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Abstract
Interactive multiobjective optimization methods have proven promising in solving opti-
mization problems with conflicting objectives since they iteratively incorporate preference
information of a decision maker in the search for the most preferred solution. To find the
appropriate interactive method for various needs involves analysis of the strengths and weak-
nesses. However, extensive analysis with human decision makers may be too costly and for
that reason, we propose an artificial decision maker to compare a class of popular interactive
multiobjective optimization methods, i.e., reference point based methods. Without involving
any human decision makers, the artificial decision maker works automatically to interact
with different methods to be compared and evaluate the final results. It makes a difference
between a learning phase and a decision phase, that is, learns about the problem based on
information acquired to identify a region of interest and refines solutions in that region to find
a final solution, respectively. We adopt different types of utility functions to evaluation solu-
tions, present corresponding performance indicators and propose two examples of artificial
decision makers. A series of experiments on benchmark test problems and a water resources
planning problem is conducted to demonstrate how the proposed artificial decision makers
can be used to compare reference point based methods.

B Bin Xin
brucebin@bit.edu.cn

Lu Chen
chenlubit@163.com

Kaisa Miettinen
kaisa.miettinen@jyu.fi

Vesa Ojalehto
vesa.ojalehto@gmail.com

1 School of Automation, Beijing Institute of Technology, Beijing 100081, China

2 State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing 100081,
China

3 Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing 100081, China

4 University of Jyvaskyla, Faculty of Information Technology, P.O. Box 35 (Agora), FI-40014 University
of Jyvaskyla, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-022-01230-3&domain=pdf
http://orcid.org/0000-0003-1013-4689


758 Journal of Global Optimization (2023) 85:757–788

Keywords Multicriteria optimization · Interactive multiobjective optimization · Learning
phase · Decision phase · Performance comparison · Reference point

1 Introduction

Many real-world optimization problems involve conflicting objectives which are to be opti-
mized simultaneously. These problems are known as multiobjective optimization problems.
The ultimate aim of multiobjective optimization is to support a decision maker (DM) to
find his/her most preferred solution. Up to now, various multiobjective optimization meth-
ods have been proposed by both the Multiple Criteria Decision Making (MCDM) and the
Evolutionary Multiobjective Optimization (EMO) communities [7, 20, 30, 56]. They can be
divided into no-preference methods, a priori methods, a posteriori methods, and interactive
methods according to the role of the decision maker in the solution process [21, 29]. Among
them, interactive methods have been widely developed due to several advantages [9, 29, 30,
33, 45]. For example, the DM can learn progressively from the solution process and adjust
his/her preferences. In this case, only solutions that the DM is interested in will be obtained.
Thus, the computational complexity can be reduced in comparison with approximating the
whole set of Pareto optimal solutions.

In the solution process with an interaction method, we can often identify two phases:
a learning phase and a decision phase [33]. The learning phase is important for a DM to
learn about the possibilities and limitations of the problem. In the decision phase, the DM
can focus on the region identified in the learning phase to find better solutions. Different
interactive methods require different types of preference information from the DM, such as
reference points, desirability of trade-offs, or the classification of objective functions [33].
Among them, reference point based methods are very popular owing to several reasons. For
example, it is convenient and intuitive for the DM to specify a reference point consisting of
desirable objective function values since the method provides objective function values for
the DM, and, thus, no cognitive mapping is necessary [30]. Besides, reference points can
be specified without considering the trade-offs among objectives. Thus, the DM’s burden is
relatively low [24].

The problem of how to compare interactivemethods arises naturallywith the emergence of
diverse interactivemethods.A posteriorimethods likemultiobjective evolutionary algorithms
can be compared with some performance metrics (see, e.g., [25, 54]). However, comparing
interactivemethods is not very straightforward. Only limited studies (see, e.g., [3, 4, 8, 10–12,
26, 28, 35, 37, 39, 44, 58]) have focused on this topic and few of them are valid for reference
point based interactive methods. In this paper, we concentrate on the comparison of reference
point based methods.

The DM is a key element of applying and also comparing interactive methods. Using
human DMs to compare interactive methods has some difficulties. Firstly, it may be rather
expensive because human DMs involved in the experiments should have appropriate domain
expertise. Furthermore, the order of using interactive methods will influence the comparison
results because a human DM learns and what he/she has learnt when interacting with a
method will affect his/her decisions on the subsequent methods. To eliminate such effects, a
sufficiently large number of human DMs is required so that different groups of DMs would
use the methods in different orders. Some research involving human DMs in the experiments
has been conducted, and the DMs were asked to express their feelings about interactive
methods such as ease of use and the degree of satisfaction on the final solution [3, 8, 11,
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12]. However, these experiments were limited in e.g., the range of problems studied and the
number of human DMs involved, see [6, 55].

Considering the above difficulties, a good alternative is to develop artificial DMs (ADMs)
which can replace human DMs for comparing interactive methods quantitatively whenever
human DMs are not available. In such comparisons, there are no real preferences to follow.
Instead, ADMs interact with each interactive method and measure the results of the method.
Opposed to using human DMs, experimenting with ADMs is cheaper and less time consum-
ing. Besides, a large number of experiments can be conducted without considering human
fatigue [6], and quantitative results can be obtained.Most existing ADMs take forms of utility
functions (also referred to as value functions). For example, Malakooti and Ravindran [28]
used linear utility functions as ADMs to compare multiobjective linear programming meth-
ods. Mote et al. [35] assumed a nonlinear utility function. Reeves and Gonzalez [39] adopted
linear and multilinear utility functions. Four types of utility functions including quadratic,
square-root, exponential and L4-norm were considered in [44]. López-Ibáñez and Knowles
[26] utilized linear scalarizing functions to assess an interactive EMO method.

Nevertheless, utility functions as ADMs cannot compare reference point based methods
because they cannot provide reference point information required by these methods. Util-
ity functions are only suitable for comparing non ad hoc interactive methods [45] such as
trade-off based interactive methods since utility functions can provide the type of prefer-
ence information required by these methods. To our best knowledge, only a few ADMs have
been developed for comparing reference point based methods [1, 2, 4, 37, 38]. The ADMs
developed in [4, 37, 38] all consists of a steady part which includes a pre-defined aspiration
point or a value function, and a current context which includes the knowledge about the
problem gained during the solutions process. In [37], reference points are generated by a
decision tree-based approach. The ADM proposed in [4] evolves the reference point through
particle swarm optimization. Reference points are generated in [38] by updating the potential
region according to the predefined value function. In these ADMs, the search is maintained
towards the steady part, which may hinder the exploration of the whole Pareto front. The
ADMs proposed in [1, 2] distinguish the learning phase and decision phase. Different ways
of generating reference points are developed for the two phases. However, these two ADMs
are only suitable for comparing reference point based interactive EMO methods.

In this paper, we propose a new ADM for comparing reference point based methods
quantitatively. Similar to the ADMs developed in [1, 2], our ADM also has a learning phase
and a decision phase. It should be pointed out that this is the only similarity between our
ADM and those two ADMs. Our ADM is designed with a modular structure containing
three modules: learning, evaluation, and decision. The learning module and the decision
module are used to generate reference points in the two phases, respectively. Specifically,
a structured learning approach is designed in the learning module to generate reference
points systematically based on Pareto optimal solutions derived so far to explore different
regions of the search space, which facilitates identifying a region of interest (ROI). Besides, a
polyhedral cone-based method is proposed to update reference points in the decision module
so that the solutions in the ROI can be adjusted according to the current preferred solution.
The evaluation module has two roles. One is evaluating solutions found so far and identifying
a preferred solution at each iteration of the decision phase. The other is to measure the final
results of interactive methods at the last iteration.

Compared to the ADMs developed in [4, 37, 38], our ADM does not need to converge
to a fixed part at the very beginning. On the contrary, it behaves differently in two phases,
reflecting the DM’s different needs. In comparison with the two ADMs proposed in [1, 2],
our ADM generates reference points in quite different ways. Those two ADMs assume that
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solution processes of all reference point based EMOmethods being compared are conducted
simultaneously. The reference point is updated based on the solutions generated by all meth-
ods. If a new method is to be compared, the whole comparison will start from the beginning,
and all methods have to be run again. Our ADM treats all methods to be compared individu-
ally and does not have this limitation. Moreover, our ADM is applicable with any reference
point based methods, not only EMO methods. It should be emphasized that our ADM does
not enhance reference point based methods, it interacts with different methods and measures
the final results of them for the sake of comparing them automatically.

By adopting utility functions with and without noise to evaluate solutions and providing
two associated performance indicators to evaluate the final results in the evaluation module,
two examples of the proposed ADM are presented in this paper. They are used to show how
the proposed ADM can be utilized to compare reference point based methods and capture
the differences among those methods. The main contributions are summarized as follows:

• A newmodular ADM is proposed for comparing reference point based interactive multi-
objective optimization methods automatically and quantitatively. It is not limited to some
specific type of methods, only the preference information must be a reference point.

• The proposed ADM takes into account different needs that typically can be seen in the
learning and the decision phases, and two different mechanisms of generating reference
points are developed according to different needs.

• The proposed ADM’s modular structure offers a flexible way of creating different type
of ADMs which mimic different interaction processes.

• Two performance indicators are proposed to be used with the new ADM.

The rest of the paper is organized as follows. In Sect. 2, some concepts and notations are
given. Section 3 is devoted to presenting the proposed ADM in terms of its actions in each
phase and proposing two performance indicators to be used with the ADM. Two examples of
the ADM are provided, and how to utilize one of themwith a reference point based method is
also illustrated. Sections 4 and 5 demonstrate how the ADM can be used to compare different
reference point based methods on benchmark test problems and on a real-world problem,
respectively. Finally, conclusions are drawn and some future work is discussed briefly in
Sect. 6.

2 Concepts and notations

Generally, a multiobjective optimization problem can be defined as follows:

minimize f(x) = { f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S ⊂ Rn,

(1)

where k (k ≥ 2) objective functions fi : S → R for i ∈ {1, 2, . . . , k} are to be minimized
simultaneously. The decision vector x = (x1, x2, . . . , xn) belongs to the feasible region
S ⊂ Rn . For each x, the objective vector z = f(x) belongs to the objective space Rk . The
image Z = f(S) of the feasible region is called the feasible objective set.

Given two feasible decision vectors x1 and x2, x1 is said to dominate x2 if x1 is not worse
than x2 in all objectives and strictly better in at least one objective. A feasible decision vector x
is said to be Pareto optimal if and only if there is no feasible decision vector which dominates
it. The corresponding objective vector is called a Pareto optimal objective vector. We denote
the set of all Pareto optimal decision vectors as E . The image f(E) of E is called Pareto
front. Note that we use the term Pareto optimal solution to refer to a Pareto optimal objective
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vector in this paper. The most preferred solution (MPS) is the Pareto optimal solution that
the DM is most satisfied with [33].

