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Abstract
In this paper, we develop a three-stage stochastic network-based optimization model for the
provision of 5G services with Unmanned Aerial Vehicles (UAVs) in the disaster management
phases of: preparedness, response and recover/reconstruction. Users or devices on the ground
request services of a fleet of controller UAVs in flight and the requested services are exe-
cuted by a fleet of UAVs organized as a Flying Ad-Hoc Network and interconnected via 5G
technology. A disaster scenario can create difficulties for the provision of services by service
providers. For this reason, in the first stage, service providers make predictions about possible
scenarios in the second stage. Therefore, the first stage represents the preparedness phase, the
second stage represents the response phase, followed by the recovery/reconstruction phase,
represented by the third stage. In each of the three stages, service providers seek to maximize
the amount of services to be performed, assigning each service a priority. They also aim to,
simultaneously, minimize the total management costs of requests, the transmission and exe-
cution costs of services, the costs to increase the resources of the pre-existing network and, if
need be, to reduce them in the recovery/reconstruction phase. For the proposed multi-stage
stochastic optimization model, we provide variational formulations for which we investigate
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the existence and uniqueness of the solution. Finally, a detailed numerical example is solved
in order underline some of the key aspects of the model. This paper adds to the literature on
the rigorous mathematical modeling of advanced technologies for disaster management.

Keywords 5G, UAVs · Disaster management · Stochastic optimization · Network model

1 Introduction

5G technology, whose rollout began in 2019, can provide greater efficiency and versatility to
support advanced network-based applications worldwide (see [34]). The use of 5G can bol-
ster the digital infrastructure of companies, governments, educational institutions, non-profit
organizations, and individuals (see [7]). 5G is enabling the identification and development of
novel use cases that exploit sensors and interconnected devices that generate real time data
for enhanced situational awareness. For example, a firm could use a 5G-based application to
acquire data on the performance of its machinery to predict future maintenance needs, poten-
tially savingmoney by reducing or eliminating unplanned downtime (see [6]). TheCOVID-19
pandemic, in turn, has demonstrated the fundamental importance of a fully-connected society
with needs such as: remote learning, virtual business meetings, and working from home. To
achieve these, it is essential that the connections be fast, stable and secure (see [21, 56]), all
characteristics of 5G (see [2, 20]).

In parallel with the advent of 5G, the development of various technologies, such as
Unmanned Aerial Vehicles (UAVs) (drones, balloons, etc.) has led to possible synergies
with 5G in consumer, commercial and civil applications ( [3, 33, 47]) as well as humani-
tarian ones. Demand for UAV applications spans all industries as companies adopt remote
monitoring and automation for fast and efficient operations. However, there are limitations
that restrict how effectively UAVs can perform, with the main challenge being connectivity.
Most UAVs require continuous communicationwith their controllers in order to ensure safety
and effective operations. Traditionally, the operational range of UAVs has been limited by the
range of the radio controller (RC) resulting in most of them operating at low altitudes. How-
ever, despite significant efforts to develop proprietary radio control solutions, UAV designers
have been able to improve the range by only a few kilometers and only within the vision line
of sight (VLOS). The advent of 4G and its subsequent progression to 5G have proven to be
revolutionary. Through superior connectivity, UAVs are expected to autonomously perform
complex missions, transmit and upload large amounts of high-definition data and video to
the cloud, and travel much greater distances, even beyond the line of sight (BVLOS) (see
[31]). The extremely low latency of 5G (see [52]) should further revolutionize the collection
and transmittal of data at unprecedented speeds, the integration of artificial intelligence (AI)
(see [35]), the streaming of real-time ultra-high-definition images and videos (see [49]), and
enhanced air traffic intelligence.

As already noted, the fields of application of UAVs supported by 5G technology are many
and diverse. Importantly, in a disaster situation, whether natural or man-made, slow-onset or
sudden-onset, the collection and analysis of data in real-time are paramount and can assist
in the saving of lives, the reduction of pain and suffering, and the protection and restora-
tion of infrastructure. UAVs have emerged as powerful tools for disaster management with
uses including: the video-monitoring of fires, landslides, earthquakes, and their impacts (see
[55]), search and rescue, law enforcement support, oil and gas field detection, infrastructure
inspections, land mapping and even deliveries of needed supplies (see [16, 40, 45, 51]).
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The nature of disaster events and their diverse triggers dictate the need to introduce
uncertainty of different parameters, including the occurrence of such events in rigorous
mathematical models. In general, when a disaster occurs, it is plausible to assume that the
physical connectivity that guarantees the availability of services may be compromised. In
many disasters, it is possible to quickly restore the physical connectivity to the predisaster
level. However, during many disasters a straighforward restoration of connectivity may not
be possible. In fact, it may be more effective to introduce new connectivity and services
in the disaster area. For example, if the disaster causes significant disruption at the ground
level, the upgrading of a 4G network to a 5G one could be the most effective way to restore
connectivity. An additional benefit of this type of restoration is the added availability of new
services for the responders.

Since a disaster can irreversibly alter human activities, both the preparedness phase and the
response phase are of fundamental importance in disastermanagement. Specifically, decision-
makers andmanagers, in the disaster preparedness phase, need to consider multiple scenarios
with different probabilities of occurrence so as not to be surprised in the response phase, and to
be able tominimize the potential losses. The use ofUAVs, organized as a fleet (FANET, Flying
Ad-Hoc Network) in a 5G network could allow service providers to restore connectivity and
provide much needed services in disaster areas. During a disaster, new scenarios may arise,
before normalcy is restored. For these reasons, in this paper, we construct a three-stage
stochastic optimization model in which each of the three stages represents a phase of disaster
management: the preparedness phase, the response phase and the recovery/reconstruction
phase. In terms of ourmodel, in thefirst stage, representing the preparedness phase, the service
provider solves a maximization problem, with the aim of maximizing the total executed 5G
services (favoring the serviceswith higher priority levels), while, simultaneously,minimizing
the overall cost. In this stage, the variables, the parameters as well as the cost functions are
deterministic.

In the second stage, a typical service provider evaluates several scenarios, each with
different probabilities. The provider might decide to increase or decrease the capacities of
the controller UAVs and whether to add new UAVs at the FANET. The aim in this stage
is to maximize the quantity of executed services, while minimizing losses related to the
unmet demand in services and the costs, including those due to the possible reduction in
the capacities of controller UAVs. As a consequence, the actions taken by a service provider
during the second stage depend on the possible scenarios and their occurrences as well as
on the expected utility associated with the third stage. In the third stage, the service provider
aims to maximize the quantity of executed services and has to also take into account different
scenarios with different probabilities of occurrence.

Furthermore, battery life is one of the most important issues when using UAVs, since
it restricts flight duration. Therefore, the service provider also seeks to reduce the power
consumption of UAVs, with the aim of extending the life of their batteries (and, hence, their
use) as much as possible.

The rest of the paper is organized as follows. In Sect. 2, we provide a literature review of
optimization models applied to 5G networks using UAVs and of stochastic optimization, in
general, andwe describe our contributions in this paper. Section3 is devoted to the description
of the constrained stochastic optimization model. In Sect. 4, we provide variational formu-
lations of the proposed optimization models, ensuring the existence of a solution. Section5
contains a numerical example to validate the effectiveness of the proposed model and, finally,
Sect. 6 is devoted to the summary and the conclusions.
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2 Literature review and our contributions

In this Section, we review the main bibliographic sources in the literature that in the recent
past have dealt with the management and optimization of 5G networks (with and without
UAVs) and relevant stochastic multi-stage optimization models.

As already mentioned, the advent of 5G technology and the related advantages, have led
several researchers to tackle the problemofmanaging 5Gnetworks.Addad et al. in [1] address
the complexities and heterogeneities of verticals targeted by 5G systems. The authors propose
and evaluate a Mixed Integer Linear Programming Problem (MILP) optimization model to
tackle the complexities that arise in this problem, enabling a cost-optimal deployment of
network slices allowing a mobile network operator to efficiently allocate the underlying
layer resources according to its users’ requirements. In [12], a multi-tiered network-based
optimization model is presented describing the provision of services via network slices of
5G-service providers, taking into account the security levels of each provider. The objective
of the proposed model is to establish the optimal flows between network layers and the
optimal security levels in order to maximize the providers’ profits, given by the difference
between the revenues obtained by the sale of services and the rental of their resources and
the costs. Numerical experiments are performed and examples solved with a new nature-
inspired genetic algorithm adapted to the 5G network optimization problem. In [22], the
authors provide a standardized and easy to understand Integer Linear Program (ILP) for
offline mobile network slice embedding, focusing on resource allocation with a virtual node
aswell as linkmapping. The objective of the proposedmodel is tomaximize theweighted sum
of all embedded network slices. Finally, a simple configuration is solved using SCPSolver, a
Java interface for ILP which is based on the GLPK (GNU Linear Programming Kit). Xu et
al. in [53] take into account the problem of the limitations of mobile devices, widely used in
our daily lives. Assuming that these limitations can be reduced by enhancing the central units
(CUs) in 5G into edge nodes for processing, they propose an optimization problem devoted
to improving the resource utilization and load balance for all the edge nodes while protecting
the privacy information and satisfying the time requirement.

The importance of using UAVs in 5G networks is emphasized in the multitude of mathe-
matical models present in the literature. Moreover, several surveys have dealt with revising
optimizationmodels regarding the use of UAVs in 5G networks (see, for instance, [32, 50] for
an extensive review on the use of drones in various applications, especially in routing prob-
lems in the context of parcel delivery and on UAVs joint optimization problems and machine
learning, respectively). See [30] for a review on routing problems of two-echelon networks
for a fleet of Ground Vehicles (GVs) working in collaboration with UAVs; combinations
and synchronizations are modeled as Traveling Salesman Problems (TSPs), Vehicle Routing
Problems (VRPs), Location Routing Problems (LRPs), Truck and Trailer Routing Problems
(TTRPs) and so on (an overview of the recent literature on multimodal transportation opti-
mization is presented in [5]). In [15], a three-tier supply chain network model is presented
consisting of a fleet of UAVs organized as a FANET connecting one to another with direct
wireless links, managed by a fleet of UAV controllers, whose purpose is to provide 5G net-
work slices on demand to users and devices on the ground. The aim of this optimizationmodel
is to determine the optimal distributions of request flows. Burdakov et al. in [10], consider an
optimization problemoriginating fromoptimal placement of communications relay nodes. To
this purpose, the authors consider the number of unmanned vehicles (both aerial and ground
vehicles), and their positions as decision variables and as the objective function they define
the placement quality. In [19], the authors propose a framework to assign optimal locations
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to UAVs-enabled aerial relays. The proposed problem is composed of UAVs-user association
and UAVs-aerial placement. The prospective problem is based on probabilistic and determin-
istic Line of Sight (LOS) classification, making efficient use of a city map. A low-complexity
based technique is used to estimate the placement of UAVs concerning user locations. In [23],
a new multi-UAV reconnaissance task allocation model is proposed. The objective function
consists of the weighted sum of the total UAV consumption and the task execution time and
the aim of the proposed model is to minimize it. A new heuristic algorithm, called a grouping
ant colony optimization algorithm, is proposed for this new model and compared with the
traditional one. The authors in [24] analyze the coordination of network-enabled UAVs that
provide communication coverage to multiple mobile users on the ground. The aim of this
model is to maximize the set of mobiles covered by UAVs by balancing the power consump-
tion. Zhao et al. in [54] propose a UAV-assisted non-orthogonal multiple access (NOMA)
network, in which the UAV and base station (BS) cooperate with each other to serve ground
users simultaneously. The sum rate is maximized by jointly optimizing the UAV trajectory
and the NOMA precoding. The proposed optimization is decomposed into two steps. First,
the sum rate of the UAV-served users is maximized via alternate user scheduling and UAV
trajectory with its interference to the BS-served users below a threshold. Then, the optimal
NOMA precoding vectors are obtained using two schemes with different constraints. In both
schemes, the non-convex optimization problems are converted into tractable ones and an
iterative algorithm is designed to solve some numerical experiments. Authors in [29] present
a humanitarian Coverage Path Planning (CPP) framework optimized using a homogeneous
fleet of UAVs, with the aim of minimizing the sum of arrival times in each point of a certain
area of interest. Using a grid-based method of cellular decomposition, authors transformed
the CPP problem into a VRP and implemented some heuristics to effectively solve it (see
also [25, 39, 44] for other VRPs with UAVs).

The great versatility of UAVs and the purposes for which they can be used also in 5G
networks can provide decisive assistance in disaster management. The uncertainty of the
occurrence of disaster events dictates the need to take into account stochastic parameters into
mathematical (optimization) models. Several researchers have applied multi-level stochastic
programming theory to model the different stages of disaster management (see [26] for a
review of the state-of-the-art of the literature on two-stage stochastic programming in disas-
ter management). In [8], the authors propose a two-stage stochastic programming model to
plan the transportation of vital first-aid commodities to disaster-affected areas during emer-
gency response. A multi-commodity, multi-modal network flow formulation is developed to
describe the flow of material over an urban transportation network. Since it is difficult to
predict the timing and magnitude of any disaster and its impact on the system, which the
authors consider to be urban, resource mobilization is treated in a random manner, and the
resource requirements are represented as random variables.

