
Journal of Global Optimization (2023) 85:595–613
https://doi.org/10.1007/s10898-022-01224-1

New bounds for nonconvex quadratically constrained
quadratic programming

Moslem Zamani1

Received: 2 May 2021 / Accepted: 11 August 2022 / Published online: 26 August 2022
© The Author(s) 2022

Abstract
In this paper, we study some bounds for nonconvex quadratically constrained quadratic
programs (QCQPs).We propose two types of bounds forQCQPs, quadratic and cubic bounds.
We use affine functions as Lagrange multipliers for quadratic bounds. We demonstrate that
most semidefinite relaxations can be obtained as the dual of a quadratic bound. In addition,
we study bounds obtained by changing the ground set. For cubic bounds, in addition to
affine multipliers we employ quadratic functions. We provide a comparison between the
proposed cubic bound and typical bounds for standard quadratic programs. Moreover, we
report comparison results of some quadratic and cubic bounds.

Keywords Quadratically constrained quadratic programming · Semidefinite relaxation ·
Reformulation-linearization technique

1 Introduction

We consider the following quadratically constrained quadratic program, QCQP,

min xT Q0x + 2cT0 x (QCQP)

s. t. xT Qi x + 2cTi x ≤ bi , i = 1, ...,m

Ax = d,

l ≤ x ≤ u,

where x ∈ R
n is the vector of decision variables, Qi (i = 0, 1, ...,m) are n × n real

symmetric matrices, A is a p×n real matrix, ci (i = 0, 1, ...,m) and d are vectors inRn and
R

p , respectively, and bi (i = 1, ...,m) are real scalars. We assume that −∞ < li ≤ ui < ∞
for i = 1, ..., n. Without loss of generality, we may assume that l = 0 and u = e, where e
represents the vector of ones in R

n . We remark that general QCQPs with bounded feasible
set can be formulated as (QCQP).
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Quadratically constrained quadratic programming is a fundamental problem in optimiza-
tion theory and practice. QCQPs arise in many applications including economic equilibria,
facility location and circle packing problems [3, 26, 29]. Furthermore, most combinatorial
optimization problems including max-cut problem and clique problem can be cast as QCQPs
[4, 10]. In addition to the aforementioned problems, Madani et al. [16] showed that any poly-
nomial optimization problem can be cast as a QCQP. When the matrices Qi (i = 0, 1, ...,m)
are positive semidefinite, (QCQP) will be a convex optimization problem, and consequently
it is polynomially solvable. Nevertheless, as QCQPs include a wide range of NP-hard opti-
mization problems, QCQP is NP-hard in general [28].

A typical class of optimizationmethods for handlingQCQPs is branch-and-boundmethod.
In this approach, the general problem is divided into some subproblems, which are called
nodes. At each node, a lower bound is computed by a relaxation or a bound. In general, the
generated lower determines that a node will be fathomed or branched. The effectiveness of
a branch-and-bound method rests mainly on the tightness of generated lower bounds and
their computational time. Most relaxations and bounds for QCQPs are mainly based on the
reformulation-linearization technique (RLT), convex relaxations and semidefinite relaxations
[13, 24, 27]. The most effective relaxation methods are based on semidefinite relaxation
(SDR) [3, 11]. Due to the efficiency of this approach, many SDRs have been proposed; see
[3, 31] for review and comparisons.

Recently, the author proposed a new dual for linearly constrained quadratic programming
[30], in which affine functions are regarded as Lagrange multipliers. In this paper, similar
to this method, we present two types of bounds for QCQPs, quadratic and cubic bounds.
For quadratic bounds, we employ affine functions as Lagrange multipliers. We illustrate that
most SDRs can be interpreted as the dual of a quadratic bound. In addition, we introduce
some bounds which are obtained by changing the ground set.

For cubic bounds, we apply quadratic functions as Lagrange multipliers. We give some
conditions under which the proposed bound is exact. We demonstrate that the cubic bound is
equivalent to the bound obtained by Parrilo hierarchy for standard quadratic programs. The
interested reader can see Chapter 5 in [20] for more details on Parrilo hierarchy.

The paper is organized as follows. After reviewing our notations, in Sect. 2 we introduce
quadratic bounds. Section 3 is devoted to cubic bounds. In Sect. 4, we illustrate the effective-
ness of some quadratic and cubic bounds by presenting its numerical performance on some
QCQPs.

1.1 Notation

The following notation is used throughout the paper. The n-dimensional Euclidean space is
denoted byRn . Let Ai stand for the i th row of matrix A. Vectors are considered to be column
vectors and T denotes transposition operation. We employ ei to represent the i th unit vector,
and vector e stands for the vector of ones. We denote the identity matrix by I . For symmetric
matrices A and H , we use notation A � H to denote A − H is positive semidefinite. The
inner product of A and H is defined and denoted as A • H = trace(AH). A symmetric n×n
matrix Q is called copositive if the bilinear form xT Qx is non-negative on non-negative
orthant. For x ∈ R

n , diag(x) stands for the diagonal matrix whose entries on the diagonal
are the components of x . Moreover, for n × n matrix Q, Diag(Q) denotes a column vector
with Diag(Q)i = Qii .
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For a setZ ⊆ R
n , we use the notations int(Z) and conv(Z) for the interior and the convex

hull of Z, respectively. Rn+ denotes non-negative orthant. We use B to represent box [0, 1]n .
The dual cone of K is denoted and defined as K ∗ := {y : yT x ≥ 0, ∀x ∈ K }.