As stated in the introduction, we concentrate on comparing reference point based meth-
ods, rather than proposing or enhancing such kind of methods. In the following, we give a
brief introduction on reference point based methods. A reference point g = (g1, g2, . . . , gk)
is composed of aspiration levels of the DM for all objectives reflecting desirable objective
values. It is said to be achievable if its aspiration levels can be achieved or improved simulta-
neously by a feasible solution; otherwise, it is said to be unachievable [41]. When providing
reference points, it is often useful for the DM to know the ranges of the objective values in
the Pareto front. We denote z∗ = (z∗1, z∗2, . . . , z∗k )with z∗i = minx∈S fi (x) for i = 1, 2, . . . , k
to be the ideal objective vector which gives the minimum value of each objective in the
feasible region. The nadir objective vector znad = (znad1 , znad2 , . . . , znadk ) is composed of
the maximum value of each objective in the Pareto front, i.e., znadi = maxx∈E fi (x) for
i = 1, 2, . . . , k. It is usually difficult to obtain znad and one may have to settle for approxi-
mations, for example, a payoff table [29] or other special ways [15, 47]. An estimate of znad

can also be determined by using the information provided by the DM, if available.
At each iteration, a reference point based method uses the reference point(s) provided by

the DM to generate one or more Pareto optimal solutions. If the DM is not satisfied with any
solution, he/she is expected to specify a new reference point for the method to generate new
solutions. Figure 1 illustrates how an example of a reference point based method works in
two iterations. This method produces k+1 Pareto optimal solutions based on one reference
point. The solution process will continue until the DM finds a satisfactory solution.

Up to now, many reference point basedmethods have been proposed. Somemethods, such
as the reference point method [51], the reference direction (RD) method [23], the light beam
search (LBS) [22], and the satisficing trade-off method [36], rely on solving transformed
single-objective subproblems to generate Pareto optimal solutions. This means that at each
iteration, they formulate a scalarizing function like an achievement scalarizing function (ASF)
based on the DM’s reference point and minimize it by using an appropriate single-objective
optimizer. Various forms of ASFs have been developed (see, e.g., [27, 31, 42, 51]), and a
common ASF is the following augmented ASF [52]:

s = max
i=1,...,k

{wi ( fi (x) − gi )} + ρ

k∑

i=1

wi ( fi (x) − gi ), (2)

where w = [w1, . . . , wk] is a weighting vector and ρ is a sufficiently small positive number.
One can prove that it generates Pareto optimal solutions for both achievable and unachievable
reference points and any Pareto optimal solution with trade-offs between ρ and 1/ρ [29].

Fig. 1 An example of how a
reference point based method
works
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Fig. 2 Interaction between ADM
and a reference point based
interactive method

Fig. 3 Framework of the
proposed ADM

Some reference point based methods solve (1) directly by using a multiobjective evolu-
tionary algorithm at each iteration. They use the DM’s reference point to guide the evolution
of the population towards the DM’s preferred region on the Pareto front. If the DM does
not find any satisfactory solution, he/she can supply a new reference point. A new run of
the multiobjective evolutionary algorithm will be implemented to find new solutions. Even
though evolutionary algorithms cannot usually guarantee Pareto optimality, for simplicity we
refer to their solutions as Pareto optimal ones here. Examples of this type of methods include
R-NSGA-II [17], RD-NSGA-II [13], LBS-NSGA-II [14], g-NSGA-II [34], r-NSGA-II [43],
preference based evolutionary algorithm (PBEA) [49], interactive weighting achievement
scalarizing function genetic algorithm (interactive WASF-GA) [40], and others, for surveys,
see, e.g., [5, 53].

In the next section, the ADM we build for comparing reference point based methods is
introduced.

3 Proposed ADM

To compare reference point based methods, the ADM needs to participate in the solution
process. The interaction between the ADM and a method to be considered is shown in Fig. 2.
The ADM has solutions provided by the method as input and a new reference point as output.
The structure of the proposed ADM is given in Fig. 3. We assume that the ADM will first
have a learning phase and then start a decision phase. The learning and decision modules
are responsible for generating reference points in the learning phase and the decision phase,
respectively. The evaluation module works in the decision phase. We denote the iteration
number in the whole solution process by t , and the iteration number in the decision phase
by td which counts from 0 when this phase starts. In what follows, the ADM is introduced

123



Journal of Global Optimization (2023) 85:757–788 763

Fig. 4 Neighboring solutions in a
bi-objective case

in terms of its actions in each phase. The steps of utilizing it with a reference point based
method are also given.

3.1 ADM’s actions in the learning phase

Owing to the modular structure of the proposed ADM, different types of learning modes of
ADMs can be developed to simulate different ways of specifying reference points. As stated
in the introduction, we focus on a structured learning approach to facilitate a systematic
learning of feasible solutions. At each iteration, the solutions which have been generated by
the considered interactive method are used to identify a relatively large unexplored region
of the objective space. Then, a reference point is determined accordingly with the desire of
obtaining new solutions in that region. Here an unexplored region refers to a region inside
which no solutions have been found by the considered method yet. The details are as follows.

Firstly, we determine a series of unexplored regions by finding neighboring solutions. We
denote an extreme point as the objective vector which has the minimum value of one of the
objective functions on the Pareto front [48]. Considering all the extreme points and all the
non-dominated solutions generated by the interactive method and passed to the ADM, we
give a general definition of neighboring solutions for any number of objectives: For any two
solutions za and zb, denote zab = [zab1 , . . . , zabk ] with zabi = min(zai , z

b
i ), i = 1, 2, . . . , k.

Then, za and zb are defined as neighbors if no other solutions are dominated by zab. Under
this definition, the region dominated by zab is an unexplored region where the interactive
method has not generated solutions inside it yet.

Figure 4 gives an example of a bi-objective case. Considering the five points A, B, C,
D, and E, four pairs of neighboring solutions can be found: (A, B), (B, C), (C, D), and (D,
E). All other pairs of solutions are not neighbors. For instance, B and D are not neighbors
because zBD dominates C. Figure 5 shows a three-objective case. Any solution in the Pareto
front satisfies f1 + f2 + f3 = 1. It is easy to verify that (A, D), (B, E), (C, F), (D, F), and
(E, F) are neighbors. The gray region, i.e., the region dominated by (0, 0, 0.4), represents the
unexplored region determined by (A, D). For problems with more than three objectives, it is
also easy to find all neighboring solutions because we only need to determine the dominance
relations of solutions. By finding all pairs of neighboring solutions, a series of unexplored
regions of the objective space can be obtained.

Secondly, as the learning phase aims to learn about the possibilities of the problem, our
ADM is assumed to regard the “largest” unexplored region as promising and want to explore
it for finding new solutions. That is, among multiple unexplored regions, the “largest” one
is identified as the next region to be explored. Considering that different unexplored regions
may overlap when they spread upwards while what we really want to search is the region near
the Pareto front, we use the distance between each pair of neighboring solutions to measure
the size of each unexplored region. An unexplored region is regarded as the “largest” if
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Fig. 5 Neighboring solutions in a three-objective case. The gray region is the unexplored region determined
by A and D

the corresponding pair of neighboring solutions has the largest distance among all pairs’
distances. Different forms of distance can be used and the normalized Euclidean distance is
used in this paper:

d(za, zb) =
√√√√

k∑

i=1

(
zai − zbi

znadi − z∗∗
i

)2

, (3)

where z∗∗ = [z∗∗
1 , z∗∗

2 , . . . , z∗∗
k ] is a utopian objective vector which is slightly better than z∗.

The components of z∗∗ are given by z∗∗
i = z∗i − εi for all i = 1, 2, . . . , k where εi is a small

positive number [45]. The utopian point is used instead of z∗ in case that the denominator in
(3) is zero or very small.

Note that when the Pareto front is disconnected or an interactive method poorly responds
to the reference point, there may be the case that none of the newly generated solutions locate
within the desired largest unexplored region. In this case, the largest unexplored region may
always be selected as the largest in the following iterations. To avoid this situation, the same
region is allowed to be chosen only once.

Finally, suppose the two neighboring solutions corresponding to the largest unexplored
region are za∗ and zb∗, the point za∗b∗ with za∗b∗

i = min(za∗
i , zb∗i ) for all i = 1, . . . , k is taken

as the new reference point. With this point, the ADMwants to explore the largest unexplored
region for finding solutions in it.

To sum up, the steps of the structured learning approach for generating a new reference
point is as follows:

1. Find all pairs of neighboring solutions among all extreme points and all the solutions
generated by the interactive method and passed to the ADM.

2. Select the pair with the largest normalized Euclidean distance, denoted by za∗ and zb∗.
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Fig. 6 Impact of the initial
reference point on the second
one: a the initial reference point
is close to the Pareto front; b the
initial reference point is far away
from the Pareto front

(a) (b)

3. Take za∗b∗ with za∗b∗
i = min(za∗

i , zb∗i ) for all i = 1, . . . , k as the new reference point
gt = [gt1, gt2, . . . , gtk].
When the initial reference point g1 is close to the Pareto front, the solutions obtained by an

interactive method are likely to be close to each other as shown in Fig. 6a where B, C, and D
are solutions obtained based on g1. Then, g2 will be relatively far away from the Pareto front
and a large unknown region will get explored. When g1 is far away from the Pareto front, the
solutions may be far away from each other as exhibited in Fig. 6b. The structured learning
approach can lead the method to fill in those large and unexplored regions determined by
these solutions step by step. All in all, by exploring the largest unexplored region at each
iteration, the proposed ADM can learn about the Pareto front for identifying its ROI which
is the region around its preferred solution among all the solutions passed to it in the learning
phase.

3.2 ADM’s actions in the decision phase

As mentioned, the decision phase contains the evaluation module and the decision module.
In what follows, the tasks of the two modules are introduced.

3.2.1 Task of the evaluation module

At each iteration of the decision phase, the evaluation module evaluates all the solutions
already generated and passed to the ADM and identifies the ADM’s preferred solution at the
moment. At the last iteration, it is also responsible for measuring the quality of the ADM’s
preferred solution. In our implementations, we adopt utility functions and corresponding
performance indicators to achieve quantitative evaluation and measurement. Different kinds
of utility functions can be used, so that we can experiment with different ADMs to see
for example how reference point based methods perform under different styles of providing
preferences and how their outcomes differ. In this paper, we consider the following two utility
functions as examples:

1. Deterministic utility function.We denote a utility function byU (z) ∈ R. The preferences
of theADMwith this utility function are always stable in the decision phase. To distinguish
from a random utility function defined below, we call U a deterministic utility function.

2. Randomutility function.By introducing noise intoU weget a utility functionwhichwe call
a random utility function with the form Ũ (z, σtd ) = U (z)+N (0, σtd ). The preferences of
the ADMadopting this utility function are unstable. Its noise follows a normal distribution
N (0, σtd )with amean 0 and a standard deviationσtd . There are different choices for setting
up σtd such as keeping it as a constant or making it decrease with td . A decreasing σtd
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implies that the preferences of the corresponding ADM are getting more and more stable
as the decision phase proceeds.

Incorporating each of the above two utility functions, two examples of the proposed ADM
can be obtained, and these two ADMs will behave differently in the decision phase. Each
ADM can be used to compare reference point based methods separately. In our experiments,
we use both of them to compare not only the performance of different reference point based
methods, but also their capability under different styles of providing preferences. In fact,
other types of utility functions can also be chosen.