Daniele and Sciacca, in turn, in [17], propose a stochastic Generalized Nash Equilibrium
model describing the competition among hospitals with first aid departments for patients
in a disaster scenario where each hospital with a first aid department has to solve a two-
stage stochastic optimization problem, one before the declaration of the disaster scenario and
one after the disaster occurs, to determine the equilibrium hospitalization flows to dispatch
to the other hospitals with first aid and/or to hospitals without emergency rooms in the
network. Nagurney and Salarpour in [38], for the first time, propose a two-stage stochastic
game theory model describing the behavior of national governments in a healthcare disaster
inspired by the COVID-19 pandemic and their competition for essential medical supplies
in different phases of disaster management. Noyan in [43] consider a risk-averse two-stage
stochastic programming model, where is specified the conditional-value-at-risk (CVaR) as
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the risk measure. In particular, in this work the problem of determining the response facility
locations and the inventory levels of the relief supplies at each facility in the presence of
uncertainty in demand and the damage level of a disaster network is addressed. In [46], authors
provide a three-stage mixed-integer stochastic programming model for disaster response
planning, considering the opening of local distribution facilities, the initial allocation of
supplies, and the last mile distribution of aid. The vehicles available for transportation, the
state of the infrastructure and the demand for the potential beneficiaries are considered as
stochastic elements. Authors in [4] present a two-stage stochastic 0–1 modeling and a related
algorithmic approach for Supply Chain Management under uncertainty, whose goal consists
in determining the production topology, plant sizing, product selection, product allocation
among plants and vendor selection for rawmaterials. The objective is themaximization of the
expected benefit given by the product net profit over the time horizon minus the investment
depreciation and operations costs. As part of the provision of 5G services in disaster scenarios,
Colajanni et al. in [14], for the first time, present a two-stage stochastic optimization model
(solved with the use of variational inequality theory) for the provision of such services in a
multi-tiered network, consisting of users or devices on the ground requiring services from
controller UAVs in flight. Since the possible occurrence of disaster scenarios and the related
uncertainty and severity could cause an unexpected and sudden increase in demand, the
authors propose to optimize the management of the pre-existing and additional resources in
order to maximize the total profit of service providers and, simultaneously, to minimize the
expected loss related to a possible unmet demand.

The theoretical framework proposed in this work represents a natural and, yet, significant
extension of the two-stage stochastic model just described. Our contributions in this paper
can be summarized as follows:

• We formulate a three-stage stochastic optimization model for the provision of services
in a multi-tiered network and in a disaster framework.

• The proposed model optimizes the management of the pre-existing and additional
resources in order to maximize the most important (and necessary) executed 5G ser-
vices, while minimizing the overall cost. The objective functions employed differ from
those in the earlier noted 2-stage model. Indeed, the purpose of this article is different,
as it mainly aims to maximize the 5G services provided to users making use of one of
the specific characteristics of 5G: the network slicing.

• We provide variational formulations of the proposed optimization model, accompanied
by a detailed numerical example.

This work adds to the literature on the mathematical modeling of advanced technology and
associated services for disaster management.

3 Mathematical model

In this Section, we present the mathematical model; specifically, we derive a three-stage
stochastic constrained optimization model.

First, we describe the generic 5G service supply network, on which the mathematical
model is based. As mentioned in Sect. 1, several types of 5G services can be requested not
only by users but also by devices, both situated on the ground. For the purposes of formu-
lating the model, it does not matter if the requests for services are made by users or by
devices; therefore, we represent users or devices in the network through nodes (in the same
layer), distinguishing, however, the type of requested service. The service requests are dis-
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Fig. 1 Network topology (where we denote by 1, . . . , k, . . . , K the services, by 1̂, . . . , f̂ , . . . , F̂1 the pre-
existing UAVs, by 1̃, . . . , f̃ , . . . , F̃2 the additional UAVs, by 1, . . . , u, . . . ,U the controller UAVs and by
1, . . . , g, . . . ,G the users and devices)

tinguished according to the type of service, and, in the context of a disaster management
setting can represent, for example: video monitoring, the sharing of sensor data, assessment
of infrastructure status, identification of possible victims, medical relief delivery, temperature
scanning, crowd monitoring (headcounts, social distancing, lockdown enforcement), popu-
lation alerting (communication through speakers), video calling, smart-traffic control, and
so on. Moreover, each service requires 5G technology to work and the requests for services
are managed (again via the 5G network) by some controller UAVs which act as network
orchestrators and which, in turn, send the service requests to the UAVs belonging to the fleet
at the highest layer, where services are actually executed. Observe that both the controller
UAVs and the UAVs belonging to the fleet are owned by the service provider, which aims to
provide the requested services and, at the same time, to manage its resources (i.e., its network
of UAVs) in the best possible way.

Therefore, a generic network to provide 5G services consists of 3 layers (from the top to
bottom): the execution layer where services are performed, the orchestration layer in which
some controller UAVs manage the service requests, and the layer of requests for 5G services.
Consequently, we take into account a fleet of UAVs on which 5G services are executed, the
controller UAVs, which receive the service requests and send them to the UAVs belonging
to the fleet, and the service requests demanded by users and devices.

As previously described, in this work we assume that, due to a certain event, the 5G
service requests could increase in stage 2. To properly manage the increase in requests, we
suppose that the service provider could decide if to use some additional UAVs and/or to
increase the controller UAVs’ capacities; namely, the maximum number of service requests
that the controller UAVs are able to manage. Thus, we consider F̂1 pre-existing UAVs,
which are already actively part of the network, as they are in flight, included in the FANET,
and F̃2 additional ones which could be used, if necessary. Moreover, we denote by F̂1 =
{1̂, . . . , f̂ , . . . , F̂1} and by F̃2 = {1̃, . . . , f̃ , . . . , F̃2} the sets of pre-existing and additional
UAVs, respectively, and by F3 = F̂1 ∪ F̃2 the set of the union of all UAVs belonging to the
fleet at the highest layer of the network. In contrast, in stage 3, after the disastrous event and
the response phase are over, the 5G service requests could decrease. Hence, the provider may
not use the additional UAVs belonging to the highest layer, but may also decide to reduce
the capacities of the controller UAVs of the middle layer. We also consider K different types
of services (we denote by k the typical one), U controller UAVs (we denote by u the typical
one) and G users or devices on the ground (we denote by g the generic user or device).
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Hence, the 5G service supply network, as shown by Fig. 1, consists of:

• The combination between each UAV (which executes the 5G services) belonging to
the fleet at the highest layer of the network and each service; hence, we have both
the combination between each pre-existing UAV f̂ = 1̂, . . . , F̂1 and each addi-
tional UAV f̃ = 1̃, . . . , F̃2 with each service k = 1, . . . , K : 1̂1, . . . , 1̂k, . . . , 1̂K ,
. . ., f̂ 1, . . . , f̂ k, . . . , f̂ K , . . ., F̂11, . . . , F̂1k, . . . , F̂1K and 1̃1, . . . , 1̃k, . . . , 1̃K , . . .,
f̃ 1, . . . , f̃ k, . . . , f̃ K , . . ., F̃21, . . . , F̃2k, . . . , F̃2K ;

• The combination between each controller UAV in flight u = 1, . . . ,U (which man-
ages the service requests) and each service k = 1, . . . , K : 11, . . . , 1k, . . . , 1K , . . .,
u1, . . . , uk, . . . , uK , . . ., U1, . . . ,Uk, . . . ,UK ;

• The combination between each user or device on the ground g = 1, . . . ,G (that
requires the services) and each service k = 1, . . . , K : 11, . . . , 1k, . . . , 1K , . . .,
g1, . . . , gk, . . . , gK , . . ., G1, . . . ,Gk, . . . ,GK .

We highlight that we used the green dashed lines for the links of the network connecting the
controller UAVs with the additional UAVs (belonging to the fleet at the highest level of the
network). We have chosen this format to clearly distinguish the pre-existing UAVs from the
possible additional ones. Moreover, observe that not all the links are depicted, but only those
connecting the corresponding services.

Note that the network presented above and the model that we propose are suitable for
both 4G and 5G, but we focus on 5G since it is higher performing and because 5G provides
greater bandwidth so it is possible to provide real-time video, for example, and other services
in a very reduced time-frame (it is well-known that the time that it takes to transmit the data
for the service is related to the bandwidth of the 5G link). Furthermore, it is assumed that, in
disasters, the cell towers for 5G have not been disturbed.

As anticipated in the Introduction, each disastrous event can be formally described by
three stages which follow one after the other. Note that, in our model, we do not consider the
mitigation phase of disaster management but do handle the other three phases of prepared-
ness, response, and recovery/reconstruction. The first stage is constituted by the normalcy
conditions, in which the flows of requests for services follow a stable trend. This trend of
requests may or may not undergo an abrupt change and may be more or less intense, based on
the severity of the event that may occur. Therefore, the second stage is comprised of different
scenarios, each of which has a probability of occurrence. Unlike the papers in the literature,
among these scenarios of the second stage, we also include the scenario representing the
normalcy associated with the first stage (which represents the possibility that no disastrous
events will occur). Finally, after the event that takes place during the second stage, there is
a return to normal and stable conditions. Obviously, if during the second stage, no changes
have occurred from the previous stage, then even in stage 3 there will be no change in the
demand for services; otherwise, similar to what has been described above, a scenario of stage
2 can be followed by different scenarios of stage 3 with different probabilities of occurrence
and demand for services. Figure2 shows the representation of the three stages.

Elaborating further, in the first stage, we have an initial scenario denoted by 1. After the
potential disaster occurs, we find ourselves in stage 2, where different scenarios can arise.
Note that one of the scenarios of stage 2 can represent the initial situation (equivalent to
scenario 1 of the first stage, if no disastrous event occurs) and, as a consequence, in this case
scenario 1 still occurs even at stage 3. Furthermore, it could happen that some scenarios in
stage 3 are the same as some in stage 2. Moreover, it is possible that scenarios (in stage 3)
coming from different scenarios of stage 2, are equivalent. For the sake of simplicity, we
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Fig. 2 Representation of the three stages, where the circles indicate the scenarios that can occur in the Stage
1 (1), Stage 2 (ω1, ω2, . . . , ω|�|) and Stage 3 (ξ1, ξ2, . . . , ξ|�|), while the probabilities are shown near the
links

have decided to keep nodes representing the same scenarios separate (as distinct scenarios
with the same characteristics).

The proposedmathematical model allows the service provider to maximize the quantity of
provided services (favoring the services with higher priority; that is, the services considered
most important and necessary) and to best manage its UAVs (minimizing the overall cost),
determining for each 5G service k the following:

• The optimal distribution flows of data that each controller UAV u has to receive (and to
manage) from each user or device g;

• The optimal distribution flows of the 5G service data that each controller UAV u has to
send to each pre-existing UAV f̂ ; namely, the quantities of services that each pre-existing
UAV has to execute;

• The optimal distribution flows of the 5G service data that each controller UAV u has to
send to each additional UAV f̃ and whether it is appropriate to use the additional UAVs;
namely, the quantities of services that each additional UAV has to execute;

• If and how much additional capacity to add to each controller UAV u;
• If and how much capacity to reduce to each controller UAV u.
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Table 1 Variables definition

Notation Description

x1guk , x
2ω
guk , x

3ξ
guk Amount of data to transmit by each user or device g to

each controller UAV u, associated with the service k in
stage 1, in stage 2 when scenario ω ∈ � occurs, in stage
3 when scenario ξ ∈ � occurs, respectively

y1
u f̂ k

, y2ω
u f̂ k

, y3ξ
u f̂ k

Amount of data to transmit by each controller UAV u to
each pre-existing UAV f̂ , associated with the service k in
stage 1, in stage 2 when scenario ω ∈ � occurs, in stage
3 when scenario ξ ∈ � occurs, respectively

y1
u f̃ k

, y2ω
u f̃ k

, y3ξ
u f̃ k

Amount of data to transmit by each controller UAV u to
each additional UAV f̃ , associated with the service k in
stage 1, in stage 2 when scenario ω ∈ � occurs, in stage
3 when scenario ξ ∈ � occurs, respectively

γ 1
u , γ

2ω
u The additional capacity of controller UAV u, in stage 1

and in stage 2 when scenario ω ∈ � occurs, respectively

δ2ωu , δ3ξu The reduced capacity of controller UAV u, in stage 2
when scenarioω ∈ � occurs and in stage 3when scenario
ξ ∈ � occurs, respectively

Therefore, denoting by� and� the sets of all the scenarios that could occur in the second
and third stage, respectively, and denoting by ω ∈ � and ξ ∈ � the typical scenarios, we
report the variables of the model in Table 1 (note that we have reported the stage and scenario
through the superscripts of the variables).

Moreover, we denote the vectors of variables as follows:

X1 = (x1guk)g=1,...,G
u=1,...,U
k=1,...,K

, X2 = (x2ωguk)g=1,...,G
u=1,...,U
k=1,...,K

ω∈�

, X3 = (x3ξguk)g=1,...,G
u=1,...,U
k=1,...,K

ξ∈�

;

Ŷ 1 = (y1
u f̂ k

)u=1,...,U
f̂ ∈F̂1

k=1,...,K

, Ŷ 2 = (y2ω
u f̂ k

)u=1,...,U
f̂ ∈F̂1

k=1,...,K
ω∈�

, Ŷ 3 = (y3ξ
u f̂ k

)u=1,...,U
f̂ ∈F̂1

k=1,...,K
ξ∈�

;

Ỹ 1 = (y1
u f̃ k

)u=1,...,U
f̃ ∈F̃2

k=1,...,K

, Ỹ 2 = (y2ω
u f̃ k

)u=1,...,U
f̃ ∈F̃2

k=1,...,K
ω∈�

, Ỹ 3 = (y3ξ
u f̃ k

)u=1,...,U
f̃ ∈F̃2

k=1,...,K
ξ∈�

;

�1 = (γ 1
u )u=1,...,U , �2 = (γ 2ω

u )u=1,...,U
ω∈�

; 	2 = (δ2ωu )u=1,...,U
ω∈�

, 	3 = (δ3ξu )u=1,...,U
ξ∈�

.

