiency of the SCABALL algorithm is superior among all other
DIRECT-type algorithms with different partitions. Most random problems can be solved
by SCABALL with the minimum Neva, but SCABALL is less efficient in solving extreme
problems. This is reflected at the top of the Neva-Nsol line, which is dragged to the right
when Nsol is close to 100, and this is obvious when d = 3, 4. It means that the SCABALL
algorithm needs more evaluations than other algorithms to solve those extreme problems.

To further analyze the efficiency of SCABALL, we use GKLS to generate a new class of
test functions with hard parameters:

f ∗ = −1, m = 5d, ρ∗ = 0.2, r∗ = 0.8. (5.3)

The parameters in Eq. (5.3) have smaller ρ∗ and larger r∗ comparing with Eq. (5.1), which
make it hard for the algorithm to locate the global minimum. For convenience, we call the
functions generated by GKLS with parameters (5.1) and (5.3) as simple class and hard class
respectively. We did the similar experiments with the hard class of functions, and the results
are displayed in Fig. 13.

It turns out that the hard class problems needmore evaluations to solve, and the SCABALL
algorithm is not outstanding in solving them. We believe there are two reasons for this
phenomenon.One is thatwe chose the parameters in SCABALLby the experiments on simple
class problems, these parameters may not suitable for solving the hard ones. To achieve an
outstanding efficiency, the parameters in SCABALL must be selected for a specific class
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Fig. 12 Optional characteristics of original partition methods on simple class GKLS problems

of problems, otherwise, the efficiency will become mediocre. The other reason is that the
DIRECT-type algorithms is greatly influenced by the groups of d(Ri ). According to the
updating in Eq. (3.14), the d(Ri ) in SCABALL are neat. This perspective is illustrated by
Fig. 14. We ran all the DIRECT-type algorithms until the number ofRi was 100, and created
scatter diagrams of d(Ri ) and f (Ri ). It is obvious that SCABALL can decrease the number
of d(Ri )-based groups of Ri , and the reduction would bias the SCABALL towards a faster
convergence to local minima [9]. This also explains the good performance of SCABALL on
the relatively simple class problems with limited evaluations.

5.3 Comparisons with improved and hybridmethods

Next, we chose some variants of DIRECT-type algorithms to analyze their efficiency in
higher dimensions, including DIRECT-l [9], PLOR [25], DIRECT-rev [13], Gb-BIRECT and
BIRMIN [32] algorithms. These algorithms have good performance among DIRECT-type
algorithms, see the numerical comparisons in the Sect. 4.1 of [40]. The DIRECT-l, PLOR,
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Fig. 13 Optional characteristics of original partition methods on hard class GKLS problems

and Gb-BIRECT algorithms change the selection of POR to make the algorithms more
efficient, and we call these improved methods. The DIRECT-l decreases the d(Ri )-based
groups by using the infinity norm, similar to SCABALL, it is locally biased. TheGb-BIRECT
introduces a phase that constrains the selection of POR to large sub-regions, which is globally
biased. The PLOR balances the global and local search by choosing only the two with
minimal and maximal d(Ri ). We choose these improved methods to compare the influence
of locally and globally biased strategies. The DIRECT-rev and BIRMIN algorithms combine
the local optimizers to accelerate convergence, and we call these hybrid methods. They use
fmincon when some improvement in the best current solution is obtained. The DIRECT-
rev also includes a revised partition scheme. We choose these hybrid methods to analyze
the influence of the assistance of local optimizer. For better comparison, the corresponding
original partition methods, DIRECT and BIRECT, are also under consideration.

The comparison results for high dimensional GKLS functions of simple class are shown in
Fig. 15. As for the high dimensional GKLS functions of hard class, they are too difficult to be
solved in limited evaluations. In fact, all the algorithms we selected cannot solve even half of
them, thus we do not display the results. It can be seen that, none of DIRECT-type algorithms,
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Fig. 14 d(R)– f (R) diagrams of DIRECT-type algorithms

even combined with local optimizers, are immune to the “curse of dimensionality,” they
cannot solve all simple problems with limited evaluations in higher dimensions. Among all
these methods, the SCABALL algorithm performs well on this class of problems. In this
experiment, it is even comparable with the two hybrid methods. The DIRECT, DIRECT-rev,
and BIRMIN are also in good performance, while the DIRECT-l and PLOR are the least
efficient. We believe that the local strategies of DIRECT-l and PLOR are not suitable to this
class of functions.