Since maximizing a utility function U is equivalent to minimizing the disutility function
U− = −U , the following deterministic disutility functionU− and random disutility function
Ũ− will be used in our experiments to form two different ADMs:

U−(z) = max
1≤i≤k

{
wi

(zi − z∗∗
i )

znadi − z∗∗
i

}
, (4)

Ũ−(z) = max
1≤i≤k

{
wi

(zi − z∗∗
i )

znadi − z∗∗
i

}
+ N (0, σtd ), (5)

where w = [w1, . . . , wk] is a weighting vector, σtd is assumed to decrease gradually and be
reduced to zero at the final iteration, which means that the randomness of Ũ− is gone in the
end and Ũ− becomes the same as U−.

By using a disutility function, solutions generated to the ADM can be compared (and
ordered), and the solution with the minimum disutility value at each iteration, denoted by
zbest,t−1 = [zbest,t−1

1 , . . . , zbest,t−1
k ], can be recognized. Particularly, the final output of the

interactive method, namely the solution most preferred by the ADM finally, is called the
final solution and is denoted by z f inal . Note that where z f inal is chosen from depends on the
interactive methods to be compared. In the literature, many methods like the reference point
method [51] only show newly obtained solutions to a DM at each iteration. The final solution
will be chosen from the solutions obtained at the final iteration. Few interactive methods
like the LBS [22] allow a DM to save a set of desirable solutions and select a satisfactory
solution from this set. Naturally, one can keep an archive to store all obtained solutions in real
implementations. In our experiments in Sect. 4, the final solution is chosen from solutions
obtained at the final iteration.

Denote the solution which minimizes U− by zMPS . It represents the real MPS of both
U− and Ũ−. The corresponding disutility value, denoted by U−∗, gives the minimum value
ofU−. The maximum value ofU− on the Pareto front is denoted byU−max . An example of
a performance indicator is the normalized difference between the disutility value of z f inal

and U−∗:
difference = U−(z f inal) −U−∗

U−max −U−∗ × 100%. (6)

The smaller the difference value is, the better the final solution is.
As z f inal is selected according to the disutility function, it may not be the one closest to

zMPS in the sense of the Euclidean distance. So we use the following normalized Euclidean
distance between z f inal and zMPS as the second performance indicator:

distance =
√√√√

k∑

i=1

(
z f inal
i − zMPS

i

znadi − z∗∗
i

)2

. (7)
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Remark 1 The reason for the evaluation module to be involved only in the decision phase is
to enable learning about the problem in the learning phase. Alternatively, one can assume
that it can be adopted in the learning phase and can guide the generation of new reference
points. Note that if an ADM uses the evaluation module in the learning phase in the same
way as it does in the decision phase, it is actually reduced as an ADM which has no learning
phase but only one decision phase.

3.2.2 Task of the decision module

According to the current preferred solution zbest,t−1, the decision module generates a new
reference point gt with the purpose of exploiting the neighborhood of zbest,t−1 to find better
solutions. The details are as follows.

We denote the set of all the generated solutions and all extreme points by {z1, z2, . . . , zmt }
where mt is the size of this set. The decision module determines a polyhedral cone with
zbest,t−1 inside it or lying on the boundary and takes the vertex of the cone, denoted by
zc = [zc1, . . . , zck], as gt . Specifically, for each i ∈ {1, . . . , k}, if zbest,t−1

i = z∗i , then let
zci = z∗i ; otherwise, take the largest objective value from the objective values less than

zbest,t−1
i among all the mt values as zci :

zci = max j∈{1,...,mt }{z ji |z ji < zbest,t−1
i }.

Figure 7 shows how a new reference point is determined in a bi-objective case. The point
C is supposed to be the most preferred one among the five points A, B, C, D, and E. For
the first objective, zc1 is the largest objective value among all the objective values less than

zbest,t−1
1 . Similarly, for the second objective, zc2 is the largest value among all the objective

values which are less than zbest,t−1
2 . Hence, zc = [zc1, zc2] is taken as the new reference point.

The vertex zc is taken as the new reference point because we assume that the ADM finds
the polyhedral cone associated with the current preferred solution to be promising and wants
to find better solutions in it. If an interactive method responds to the guidance of the new
referent point gt well and generates at least one solution in the current polyhedral cone, this
cone tends to be narrowed down. For example, in Fig. 8, F is a newly obtained solution at the
t th iteration. If C is still the most preferred one found so far, then the new polyhedral cone
will be the region dominated by G. If F is preferred to C and suppose it is zbest,t , then the
new polyhedral cone will be the region dominated by H. In both cases, the polyhedral cone
is narrowed down to facilitate a more focused search.

We have now introduced the actions of the proposed ADM in each phase. It is clear that
the ADM’s actions in the two phases differ a lot. Firstly, the ADM explores different regions
in the learning phase to gain more knowledge about the problem, while in the decision phase,
the ADM concentrates on a surrounding region of a promising solution to refine solutions.

Fig. 7 The new reference point
generated in the decision phase
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Fig. 8 The possible new
polyhedral cone

Secondly, in the learning phase, only the information on the locations of generated solutions
is used to generate reference points. In the decision phase, solutions are evaluated and the
most preferred one is identified so as to determine new reference points.

By adopting two different types of utility functions, two examples of the ADM can be
acquired. We denote them by ADM1 and ADM2. The deterministic utility function reflects
the stability ofADM1’s preferences,while the randomone indicates thatADM2’s preferences
are unstable but are getting clearer as more solutions are obtained.

Remark 2 Though only one learning phase and one decision phase are considered in our
ADM, the two phases can actually be carried out repeatedly and an ADM’s actions in a later
learning or decision phase can be changed. For example, we can first utilize an ADM which
generates reference points randomly in the learning phase and uses a random utility function
in the decision phase. Next, we conduct the two phases again with ADM1. This implies that
the preferences of the composite ADM become stable in the second decision phase.

Remark 3 It is also possible to switch interactive methods in different phases to judge their
performance in a single phase. For instance, one can use interactive methods A and B to
find solutions in the learning phase and use method C in the decision phase. In this way, the
performance of A and B in the learning phase can be compared. Through identifying the
strengths and weaknesses of interactive methods in each phase, new interactive methods can
be designed by combining the advantages of existing methods which behave well in different
phases.

3.3 The proposed ADM’s steps and an example

3.3.1 ADM’s steps

Recall that the iteration numbers in the whole solution process and in the decision phase are t
and td , respectively. Denote the largest allowable numbers of iterations in the learning phase
and the decision phase by Tl and Td , respectively. To evaluate the final solutions obtained
by different interactive methods under the same number of iterations, the overall numbers
of iterations of the ADM in each phase are assumed to be fixed. In other words, the ADM
switches from the learning phase to the decision phase when t > Tl and the decision phase
is terminated when td > Td . In what follows, the steps of how the ADM interacts with a
reference point based method and evaluates the final solution are given. The corresponding
flowchart is presented in Fig. 9.
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Fig. 9 Flowchart of how the proposed ADM works

Step 1 (Initialization of the learning phase) Set t = 1, td = 0. Generate an initial
reference point g1 randomly or let the user of the ADM specify it within the hyperbox
determined by z∗ and approximate znad . Let the interactive method generate Pareto optimal
solutions based on g1.

Step 2 (Learning phase) Let t = t + 1. The ADM provides a new reference point
gt according to the structured learning approach in Sect. 3.1. Then, the interactive method
generates corresponding Pareto optimal solutions. Repeat this step until t = Tl . Then, go to
Step 3.

Step 3 (Decision phase) Set t = t + 1, td = td + 1. The ADM generates a new reference
point gt according to Sect. 3.2. Obtain new Pareto optimal solutions by using the interactive
method. Repeat this procedure until td = Td . Use the evaluation module to determine a
solution as the final output and calculate the performance indicator value of it. Then, the
whole process is terminated.
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3.3.2 An example of how the ADMworks

Nowwe illustrate how the proposed ADMworks with a reference point based method on the
bi-objective problem ZDT1 [57]. ADM1 is used as an example and a simple linear disutility
function U−( f1, f2) = f1 + f2 is used to evaluate solutions. Figure 10 shows the contour
lines (dotted lines) of the disutility function and the MPS (zMPS = [0.25, 0.5]). The curve
represents the Pareto front of ZDT1. The interactive method we use is the reference point
method [51]which uses theDM’s reference point and k perturbed reference points to generate
k + 1 Pareto optimal solutions by minimizing k + 1 ASFs at each iteration. The augmented
ASF shown by (2) is adopted and is minimized by using the differential evolution algorithm
DE/rand/1/bin [46]. Three and two iterations are implemented in the learning phase and the
decision phase, respectively.

All the reference points provided by ADM1 and Pareto optimal solutions generated by
the reference point method [51] in the learning phase are shown in Fig. 11. We set the initial
reference point as g1 = [0.5, 0.1]. Three Pareto optimal solutions z1,1, z1,2, and z1,3 are
generated based on g1. The new reference point g2 is generated based on z1,1 and the extreme
point z = [0, 1] which are neighbors and have the largest normalized Euclidean distance
among all pairs of neighbors. Then, another three Pareto optimal solutions z2,1, z2,2, and z2,3

are obtained. Similarly, the third reference point g3 is determined and solutions z3,1, z3,2,
and z3,3 are generated.

At the fourth iteration, the decision phase begins. According to the disutility function, z2,2

is the solution with the minimum disutility value found so far, i.e., zbest,3 = z2,2 as shown
in Fig. 12a. For the first objective, z2,11 is the largest objective value among all the objective

values which are smaller than zbest,31 . For the second objective, z2,32 is the largest objective

value among all the objective values less than zbest,32 . Thus, g4 = [z2,11 , z2,32 ] is the new
reference point. Another three Pareto optimal solutions z4,1, z4,2, and z4,3 corresponding to
g4 are generated and z4,2 has theminimumdisutility value now, i.e., zbest,4 = z4,2. Figure 12b
presents the new reference point g5 = [z2,21 , z4,32 ] and three new solutions z5,1, z5,2, and z5,3.
The solution z5,1 overlaps zMPS and it has the minimum disutility value. Its two performance
indicator values are all zero according to (6) and (7), which means that the reference point
method behaves well on ZDT1 under the evaluation of ADM1.

Fig. 10 Contour lines of the
disutility function and the MPS
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Fig. 11 The reference points and
corresponding Pareto optimal
solutions in the learning phase

(a) (b)

Fig. 12 The reference points and corresponding Pareto optimal solutions in the decision phase: a the fourth
iteration; b the fifth iteration

4 Numerical experiments on benchmark test problems

In this section,we useADM1andADM2as examples to demonstrate how the proposedADM
can be utilized to compare reference point based methods on benchmark test problems. Four
popular methods, i.e., the reference point method [51], R-NSGA-II [17], g-NSGA-II [34],
and r-NSGA-II [43] are used as examples of reference point based methods. As introduced in
Sect. 3.3.2, the reference pointmethod generates k+1Pareto optimal solutions byminimizing
k+1 ASFs at each iteration. The other three methods use the DM’s reference point to modify
NSGA-II [16]. Nevertheless, their ways of modification are different. R-NSGA-II modifies
the crowding distance mechanism of NSGA-II to prefer solutions close to the reference
point. g-NSGA-II uses g-dominance relation to replace the Pareto dominance in NSGA-II
to emphasize solutions which satisfy all aspiration levels or achieve none of the aspiration
levels. r-NSGA-II substitutes r-dominance for the Pareto dominance in NSGA-II to make
solutions closer to the reference point more preferred. In the literature, the three methods
are usually used as a priori methods. We use them interactively in this paper as follows.
At each iteration, the modified NSGA-II is performed for a certain number of generations
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to find Pareto optimal solutions corresponding to the ADM’s current reference point. The
procedures of the modified NSGA-II at different iterations are independent. That is to say, the
modified NSGA-II is rerun by starting from a newly randomly generated initial population
at each iteration. In our experiments, the codes of the latter two methods come from the
MATLAB platform PlatEMO [50].