Let:

• R1
gk , R

2ω
gk and R3ξ

gk be the demands for service k requested by user or device on the ground
g, in stage 1, in stage 2 when scenario ω ∈ � occurs, in stage 3 when scenario ξ ∈ �

occurs, respectively;
• Dk be the amount of data that must be transmitted associated with a unit of service k;
• ρ1

k , ρ
2ω
k and ρ

3ξ
k be the priority levels for the execution of service k, in stage 1, in stage

2 when scenario ω ∈ � occurs, in stage 3 when scenario ξ ∈ � occurs, respectively
(such priority levels indicate which services are most needed from a disaster victim
perspective); moreover, in the disaster application domain, the controller UAVs assume
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an important role related to the prioritization (otherwise, a device, such as a cell phone,
might directly link with a UAV);

• Su be the maximum capacity of controller UAV u, that is the maximum number of
requests that the controller UAV u is able to manage (observe that the provider could
increase this maximum capacity);

• sk be the computational space used to execute a unit of service k; since a UAV can execute
several services at the same time, sk can also be understood as a portion of resource used
by a unit of service k;

• S f be the maximum computational space (used to execute all the requested services) on
the UAV f belonging to the fleet at the highest layer of the network;

• S f k be a specificity parameter that is equal to 0 if the UAV f belonging to the fleet cannot
execute service k (perhaps because it is not equipped with a certain type of sensor or
video technology, etc.) and 1 otherwise;

• B
1
, B

2ω
and B

3ξ
be the budgets that the service provider can use in stage 1, in stage 2

when scenario ω ∈ � occurs and in stage 3 when scenario ξ ∈ � occurs, respectively;
• γ 1

u and γ 2ω
u be the maximum additional capacities that the provider can decide to add at

the controller UAV u, in stage 1 and in stage 2 when scenario ω ∈ � occurs, respectively.

As mentioned above, the objective is to maximize the quantity of executed 5G services,
favoring the services with higher priority levels, and to best manage the provider’s UAVs,
minimizing the overall cost. The latter is given by the transmission, execution and manage-
ment costs, the costs to add new UAVs to the superior fleet and the costs to increase or reduce
the capacities of the controller UAVs. Hence, we denote by:

• c1gu , c
2ω
gu and c3ξgu the costs due to the transmission of service data from user or device

g to the controller UAV u, in stage 1, in stage 2 when scenario ω ∈ � occurs and in
stage 3 when scenario ξ ∈ � occurs, respectively; and we assume that such costs are a

function of the amount of data transmitted from g to u, for all services: c1gu
(∑K

k=1 x
1
guk

)
,

c2ωgu
(∑K

k=1 x
2ω
guk

)
and c3ξgu

(∑K
k=1 x

3ξ
guk

)
, ∀g = 1, . . . ,G, ∀u = 1, . . . ,U , ∀ω ∈

�, ∀ξ ∈ �;
• c1u f , c

2ω
u f and c3ξu f the costs due to the transmission of service data from the controller

UAV u to the pre-existing or additional UAV f belonging to the fleet, in stage 1, in stage
2 when scenario ω ∈ � occurs and in stage 3 when scenario ξ ∈ � occurs, respectively;
and we assume that such costs are function of the amount of data transmitted from u to
f , for all services: c1u f

(∑K
k=1 y

1
u f k

)
, c2ωu f

(∑K
k=1 y

2ω
u f k

)
and c3ξu f

(∑K
k=1 y

3ξ
u f k

)
, ∀u =

1, . . . ,U , ∀ f ∈ F3, ∀ω ∈ �, ∀ξ ∈ �;
• c(E),1

f , c(E),2ω
f and c(E),3ξ

f the execution costs of services to the pre-existing or addi-
tional UAV f belonging to the fleet, in stage 1, in stage 2 when scenario ω ∈ � occurs
and in stage 3 when scenario ξ ∈ � occurs, respectively; and we assume that such

costs are a function of the total amount of executed services: c(E),1
f

(∑U
u=1

∑K
k=1 y

1
u f k

)
,

c(E),2ω
f

(∑U
u=1

∑K
k=1 y

2ω
u f k

)
and c(E),3ξ

f

(∑U
u=1

∑K
k=1 y

3ξ
u f k

)
, ∀ f ∈ F3, ∀ω ∈

�, ∀ξ ∈ �;
• c(E),1

u , c(E),2ω
u and c(E),3ξ

u themanagement costs of service requests to the controller UAV
u, in stage 1, in stage 2 when scenario ω ∈ � occurs and in stage 3 when scenario ξ ∈ �

occurs, respectively; and we assume that such costs are a function of the received service
requests and the capacities of u (that depend on the increased or reduced capacities):

c(E),1
u

(
X1
u, γ

1
u

)
, c(E),2ω

u

(
X2ω
u , γ 1

u , γ 2ω
u , δ2ωu

)
and
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c(E),3ξ
u

(
X3ξ
u , γ 1

u , γ 2ω
u , δ2ωu , δ3ξu

)
, ∀u = 1, . . . ,U , ∀ω ∈ �, ∀ξ ∈ �,

where we denote by X1
u =

(
x1guk

)
g=1,...,G
k=1,...,K

, X2ω
u =

(
x2ωguk

)
g=1,...,G
k=1,...,K

and X3ξ
u =

(
x3ξguk

)
g=1,...,G
k=1,...,K

, ∀u = 1, . . . ,U , ∀ω ∈ �, ∀ξ ∈ �. Particularly, we assume that

such costs depend on the total amount of received service requests, that is on the sums∑G
g=1

∑K
k=1 x

1
guk ,

∑G
g=1

∑K
k=1 x

2ω
guk and

∑G
g=1

∑K
k=1 x

3ξ
guk , respectively. Therefore, we

will use the following notation later on:

c(E),1
u

⎛
⎝

G∑
g=1

K∑
k=1

x1guk, γ
1
u

⎞
⎠ , c(E),2ω

u

⎛
⎝

G∑
g=1

K∑
k=1

x2ωguk, γ
1
u , γ 2ω

u , δ2ωu

⎞
⎠ and

c(E),3ξ
u

⎛
⎝

G∑
g=1

K∑
k=1

x3ξguk, γ
1
u , γ 2ω

u , δ2ωu , δ3ξu

⎞
⎠ , ∀u = 1, . . . ,U , ∀ω ∈ �, ∀ξ ∈ �;

• c1
f̃
, c2ω

f̃
and c3ξ

f̃
the costs due to add new UAVs to the fleet at the highest layer of

the network, in stage 1, in stage 2 when scenario ω ∈ � occurs and in stage 3 when
scenario ξ ∈ � occurs, respectively; and we assume that such costs are a function of

the total amount of executed services: c1
f̃

(∑U
u=1

∑K
k=1 y

1
u f̃ k

)
, c2ω

f̃

(∑U
u=1

∑K
k=1 y

2ω
u f̃ k

)

and c3ξ
f̃

(∑U
u=1

∑K
k=1 y

3ξ
u f̃ k

)
, ∀ f̃ ∈ F̃2, ∀ω ∈ �, ∀ξ ∈ �;

• c1u and c
2ω
u the costs due to increase the capacities of controller UAV u, in stage 1 and in

stage 2 when scenario ω ∈ � occurs, respectively; and we assume that such costs are a
function of the additional capacities: c1u

(
γ 1
u

)
and c2ωu

(
γ 2ω
u

)
, ∀u = 1, . . . ,U , ∀ω ∈ �;

• c(D),2ω
u and c(D),3ξ

u the costs due to reduce the capacities of controller UAV u, in stage 2
when scenario ω ∈ � occurs and in stage 3 when scenario ξ ∈ � occurs, respectively;
and we assume that such costs are a function of the reduced capacities: c(D),2ω

u
(
δ2ωu
)
and

c(D),3ξ
u

(
δ
3ξ
u

)
, ∀u = 1, . . . ,U , ∀ω ∈ �, ∀ξ ∈ �.

We highlight that in the first stage the provider can establish if, in anticipation of the event
that may occur in the second stage, it is convenient to use additional UAVs and additional
capacities, while the latter cannot be reduced. Therefore, introducing the following vectors:

χ2 = (X2, Ŷ 2, Ỹ 2, �1, �2,	2), χ3 = (X3, Ŷ 3, Ỹ 3, �1, �2,	2,	3),

the service provider is faced with the following three-stage stochastic optimization model, in
which it seeks to maximize the total executed 5G services and to minimize the overall cost:

Max

⎧⎨
⎩α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρ1
k y

1
u f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

c1gu

(
K∑

k=1

x1guk

)
+

U∑
u=1

∑
f ∈F3

c1u f

(
K∑

k=1

y1u f k

)

+
∑
f ∈F3

c(E),1
f

(
U∑
u=1

K∑
k=1

y1u f k

)
+

U∑
u=1

c(E),1
u

⎛
⎝

G∑
g=1

K∑
k=1

x1guk, γ
1
u

⎞
⎠

+
∑

f̃ ∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

y1
u f̃ k

)
+

U∑
u=1

c1u(γ
1
u )

⎤
⎦+ E�[P2(χ2, ω) + E�[P3(χ3, ω, ξ)]]

⎫
⎬
⎭
(1)
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subject to:

U∑
u=1

x1guk≥R1
gk · Dk ∀g = 1, . . . ,G, ∀k = 1, . . . , K , (2)

K∑
k=1

G∑
g=1

x1guk ≤ Su+γ 1
u ∀u = 1, . . . ,U , (3)

∑

f̂ ∈F̂1

y1
u f̂ k

+
∑

f̃ ∈F̃2

y1
u f̃ k

≤
G∑

g=1

x1guk ∀u = 1, . . . ,U , ∀k = 1, . . . , K , (4)

U∑
u=1

K∑
k=1

sk y
1
u f k ≤ S f ∀ f ∈ F3, (5)

U∑
u=1

y1u f k ≤ M · S f k ∀ f ∈ F3, ∀k = 1, . . . , K , (6)

∑

f̃ ∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

y1
u f̃ k

)
+

U∑
u=1

c1u(γ
1
u ) ≤ B

1
, (7)

γ 1
u ≤ γ 1

u, ∀u = 1, . . . ,U , (8)

x1guk, y
1
u f̂ k

, y1
u f̃ k

, γ 1
u ∈ R+,∀g, ∀u, ∀ f̂ ∈ F̂1, ∀ f̃ ∈ F̃2, ∀k. (9)

The constrained optimization problem (1)–(9) is a multi-objective programming problem;
indeed, the model involves more than one objective function which must be maximized. We
used the weighted sum method that combines and converts all the objective functions into a
single-objective composite function using the weighted sum with α1 and α2.

The objective function (1) consists of three main terms. The first term, multiplied by
the weight α1, represents the amount of 5G services provided that, especially in a disaster
situation, must be maximized. Specifically, observe that the quantity of each executed service
(namely, the quantity of data that all the controller UAVs sent to each pre-existing and
additional UAVs for the execution,

∑U
u=1

∑
f ∈F3

y1u f k) is multiplied by ρ1
k , the priority level

for the execution of service k. The second term of the objective function, multiplied by the
weight α2, represents the overall cost. The minus sign assures the minimization of this term.
More specifically, such a total cost is given by the sum of all the following costs:

• ∑G
g=1

∑U
u=1 c

1
gu

(∑K
k=1 x

1
guk

)
, the transmission costs of service data between the users

and devices on the ground and the controller UAVs;

• ∑U
u=1

∑
f ∈F3

c1u f

(∑K
k=1 y

1
u f k

)
, the transmission costs of service data between the con-

troller UAVs and the UAVs belonging to the fleet;

• ∑
f ∈F3

c(E),1
f

(∑U
u=1

∑K
k=1 y

1
u f k

)
, the execution costs for each UAV belonging to the

fleet at the highest level of the network;

• ∑U
u=1 c

(E),1
u

(∑G
g=1

∑K
k=1 x

1
guk, γ

1
u

)
, the management costs for each controller UAV;

• ∑
f̃ ∈F̃2

c1
f̃

(∑U
u=1

∑K
k=1 y

1
u f̃ k

)
, the costs to add the new UAVs;

• ∑U
u=1 c

1
u(γ

1
u ), the costs to add further capacity to the controller UAVs.
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Note that, in this paper, we also account for one of the most important issues in using
UAVs (such as drones), the lifetime of batteries, which restricts the flight duration since the
proposed model aims at minimizing the execution and management costs of each UAV.

The last term of the objective function (1) represents the expected value of the objective
function of service provider in the second and third stage. Assuming a discrete probability
distribution, and denoting by pω the probability that the scenario ω occurs in stage 2 and by
Pr(ξ |ω) the conditional probability of ξ assuming that the scenario ω has already occurred,
the expected objective function of service provider in the second stage E�[P2(χ2, ω) +
E�[P3(χ3, ω, ξ)]] can be written as follows:

E�[P2(X2, Ŷ 2, Ỹ 2, �1, �2,	2, ω) + E�[P3(χ3, ω, ξ)]]
=
∑
ω∈�

pω

(
P2(X2, Ŷ 2, Ỹ 2, �1, �2,	2, ω) + E�[P3(χ3, ω, ξ)]

)

=
∑
ω∈�

[
pω

(
P2(X2, Ŷ 2, Ỹ 2, �1, �2,	2, ω)

+
∑
ξ∈�

Pr(ξ |ω)
(
P3(X3, Ŷ 3, Ỹ 3, �1, �2,	2,	3, ω, ξ)

))]
.