To increase the variety of test functions, we present the comparison results of DIRECT-
type algorithms on the box-constrained problems in the DIRECTLib v1.3 [38]. DIRECTLib
contains a large number of various objective functions, including uni-modal andmulti-modal,
convex and non-convex problems, and the dimensionality covers 2-10. The key characteristics
of these test problems are listed in Table 2. Figure16 displays the optional characteristics on
all 129 problems; the horizontal axes are logarithmic for better illustration.

It turns out that the hybrid methods are the most efficient, especially for those difficult
problems needing more evaluations. Obviously, the local optimizer greatly improved the
efficiency of DIRECT-type algorithms. The influence of POR selection is also shown in
Fig. 16. The DIRECT-l is a local version of DIRECT. From the general trend, the Neva-Nsol

line of DIRECT-l passes through that of DIRECT from the left. It means that the local strategy
helped DIRECT-l to solve more simple problems with less evaluations. On the contrary, Gb-
BIRECT is a global version of BIRECT. And the Neva-Nsol line of Gb-BIRECT passes
through that of BIRECT from the bottom. It means that the global phase helped Gb-BIRECT
to solve more total problems than BIRECT. The PLOR is a balanced and simplified version
of DIRECT, and it is one of the most efficient algorithm except for the hybrid methods. This
results is different from the previous experiments, which indicate that the strategy of PLOR
is efficient but lack of stability. Among all original partition methods and improved methods,
the efficiency of SCABALL algorithm is mediocre, but it can solve the most DIRECTLib
problems in limited evaluations. Due to the variety of DIRECTLib problems, this shows the
robustness of SCABALL to some extent.
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Fig. 15 Optional characteristics of improved and hybrid methods on simple class GKLS problems

6 Conclusion and further discussion

In this paper, we introduced a new SCABALL algorithm for derivation-free optimization
problems. SCABALL is a DIRECT-type algorithm with a new partition method. It does not
focus on dividing the region of interest into specific geometry, but rather scatters several balls
to cover it. Then, to achieve better coverage, approximate mM designs were constructed by
boundary-phobic coffee-house design, and the partition radiiwere contracted by analyzing the
covering and overlapping rate. The parameters in SCABALLwere analyzed using a numerical
method, and the empirical choices were given by formulae. Finally, we did plenty numerical
experiments to compare the efficiency of SCABALL and other DIRECT-type algorithms.
The numerical results show that the SCABALL algorithm is locally biased, which can solve
most simple problems efficiently but is not outstanding in solving hard problems. In addition,
the SCABALL algorithm is robust to some extend.

There are also weaknesses in SCABALL. One is that the performance of SCABALL is
greatly influenced by the mM designs; therefore, the construction of X ini

nini and X seq
nseq and the
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Fig. 16 Optional characteristics of improved and hybrid methods on DIRECTlib problems

choice of nini, nseq, and γ would be important. The other is that the mM designs do not have
nested structures in different dimensions, one should construct two kinds of mM design for
each dimension, which makes it difficult to start the SCABALL algorithm.

Further more, there are several directions left for further study. One is the improved
scheme and the hybrid method of SCABALL. Since SCABALL is locally biased, the global
phase could be introduced like Gb-BIRECT, and the local optimizer can also combined with
SCABALL. Besides, the adaptive parameter tuning of SCABALL is alsoworth studying. The
efficiency of SCABALL could be improved if γ and ε can be tuned during iterations. Third,
the flexibility of SCABALL needs to be exploited. As mentioned in Sect. 4.1, SCABALL can
start on some user-defined points. This flexibility makes it possible to optimize the objective
function with the help of priors.
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