4.1 Experimental settings

4.1.1 Test problems

Three- and five-objective DTLZ1, DTLZ2, DTLZ3, DTLZ4 and DTLZ7 [18] are used as test
problems. The Pareto front of DTLZ1 is linear. DTLZ2, DTLZ3, and DTLZ7 have concave
Pareto fronts. DTLZ7 has 2k−1 disconnected Pareto optimal regions.

4.1.2 Parameter settings of interactive methods

For the reference point method, we adopt the same implementation as used in Sect. 3.3. The
parameter values used in DE/rand/1/bin are: (1) population size N P = 5n; (2) the scaling
factor F = 0.5; (3) the crossover probability CR = 0.5; and (4) the maximum number of
generations Gmax = 400. Note that DE/rand/1/bin is called k + 1 times at each iteration
of the reference point method. For the other three methods, the population size is 100 and
200 for three-objective and five-objective problems, respectively. The clearing parameter ε

in R-NSGA-II is set as 0.01 [17] and the non-r-dominance threshold δ in r-NSGA-II is set
as 0.3 [43]. Since these three methods generate many solutions at each iteration, we select
k+1 solutions to the ADM by clustering. This implies that the four methods will present the
same number of solutions to the ADM at each iteration. To get comparable results with the
four methods, their total numbers of function evaluations are kept the same at each iteration.

4.1.3 Parameter settings of ADMs

It has been reported in the literature that the median number of iterations performed with
interactive methods is often between three and eight [19]. Too many iterations will bring
a heavy burden to the DM. On the other hand, a reference point based method is likely to
have better results when more iterations are adopted since more solutions can be obtained.
In order to allow the four methods to have better performance within an acceptable number
of iterations, we set the overall number of iterations T as eight. In addition, we set Tl =
5, Td = 3. In fact, one can set T , Td , and Tl the way one wishes.

The formulas of the disutility functions in (4) and (5) are used. Table 1 gives the weighting
vectors used in them. For each test problem, the difference between znad and z∗ in each
dimension is large enough, so we use z∗ directly instead of z∗∗ (i.e., εi = 0, for all i ∈
{1, . . . , k}) in (4), (5), and (7). For ADM2, the standard deviations of the noise of Ũ− in the
decision phase are set as σ1 = 0.2 × (U−max − U−∗), σ2 = σ1/2, σ3 = σ2/2. After the
solutions generated at the final iteration are given to the ADM, σtd will be reduced to zero,
which means that the noise of ADM2’s disutility function disappears finally. The MPS on
each test problem and corresponding optimal disutility value are listed in Table 1.
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Table 1 The weighting vectors, MPSs, and the optimal disutility values

Problem w zMPS U−∗

3-obj DTLZ1 [1, 1.2, 1.5] [0.2, 0.1667, 0.1333] 0.4

3-obj DTLZ2/3/4 [1, 1.2, 1.5] [0.6838, 0.5698, 0.4558] 0.6838

3-obj DTLZ7 [1, 1.2, 3] [0.8094, 0.6745, 3.6771] 0.9419

5-obj DTLZ1 [1, 1.2, 1.2, 1.2, 1.5] [0.12, 0.1, 0.1, 0.1, 0.08] 0.24

5-obj DTLZ2/3/4 [1, 1.2, 1.2, 1.2, 1.5] [0.5324, 0.4437, 0.4437, 0.4437, 0.3549] 0.5324

5-obj DTLZ7 [4, 4, 1, 1, 2] [0.1951, 0.1951, 0.7804, 0.7804, 6.3026] 0.9080

4.1.4 Initial reference point

We use four different initial reference points for each test problem, as listed in Table 2. They
are denoted by irp1, irp2, irp3, and irp4 where irp1 and irp2 are unachievable while irp3
and irp4 are achievable. Besides, irp1 and irp3 are close to the Pareto front while irp2 and
irp4 are far away from the Pareto front. On each test problem, the two ADMs will use the
same four initial reference points when applying each interactive method. The approach of
generating various initial reference points is given in the supplementary material.

4.2 Experimental results and analysis

4.2.1 Comparison of the four methods by using the proposed ADM

In this subsection, the proposed ADM1 and ADM2 are utilized to compare the four reference
point based methods. Since randomness is involved in the solution process, the solutions
generated by eachmethodwith the same reference pointmay vary in different runs.Hence, for
everyADM,eachmethod is run21 times independently on each test problemunder each initial
reference point. This means that each method is applied for a total of 2×4×10×21 = 1680
times. In each run, the values of the two indicators difference and distance are calculated by
using (6) and (7), respectively.

• Comparison according to the mean values. The mean values and the standard deviations
of each method over 21 independent runs are listed in Tables 3 and 4. In these two
tables, the first three columns show the test problem, the number of objectives, the initial
reference point, respectively. The fourth to seventh columns present results of the four
methods in terms of difference. Note that the reference point method is abbreviated as
RPM. The values in parentheses are the standard deviations. Similarly, the eighth to
eleventh columns give results in terms of distance. In order to facilitate comparison, we
ranked the four methods on each instance by using 1, 2, 3, and 4 according to their mean
values. The method with rank 1 has the smallest mean value. All the ranks are listed in
the fourth to eleventh columns of each table. The average rank of each method over 40
instances is shown in the last row of each table.

According to Tables 3 and 4, no method is absolutely superior to the other methods on
all instances. The reference point method ranks the first on more than half of the instances
under each indicator, no matter which ADM is utilized. Most of its mean difference values
are less than 10% and the corresponding standard deviations are less than 5%, which means
that it can generally find solutions close to the real MPS and it has a relatively good stability.

123



774 Journal of Global Optimization (2023) 85:757–788

Ta
bl
e
2

T
he

in
iti
al
re
fe
re
nc
e
po
in
ts
fo
r
ea
ch

te
st
pr
ob
le
m

Pr
ob
le
m

ir
p1

ir
p2

ir
p3

ir
p4

3-
ob

jD
T
L
Z
1

[0.
22

,
0.
20

,
0.
01

]
[0.

1,
0.
08

,
0.
07

]
[0.

42
,
0.
12

,
0.
11

]
[0.

35
,
0.
33

,
0.
32

]
3-
ob

jD
T
L
Z
2/
3/
4

[0.
72

,
0.
61

,
0.
08

]
[0.

34
,
0.
28

,
0.
23

]
[0.

96
,
0.
45

,
0.
36

]
[0.

84
,
0.
78

,
0.
73

]
3-
ob

jD
T
L
Z
7

[0.
15

,
0.
69

,
4.
19

]
[0.

4,
0.
34

,
3.
15

]
[0.

80
,
0.
81

,
3.
41

]
[0.

53
,
0.
46

,
5.
58

]
5-
ob

jD
T
L
Z
1

[0.
19

,
0.
1,
0.
05

,
0,

0.
14

]
[0.

06
,
0.
05

,
0.
05

,
0.
05

,
0.
04

]
[0.

09
,
0.
09

,
0.
08

,
0.
4,
0.
04

]
[0.

31
,
0.
3,
0.
3,
0.
3,
0.
29

]
5-
ob

jD
T
L
Z
2/
3/
4

[0.
56

,
0.
5,
0.
54

,
0.
06

,
0]

[0.
27

,
0.
22

,
0.
22

,
0.
22

,
0.
18

]
[0.

48
,
0.
93

,
0.
31

,
0.
36

,
0.
25

]
[0.

77
,
0.
72

,
0.
72

,
0 .
72

,
0.
68

]
5-
ob

jD
T
L
Z
7

[0.
23

,
0.
37

,
0.
2,

0.
82

,
7.
2]

[0.
1,
0.
1,
0.
39

,
0.
39

,
4.
77

]
[0.

82
,
0.
76

,
0.
77

,
0.
74

,
6.
21

]
[0.

64
,
0.
76

,
0.
76

,
0.
55

,
9.
01

]

123



Journal of Global Optimization (2023) 85:757–788 775

Ta
bl
e
3

R
es
ul
ts
of

th
e
fo
ur

m
et
ho

ds
w
he
n
us
in
g
A
D
M
1
to

co
m
pa
re

th
em

Pr
ob
le
m

k
ir
p

D
iff
er
en
ce

D
is
ta
nc
e

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

D
T
L
Z
1

3
ir
p1

3.
90

6(
2.
80

9)
1

7.
63

2(
3.
52

1)
2

32
96

(2
51

4)
4

14
.7
9(
8.
20

4)
3

0.
05

2(
0.
04

0)
1

0.
15

2(
0.
07

9)
2

32
.6
7(
31

.5
1)

4
0.
18

0(
0.
09

0)
3

ir
p2

0.
42

9(
0.
38

8)
1

3.
69

3(
3.
57

4)
2

43
16

(3
34

2)
4

17
.6
3(
9.
68

2)
3

0.
00

5(
0.
00

6)
1

0.
04

3(
0.
03

5)
2

47
.9
6(
38

.0
1)

4
0.
22

8(
0.
11

8)
3

ir
p3

3.
34

9(
1.
87

5)
1

6.
75

6(
4.
40

9)
2

45
80

(3
94

1)
4

16
.7
5(
8.
61

9)
3

0.
04

7(
0.
02

7)
1

0.
09

1(
0.
06

7)
2

45
.9
8(
38

.7
3)

4
0.
21

0(
0.
10

8)
3

ir
p4

1.
42

2(
0.
77

3)
1

1.
78

8(
1.
88

1)
2

53
62

(4
28

0)
4

19
.2
2(
8.
85

4)
3

0.
02

2(
0.
01

4)
1

0.
03

0(
0.
03

4)
2

54
.2
7(
43

.5
0)

4
0.
23

8(
0.
12

3)
3

5
ir
p1

2.
91

4(
1.
17

5)
1

15
.1
7(
3.
39

5)
2

26
25

7(
74

50
)4

76
.4
6(
41

.0
3)

3
0.
04

5(
0.
01

3)
1

0.
28

6(
0.
02

6)
2

37
7.
1(
61

.0
7)

4
1.
00

0(
0.
52

3)
3

ir
p2

0.
95

6(
0.
36

8)
1

13
.9
7(
4.
78

3)
2

25
85

3(
62

22
)4

92
.5
5(
47

.0
4)

3
0.
02

0(
0.
00

5)
1

0.
24

1(
0.
09

4)
2

35
7.
3(
46

.5
7)

4
1.
20

4(
0.
61

6)
3

ir
p3

5.
58

7(
1.
75

6)
1

14
.7
4(
4.
77

3)
2

26
43

0(
64

24
)4

80
.6
2(
51

.0
1)

3
0.
10

4(
0.
03

1)
1

0.
27

4(
0.
06

8)
2

37
8.
0(
70

.1
9)