We will explain P2(χ2, ω) and P3(χ3, ω, ξ) in detail later.
Constraint (2) states that, in stage 1, the amount of transmitted data for service k that all

the controller UAVs receive by user or device g must be at least equal to the total amount of
requested data, given by the demand for k by g multiplied by the amount of data that must
be transmitted associated with a unit of requested service k. Constraint (3) guarantees that
the maximum capacity of each controller UAV u is not exceeded. Note that such a maximum
capacity could be increased, if convenient. The conservation law, corresponding to each
controller UAV u and each service k, is represented by constraint (4), according to which the
quantity of 5G service data transmitted by u to the pre-existing and additional UAVs at the
highest layer of the network (for the execution)must be less than or equal to the quantity of 5G
service data that u has received from all the users and devices. The maximum computational
space (used to execute all the requested services) of each UAV f belonging to the fleet is not
exceeded, as established by constraint (5). We assume that a specific service may require a
specific type of UAV (such as one with a certain type of sensor or video technology, etc.).
Therefore, not every UAV can perform any requested service function as established by
constraint (6), where M is a very big number. Indeed, if the specificity parameter S f k = 0;
namely the UAV f cannot execute service k, then constraint (6) assures that

∑U
u=1 y

1
u f k ≤ 0;

namely, there is no flow of data, associated with the service k, transmitted to the UAV f .
On the contrary, if the specificity parameter S f k = 1, we have no restrictions on the flow of
data transmitted to the UAV f . Constraint (7) means that, in the first stage, the sum of costs
needed to use additional UAVs to execute the 5G services and to increase the capacities of

controller UAVs cannot exceed B
1
, the maximum budget available to the provider. Moreover,

constraint (8)must be verified; that is, the capacity constraint, according towhich it is possible
to add only a limited quantity of capacity on the controller UAV u. Finally, constraints (9)
are constraints of nonnegativity of the variables.
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The optimal solution in the second stage, in turn, is determined as the solution to the
following second stage stochastic maximization problem:

Max

⎧⎨
⎩α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρ2ω
k y2ωu f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

c2ωgu

(
K∑

k=1

x2ωguk

)
+

U∑
u=1

∑
f ∈F3

c2ωu f

(
K∑

k=1

y2ωu f k

)

+
∑
f ∈F3

c(E),2ω
f

(
U∑
u=1

K∑
k=1

y2ωu f k

)
+

U∑
u=1

c(E),2ω
u

⎛
⎝

G∑
g=1

K∑
k=1

x2ωguk, γ
1
u , γ 2ω

u , δ2ωu

⎞
⎠

+
∑

f̃ ∈F̃2

c2ω
f̃

(
U∑
u=1

K∑
k=1

y2ω
u f̃ k

)
+

U∑
u=1

c2ωu (γ 2ω
u ) +

U∑
u=1

c(D),2ω
u (δ2ωu )

⎤
⎦

−α3

K∑
k=1

βk

⎡
⎣

G∑
g=1

R2ω
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2ωu f k +
U∑
u=1

∑
f ∈F3

y1u f k −
G∑

g=1

R1
gk · Dk

⎞
⎠
⎤
⎦

+E�[P3(χ3, ω, ξ)]}
(10)

subject to constraints:

U∑
u=1

x2ωguk≤R2ω
gk · Dk−

[
U∑
u=1

x1guk − R1
gk · Dk

]
, ∀g, ∀k, ∀ω ∈ �, (11)

K∑
k=1

G∑
g=1

x2ωguk ≤ Su + γ 1
u + γ 2ω

u − δ2ωu , ∀u, ∀ω ∈ �, (12)

∑

f̂ ∈F̂1

y2ω
u f̂ k

+
∑

f̃ ∈F̃2

y2ω
u f̃ k

≤
G∑

g=1

x2ωguk, ∀u, ∀k, ∀ω ∈ �, (13)

U∑
u=1

K∑
k=1

sk y
2ω
u f k ≤ S f , ∀ f ∈ F3, ∀ω ∈ �, (14)

U∑
u=1

y2ωu f k ≤ M · S f k ∀ f ∈ F3, ∀k = 1, . . . , K , ∀ω ∈ �, (15)

∑

f̃ ∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

y1
u f̃ k

)
+

U∑
u=1

c1u(γ
1
u ) +

∑

f̃ ∈F̃2

c2ω
f̃

(
U∑
u=1

K∑
k=1

y2ω
u f̃ k

)

+
U∑
u=1

c2ωu (γ 2ω
u ) +

U∑
u=1

c(D),2ω
u (δ2ωu ) ≤ B

1+B
2ω

, ∀ω, (16)

γ 2ω
u ≤ γ 2ω

u , ∀u = 1, . . . ,U , ∀ω ∈ �, (17)

δ2ωu ≤ γ 1
u , ∀u = 1, . . . ,U , ∀ω ∈ �, (18)

x2ωguk, y
2ω
u f̂ k

, y2ω
u f̃ k

, γ 2ω
u , δ2ωu ∈ R+,∀g, ∀u, ∀ f̂ ∈ F̂1, ∀ f̃ ∈ F̃2, ∀k, ∀ω. (19)

Observe that, since in stage 2 the provider can establish whether to add or to reduce the
capacities of the controller UAVs, unlike the objective function of the first stage, (1), the
objective function of the second stage, (10), also includes the costs due to the reduction of
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the capacities of controller UAVs. Therefore, the objective function (10) to maximize is given
by the difference between the quantity of executed services and the total cost, to which the
penalty to pay for the unmet demand is subtracted, while the expected value of the profit
of the service provider in the third stage is summed. Observe that each executed service is
multiplied by the priority levels (it is consistent thanks to the 5G network slicing); the total
cost is multiplied by the weight α2, while the unmet demand, in which we denoted by βk the
unit penalty (non-negative), is multiplied by the weight α3.

Constraint (11) establishes that, in stage 2 under each scenario ω, the flows of transmitted
data for service k from user or device g to all the controller UAVs are less than or equal to the
total amount of requested data not yet satisfied (from the preparations of stage 1). Constraint
(12) ensures that, under each scenario ω of the second stage, the flows of requested data for
services to each controller UAV u are less than or equal to their maximum capacity, given by
the capacity Su to which the additional capacities of the first and second stage are summed,
while the reduced capacity (of the second stage) is subtracted. Constraints (13), (14), (15),
(17) and (19) have the same meaning as the constraints (4), (5), (6), (8) and (9), defined for
the first stage, while (16) states that the sum of the costs due to add new UAVs or capacities
in stage 1 and stage 2 summed to the cost needed to eventually reduce the capacity (in the
second stage), must not exceed the sum of the budgets available for the first two stages.
Furthermore, constraint (18) ensures that the reduced capacity of each controller UAV u (in
stage 2) is less than or equal to the capacity added during the first stage.

Note that the total penalty in the objective function (10) is always nonnegative, as proved
by the following Proposition.

Proposition 3.1 The term multiplied by the unit penalty encumbered by service providers on
the unmet demand for service k, βk , in the objective function (10) is nonnegative, that is:

⎡
⎣

G∑
g=1

R2ω
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2ωu f k +
U∑
u=1

∑
f ∈F3

y1u f k −
G∑

g=1

R1
gk · Dk

⎞
⎠
⎤
⎦ ≥ 0, ∀k, ∀ω.

Proof By constraint (13), observing that the sum of y2ω
u f̂ k

as f̂ ∈ F̂1 added to the sum of y2ω
u f̃ k

as f̃ ∈ F̃2 equals the sum of y2ωu f k as f ∈ F3

(∑
f̂ ∈F̂1

y2ω
u f̂ k

+∑
f̃ ∈F̃2

y2ω
u f̃ k

= ∑
f ∈F3

y2ωu f k

)
,

and summing to u (since (13) holds ∀u = 1, · · · ,U ) we obtain:

U∑
u=1

∑
f ∈F3

y2ωu f k ≤
G∑

g=1

U∑
u=1

x2ωguk, ∀k, ∀ω. (20)

Using constraint (11), inequality (20) becomes:

U∑
u=1

∑
f ∈F3

y2ωu f k ≤
G∑

g=1

[
R2ω
gk · Dk −

[
U∑
u=1

x1guk − R1
gk · Dk

]]
, ∀k, ∀ω,

that is:

U∑
u=1

∑
f ∈F3

y2ωu f k ≤
G∑

g=1

R2ω
gk · Dk −

G∑
g=1

U∑
u=1

x1guk +
G∑

g=1

R1
gk · Dk, ∀k, ∀ω,

123



Journal of Global Optimization (2023) 86:741–780 757

or, equivalently:

G∑
g=1

R2ω
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2ωu f k +
G∑

g=1

U∑
u=1

x1guk −
G∑

g=1

R1
gk · Dk

⎞
⎠ ≥ 0, ∀k, ∀ω. (21)

Moreover, remembering that constraint (4) holds for all u = 1, . . . ,U , and summing for u,
we obtain:

G∑
g=1

U∑
u=1

x1guk ≥
U∑
u=1

∑

f̂ ∈F̂1

y1
u f̂ k

+
U∑
u=1

∑

f̃ ∈F̃2

y1
u f̃ k

=
U∑
u=1

∑
f ∈F3

y1u f k, ∀k = 1, . . . , K . (22)

From (21) and (22) we obtain:

G∑
g=1

R2ω
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2ωu f k +
U∑
u=1

∑
f ∈F3

y1u f k −
G∑

g=1

R1
gk · Dk

⎞
⎠

≥
G∑

g=1

R2ω
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2ωu f k +
G∑

g=1

U∑
u=1

x1guk −
G∑

g=1

R1
gk · Dk

⎞
⎠ ≥ 0, ∀k, ∀ω,(23)

which is what we wanted to prove. ��

Since the weight and the unit penalty are non-negative (that is, α3, βk ≥ 0, ∀k =
1, . . . , K ), Proposition 3.1 guarantees that the term of the objective function (10) referring
to the unmet demand is non-negative, and, then, that it is actually minimized.

We also underline that we are assuming that, while in the first stage of preparedness it
was only possible to add capacity to each controller UAV u, under scenarios of stage 2 we
can establish if it is convenient to add or reduce capacity; namely, to determine the values of
γ 2ω
u and δ2ωu variables, respectively (because stage 2 is also the preparedness phase of stage

3, in which the demand falls).
Furthermore, observe that, since in the objective function both the costs due to add capacity

to each controller UAV u, c2ωu (γ 2ω
u ), and the costs due to reduce capacity to each controller

UAV u, c(D),2ω
u (δ2ωu ), appear and, therefore, both costs are minimized, it follows that either

capacity is added or reduced, but it cannot be added and reduced at the same time (during
the same scenario of stage 2), because, obviously, it is not convenient.

The objective P3(χ3, ω, ξ) is determined as the solution to the following third stage
stochastic maximization problem:

Max

⎧⎨
⎩α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρ
3ξ
k y3ξu f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

c3ξgu

(
K∑

k=1

x3ξguk

)
+

U∑
u=1

∑
f ∈F3

c3ξu f

(
K∑

k=1

y3ξu f k

)

+
∑
f ∈F3

c(E),3ξ
f

(
U∑
u=1

K∑
k=1

y3ξu f k

)
+

U∑
u=1

c(E),3ξ
u

⎛
⎝

G∑
g=1

K∑
k=1

x3ξguk, γ
1
u , γ 2ω

u , δ2ωu , δ3ξu

⎞
⎠

+
∑

f̃ ∈F̃2

c3ξ
f̃

(
U∑
u=1

K∑
k=1

y3ξ
u f̃ k

)
+

U∑
u=1

c(D),3ξ
u (δ3ξu )

⎤
⎦
⎫
⎬
⎭

(24)
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subject to constraints:

U∑
u=1

x3ξguk≤R3ξ
gk · Dk, ∀g, ∀k, ∀ξ ∈ �, (25)

K∑
k=1

G∑
g=1

x3ξguk ≤ Su + γ 1
u + γ 2ω

u − δ2ωu − δ3ξu , ∀u, ∀ξ ∈ �, (26)

∑

f̂ ∈F̂1

y3ξ
u f̂ k

+
∑

f̃ ∈F̃2

y3ξ
u f̃ k

≤
G∑

g=1

x3ξguk, ∀u, ∀k, ∀ξ ∈ �, (27)

U∑
u=1

K∑
k=1

sk y
3ξ
u f k ≤ S f , ∀ f ∈ F3, ∀ξ ∈ �, (28)

U∑
u=1

y3ξu f k ≤ M · S f k, ∀ f ∈ F3, ∀k = 1, . . . , K , ∀ξ ∈ �, (29)

∑

f̃ ∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

y1
u f̃ k

)
+

U∑
u=1

c1u(γ
1
u )

+
∑

f̃ ∈F̃2

c2ω
f̃

(
U∑
u=1

K∑
k=1

y2ω
u f̃ k

)
+

U∑
u=1

c2ωu (γ 2ω
u ) +

U∑
u=1

c(D),2ω
u (δ2ωu )

+
∑

f̃ ∈F̃2

c3ξ
f̃

(
U∑
u=1

K∑
k=1

y3ξ
u f̃ k

)
+

U∑
u=1

c(D),3ξ
u (δ3ξu ) ≤ B

1+B
2ω

, ∀ξ, (30)

δ3ξu ≤ γ 1
u + γ 2ω

u − δ2ωu , ∀u = 1, . . . ,U , ∀ω ∈ �ξ , ∀ξ ∈ �, (31)

x3ξguk, y
3ξ
u f̂ k

, y3ξ
u f̃ k

, δ3ξu ∈ R+,∀g, ∀u, ∀ f̂ ∈ F̂1, ∀ f̃ ∈ F̃2, ∀k, ∀ξ. (32)

With the assumption that in the third stage the provider can only remove remaining capacity
from the first two stages, in this new objective function, (24), there isn’t the term related to
the cost due to increasing the capacities of the controller UAVs (but, obviously, there are
the costs to reduce these capacities). Moreover, constraint (25) represents the conservation
law of stage 3 only: the amount of transmitted data for service k by user or device g to all
the controller UAVs cannot be higher than the total amount of data demanded, R3ξ

gk · Dk .