4
0.
97

3(
0.
58

1)
3

ir
p4

1.
80

2(
0.
56

1)
1

10
.5
4(
4.
44

9)
2

26
55

2(
81

38
)4

10
2.
4(
60

.3
5)

3
0.
02

5(
0.
00

6)
1

0.
21

8(
0.
07

7)
2

36
9.
2(
89

.5
7)

4
1.
29

2(
0.
76

8)
3

D
T
L
Z
2

3
ir
p1

6.
94

1(
0.
00

0)
2

9.
95

5(
2.
45

9)
4

5.
13

4(
1.
71

0)
1

9.
73

9(
2.
48

6)
3

0.
18

0(
0.
00

0)
2

0.
34

4(
0.
10

6)
4

0.
08

3(
0.
03

8)
1

0.
33

9(
0.
11

3)
3

ir
p2

0.
41

1(
0.
00

0)
1

10
.1
5(
7.
31

7)
4

5.
40

0(
5.
96

1)
3

3.
89

4(
3.
97

5)
2

0.
00

6(
0.
00

0)
1

0.
22

7(
0.
22

6)
4

0.
05

2(
0.
05

1)
2

0.
06

5(
0.
12

0)
3

ir
p3

2.
66

6(
0.
00

0)
1

10
.2
5(
7.
71

8)
4

7.
40

1(
3.
51

0)
3

4.
49

1(
5.
15

2)
2

0.
02

2(
0.
00

0)
1

0.
13

0(
0.
09

0)
4

0.
09

0(
0.
04

6)
3

0.
05

5(
0.
07

3)
2

ir
p4

1.
59

0(
0.
00

0)
1

7.
75

8(
11

.3
5)

3
6.
06

6(
3.
75

8)
2

19
.6
1(
3.
56

7)
4

0.
01

9(
0.
00

0)
1

0.
12

9(
0.
20

8)
3

0.
09

1(
0.
07

1)
2

0.
51

4(
0.
12

5)
4

5
ir
p1

11
.7
2(
0.
00

0)
1

20
.9
7(
6.
93

5)
3

14
9.
8(
26

.5
2)

4
13

.1
9(
1.
89

2)
2

0.
44

4(
0.
00

0)
1

0.
63

6(
0.
08

2)
3

1.
75

9(
0.
22

6)
4

0.
51

5(
0.
06

9)
2

ir
p2

5.
30

8(
0.
64

8)
1

25
.6
9(
5.
98

0)
3

15
3.
8(
23

.6
8)

4
11

.7
2(
9.
19

1)
2

0.
07

4(
0.
01

4)
1

0.
64

6(
0.
14

6)
3

1.
77

4(
0.
16

9)
4

0.
30

0(
0.
24

3)
2

ir
p3

3.
31

7(
0.
04

0)
1

32
.5
1(
7.
91

0)
3

15
2.
5(
22

.7
0)

4
18

.0
7(
5.
77

0)
2

0.
05

4(
0.
00

0)
1

0.
78

9(
0.
09

0)
3

1.
84

3(
0.
20

6)
4

0.
53

8(
0.
12

3)
2

ir
p4

3.
87

8(
0.
00

0)
1

12
.1
1(
5.
41

5)
2

15
7.
3(
30

.9
3)

4
21

.8
5(
5.
70

7)
3

0.
04

3(
0.
00

0)
1

0.
44

5(
0.
16

4)
2

1.
74

5(
0.
19

4)
4

0.
49

3(
0.
20

9)
3

123



776 Journal of Global Optimization (2023) 85:757–788

Ta
bl
e
3

co
nt
in
ue
d

Pr
ob
le
m

k
ir
p

D
iff
er
en
ce

D
is
ta
nc
e

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

D
T
L
Z
3

3
ir
p1

6.
22

5(
2.
78

6)
1

8.
43

1(
3.
88

4)
2

54
97

(3
59

8)
4

20
.5
2(
7.
00

9)
3

0.
12

7(
0.
08

6)
1

0.
24

4(
0.
14

4)
2

40
.9
5(
25

.4
1)

4
0.
28

0(
0.
08

1)
3

ir
p2

4.
68

7(
3.
73

3)
1

6.
11

4(
7.
00

5)
2

63
73

(5
58

2)
4

24
.1
7(
5.
20

4)
3

0.
05

3(
0.
04

7)
1

0.
09

3(
0.
13

8)
2

44
.1
8(
30

.1
9)

4
0.
33

4(
0.
08

9)
3

ir
p3

2.
87

8(
0.
88

5)
1

8.
95

6(
6.
37

9)
2

57
61

(3
97

8)
4

21
.4
2(
6.
08

0)
3

0.
04

2(
0.
02

8)
1

0.
12

3(
0.
11

7)
2

41
.9
2(
27

.4
6)

4
0.
30

4(
0.
10

5)
3

ir
p4

3.
84

0(
3.
44

1)
1

5.
34

7(
4.
75

2)
2

47
55

(3
62

1)
4

23
.8
5(
4.
04

7)
3

0.
03

6(
0.
02

5)
1

0.
06

5(
0.
06

4)
2

35
.1
5(
25

.5
1)

4
0.
33

0(
0.
08

9)
3

5
ir
p1

10
.2
6(
4.
59

0)
1

17
.6
9(
5.
12

7)
2

91
87

5(
32

15
4)

4
43

.7
3(
43

.9
1)

3
0.
25

5(
0.
12

4)
1

0.
55

8(
0.
06

3)
3

10
12

(3
29

.9
)4

0.
53

8(
0.
46

0)
2

ir
p2

7.
79

2(
1.
93

8)
1

27
.2
7(
9.
83

7)
2

10
00

39
(2
26

65
)4

49
.7
7(
70

.7
1)

3
0.
13

9(
0.
05

2)
1

0.
60

8(
0.
19

3)
2

10
51

(2
26

.3
)4

0.
68

0(
1.
04

4)
3

ir
p3

10
.2
5(
3.
00

5)
1

35
.4
6(
7.
86

7)
2

10
01

21
(1
77

70
)4

59
.7
3(
46

.9
0)

3
0.
21

8(
0.
09

8)
1

0.
78

0(
0.
11

4)
3

10
67

(1
85

.0
)4

0.
67

8(
0.
51

7)
2

ir
p4

6.
93

5(
2.
09

2)
1

13
.4
1(
7.
47

8)
2

10
20

39
(1
89

81
)4

35
.2
4(
36

.7
3)

3
0.
13

0(
0.
09

4)
1

0.
44

0(
0.
13

8)
2

10
98

(1
94

.6
)4

0.
49

3(
0.
43

2)
3

D
T
L
Z
4

3
ir
p1

7.
43

3(
2.
15

5)
2

17
.1
7(
8.
34

6)
4

4.
70

9(
1.
57

4)
1

9.
66

0(
2.
85

5)
3

0.
19

1(
0.
09

7)
2

0.
48

8(
0.
11

6)
4

0.
08

7(
0.
05

1)
1

0.
19

6(
0.
10

0)
3

ir
p2

5.
59

7(
3.
54

1)
1

13
.1
4(
7.
98

1)
4

5.
73

8(
3.
60

0)
2

8.
57

4(
3.
22

3)
3

0.
07

0(
0.
04

8)
2

0.
40

5(
0.
21

0)
4

0.
06

6(
0.
04

7)
1

0.
11

1(
0.
06

4)
3

ir
p3

2.
27

6(
2.
44

0)
1

8.
41

1(
6.
36

0)
3

7.
26

0(
4.
90

5)
2

9.
09

1(
3.
19

4)
4

0.
03

3(
0.
03

5)
1

0.
12

6(
0.
11

8)
4

0.
11

3(
0.
13

7)
2

0.
11

6(
0.
04

9)
3

ir
p4

3.
68

6(
2.
80

9)
1

7.
25

7(
4.
90

4)
3

7.
12

7(
3.
61

5)
2

8.
96

7(
3.
32

3)
4

0.
04

5(
0.
03

4)
1

0.
16

0(
0.
15

2)
4

0.
11

3(
0.
07

5)
2

0.
14

1(
0.
10

0)
3

5
ir
p1

12
.0
6(
1.
24

8)
1

22
.2
2(
6.
09

4)
3

29
.5
3(
15

.4
5)

4
13

.5
6(
3.
78

4)
2

0.
47

3(
0.
07

3)
3

0.
63

6(
0.
07

5)
4

0.
45

7(
0.
16

1)
1

0.
29

2(
0.
09

3)
2

ir
p2

10
.6
0(
5.
80

5)
1

24
.6
6(
7.
84

5)
3

32
.8
8(
18

.0
1)

4
13

.2
2(
4.
03

4)
2

0.
29

0(
0.
17

4)
2

0.
69

4(
0.
15

9)
4

0.
43

0(
0.
22

0)
3

0.
22

8(
0.
06

3)
1

ir
p3

14
.9
3(
4.
93

6)
2

18
.4
1(
5.
92

6)
3

30
.0
2(
12

.7
7)

4
14

.0
7(
4.
69

2)
1

0.
48

4(
0.
08

0)
3

0.
51

2(
0.
16

0)
4

0.
43

6(
0.
15

0)
2

0.
24

7(
0.
09

2)
1

ir
p4

11
.1
3(
5.
91

5)
2

10
.0
5(
6.
99

2)
1

27
.2
5(
13

.1
3)

4
17

.7
6(
5.
38

2)
3

0.
22

5(
0.
17

6)
1

0.
33

2(
0.
19

5)
3

0.
33

9(
0.
13

7)
4

0.
31

3(
0.
12

9)
2

D
T
L
Z
7

3
ir
p1

8.
65

3(
2.
33

6)
2

10
.7
1(
2.
68

4)
3

7.
78

7(
1.
56

6)
1

34
.5
8(
7.
56

7)
4

0.
29

4(
0.
05

3)
2

0.
55

7(
0.
22

0)
3

0.
20

3(
0.
05

2)
1

0.
71

1(
0.
07

6)
4

ir
p2

1.
12

4(
0.
51

0)
1

1.
62

5(
1.
74

2)
3

1.
54

3(
1.
11

6)
2

39
.0
9(
13

.9
4)

4
0.
05

0(
0.
02

7)
3

0.
04

9(
0.
04

9)
2

0.
04

5(
0.
02

9)
1

0.
73

9(
0.
08

3)
4

ir
p3

2.
88

2(
0.
00

5)
2

8.
31

2(
2.
93

7)
3

1.
83

2(
0.
95

5)
1

38
.1
6(
11

.3
1)

4
0.
06

5(
0.
00

7)
2

0.
44

8(
0.
18

8)
3

0.
04

7(
0.
02

6)
1

0.
71

5(
0.
09

0)
4

ir
p4

6.
18

4(
3.
80

9)
3

5.
48

0(
4.
59

8)
2

2.
41

7(
1.
52

2)
1

39
.0
4(
10

.9
6)

4
0.
21

8(
0.
10

1)
2

0.
23

8(
0.
25

1)
3

0.
07

5(
0.
05

1)
1

0.
71

3(
0.
07

8)
4

5
ir
p1

6.
25

5(
2.
70

4)
1

12
.5
0(
3.
63

9)
3

38
.6
3(
12

.4
9)

4
9.
73

0(
2.
27

7)
2

0.
38

7(
0.
24

7)
1

0.
75

6(
0.
10

2)
4

0.
69

4(
0.
21

7)
3

0.
67

0(
0.
11

5)
2

ir
p2

4.
11

8(
2.
36

6)
3

2.
03

9(
0.
60

6)
2

49
.3
7(
12

.2
9)

4
1.
22

4(
1.
00

4)
1

0.
24

6(
0.
14

4)
3

0.
08

9(
0.
01

9)
2

0.
83

0(
0.
22

9)
4

0.
06

1(
0.
04

3)
1

ir
p3

2.
52

5(
0.
59

4)
1

78
.3
4(
24

.6
3)

4
46

.8
4(
20

.8
7)

2
76

.5
9(
24

.0
7)

3
0.
15

6(
0.
03

2)
1

0.
75

1(
0.
22

4)
3

0.
81

2(
0.
27

7)
4

0.
72

4(
0.
23

3)
2

ir
p4

8.
26

3(
2.
98

9)
1

32
.8
0(
18

.0
7)

2
46

.1
8(
24

.3
0)

4
36

.1
2(
23

.2
4)

3
0.
53

2(
0.
20

4)
1

0.
83

6(
0.
28

9)
3

0.
85

6(
0.
34

7)
4

0.
72

7(
0.
30

5)
2

A
ve
ra
ge

ra
nk

1.
25

2.
6

3.
27

5
2.
87

5
1.
37

5
2.
85

3.
07

5
2.
7

123



Journal of Global Optimization (2023) 85:757–788 777

Ta
bl
e
4

R
es
ul
ts
of

th
e
fo
ur

m
et
ho

ds
w
he
n
us
in
g
A
D
M
2
to

co
m
pa
re

th
em

Pr
ob
le
m

k
ir
p

D
iff
er
en
ce

D
is
ta
nc
e

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

D
T
L
Z
1

3
ir
p1

7.
44

8(
3.
96

5)
1

10
.1
4(
3.
97

5)
2

43
64

(4
15

8)
4

15
.0
8(
7.
67

3)
3

0.
13

5(
0.
08

6)
1

0.
20

6(
0.
09

8)
3

41
.1
8(
38

.7
6)

4
0.
20

4(
0.
10

7)
2

ir
p2

2.
29

2(
2.
07

9)
1

9.
78

0(
6.
29

1)
2

63
60

(5
28

1)
4

14
.9
2(
8.
04

0)
3

0.
03

1(
0.
03

4)
1

0.
12

5(
0.
09

2)
2

66
.9
1(
65

.2
6)

4
0.
19

4(
0.
10

7)
3

ir
p3

5.
86

4(
4.
21

8)
1

14
.3
3(
5.
91

5)
2

30
54

(2
33

0)
4

17
.1
0(
6.
93

6)
3

0.
09

4(
0.
08

1)
1

0.
17

8(
0.
07

2)
2

28
.0
1(
20

.1
4)

4
0.
21

5(
0.
08

6)
3

ir
p4

5.
46

2(
3.
81

6)
2

2.
84

9(
2.
02

2)
1

34
75

(3
49

2)
4

17
.0
1(
6.
65

0)
3

0.
08

4(
0.
05

9)
2

0.
03

9(
0.
02

6)
1

33
.8
6(
31

.0
1)

4
0.
22

0(
0.
08

1)
3

5
ir
p1

6.
64

7(
3.
56

6)
1

20
.0
0(
6.
09

3)
2

25
96

0(
78

19
)4

68
.2
4(
39

.0
0)

3
0.
12

6(
0.
07

6)
1

0.
33

5(
0.
04

8)
2

36
4.
8(
56

.8
9)

4
0.
89

0(
0.
47

0)
3

ir
p2

3.
34

4(
3.
57

9)
1

17
.8
4(
5.
22

1)
2

28
45

1(
79

76
)4

11
9.
0(
61

.8
2)

3
0.
04

9(
0.
04

4)
1

0.
27

0(
0.
08

9)
2

38
9.
8(
67

.8
8)

4
1.
55

8(
0.
89

9)
3

ir
p3

8.
39

1(
2.
25

8)
1

19
.9
9(
7.
23

0)
2

25
37

2(
64

42
)4

93
.1
6(
40

.6
9)

3
0.
14

4(
0.
04

2)
1

0.
33

1(
0.
08

5)
2

36
3.
5(
51

.7
7)

4
1.
21

8(
0.
53

2)
3

ir
p4

3.
39

6(
2.
62

1)
1

12
.8
8(
4.
98

0)
2

28
50

5(
74

19
)4

10
6.
7(
47

.9
7)

3
0.
05

6(
0.
04

4)
1

0.
22

7(
0.
06

9)
2

38
4.
7(
57

.9
3)

4
1.
37

0(
0.
67

7)
3

D
T
L
Z
2

3
ir
p1

11
.0
2(
2.
20

9)
3

11
.7
2(
2.
96

7)
4

8.
39

8(
2.
18

2)
1

10
.6
1(
1.
93

6)
2

0.
29

9(
0.
10

2)
2

0.
36

5(
0.
09

5)
4

0.
18

1(
0.
07

9)
1

0.
35

1(
0.
10

2)
3

ir
p2

7.
36

7(
6.
02

6)
2

15
.2
1(
7.
73

7)
4

6.
68

5(
3.
70

1)
1

7.
85

8(
6.
19

3)
3

0.
10

8(
0.
10

3)
3

0.
30

9(
0.
22

6)
4

0.
07

3(
0.
04

9)
1

0.
09

9(
0.
12

1)
2

ir
p3

4.
25

2(
2.
46

8)
1

20
.9
8(
9.
28

4)
4

11
.4
5(
7.
51

5)
3

7.
38

3(
7.
67

8)
2

0.
06

3(
0.
04

5)
1

0.
31

8(
0.
15

1)
4

0.
14

1(
0.
08

6)
3

0.
10

0(
0.
12

9)
2

ir
p4

4.
36

0(
4.
99

6)
1

5.
62

6(
6.
46

5)
2

7.
82

4(
4.
10

1)
3

22
.7
2(
8.
86

0)
4

0.
04

4(
0.
04

4)
1

0.
07

3(
0.
13

5)
2

0.
12

2(
0.
09

1)
3

0.
43

7(
0.
20

4)
4

5
ir
p1

14
.8
7(
2.
66

0)
1

21
.0
5(
5.
59

6)
3

14
9.
6(
31

.4
5)

4
15

.6
0(
3.
28

4)
2

0.
41

3(
0.
08

9)
1

0.
60

4(
0.
07

6)
3

1.
67

2(
0.
25

5)
4

0.
53

6(
0.
05

6)
2

ir
p2

6.
53

9(
3.
26

5)
1

32
.0
9(
9.
00

9)
3

14
9.
2(
21

.0
4)

4
12

.9
9(
8.
60

7)
2

0.
10

0(
0.
06

9)
1

0.
69

1(
0.
12

8)
3

1.
72

4(
0.
24

1)
4

0.
20

1(
0.
18

2)
2

ir
p3

4.
17

7(
1.
11

0)
1

35
.8
6(
7.
67

4)
3

15
2.
7(
25

.3
4)

4
20

.6
1(
5.
65

0)
2

0.
07

1(
0.
01

2)
1

0.
80

8(
0.
09

5)
3

1.
80

7(
0.
22

3)
4

0.
56

9(
0.
12

8)
2

ir
p4

6.
71

6(
2.
24

7)
1

11
.8
8(
5.
46

8)
2

14
9.
4(
20

.7
9)

4
25

.8
9(
6.
05

6)
3

0.
09

3(
0.
04

2)
1

0.
36

0(
0.
19

5)
2

1.
76

2(
0.
19

3)
4

0.
47

8(
0.
19

0)
3

D
T
L
Z
3

3
ir
p1

10
.3
5(
5.
31

3)
1

10
.3
6(
2.
82

6)
2

71
23

(4
67

5)
4

21
.0
6(
6.
44

0)
3

0.
23

7(
0.
13

0)
1

0.
29

4(
0.
13

4)
3

49
.9
4(
28

.9
0)

4
0.
27

4(
0.
10

1)
2

ir
p2

8.
76

9(
3.
58

3)
1

11
.0
8(
7.
42

7)
2

58
80

(2
45

1)
4

24
.1
8(
6.
47

0)
3

0.
09

9(
0.
03

7)
1

0.
15

6(
0.
13

4)
2

41
.0
2(
13

.5
1)

4
0.
34

7(
0.
10

8)
3

ir
p3

4.
74

2(
2.
34

9)
1

12
.1
7(
8.
39

0)
2

62
36

(4
70

4)
4

21
.4
7(
7.
42

1)
3

0.
07

9(
0.
05

1)
1

0.
15

4(
0.
12

8)
2

46
.8
7(
35

.1
3)

4
0.
31

8(
0.
12

6)
3

ir
p4

8.
52

0(
5.
05

2)
2

4.
67

1(
2.
82

3)
1

65
44

(9
89

0)
4

22
.5
1(
5.
23

8)
3

0.
09

8(
0.
06

6)
2

0.
05

3(
0.
03

8)
1

43
.9
5(
53

.8
4)

4
0.
30

8(
0.
09

0)
3

5
ir
p1

12
.8
2(
4.
48

7)
1

17
.9
3(
5.
62

1)
2

99
56

6(
22

13
6)

4
36

.2
2(
27

.3
1)

3
0.
32

3(
0.
13

2)
1

0.
55

9(
0.
08

7)
3

10
64

(2
43

.9
)4

0.
47

5(
0.
33

0)
2

ir
p2

10
.1
6(
3.
80

8)
1

29
.1
4(
6.
04

7)
2

89
09

1(
17

35
8)

4
68

.0
8(
61

.6
0)

3
0.
15

7(
0.
07

1)
1

0.
65

4(
0.
19

4)
2

97
8.
9(
15

7.
1)

4
0.
78

4(
0.
68

9)
3

ir
p3

13
.1
9(
4.
36

3)
1

37
.6
3(
9.
94

4)
3

88
98

8(
20

32
6)

4
33

.9
4(
32

.3
6)

2
0.
32

5(
0.
15

9)
1

0.
78

1(
0.
14

2)
3

10
01

(1
94

.3
)4

0.
47

7(
0.
43

8)
2

ir
p4

11
.0
1(
3.
31

4)
2

9.
09

5(
3.
47

2)
1

99
94

1(
19

03
9)

4
43

.6
7(
35

.1
6)

3
0.
27

2(
0.
14

0)
1

0.
30

1(
0.
15

9)
2

11
31

(2
20

.3
)4

0.
55

1(
0.
34

4)
3

123



778 Journal of Global Optimization (2023) 85:757–788

Ta
bl
e
4

co
nt
in
ue
d

Pr
ob
le
m

k
ir
p

D
iff
er
en
ce

D
is
ta
nc
e

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

R
PM

R
-N

SG
A
-I
I

g-
N
SG

A
-I
I

r-
N
SG

A
-I
I

D
T
L
Z
4

3
ir
p1

11
.4
6(
2.
68

2)
2

15
.8
4(
7.
30

3)
4

10
.2
5(
6.
22

7)
1

11
.5
6(
2.
78

3)
3

0.
29

3(
0.
12

6)
3

0.
47

5(
0.
10

4)
4

0.
23

9(
0.
16

1)
1

0.
29

0(
0.
12

0)
2

ir
p2

9.
46

2(
5.
97

5)
2

20
.7
2(
11

.0
3)