The maximum capacity in constraint (26) is given by Su summed by the added capacities,
subtracted by the reduced capacities. The budget constraint (30) takes into account the sum
of the costs to use additional UAVs, to add and to reduce capacities of all the three stages and
requires it is less than or equal to the sum of the available budgets of stage 1 and stage 2. We

are assuming that the provider has a certain budget, B
1
, that it can use, in addition to special

and support funding, B
2ω
, in case of a disastrous event. Lastly, constraint (31) establishes

that in stage 3 it is not possible to reduce more capacity than that added in stages 1 and 2.
Following [14, 17, 38] and the standard stochastic programming theory (see [9, 48]),

the first-, second- and third-stage problems can be solved together through a unique maxi-
mization problem. Such a unique problem allows us to obtain the solutions of the complete
problem (with all three stages) by solving only one optimization problem. Furthermore, this
formulation guarantees the consistency of the solutions (which in the three problems are
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linked to each other but which must respect all the constraints at the same time). The new
objective function is given by the sum of the three objective functions (1), (10) and (24), that
is:

Max

⎧⎨
⎩α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρ1
k y

1
u f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

c1gu

(
K∑

k=1

x1guk

)
+

U∑
u=1

∑
f ∈F3

c1u f

(
K∑

k=1

y1u f k

)

+
∑
f ∈F3

c(E),1
f

(
U∑
u=1

K∑
k=1

y1u f k

)
+

U∑
u=1

c(E),1
u

⎛
⎝

G∑
g=1

K∑
k=1

x1guk , γ
1
u

⎞
⎠

+
∑

f̃ ∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

y1
u f̃ k

)
+

U∑
u=1

c1u(γ
1
u )

⎤
⎦

+
∑
ω∈�

⎡
⎣pω

⎛
⎝α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρ2ω
k y2ωu f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

c2ωgu

(
K∑

k=1

x2ωguk

)
+

U∑
u=1

∑
f ∈F3

c2ωu f

(
K∑

k=1

y2ωu f k

)

+
∑
f ∈F3

c(E),2ω
f

(
U∑
u=1

K∑
k=1

y2ωu f k

)
+

U∑
u=1

c(E),2ω
u

⎛
⎝

G∑
g=1

K∑
k=1

x2ωguk , γ
1
u , γ 2ω

u , δ2ωu

⎞
⎠

+
∑

f̃ ∈F̃2

c2ω
f̃

(
U∑
u=1

K∑
k=1

y2ω
u f̃ k

)
+

U∑
u=1

c2ωu (γ 2ω
u ) +

U∑
u=1

c(D),2ω
u (δ2ωu )

⎤
⎦

−α3

K∑
k=1

βk

⎡
⎣

G∑
g=1

R2ω
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2ωu f k +
U∑
u=1

∑
f ∈F3

y1u f k −
G∑

g=1

R1
gk · Dk

⎞
⎠
⎤
⎦

+
∑
ξ∈�

Pr(ξ |ω)

⎛
⎝α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρ
3ξ
k y3ξu f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

c3ξgu

(
K∑

k=1

x3ξguk

)
+

U∑
u=1

∑
f ∈F3

c3ξu f

(
K∑

k=1

y3ξu f k

)

+
∑
f ∈F3

c(E),3ξ
f

(
U∑
u=1

K∑
k=1

y3ξu f k

)
+

U∑
u=1

c(E),3ξ
u

⎛
⎝

G∑
g=1

K∑
k=1

x3ξguk , γ
1
u , γ 2ω

u , δ2ωu , δ3ξu

⎞
⎠

+
∑

f̃ ∈F̃2

c3ξ
f̃

(
U∑
u=1

K∑
k=1

y3ξ
u f̃ k

)
+

U∑
u=1

c(D),3ξ
u (δ3ξu )

⎤
⎦
⎞
⎠
⎤
⎦
⎞
⎠
⎫⎬
⎭ (33)

subject to constraints (2)–(9), (11)–(19) and (25)–(32).
Furthermore, let:

• S = {1, 2, 3} be the set of the three stages and we denote by s the typical one;
• �s be the set of scenarios that can occur in stage s, and we denote by θs a generic scenario

that could occur. Note that:

– If s = 1 we have that only one scenario θ1 belongs to �1, the current one, and,
therefore, we also obtain that Pr(θ1|θ0) = 1 and pθ0 = pθ1 = 1;

– If s = 2 we have that �2 ≡ � and θ2 ∈ �2 is equivalent to ω ∈ �; therefore,
Pr(θ2|θ1) = pω (since each scenario θ2 originates from the only scenario θ1, it
follows that Pr(θ2|θ1) = Pr(θ2) = pθ2 );

– If s = 3 we have that �3 ≡ � and θ3 ∈ �3 corresponds to ξ ∈ �; therefore,
Pr(θ3|θ2) = Pr(ξ |ω).

Observe also that, without any loss in generality, we denote the superscript sθs by sθ
because it is obvious that θ refers to the stage s. Let:
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• γ s′θ ′
u and δs

′θ ′
u be the vectors of additional and reduced capacities on the controller UAV

u, respectively, composed of the quantities relating to the stages and scenarios previous
or equal to s and θs .
As previously described, during the first stage we can define whether to add capacity
to each controller UAV u (γ 1θ1

u or, equivalently, γ 1
u ), but since the first stage is the

preparedness one, in this stage the capacity cannot be reduced, that is δ
1θ1
u = δ1u =

0, ∀u = 1, . . . ,U . Analogously, during the third stage we can establish whether to
reduce capacity to each controllerUAV u (δ3θ3u or, equivalently, δ3ξu ), while such a capacity
cannot be added; namely γ

3θ3
u = γ

3ξ
u = 0, ∀u = 1, . . . ,U , ∀θ3 ∈ �3 (∀ξ ∈ �).

Therefore, the unique maximization problem could be written in the following compact
form:

Max

⎧⎪⎪⎨
⎪⎪⎩

3∑
s=1

∑
θs∈�s

θs−1∈�s−1

⎡
⎣pθs−1 Pr(θs |θs−1)

⎛
⎝α1

U∑
u=1

∑
f ∈F3

K∑
k=1

ρsθ
k ysθu f k − α2

⎡
⎣

G∑
g=1

U∑
u=1

csθgu

(
K∑

k=1

xsθguk

)

+
U∑
u=1

∑
f ∈F3

csθu f

(
K∑

k=1

ysθu f k

)
+
∑
f ∈F3

c(E),sθ
f

(
U∑
u=1

K∑
k=1

ysθu f k

)
+

U∑
u=1

c(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

xsθguk , γ
s′θ ′
u , δs

′θ ′
u

⎞
⎠

+
∑

f̃ ∈F̃2

csθ
f̃

(
U∑
u=1

K∑
k=1

ysθ
u f̃ k

)⎤
⎦
⎞
⎠
⎤
⎦− α2

⎡
⎢⎢⎣

2∑
s=1

∑
θs∈�s

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

(
U∑
u=1

csθu (γ sθ
u )

)

+
3∑

s=2

∑
θs∈�s

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

(
U∑
u=1

c(D),sθ
u (δsθu )

)⎤⎥⎥⎦

−
∑

θ2∈�2

Pr(θ2|θ1)α3

K∑
k=1

βk

⎡
⎣

G∑
g=1

R2θ
gk · Dk −

⎛
⎝

U∑
u=1

∑
f ∈F3

y2θu f k +
U∑
u=1

∑
f ∈F3

y1θu f k −
G∑

g=1

R1θ
gk · Dk

⎞
⎠
⎤
⎦
⎫⎬
⎭
(34)

subject to constraints:

U∑
u=1

x1guk≥R1
gk · Dk ∀g = 1, . . . ,G, ∀k = 1, . . . , K , (35)

U∑
u=1

x2ωguk≤R2ω
gk · Dk−

[
U∑
u=1

x1guk − R1
gk · Dk

]
, ∀g, ∀k, ∀ω ∈ �, (36)

U∑
u=1

x3ξguk ≤ R3ξ
gk · Dk , ∀g, ∀k, ∀ξ ∈ �, (37)

K∑
k=1

G∑
g=1

xsθguk ≤ Su +
s∑

s=1

∑

θ ′∈�′
θ

(γ s′θ ′
u − δs

′θ ′
u ), ∀u, ∀s = 1, 2, 3, ∀θs ∈ �s , (38)

∑

f̂ ∈F̂1

ysθ
u f̂ k

+
∑

f̃ ∈F̃2

ysθ
u f̃ k

≤
G∑

g=1

xsθguk , ∀u, ∀k, ∀s = 1, 2, 3, ∀θs ∈ �s , (39)

U∑
u=1

K∑
k=1

sk y
sθ
u f k ≤ S f , ∀ f ∈ F3, ∀s = 1, 2, 3, ∀θs ∈ �s , (40)

U∑
u=1

ysθu f k ≤ M · S f k , ∀ f ∈ F3, ∀k = 1, ·, K , ∀s = 1, 2, 3, ∀θs ∈ �s , (41)
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∑s
s′=1

∑
θ ′∈�′

θ

(∑
f̃ ∈F̃2

cs
′θ ′
f̃

(∑U
u=1

∑K
k=1 y

s′θ ′
u f̃ k

)
+∑U

u=1 c
s′θ ′
u (γ s′θ ′

u ) +∑U
u=1 c

(D),s′θ ′
u (δs

′θ ′
u )

)

≤ ∑s
s′=1

∑
θ ′∈�′

θ
B
s′θ ′

∀s, ∀θ ∈ �s ,

(42)

γ sθ
u ≤ γ sθ

u , ∀u = 1, . . . ,U , ∀s = 1, 2, ∀θ ∈ �s , (43)

δsθu ≤
s−1∑
s′=1

∑

θ ′∈�−
θ

(γ s′θ ′
u − δs

′θ ′
u ), ∀u = 1, . . . ,U , ∀s = 2, 3, ∀θ ∈ �s , (44)

xsθguk , y
sθ
u f̂ k

, ysθ
u f̃ k

, γ sθ
u , δsθu ∈ R+, ∀g, ∀u, ∀ f̂ ∈ F̂1, ∀ f̃ ∈ F̃2, ∀k, ∀s = 1, 2, 3, ∀θ ∈ �s . (45)

The objective function (34) is equivalent to (33). Constraints (35)–(37) refer to the con-
straints that relate the outgoingflowsof transmitted data fromusers anddevices anddemanded
data in stage 1, in stage 2 when scenario ω ∈ � occurs and in stage 3 when scenario ξ ∈ �

occurs, respectively; namely constraints (2), (11) and (25). Constraint (38) is the capacity
constraint on each controller UAV, taking into account the added and reduced capacities. Note
that �′

θ in (38), (42) represents the set of scenarios previous or equal to θ . Constraint (39)
represents the conservation law for all the scenarios (and for all the stages). The capacity
constraint is captured by constraint (40), as well as the specificity constraint (41) and the
budget constraint (42). Observe that, in model (24)–(32), we assumed that no budget was

added in the third stage; this could be obtained setting B
3ξ = 0, ∀ξ ∈ �. However, con-

straint (42) has a more generic form which allows the provider to use an additional budget (if
any). Constraint (43) simultaneously represents the upper-bound constraint for the additional
capacities for each stage. Analogously, constraint (44) is the upper-bound constraint for the
reduced capacities, where the upper-bounds are constituted by the difference between the
added and the reduced capacities and �−

θ is the set of scenarios previous to θ . Finally, in
the next Section, we will denote by �+

θs
the set of scenarios following or equal to θs . In this

paper, without loss of generality, we assume that the same weight is given to the correspond-
ing terms of the objective functions, regardless of the stage under consideration. Namely, the
coefficients α1 and α2 are the same in the objective functions of three stages. This choice is
motivated by the fact that in the real problem a greater weight is usually given to the first
term of the objective function (which refers to the maximization of the services performed)
than to the second (which refers to the minimization of costs), and this is true for each of the
stages. Nevertheless, a generalization of this assumption is easy to deal with by considering
distinct values for each stage: αs

1 and αs
2, ∀s = 1, 2, 3.

4 Variational formulations

In this Section, we derive a variational formulation of the aforementioned constrained opti-
mization model. Variational inequalities are a very useful tool which continues to be studied
as a unifying, natural, novel, and compact framework for the formulation and solution of a
wide class of unrelated problems (see [42]). Indeed, many equilibrium problems as well as
optimization problems, which arise in pure and applied fields, are being solved using vari-
ational inequalities through known and new numerical methods (see, for example, [11, 13,
27, 37, 41]). The applications continue to grow, with this paper being yet another example.
The advantage of determining such a formulation resides in being able, under appropriate
assumptions (see [28, 36]), to easily obtain results of existence and uniqueness of the solution,
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given the well-developed theory. Therefore, we denote the vectors of variables as follows:

X = (xsθguk)g=1,...,G
u=1,...,U
k=1,...,K

θ∈�
s=1,2,3

, Ŷ = (ysθ
u f̂ k

)u=1,...,U
f̂ ∈F̂1

k=1,...,K
θ∈�

s=1,2,3

, Ỹ = (ysθ
u f̃ k

)u=1,...,U
f̃ ∈F̃2

k=1,...,K
θ∈�

s=1,2,3

;

� = (γ sθ
u )u=1,...,U

θ∈�,
s=1,2

; 	 = (δsθu )u=1,...,U
θ∈�
s=2,3

.