4
6.
55

3(
4.
20

4)
1

10
.9
4(
6.
32

8)
3

0.
12

1(
0.
09

7)
2

0.
44

2(
0.
16

7)
4

0.
09

1(
0.
09

5)
1

0.
16

9(
0.
12

6)
3

ir
p3

5.
50

0(
3.
96

9)
1

17
.2
6(
7.
57

2)
4

9.
46

6(
7.
11

1)
2

10
.1
7(
5.
48

7)
3

0.
07

6(
0.
05

7)
1

0.
30

0(
0.
17

0)
4

0.
11

2(
0.
08

9)
2

0.
17

9(
0.
12

3)
3

ir
p4

6.
84

2(
3.
55

9)
1

9.
28

5(
5.
93

5)
2

10
.1
0(
4.
99

3)
3

10
.7
7(
6.
27

1)
4

0.
08

1(
0.
05

1)
1

0.
21

3(
0.
18

0)
4

0.
17

2(
0.
09

5)
3

0.
16

1(
0.
12

9)
2

5
ir
p1

14
.7
4(
1.
64

3)
1

19
.9
2(
6.
15

7)
3

34
.2
1(
20

.5
5)

4
14

.8
8(
4.
33

8)
2

0.
52

0(
0.
04

7)
3

0.
60

0(
0.
07

8)
4

0.
51

8(
0.
18

3)
2

0.
32

2(
0.
09

1)
1

ir
p2

12
.0
7(
6.
29

4)
1

33
.8
0(
14

.9
6)

4
28

.3
2(
15

.1
4)

3
12

.8
2(
3.
74

4)
2

0.
31

4(
0.
19

3)
2

0.
71

5(
0.
15

6)
4

0.
35

7(
0.
18

9)
3

0.
22

5(
0.
07

6)
1

ir
p3

17
.7
9(
6.
13

5)
2

25
.3
2(
11

.1
6)

3
39

.5
6(
20

.3
6)

4
14

.4
7(
4.
80

8)
1

0.
49

9(
0.
10

8)
2

0.
52

5(
0.
13

1)
4

0.
50

8(
0.
26

8)
3

0.
28

7(
0.
13

3)
1

ir
p4

10
.6
1(
3.
24

2)
1

11
.9
9(
5.
21

3)
2

31
.1
3(
16

.7
6)

4
17

.9
9(
5.
43

2)
3

0.
26

3(
0.
17

4)
1

0.
40

6(
0.
16

5)
3

0.
41

2(
0.
16

0)
4

0.
33

3(
0.
13

8)
2

D
T
L
Z
7

3
ir
p1

8.
65

3(
2.
33

6)
2

11
.9
9(
2.
06

6)
3

7.
78

7(
1.
56

6)
1

34
.5
8(
7.
56

7)
4

0.
29

4(
0.
05

3)
2

0.
53

7(
0.
21

4)
3

0.
20

3(
0.
05

2)
1

0.
71

1(
0.
07

6)
4

ir
p2

1.
12

4(
0.
51

0)
1

4.
92

3(
3.
00

9)
3

1.
54

3(
1.
11

6)
2

39
.0
9(
13

.9
4)

4
0.
05

0(
0.
02

7)
2

0.
18

6(
0.
14

9)
3

0.
04

5(
0.
02

9)
1

0.
73

9(
0.
08

3)
4

ir
p3

2.
88

2(
0.
00

5)
2

8.
07

1(
3.
30

2)
3

1.
83

2(
0.
95

5)
1

38
.1
6(
11

.3
1)

4
0.
06

5(
0.
00

7)
2

0.
28

2(
0.
15

7)
3

0.
04

7(
0.
02

6)
1

0.
71

5(
0.
09

0)
4

ir
p4

6.
18

4(
3.
80

9)
2

8.
58

7(
5.
03

5)
3

2.
41

7(
1.
52

2)
1

39
.0
4(
10

.9
6)

4
0.
21

8(
0.
10

1)
2

0.
36

8(
0.
24

8)
3

0.
07

5(
0.
05

1)
1

0.
71

3(
0.
07

8)
4

5
ir
p1

8.
32

9(
0.
96

7)
1

14
.2
2(
4.
03

0)
3

38
.6
3(
12

.4
9)

4
13

.3
2(
3.
57

2)
2

0.
59

7(
0.
17

8)
1

0.
74

7(
0.
07

8)
4

0.
69

4(
0.
21

7)
2

0.
72

6(
0.
05

5)
3

ir
p2

6.
16

5(
2.
69

1)
3

3.
52

7(
1.
88

4)
2

49
.3
7(
12

.2
9)

4
3.
11

6(
2.
87

0)
1

0.
23

7(
0.
17

6)
3

0.
11

1(
0.
04

5)
2

0.
83

0(
0.
22

9)
4

0.
09

6(
0.
05

5)
1

ir
p3

45
.3
3(
40

.4
0)

1
91

.0
0(
2.
71

6)
4

46
.8
4(
20

.8
7)

2
88

.8
0(
3.
04

6)
3

0.
54

8(
0.
37

3)
1

1.
02

8(
0.
19

6)
4

0.
81

2(
0.
27

7)
2

0.
90

4(
0.
15

6)
3

ir
p4

9.
31

7(
3.
37

9)
1

63
.7
6(
15

.0
3)

3
46

.1
8(
24

.3
0)

2
72

.5
2(
15

.6
6)

4
0.
57

9(
0.
17

1)
1

0.
89

9(
0.
17

2)
4

0.
85

6(
0.
34

7)
2

0.
88

9(
0.
19

7)
3

A
ve
ra
ge

ra
nk

1.
46

2.
54

3.
04

2.
96

1.
38

2.
63

3.
17

2.
83

123



Journal of Global Optimization (2023) 85:757–788 779

R-NSGA-II usually ranks the last on three-objective DTLZ2 and DTLZ4, and ranks the
second or the third on the other test problems. Similarly, r-NSGA-II ranks the second or the
third in most cases. From the average rank, R-NSGA-II and r-NSGA-II rank the second or
the third among the four methods. When ADM2 is utilized, R-NSGA-II is slightly better
than r-NSGA-II in terms of each indicator. When ADM1 is used, R-NSGA-II has a better
difference value while r-NSGA-II is better under the distance indicator. This shows that a
better disutility value and a closer distance are not always consistent. It is meaningful to use
different indicators to measure the methods’ performance.

Although ranking the first or second on three-objective DTLZ7, g-NSGA-II ranks the
last on most of the other instances, which makes it the worst one among the four methods.
Meanwhile, its mean difference values on DTLZ1 and DTLZ3 are very large.When checking
the solutions obtained by g-NSGA-II, we found that the final population of g-NSGA-II at
each iteration is usually far away from the Pareto front, especially on DTLZ1 and DTLZ3.
This shows that g-NSGA-II has a relatively weak capability to converge to the Pareto front.
In fact, g-NSGA-II has a drawback that it may prefer a solution a to another solution which
dominates a in the Pareto sense, which can hinder its convergence.

From the differences between the mean values on three- and five-objective problems, it
can be observed that the reference point method has no significant differences while the other
three methods generally get better mean values on three-objective problems. This reflects the
degradation of the three methods’ performance with the increase of the number of objectives.

• Comparison according to the boxplots. For the sake of an intuitive comparison of the
four methods, the boxplots of the difference/distance values over 21 independent runs of each
method are drawn. Here we only present the boxplots of the difference values when ADM1
is used, as shown in Fig. 13. All the boxplots can be found in the supplementary material
and they give similar results to Fig. 13 does. In Fig. 13, M1, M2, M3, and M4 represent
the reference point method, R-NSGA-II, g-NSGA-II, and r-NSGA-II, respectively. As the
difference values of g-NSGA-II are much larger than those of the other methods on several
problems, in order to see the differences among the other methods, the maximum difference
value of the boxes is restricted to be no more than 100%. Values larger than 100% are not
shown.

FromFig. 13,we can see that thedifferencevalues of the reference pointmethod are usually
smaller and the lengths of the boxes are usually shorter than the other methods on most test
problems. This means that the reference point method generally finds better solutions and is
more stable than the others. g-NSGA-II performs rather badly on three- and five-objective
DTLZ1, DTLZ3. However, it has relatively smaller boxes which are closer to zero than the
other three methods on three-objective DTLZ7. R-NSGA-II and r-NSGA-II usually rank in
the middle among the four methods. These observations are similar to what we have derived
according to the mean values and standard deviations of the four methods.

• Comparison according to statistical tests. To compare the four methods pairwise, the
Wilcoxon rank sum test at a significance level of 0.05 is conducted on each pair of methods.
We use three symbols +,≈, and − to represent that method i performs statistically better
than, equal to, and worse than method j , respectively. The numbers of these symbols over
40 instances with respect to each ADM and each indicator are given in Tables 5, 6, 7 and 8.

In Tables 5, 6, 7 and 8, both the indicators give rather similar results. The reference point
method performs statistically better than or equal to the other three methods in most cases,
no matter which ADM is used. On the contrary, g-NSGA-II is inferior to the other methods in
more than a half of the instances. These observations are consistent with what we found from
the mean values in Tables 3 and 4. R-NSGA-II is a little better than r-NSGA-II when ADM1
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(a)

(b)

Fig. 13 Boxplots of difference values (%) over 21 independent runs for each method when using ADM1 to
compare methods: a boxplots on 3-objective test problems; b boxplots on 5-objective test problems
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Table 5 Numbers of +/ ≈ /− in
terms of difference when using
ADM1 to compare method i with
method j

Method i Method j

R-NSGA-II g-NSGA-II r-NSGA-II

RPM 31/8/1 33/3/4 34/5/1

R-NSGA-II – 25/9/6 21/8/11

g-NSGA-II – – 9/3/28

Table 6 Numbers of +/ ≈ /− in
terms of distance when using
ADM1 to compare method i with
method j

Method i Method j

R-NSGA-II g-NSGA-II r-NSGA-II

RPM 29/8/3 30/7/3 30/9/1

R-NSGA-II – 25/4/11 21/6/13

g-NSGA-II – – 10/3/27

Table 7 Numbers of +/ ≈ /− in
terms of difference when using
ADM2 to compare method i with
method j

Method i Method j

R-NSGA-II g-NSGA-II r-NSGA-II

RPM 31/8/1 30/5/5 33/4/3

R-NSGA-II – 21/12/7 15/12/13

g-NSGA-II – – 9/6/25

Table 8 Numbers of +/ ≈ /− in
terms of distance when using
ADM2 to compare method i with
method j

Method i Method j

R-NSGA-II g-NSGA-II r-NSGA-II

RPM 31/6/3 26/10/4 27/10/3

R-NSGA-II – 22/6/12 15/12/13

g-NSGA-II – – 8/7/25

is used, and the two methods perform similarly under ADM2. This is slightly different from
the comparison result of them according to their average ranks in Tables 3 and 4.

4.2.2 Influence of the initial reference point

According to Tables 3 and 4, the mean difference/distance values of some methods when
using different initial reference points differ on some problems. To see whether the initial
reference point influences the results of each method, we conducted the Wilcoxon rank sum
test at a significance level of 0.05 to compare the results of each method under the following
pairs of initial reference points: (1) irp1 and irp2, (2) irp1 and irp3, (3) irp2 and irp4, and
(4) irp3 and irp4. Tables 9, 10, 11 and 12 present the numbers of +/ ≈ /− over the ten test
problems for each pair of initial reference points. Each table corresponds to a method.

According to Table 9, the reference point method performs better on more than a half of
the instances when using irp2 than using irp1. Under other pairs of initial reference points,
the reference point method behaves inversely on different problems. Generally, irp3 leads to
better results on more problems than irp1 does, while it is slightly inferior to irp4 in terms
of distance; irp2 is slightly better than irp4. Hence, the reference point method usually gets
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Table 9 Numbers of +/ ≈ /− over ten problems for the reference point method when using different pairs
of initial reference points

ADM1 ADM2

Difference Distance Difference Distance

irp1 versus irp2 0/4/6 0/0/10 0/2/8 0/0/10

irp1 versus irp3 2/2/6 1/3/6 1/4/5 0/5/5

irp2 versus irp4 5/4/1 5/4/1 3/7/0 4/5/1

irp3 versus irp4 4/2/4 2/2/6 3/4/3 1/6/3

Table 10 Numbers of +/ ≈ /− over ten problems for R-NSGA-II when using different pairs of initial
reference points

ADM1 ADM2

Difference Distance Difference Distance

irp1 versus irp2 1/6/3 1/5/4 3/5/2 3/2/5

irp1 versus irp3 3/5/2 2/2/6 5/4/1 3/3/4

irp2 versus irp4 2/2/6 2/4/4 2/0/8 2/1/7

irp3 versus irp4 0/2/8 0/2/8 0/1/9 0/3/7

Table 11 Numbers of +/ ≈ /− over ten problems for g-NSGA-II when using different pairs of initial
reference points

ADM1 ADM2

Difference Distance Difference Distance

irp1 versus irp2 1/7/2 1/7/2 1/7/2 1/5/4

irp1 versus irp3 1/8/1 0/9/1 0/9/1 0/8/2

irp2 versus irp4 0/10/0 1/9/0 1/9/0 2/8/0

irp3 versus irp4 0/10/0 0/10/0 0/10/0 1/9/0

Table 12 Numbers of+/ ≈ /− over ten problems for r-NSGA-IIwhen using different pairs of initial reference
points

ADM1 ADM2

Difference Distance Difference Distance

irp1 versus irp2 0/8/2 0/5/5 1/6/3 1/4/5

irp1 versus irp3 2/7/1 0/8/2 3/6/1 2/6/2

irp2 versus irp4 4/6/0 4/6/0 4/6/0 4/6/0

irp3 versus irp4 1/7/2 1/9/0 2/7/1 1/8/1

better results when using irp2 as compared with using other initial reference points, which
implies that this method is more likely to obtain a final solution closer to the MPS when the
ADM’s initial reference point is unachievable and far away from the Pareto front on the ten
test problems.
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Table 10 shows that R-NSGA-II usually has opposite performance on different problems
under irp1, irp2, and irp3. In most cases, R-NSGA-II performs better under irp4 than irp3,
which means that between the two achievable initial reference points, R-NSGA-II tends to
behave better when the initial reference point far away from the Pareto front is used.

From Tables 11 and 12, g-NSGA-II and r-NSGA-II are insensitive to the location of the
initial reference point. On more than a half of the problems, the results under different initial
reference points are statistically indifferent.

5 Numerical experiments on a water resources planning problem

This section illustrates how to use the proposed ADM to compare reference point based
methods on a real-world problem, namely, a water resources planning problem [32]:

minimize f1(x) = e0.01x1x0.021 x22
f2(x) = 0.5x22
f3(x) = −e0.005x1x0.0011 x22

subject to 0.01 ≤ x1 ≤ 1.3
0.01 ≤ x2 ≤ 10,

(8)

where x1 and x2 are the total man-hours devoted to building a dam and the mean radius of the
lake impounded (in miles), respectively. The three objectives f1, f2, and f3 represent the cost
of construction, the water loss, and the total storage capacity of the reservoir, respectively.

We compare four reference point based methods, i.e., the reference point method [51],
R-NSGA-II [17], g-NSGA-II [34], and r-NSGA-II [43]. We consider an ADM with the
following disutility function

U−(z) = max
1≤i≤3

{
(zi − z∗i )
znadi − z∗i

}
, (9)

where z∗ and znad are the ideal point and the nadir point of the water resources planning
problem, respectively. TheMPS of this ADM is zMPS = [50.92, 25,−50.34]. Theminimum
disutility value is 0.5.

Similar to Sect. 3.3, DE/rand/1/bin is adopted as a solver to minimize the augmented ASF
formed by the reference point method. The parameter values of DE/rand/1/bin are set as:
(1) population size N P = 20; (2) the scaling factor F = 0.5; (3) the crossover probability
CR = 0.5; and (4) the maximum number of generations Gmax = 200. For the other three
methods, we set N P = 40 and Gmax = 400. The overall numbers of function evaluations
of the four methods are the same. With regard to the ADM, the numbers of iterations in the
learning phase and the decision phase are both set as 3. Since the reference point method
obtains four solutions at each iteration, the final population of each of the other three methods
are clustered into four groups and four representative solutions are passed to the ADM at
each iteration for fair comparison.

We have an unachievable initial reference point p1 = [30, 15,−80]. Eachmethodwas run
20 times. The difference and distance indicator values were calculated in each run. Table 13
shows the mean values and the standard deviations (in parentheses) of the indicators for the
four methods over 20 independent runs. According to the mean difference values in Table 13,
the order of the four methods from the best to the worst was g-NSGA-II, RPM, R-NSGA-II,
and r-NSGA-II. In terms of the mean distance values, g-NSGA-II and RPM still ranked the
first and the second, respectively, while r-NSGA-II performed better than R-NSGA-II. It
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Table 13 Mean and standard deviation (in parentheses) of indicator values for the four methods

RPM R-NSGA-II g-NSGA-II r-NSGA-II

Difference 1.814(0.000) 1.946(0.744) 0.752(0.503) 3.288(2.435)

Distance 0.016(0.000) 0.182(0.057) 0.008(0.005) 0.050(0.068)

should be noted that the deviations of the two indicator values for the reference point method
are both zero. This means that the reference point method found the same final solution in
all the 20 runs and it is rather stable when solving this water resources planning problem.

In each of the 20 independent runs, the 24 solutions obtained by each reference point
based method in the solution process were recorded. Figure 14 shows the MPS and all the
24 solutions obtained by each method in the run when the method has the best distance
indicator value among 20 runs. It can be seen that for each method, as expected, the solutions
generated in the learning phase have a wide spread in the objective space, and the solutions
obtained in the decision phase are more densely distributed in a small region. This implies
that the ADM realized a wide exploration in the learning phase and a focused exploitation
in the decision phase when it worked with each reference point based method. Now let us
focus on the ability of each method in converging to the MPS. We can find in Fig. 14 that the
solutions obtained by the reference point method, g-NSGA-II, and r-NSGA-II in the decision
phase locate around the MPS, while the solutions generated by R-NSGA-II deviate from the
MPS as a whole. This helps explain why R-NSGA-II ranked the last in terms of the distance
indicator in Table 13. In order to see more clearly the closeness of solutions to the MPS
through visualization, Fig. 15 displays only the solutions constrained in the neighbor of the
MPS among the 24 solutions. Generally, g-NSGA-II found more solutions close to the MPS
than the other methods, while R-NSGA-II seldom obtained solutions near the MPS.

Fig. 14 Solutions obtained by each reference point based method in a single run
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Fig. 15 Solutions obtained by each method around the MPS in a single run

6 Conclusions

In this paper,wehave proposed anADMto compare reference point based interactivemethods
quantitatively. Owning to a modular structure, the ADM can achieve automatic interaction
with themethods to be compared and automatic evaluation of the final results. No humanDMs
are involved in the process. Conducting a series of experiments on multiple benchmark test
problems and a water resources planning problem, we have demonstrated how the proposed
ADM can be used to compare reference point based methods. The performance differences
among different methods have been captured by analyzing the experimental results.

In addition to the ADM proposed in this paper, the modular structure we present can
also be utilized to design other types of ADMs. Our future research will focus on building
more ADMs with different abilities for a more comprehensive comparison of reference point
based methods. For example, we intend to build ADMs which are able to generate multiple
reference points at the same time.
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tive optimization from a learning perspective. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.)
Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 405–433. Springer, Berlin
(2008)
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47. Szczepański, M., Wierzbicki, A.P.: Application of multiple criteria evolutionary algorithms to vector
optimisation, decision support and reference point approaches. J. Telecommun. Inf. Technol. 3, 16–33
(2003)

48. Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., Sindhya, K.: A survey on handling computa-
tionally expensive multiobjective optimization problems using surrogates: non-nature inspired methods.
Struct. Multidiscip. Optim. 52(1), 1–25 (2015)

49. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolutionary algorithm for
multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009)

50. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evolutionary multi-objective
optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

51. Wierzbicki, A.P.: A mathematical basis for satisficing decision making. Math. Model. 3(5), 391–405
(1982)

52. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector
optimization problems. OR Spectrum 8(2), 73–87 (1986)

53. Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., Liu, B.: Interactive multiobjective optimization: a
review of the state-of-the-art. IEEE Access 6(1), 41256–41279 (2018)

54. Yen, G.G., He, Z.: Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans.
Evol. Comput. 18(1), 131–144 (2014)

55. Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision making: a simulation
comparison of select methods. Eur. J. Oper. Res. 107(3), 507–529 (1998)

56. Zhou,A.,Qu,B.Y., Li,H., Zhao, S.Z., Suganthan, P.N., Zhang,Q.:Multiobjective evolutionary algorithms:
a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

57. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results.
Evol. Comput. 8(2), 173–195 (2000)

58. Zujevs, A., Eiduks, J.: New decision maker model for multiobjective optimization interactive methods.
In: Butleris, R., et al. (eds.) Proceedings of the International Conference on Information and Software
Technologies, pp. 51–58. Kaunas Technologija, Kaunas (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Comparing reference point based interactive multiobjective optimization methods without a human decision maker
	Abstract
	1 Introduction
	2 Concepts and notations
	3 Proposed ADM
	3.1 ADM's actions in the learning phase
	3.2 ADM's actions in the decision phase
	3.2.1 Task of the evaluation module
	3.2.2 Task of the decision module

	3.3 The proposed ADM's steps and an example
	3.3.1 ADM's steps
	3.3.2 An example of how the ADM works


	4 Numerical experiments on benchmark test problems
	4.1 Experimental settings
	4.1.1 Test problems
	4.1.2 Parameter settings of interactive methods
	4.1.3 Parameter settings of ADMs
	4.1.4 Initial reference point

	4.2 Experimental results and analysis
	4.2.1 Comparison of the four methods by using the proposed ADM
	4.2.2 Influence of the initial reference point


	5 Numerical experiments on a water resources planning problem
	6 Conclusions
	Acknowledgements
	References