Moreover, we denote by � =
3∑

s=1

|�s |, �3 =
2∑

s=1

|�s |, and �
1 =

3∑
s=2

|�s | the sums of the

cardinalities of the sets of the scenarios of the three stages, the first two and the last two,
respectively.

Making use of the classic variational inequality theory (see [36] and the references therein)
and referring to other works of a similar nature (see [14, 17, 38]), we can state the following
result.

Theorem 4.1 An optimal solution to the constrained optimization problem (24), (35)–(45)
can be obtained by solving the following variational inequality:

Find (X∗, Ŷ ∗, Ỹ ∗, �∗, 	∗) ∈ K s.t.:

3∑
s=1

∑
θs∈�s

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

G∑
g=1

U∑
u=1

K∑
k=1

α2

⎡
⎢⎢⎢⎢⎢⎣

∂csθgu

(
K∑
l=1

xsθ∗
gul

)

∂xsθguk

+
∂c(E),sθ

u

(∑G
m=1

∑K
l=1 x

sθ∗
mul , γ

s′θ ′∗
u , δs

′θ ′∗
u

)

∂xsθguk

⎤
⎦× (xsθguk − xsθ∗

guk)

+
U∑
u=1

∑

f̂ ∈F1

K∑
k=1

3∑
s=1

∑
θs∈�s

⎡
⎢⎣

∑
θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

⎛
⎜⎝α2

∂csθ
u f̂

(∑K
l=1 y

sθ∗
u f̂ l

)

∂ ysθ
u f̂ k

+α2

∂c(E),sθ
f̂

(∑U
m=1

∑K
l=1 y

sθ∗
m f̂ l

)

∂ ysθ
u f̂ k

− α1ρ
sθ
k

⎞
⎟⎠− 	s3

∑
θ2∈�2

Pr(θ2|θ1)α3βk

⎤
⎥⎦× (ysθ

u f̂ k
− ysθ∗

u f̂ k
)

+
U∑
u=1

∑

f̃ ∈F2

K∑
k=1

3∑
s=1

∑
θs∈�s

⎡
⎣ ∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

⎛
⎝α2

∂csθ
u f̃

(∑K
l=1 y

sθ∗
u f̃ l

)

∂ ysθ
u f̃ k

+ α2

∂c(E),sθ
f̃

(∑U
m=1

∑K
l=1 y

sθ∗
m f̃ l

)

∂ ysθ
u f̃ k

+α2

∂csθ
f̃

(∑U
m=1

∑K
l=1 y

sθ∗
m f̃ l

)

∂ ysθ
u f̃ k

− α1ρ
sθ
k

⎞
⎠− 	s3

∑
θ2∈�2

Pr(θ2|θ1)α3βk

⎤
⎦× (ysθ

u f̃ k
− ysθ∗

u f̃ k
)

+
U∑
u=1

2∑
s=1

∑
θs∈�s

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
s=s

∑

θs∈�s∩�+
θs

θs−1∈�s−1∩�′
θs

pθs−1 Pr(θs |θs−1)α2

∂c
(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

x
sθ∗
guk , γ

s′θ ′∗
u , δ

s′θ ′∗
u

⎞
⎠

∂γ sθ
u

+
∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)α2
∂csθu (γ sθ∗

u )

∂γ sθ
u

⎤
⎦× (γ sθ

u − γ sθ∗
u )
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+
U∑
u=1

3∑
s=2

∑
θs∈�s

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
s=s

∑

θs∈�s∩�+
θs

θs−1∈�s−1∩�′
θs

pθs−1 Pr(θs |θs−1)α2

∂c
(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

x
sθ∗
guk , γ

s′θ ′∗
u , δ

s′θ ′∗
u

⎞
⎠

∂δsθu

+
∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)α2
∂c(D),sθ

u (δsθ∗
u )

∂δsθu

⎤
⎦× (δsθu − δsθ∗

u ) ≥ 0

∀(X , Ŷ , Ỹ , �,	) ∈ K, (46)

where 	s3 = 1 if s = 1 or s = 2, null otherwise and

K :=
{
(X , Ŷ , Ỹ , �,	) ∈ R

U [K�(G+F̂1+F̃2)+�
3+�

1]
+ : (35) − (45) hold

}
.

We now put variational inequality (46) into standard form (see [36]), that is: determine
X ∗ ∈ K such that:

〈F(X ),X − X ∗〉 ≥ 0, ∀X ∈ K, (47)

where K is a closed and convex set. In order to do this, we put

X ≡ (X , Ŷ , Ỹ , �,	),

F(X ) ≡ (Fi (X ))i=1,...,5 and K ≡ K, where:

Fsθ
guk,1 =

∑
θs−1∈�s−1

pθs−1 Pr(θs |θs−1)α2

⎡
⎢⎢⎢⎢⎢⎣

∂csθgu

(
K∑
l=1

xsθgul

)

∂xsθguk
+

∂c(E),sθ
u

(∑G
m=1

∑K
l=1 x

sθ
mul , γ

s′θ ′
u , δs

′θ ′
u

)

∂xsθguk

⎤
⎥⎥⎥⎥⎥⎦

, ∀g, u, k, s, θ,

Fsθ
u f̂ k,2

=
⎡
⎢⎣

∑
θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

⎛
⎜⎝α2

∂csθ
u f̂

(∑K
l=1 y

sθ
u f̂ l

)

∂ ysθ
u f̂ k

+ α2

∂c(E),sθ

f̂

(∑U
m=1

∑K
l=1 y

sθ
m f̂ l

)

∂ ysθ
u f̂ k

− α1ρ
sθ
k

⎞
⎟⎠

−	s3

∑
θ2∈�2

Pr(θ2|θ1)α3βk

⎤
⎦ , ∀u, f̂ , k, s, θ,

Fsθ
u f̃ k,3

=
⎡
⎣ ∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

⎛
⎝α2

∂csθ
u f̃

(∑K
l=1 y

sθ
u f̃ l

)

∂ ysθ
u f̃ k

+ α2

∂c(E),sθ
f̃

(∑U
m=1

∑K
l=1 y

sθ
m f̃ l

)

∂ ysθ
u f̃ k

+α2

∂csθ
f̃

(∑U
m=1

∑K
l=1 y

sθ
m f̃ l

)

∂ ysθ
u f̃ k

− α1ρ
sθ
k

⎞
⎠− 	s3

∑
θ2∈�2

Pr(θ2|θ1)α3βk

⎤
⎦ , ∀u, f̃ , k, s, θ,

Fsθ
u,4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
s=s

∑

θs∈�s∩�+
θs

θs−1∈�s−1∩�′
θs

pθs−1 Pr(θs |θs−1)α2

∂c
(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

x
sθ
guk , γ

s′θ ′
u , δ

s′θ ′
u

⎞
⎠

∂γ sθ
u

+
∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)α2
∂csθu (γ sθ

u )

∂γ sθ
u

⎤
⎦ , ∀u, s, θ,
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and

Fsθ
u,5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
s=s

∑

θs∈�s∩�+
θs

θs−1∈�s−1∩�′
θs

pθs−1 Pr(θs |θs−1)α2

∂c
(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

x
sθ
guk, γ

s′θ ′
u , δ

s′θ ′
u

⎞
⎠

∂δsθu

+
∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)α2
∂c(D),sθ

u (δsθu )

∂δsθu

⎤
⎦ , ∀u, s, θ.

Under the imposed assumptions, the function F(X ) that enters variational inequality (47)
is continuous. Now we prove that the feasible set K is compact. Thereby, the existence of
a solution to variational inequality (47) will be guaranteed from the classical variational
inequality theory (see [28]).

Proposition 4.2 The feasible set K defined above is compact.

Proof From the nature of constraints (35)–(45), we can easily deduce that the set is closed.
We prove that the feasible setK is also bounded. First we observe that each group of variables
is lower-bounded due to constraint (45). Constraint (44) can be rewritten as follows:

δsθsu +
s−1∑
s′=1

∑

θ ′∈�−
θ

δs
′θ ′

u ≤
s−1∑
s′=1

∑

θ ′∈�−
θ

γ s′θ ′
u

and, from constraint (43), we have:

δsθu +
s−1∑
s′=1

∑

θ ′∈�−
θ

δs
′θ ′

u ≤
s−1∑
s′=1

∑

θ ′∈�−
θ

γ s′θ ′
u ≤

s−1∑
s′=1

∑

θ ′∈�−
θ

γ s′θ ′
u .

Therefore, the group of variables δsθu , for all u, s, θ , are upper-bounded. From the limitation
of these variables and from constraint (38), we have that also all the variables xsθguk , for all
g, u, k, s, θ , are upper-bounded. Finally, constraints (39) and (40) ensure the limitation of
the variables ysθu f k , for all u, f , k, s, θ .

Hence, the feasible set K is compact, since it is both closed and bounded. ��
Given the nonlinearity of the budget constraints (42) and the related computational diffi-

culties that could cause, we now deduce an alternative variational formulation of the proposed
optimization model that allows us to relax such constraints using the associated Lagrange
multipliers. We have the following:

Theorem 4.3 A vector X ∗ ∈ K is a solution to variational inequality (47) if and only if
there exists a vector of Lagrange multipliers λ∗ = (λsθ∗)s=1,2,3

θ∈�s

∈ R
�+ such that the vector

(X ∗, λ∗) ∈ K2 is a solution to variational inequality:
Determine (X ∗, λ∗) ∈ K2 such that:

3∑
s=1

∑
θs∈�s

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

G∑
g=1

U∑
u=1

K∑
k=1

α2

⎡
⎢⎢⎢⎢⎢⎣

∂csθgu

(
K∑
l=1

xsθ∗
gul

)

∂xsθguk
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+
∂c(E),sθ

u

(∑G
m=1

∑K
l=1 x

sθ∗
mul , γ

s′θ ′∗
u , δs

′θ ′∗
u

)

∂xsθguk

⎤
⎦× (xsθguk − xsθ∗

guk)

+
U∑
u=1

∑

f̂ ∈F1

K∑
k=1

3∑
s=1

∑
θs∈�s

⎡
⎢⎣

∑
θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

⎛
⎜⎝α2

∂csθ
u f̂

(∑K
l=1 y

sθ∗
u f̂ l

)

∂ ysθ
u f̂ k

+α2

∂c(E),sθ
f̂

(∑U
m=1

∑K
l=1 y

sθ∗
m f̂ l

)

∂ ysθ
u f̂ k

− α1ρ
sθ
k

⎞
⎟⎠− 	s3

∑
θ2∈�2

Pr(θ2|θ1)α3βk

⎤
⎥⎦× (ysθ

u f̂ k
− ysθ∗

u f̂ k
)

+
U∑
u=1

∑

f̃ ∈F2

K∑
k=1

3∑
s=1

∑
θs∈�s

⎡
⎣ ∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)

⎛
⎝α2

∂csθ
u f̃

(∑K
l=1 y

sθ∗
u f̃ l

)

∂ ysθ
u f̃ k

+ α2

∂c(E),sθ
f̃

(∑U
m=1

∑K
l=1 y

sθ∗
m f̃ l

)

∂ ysθ
u f̃ k

+α2

∂csθ
f̃

(∑U
m=1

∑K
l=1 y

sθ∗
m f̃ l

)

∂ ysθ
u f̃ k

− α1ρ
sθ
k

⎞
⎠− 	s3

∑
θ2∈�2

Pr(θ2|θ1)α3βk

+
3∑

s′=s

∑

θ ′∈�+
θs

λs
′θ ′∗

∂csθ
f̃

(
U∑

m=1

K∑
l=1

ysθ∗
m f̃ l

)

∂ ysθ
u f̃ k

⎤
⎥⎥⎥⎥⎥⎦

× (ysθ
u f̃ k

− ysθ∗
u f̃ k

)

+
U∑
u=1

2∑
s=1

∑
θs∈�s

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
s=s

∑

θs∈�s∩�+
θs

θs−1∈�s−1∩�′
θs

pθs−1 Pr(θs |θs−1)α2

∂c
(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

x
sθ∗
guk , γ

s′θ ′∗
u , δ

s′θ ′∗
u

⎞
⎠

∂γ sθ
u

+
∑

θs−1∈�s−1

Pr(θs |θs−1)α2
∂csθu (γ sθ∗

u )

∂γ sθ
u

+
3∑

s′=s

∑

θ ′∈�+
θs

λs
′θ ′∗ ∂csθu

(
γ sθ∗
u

)

∂γ sθ
u

⎤
⎥⎦× (γ sθ

u − γ sθ∗
u )

+
U∑
u=1

3∑
s=2

∑
θs∈�s

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
s=s

∑

θs∈�s∩�+
θs

θs−1∈�s−1∩�′
θs

pθs−1 Pr(θs |θs−1)α2

∂c
(E),sθ
u

⎛
⎝

G∑
g=1

K∑
k=1

x
sθ∗
guk , γ

s′θ ′∗
u , δ

s′θ ′∗
u

⎞
⎠

∂δsθu

+
∑

θs−1∈�s−1

pθs−1 Pr(θs |θs−1)α2
∂c(D),sθ

u (δsθ∗
u )

∂δsθu
+

3∑
s′=s

∑

θ ′∈�+
θs

λs
′θ ′∗ ∂c(D),sθ

u
(
δusθ∗)

∂δsθu

⎤
⎥⎦× (δsθu − δsθ∗

u )

+
3∑

s=1

∑
θ∈�s

⎡
⎣

s∑
s′=1

∑

θ ′∈�′
θ

B
s′θ ′ −

s∑
s′=1

∑

θ ′∈�′
θ

⎛
⎝∑

f̃ ∈F̃2

cs
′θ ′
f̃

(
U∑
u=1

K∑
k=1

ys
′θ ′∗

u f̃ k

)

+
U∑
u=1

cs
′θ ′
u (γ s′θ ′∗

u ) +
U∑
u=1

c(D),s′θ ′
u (δs

′θ ′∗
u )

)]
× (λsθ − λsθ∗) ≥ 0

∀(X , λ) ∈ K2 (48)

where K2 = K × R
�+.
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5 Illustrative numerical example

In this Section, we provide a detailed numerical example to illustrate some key aspects of
the model and to validate its effectiveness.

For the numerical implementation, we consider the network depicted in Fig. 3. Therefore,
we have G = 3 users or devices on the ground, whose requests are received by U = 2
controller UAVs at the middle level of the network. These requests are sent, in turn, to the
fleet ofUAVs at the the highest level of the network,where they perform the services requested
andwhich consist of F̂1 = 2 pre-existing UAVs and F̃2 = 2 additional UAVs. The size of this
instance is constructed for easy interpretation purposes. Furthermore, we assume that large
geographical areas are divided into smaller zones that can be covered by a limited number of
UAVs. It should be noted that, in many practical situations, the networks are comprised of a
very large number of users and devices requiring services and a large number of UAVs. This
is an important issue that arises when determining the optimal management of such networks.
In fact, due to the computational complexity, implementation by a single centralized unit may
be too burdensome, since such a centralization would entail evident problems in terms of
efficiency of the communication activities. In these situations, the main idea consists in using
the distributed architectures, which consist of several components that can cooperate with
one another over a unique communication network in order to achieve a specific objective
or goal. Each component of a distributed architecture is associated with a group of users and
devices or UAVs and is capable of managing the flows of only the users and devices or UAVs
belonging to that group. Furthermore, in addition to the use of distributed architectures, to
manage large areas, we suggest partitioning these zones into smaller areas which could be
managed more easily.

We focus on the service about the acquisition and collection of real-time data from sensors
(K = 1). Note that, in the normalcy scenario I , the demands for the service have low values,
since no disaster event has occurred yet, and data are acquired only for the monitoring of and
the prediction of future disasters (analogously for the third stage). At stage 2, if no disaster
event occurs (we are in ω1 ≡ I scenario), the demands for the service remain unaltered with
respect to stage 1; if a landslide occurs (ω2), the demands for real-time data acquisition and
collection have generally higher values (but we also assumed that the demand value vanishes
for a certain geographical region); if an earthquakeoccurs (ω3), the demands for the service are
much greater than the other cases since it represents a more serious (and extended) scenario.
We assume that, at stage 3, the normalcy situation can be restored, intermediate situations
may occur (such as aftershocks of different severity) or the disastrous event can continue.
Obviously, the model proposed in this paper can be applied to services and disastrous events
different than those considered here.

In this example, we suppose that, at stage 2, three possible scenarios, ω1 ≡ I , ω2 and ω3,
can occur with different probabilities:

pω1 = 0.2, pω2 = 0.5, pω3 = 0.3.

We denoted by I the initial scenario, that is, a scenario in which no disaster event has
occurred or a scenario in which it was possible to restore the starting condition of stage 1;
that is, when a landslide occurs, only a portion of added capacities are reduced (because
some of them are used also during the following scenarios in stage 3) and during the third
scenario of stage 2, that is when an earthquake occurs, the maximum allowed capacity of the
first controller UAV and much of the additional capacity of the second are used (see Fig. 4)
because we assumed that the earthquake is the most serious event.
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Fig. 3 Network topology for the numerical example

Moreover,we assume that (see Fig. 5 for amore detailed depiction of the correct succession
of the various scenarios between the various stages):

• From scenario ω1 ≡ I of the second stage, only the same scenario ξ1 ≡ I can occur at
stage 3, with a conditional probability Pr(ξ1|ω1) = 1;

• From scenario ω2 of the second stage, only two scenarios can occur at stage 3, ξ2 and ξ3,
with conditional probabilities Pr(ξ1|ω2) = 0.6 and Pr(ξ2|ω2) = 0.4;

• From scenario ω3 of the second stage, 5 different scenarios can occur: ξ4 ≡ I , ξ5, ξ6,
ξ7 and ξ8 ≡ ω3, with conditional probabilities Pr(ξ4|ω3) = 0.1, Pr(ξ5|ω3) = 0.35,
Pr(ξ6|ω3) = 0.25, Pr(ξ7|ω3) = 0.2 and Pr(ξ8|ω3) = 0.1.

Observe that the sum of probabilities of scenarios which can occur from each scenario is
equal to 1.Moreover, since a scenario of the third stage can occur only if the previous scenario
in stage 2 has occurred, it is clear that the occurrence probability of a scenario of the third
stage is given by the product between the probability of the scenario from which it comes
and its conditional probability: pξi = Pr(ξi |ω j )pω j . Therefore, the sum of probabilities of
all the scenarios of stage 3 also equals 1.

Furthermore, both at the second and at the third stage, we have assumed, without loss
of generality, that the order of gravity of the scenarios is in ascending order. Therefore, for
instance, in stage 2, scenario ω3 is more serious in terms of disaster than the scenario ω2. In
the same way, at stage 3, scenario ξ3, following from scenario ω2 of stage 2, is more serious
than ξ2, that follows from the same scenario ω2 of stage 2. Finally, scenario ξ8, which is the
most serious of the scenarios that follow from the scenario ω3 at stage 2, represents the same
scenario ω3 in terms of severity. Therefore, scenarios ξ5, ξ6 and ξ7 have an intermediate
severity between the initial scenario ξ4 ≡ I and the disaster scenario ξ8 ≡ ω3.

For the numerical setting, we select the parameters as follows:

D1 = 1, S1 = 5, S2 = 7, S1̂ = 10, S2̂ = 12, S1̃ = 25, S2̃ = 30, s1 = 2;
S1̂1 = S2̂1 = S1̃1 = S2̃1 = 1, α1 = 10, α2 = 1, α3 = 1;

Stage 1:

R1
11 = 1, R1

21 = 2, R1
31 = 3, ρ1

1 = 1, B
1 = 100, γ 1

1 = 3, γ 1
2 = 3;

Stage 2, scenario ω1 ≡ I :

R2ω1
11 = 1, R2ω1

21 = 2, R2ω1
31 = 3, ρ

2ω1
1 = 1, B

2ω1 = 0, γ
2ω1
1 = 10, γ

2ω1
2 = 10;
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Fig. 4 Optimal solutions: additional UAVs

Stage 2, scenario ω2:

R2ω2
11 = 5, R2ω2

21 = 0, R2ω2
31 = 10, ρ

2ω2
1 = 1, B

2ω2 = 500, γ
2ω2
1 = 10, γ

2ω2
2 = 10;

Stage 2, scenario ω3:

R2ω3
11 = 13, R2ω3

21 = 10, R2ω3
31 = 15, ρ

2ω3
1 = 1, B

2ω3 = 1000, γ
2ω3
1 = 10, γ

2ω3
2 = 10;

Stage 3, scenario ξ1 ≡ I from scenario ω1:

R3ξ1
11 = 1, R3ξ1

21 = 2, R3ξ1
31 = 3, ρ

3ξ1
1 = 1;

Stage 3, scenario ξ2 from scenario ω2:

R3ξ2
11 = 2, R3ξ2

21 = 1, R3ξ2
31 = 5, ρ

3ξ2
1 = 1;

Stage 3, scenario ξ3 from scenario ω2:

R3ξ3
11 = 4, R3ξ3

21 = 1, R3ξ3
31 = 7, ρ

3ξ3
1 = 1;

Stage 3, scenario ξ4 ≡ I from scenario ω3:

R3ξ4
11 = 1, R3ξ4

21 = 2, R3ξ4
31 = 3, ρ

3ξ4
1 = 1;

Stage 3, scenario ξ5 from scenario ω3:

R3ξ5
11 = 4, R3ξ5

21 = 4, R3ξ5
31 = 6, ρ

3ξ5
1 = 1;

Stage 3, scenario ξ6 from scenario ω3:

R3ξ6
11 = 7, R3ξ6

21 = 6, R3ξ6
31 = 9, ρ

3ξ6
1 = 1;

Stage 3, scenario ξ7 from scenario ω3:

R3ξ7
11 = 10, R3ξ7

21 = 8, R3ξ7
31 = 12, ρ

3ξ7
1 = 1;
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Stage 3, scenario ξ8 ≡ ω3 from scenario ω3:

R3ξ8
11 = 13, R3ξ8

21 = 10, R3ξ8
31 = 15, ρ

3ξ8
1 = 1.

Moreover, we suppose the following general expressions for the cost functions, for all
g, u, f̂ , f̃ and s, θ :

csθgu = agu

(
K∑

k=1

xsθguk

)2

+ agu

(
K∑

k=1

xsθguk

)
,

csθu f = du f

(
K∑

k=1

xsθu f k

)2

+ du f

(
K∑

k=1

xsθu f k

)
,

csθ,(E)
f = g f

(
U∑
u=1

K∑
k=1

xsθu f k

)2

+ g f

(
U∑
u=1

K∑
k=1

xsθu f k

)
,

c(E),1
u

⎛
⎝

G∑
g=1

K∑
k=1

x1guk, γ
1
u

⎞
⎠ = iu

⎛
⎝

G∑
g=1

K∑
k=1

x1guk

⎞
⎠

2

+ iu

⎛
⎝

G∑
g=1

K∑
k=1

x1guk

⎞
⎠

+ ju(γ
1
u )2 + ju(γ

1
u ),

c(E),2ω
u

⎛
⎝

G∑
g=1

K∑
k=1

x2ωguk, γ
1
u , γ 2ω

u , δ2ωu

⎞
⎠ = iu

⎛
⎝

G∑
g=1

K∑
k=1

x1guk

⎞
⎠

2

+iu

⎛
⎝

G∑
g=1

K∑
k=1

x1guk

⎞
⎠+ ju(γ

1
u )2 + ju(γ

1
u )

+ku(γ
2ω
u )2 + ku(γ

2ω
u )−lu(δ

2ω
u )2−lu(δ

2ω
u ),

c(E),3ξ
u

⎛
⎝

G∑
g=1

K∑
k=1

x3ξguk, γ
1
u , γ 2ω

u , δ2ωu , δ3ξu

⎞
⎠ = iu

⎛
⎝

G∑
g=1

K∑
k=1

x1guk

⎞
⎠

2

+ iu

⎛
⎝

G∑
g=1

K∑
k=1

x1guk

⎞
⎠

+ ju(γ
1
u )2 + ju(γ

1
u )

+ku(γ
2ω
u )2 + ku(γ

2ω
u )−lu(δ

2ω
u )2−lu(δ

2ω
u )−mu(δ

3ξ
u )2−mu(δ

3ξ
u );

csθ
f̃

= n f̃

(
U∑
u=1

K∑
k=1

xsθ
u f̃ k

)2

+ n f̃

(
U∑
u=1

K∑
k=1

xsθ
u f̃ k

)
,

c1u = ru(γ
1
u )2 + ruγ

sθ
u , c2ωu = ru(γ

2ω
u )2 + ruγ

2ω
u ;

c(D),2ω
u = qu(δ

2ω)2 + quδ
2ω, c(D),3ξ

u = qu(δ
3ξ )2 + quδ

3ξ .

For the numerical setting, we consider the coefficients for the cost functions involved in
the formulation as in Table 2.

Finally, for the coefficients of the management costs of service requests to the controller
UAV u, in stage 1, in stage 2 under scenario ω ∈ � and in stage 3 under scenario ξ ∈ �, we
set:

i1 = 0.1, i2 = 0.2, i1 = 0.1, i2 = 0.2, j1 = 0.1, j2 = 0.2, j1 = 0.1, j2 = 0.2,

k1 = 0.1, k2 = 0.2, k1 = 0.1, k2 = 0.2, l1 = −0.05, l2 = −0.1, l1 = −0.05, l2 = −0.1,
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Table 2 Coefficients for the cost functions involved in the mathematical formulation

Description Numerical data

agu and agu : Coefficients of the
transmission cost of services from user g to
the controller UAV u both in the first, the
second stage under scenario ω and third

stage under scenario ξ (c1gu , c
2ω
gu , c

3ξ
gu )

a11 = a11 = 0.1, a12 = a12 = 0.2,
a21 = a21 = 0.1, a22 = a22 = 0.2,
a31 = a31 = 0.1, a32 = a32 = 0.2

du f and du f : Coefficients of the
transmission cost of the service requests
from controller UAV u to any UAV
f ∈ F3 in the first stage, the second stage
under scenario ω and third stage under

scenario ξ , (c1u f , c
2ω
u f , c

3ξ
u f )

d11̂ = 0.2, d12̂ = 0.1, d11̃ = 0.1, d12̃ = 0.2,
d21̂ = 0.2, d21̂ = 0.2, d21̃ = 0.1,

d22̃ = 0.2, d11̂ = 0.2, d12̂ = 0.1,

d11̃ = 0.1, d12̃ = 0.2, d21̂ = 0.2,

d22̂ = 0.1, d21̃ = 0.1, d22̃ = 0.2

g f and g f : Coefficients of the execution
cost of requested services to the UAV
f ∈ F3 in the first stage, the second stage
under scenario ω and third scenario under
scenario ξ , (c(E),1

f , c(E),2ω
f , c(E),3ξ

f )

g1̂ = 0.2, g2̂ = 0.1, g1̃ = 0.1, g2̃ = 0.2
g1̂ = 0.2, g2̂ = 0.1, g1̃ = 0.1, g2̃ = 0.2

n f̃ and n f̃ : Coefficients of the cost due to

add new UAVs f̃ ∈ F̃ at the highest level
of the network in the first stage, the second
stage under scenario ω and third stage

under scenario ξ (c1
f̃
, c2ω

f̃
, c3ξ

f̃
)

n1̃ = n1̃ = 0.1, n2̃ = n2̃ = 0.2,

ru and ru : Coefficients of the cost due to add
additional capacity to the controller UAV
u, both in the first and the second stage
under scenario ω (c1u , c

2ω
u )

r1 = r2 = r1 = r2 = 0.2

qu and qu : Coefficients of the cost due to
reduce capacity to the controller UAV u,
both in the second stage under scenario ω

and third stage under scenario ξ (c(D),2ω
u ,

c(D),3ξ
u )

q1 = q2 = q1 = q2 = 0.05

m1 = −0.05, m2 = −0.1, m1 = −0.05, m2 = −0.1.

Observe that, no constant termappears in the general expressionof cost functions described
above. Therefore, if there is no flow in a link of the network (from a user or device on the
ground to a controller UAV or from a controller UAV to a UAV in the upper tier fleet), the
cost of transmission via that link is zero. Similarly, if a UAV does not execute any service,
the execution cost for that UAV is zero. The same for the cost needed to add new UAVs and
additional capacities and for the cost sustained to reduce capacity. The optimal solutions of
the proposed numerical example are computed via the Euler Method (see [18] for a detailed
description) using theMatlab program on an HP laptop with an AMD compute cores 2C+3G
processor, 8 GB RAM and are reported in Tables 3 and 4.

From the obtained optimal solution we can observe that, despite the demands for service
requested by user or device on the ground is not high, it is convenient to add capacities to the
controller UAVs. Moreover, it is suitable to add the maximum allowed capacity on the first
controller UAV and to use also additional UAVs, in order to be prepared for the following
stages.We underline that during each of the scenarios of the second stage, the data transmitted
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Table 3 Optimal solutions: xsθ∗
guk and ysθ∗

u f k , for all g, u, k, f̂ , f̃ , s, θ

Variables Stage Scenarios u = 1 u = 2 Variables u = 1 u = 2

x1∗guk s = 1 I
g = 1
g = 2
g = 3

1.32
1.32
3.99

0.67
0.67
2.00

y1∗u f

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

1.24
0.69
1.81
0.71

2.82
1.73
0.75
0.20

ω1

g = 1
g = 2
g = 3

0.00
1.38
0.00

0.00
1.61
0.00

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

0.24
0.66
0.48
0.00

0.00
0.62
0.00
0.00

x2ω∗
guk s = 2 ω2

g = 1
g = 2
g = 3

2.64
0.00
4.64

1.35
0.00
2.35

y2ω∗
u f

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

1.37
3.08
1.98
0.84

0.78
1.89
0.79
0.25

ω3

g = 1
g = 2
g = 3

6.44
5.11
6.44

5.55
4.88
5.55

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

2.66
3.33
6.58
5.42

2.33
2.66
5.92
5.08

ξ1

g = 1
g = 2
g = 3

0.69
1.36
2.02

0.31
0.64
0.98

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

0.73
1.80
1.12
0.41

0.37
1.09
0.40
0.05

ξ2

g = 1
g = 2
g = 3

1.34
0.67
3.34

0.66
0.32
1.66

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

0.99
2.31
1.47
0.58

0.54
1.40
0.56
0.13

ξ3

g = 1
g = 2
g = 3

2.57
0.57
4.57

1.43
0.43
2.43

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

1.47
3.27
2.09
0.89

0.89
2.12
0.94
0.32

x3ξ∗
guk s = 3 ξ4

g = 1
g = 2
g = 3

0.69
1.36
2.02

0.31
0.64
0.97

y3ξ∗
u f

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

0.73
1.80
1.12
0.41

0.38
1.08
0.41
0.05

ξ5

g = 1
g = 2
g = 3

2.62
2.62
3.69

1.37
1.37
2.04

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

1.79
3.74
2.55
1.13

1.06
2.26
1.08
0.39

ξ6

g = 1
g = 2
g = 3

4.77
4.11
6.11

2.22
1.88
2.88

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

3.16
4.33
5.1
2.4

1.83
1.66
2.43
1.07
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Fig. 5 Scenarios of the three stages

Fig. 6 Optimal solutions: additional and reduced capacities (γ sθ
u and δsθu )
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Table 3 continued

Variables Stage Scenarios u = 1 u = 2 Variables u = 1 u = 2

ξ7

g = 1
g = 2
g = 3

5.73
5.53
5.73

2.58
2.48
2.58

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

3.28
4.56
6.20
2.95

1.71
1.44
3.08
1.39

ξ8

g = 1
g = 2
g = 3

5.65
5.65
5.65

2.56
2.56
2.56

f̂ = 1
f̂ = 2
f̃ = 1
f̃ = 2

3.29
4.52
6.18
2.96

1.71
1.47
3.13
1.39

Fig. 7 Amount of data transmitted by each user or device

during the first preparedness stage are used to satisfy all the requests. Furthermore, note that
during the first scenario of stage 2 (ω1 ≡ I ) no additional capacities are used, and rather,
they are reduced (because, obviously, the only scenario that follows ω1 is the initial scenario
ξ1 ≡ I ). Instead, during the second scenario of stage 2, when a landslide occurs, only a
portion of added capacities are reduced (because some of them are used also during the
following scenarios in stage 3) and during the third scenario of stage 2, that is when an
earthquake occurs, the maximum allowed capacity of the first controller UAV and much
of the additional capacity of the second are used (see Fig. 6) because we assumed that the
earthquake is most serious event. The same occurs for the additional UAVs belonging to the
fleet at the upper tier of the network.

In stage 1 and stage 2 all the requests are satisfied. In the first three scenarios of stage 3
all the requests are satisfied, too, while for the rest of the scenarios it is convenient to satisfy
only a portion of service requests (see Fig. 7).

Except for stage 1, as shown from Figs. 8, 9 and 4, the utilization of both the controller and
the pre-existing and additionalUAVs follows the same increasing trend of requests and, hence,
the same trend of the gravity of each scenario. Indeed, when an earthquake occurs most of
the resources are fully utilized, while for the normalcy situation resources are underutilized.
Moreover, we observe that the controller UAV u = 1 is usedmore than the second, the second

123



774 Journal of Global Optimization (2023) 86:741–780

Ta
bl
e
4

O
pt
im

al
so
lu
tio

ns
:γ

1∗ u
,γ

2ω
∗

u
,δ

2ω
∗

u
,δ

3ξ
∗

u
,f
or

al
lu

,ω
∈�

,ξ
∈�

V
ar
ia
bl
es

St
ag
es

Sc
en
ar
io
s

u
=

1
u

=
2

V
ar
ia
bl
es

u
=

1
u

=
2

L
ag
ra
ng

e
m
ul
tip

lie
rs

γ
1∗ u

s
=

1
I

3
1.
55

//
//

λ
1∗

=
0.
00

γ
2ω

∗
u

s
=

2
ω
1

0.
00

0.
00

δ
2ω

∗
u

3
1.
55

λ
2ω

1
∗ =

0.
00

ω
2

0.
00

0.
00

1.
55

0.
00

λ
2ω

2
∗ =

0.
00

ω
3

10
.0
0

7.
44

0.
00

0.
00

λ
2ω

3
∗ =

0.
00

s
=

3
ξ 1

//
//

δ
3ξ

∗
u

0.
00

0.
00

λ
3ξ

1
∗ =

0.
00

ξ 2
//

//
1.
00

0.
00

λ
3ξ

2
∗ =

0.
00

ξ 3
//

//
0.
00

0.
00

λ
3ξ

3
∗ =

0.
00

ξ 4
//

//
1.
00

9.
00

λ
3ξ

4
∗ =

0.
00

ξ 5
//

//
1.
00

9.
00

λ
3ξ

5
∗ =

0.
00

ξ 6
//

//
1.
00

9.
00

λ
3ξ

6
∗ =

0.
00

ξ 7
//

//
0.
99

8.
37

λ
3ξ

7
∗ =

0.
00

ξ 8
//

//
1.
00

8.
29

λ
3ξ

8
∗ =

0.
00

123



Journal of Global Optimization (2023) 86:741–780 775

Fig. 8 Controller UAVs utilization

Fig. 9 Pre-existing UAVs utilization

123



776 Journal of Global Optimization (2023) 86:741–780

pre-existing UAV ( f̂ = 2) is used more than the first and the additional UAV f̃ = 1 is used
more than the second one. These aspects are justified by the cost functions Fig. 6.

6 Summary and conclusions

Disastermanagement is ofmajor importance since the number of disasters and their frequency
have been increasing, with the negative impacts on societies and economies rising. Disasters
can be slow-onset or sudden-onset and be “natural,” or “man-made,” with climate change
adding to the severity of various disasters, notably, hurricanes and floods as well as droughts.
Managing a disaster entails the identification of scenarios in order to plan for, respond to
and recover from such crises. The understanding of the objectives of organizations, both
public and private ones, involved in disaster management is also paramount, along with the
optimization of resource utilization.

In an increasingly connected world, the provision of services through advanced technolo-
gies, such as 5th Generation networks, is becoming essential, and offers opportunities for
enhanced disaster management. The need for arming service providers with mathematical
tools to help them to manage resources optimally in disaster situations has led us to develop,
in this paper, a multi-stage stochastic optimization model based on a three-tiered network.
The model consists of users and devices on the ground, requesting 5G services of a fleet
of controller UAVs that, in turn, manage and send the requests to a fleet of UAVs, orga-
nized as a FANET, which execute them. Such UAVs are connected to each other via the
5G network, which is fast, stable and secure. The service providers can receive data to their
UAVs in real-time from devices or sensors located on the ground. In this framework, we
mathematically capture three phases of disaster management: preparedness, response and
recovery/reconstruction. In the first stage of our model, which represents the preparedness
phase, service providers make predictions about possible disaster scenarios that could occur
in the second stage, which represents the critical response phase. This phase is followed by
a third stage, that of recovery/reconstruction.

Service providers solve a three-stage stochastic optimization problem, where, in the first
stage, they seek to maximize the quantity of provided 5G services, associating a priority to
each of them, and determine how to best manage the UAVs of the upper-tier fleet, while
minimizing the overall costs associated with the management of service requests and those
of transmission and execution of services. In this stage, service providers can decide whether
or not to provide more services than required in order to satisfy the request, which could
grow unexpectedly, in the subsequent stage. Hence, they can decide to increase the controller
UAV capacities and to add additional UAVs to the pre-existing fleet; however, by incurring
additional costs.

In the second stage, with the acknowledgment of the gravity of the disaster, service
providers, in addition to pursuing the objectives of the previous stage, decide whether to
further increase the capacity of the controller UAVs (in the event of more severe disasters)
and to add other vehicles to the fleet, or whether to reduce the capacity of controller UAVs
(in the case of less severe scenarios). Moreover, in the second stage the penalty due to the
unmet demand for services is also minimized. In the third stage, the effects of the disaster can
cease, with a return to a normal situation; a reduction in severity may occur or the disaster
effects can persist. Hence, in this stage, service providers, pursuing the same objectives as in
the previous two stages, can decide whether to further reduce the capacity of the controller
UAVs.

123



Journal of Global Optimization (2023) 86:741–780 777

Each of the first, second and third stage optimization problems is subject to a multitude
of constraints, including: conservation, demand, capacity and budget constraints. Following
classical stochastic optimization theory, these three constrained optimization problems are
formulated and solved as a stochastic multi-stage constrained optimization model, which
is, in turn, formulated as a finite-dimensional variational inequality problem. Existence and
uniqueness results for the solution to the variational inequality problem are also provided.
In addition, a detailed numerical example, with three scenarios in the second stage and eight
scenarios in the third stage is provided, along with the computed optimal values of over 200
variables, in order to illustrate some of the key aspects of the proposed model.

The obtained results provide us with some managerial insights, since it may be useful to
use the proposed formulation not only to determine the optimal distribution of flows, but also
the optimal management of resources. Indeed, the optimal solution shows that, at the first
stage, it is convenient to add (and use) some new UAVs to the fleet executing the services and
some additional capacities to the controller UAVs, in order to be prepared for the following
stages. At the second stage, if no disaster event or a minor disaster (such as a little landscape)
occurs, it is suitable to use only some additional UAVs (to ensure that the demand is met) and
to reduce the capacities on the controller UAVs (because they will not be used even during
the third stage, when the requests of services are assumed to be less than that of the second
stage). While, if a serious scenario (such as an earthquake) occurs, the provider needs to use
all the additional resources in order to satisfy all the requests of services. Therefore, it is clear
that the mathematical formulation is efficient and adapts to reality and to different types of
scenarios (even with different probability of occurrence) in the three stages. Furthermore,
using the proposed model, as a simulation tool, the providers can obtain useful information,
especially on the use of resources. Providers could, hence, both establish in advance whether
to buy new resources (UAVs and capacities) and instantly decide if and which resources are
convenient to use, to add or to reduce, with the main objective of satisfying all the requests
for the necessary services during a disastrous event.

In our future work, we intend to do additional sensitivity analysis and to discuss the
computational complexity of the problem. Moreover, we are going to study a more compre-
hensive model, in which we introduce four stages (Mitigation, Preparedness, Response, and
Recovery) and a bigger area to be covered (intended as a union of small areas) in which we
investigate the impacts of the size of the area and a more general case of multi-hop com-
munication between UAVs in the same network. Therefore, we intend to test the proposed
formulation by solving numerical examples on large and real instances.
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