We use A(Rn) and Q(Rn) to represent affine and quadratic functions on R
n . We denote

non-negative affine and quadratic functions on Z ⊆ R
n byA+(Z) andQ+(Z), respectively,

i.e.,A+(Z) = {α ∈ A(Rn) : α(x) ≥ 0∀x ∈ Z} andQ+(Z) = {q ∈ Q(Rn) : q(x) ≥ 0∀x ∈
Z}. We denote the matrix representation of a quadratic function q(x) = xT Qx + 2cT x + b

by M(q) =
(
Q c
cT b

)
.

2 Quadratic bounds

In this section, we propose some quadratic bounds for QCQPs. Let Z = {x ∈ R
n : x ∈

B, Ax = d} and F = {x ∈ R
n : x ∈ Z, xT Qi x+2cTi x ≤ bi , i = 1, ...,m}. BecauseA+(Z)

is a polyhedral set, it follows that the representation of A+(Z) in Rn+1 is a polyhedral cone
[17]. We propose the following problem as a new quadratic bound for (QCQP),

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di )−
n∑

i=1

βi (x)xi +
n∑

i=1

γi (x)(xi − 1) ∈ Q+(Rn),

αi ∈ A(Rn), i = 1, ..., p

λi ≥ 0, βi , γi ∈ A+(Z), i = 1, ..., n. (1)

Problem (1) can be regarded as a Lagrangian dual for (QCQP), for which the dual variables
corresponding to linear constraints are replaced with affine functions. We remark that, due
to the non-homogeneous Farkas’ Lemma, α(x) = f T x + g belongs to A+(Z) if and only
if there exist λ ∈ R

p and μ ∈ R
n+ with f ≥ AT λ − μ and g ≥ −dT λ + eTμ. Note

that the quadratic function q(x) = xT Qx + 2cT x + b is non-negative on R
n if and only if

matrix M(q) is positive semidefinite, and accordingly problem (1) can be formulated as a
semidefinite program, which has O(n2) variables.

One crucial question regarding this bound is well-definedness. In the next proposition, we
prove that problem (1) is feasible and generates a finite lower bound for (QCQP).

Proposition 1 Let (QCQP) have a feasible point. Then problem (1) gives a finite lower bound.

Proof Similar to the proof of Proposition 2 in [30], it is shown that there exist γi ∈ A+(Z)

for i = 1, ..., n such that xT Q0x + 2cT0 x + ∑n
i=1 γi (x)(xi − 1) is strictly convex. So for

suitable choice of �, we have xT Q0x + 2cT0 x + ∑k
i=1 γi (x)(xi − 1) − � ∈ Q+(Rn), which

shows the feasibility of (1). Due to the feasibility of (QCQP), the first constraint of (1) implies
that the optimal value of (1) is finite and it is a lower bound for (QCQP). 
�

The proof of Proposition 1 reveals that problem (1) is feasible for each quadratic func-
tion as an objective function of (QCQP). Indeed, the problem is strongly feasible. A conic
optimization problem is called strongly feasible if it is feasible and remains feasible for all
sufficiently small perturbations of right side of linear constraints [22]. As problem (1) is
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convex, it is natural to ask about the dual thereof. The dual of problem (1) may be written as

min Q0 • X + 2cT0 x

s. t. Qi • X + 2cTi x ≤ bi , i = 1, ...,m

X AT
i = di x, i = 1, ..., p

Ax = d,

X ≥ 0,

exT − X ≥ 0,

X − exT − xeT + eeT ≥ 0,

X − xxT � 0. (2)

We refer the reader to [30] for the details of computations. In problem (2), we did not write
redundant constraint x ∈ B [25]. Problem (2) is a well-known relaxation, called Shor relax-
ation with partial first-level RLT [1, 3]. Anstreicher [1] proposed SDR (2) as a combination
of RLT and Shor relaxation. He showed that SDR (2) can generate lower bounds tighter than
either technique. Bao et al. [3] established that SDR (2) and doubly non-negative relaxation
provide the same lower bound. The doubly non-negative relaxation is analogous to problem
(2), but the constraint X AT

i = di x is replaced with X • AT
i Ai = d2i , i = 1, ...,m. Note that

since problem (1) is strongly feasible, strong duality holds [22], and consequently problems
(1) and (2) generate the same lower bound.

Since the ground set of (QCQP) is not Rn , the bound may be improved if one replaces
Q+(Rn) with other sets. Bomze [5] took advantage of this idea and proposed some results
about global optimality conditions for QCQPs. As the feasible set of (QCQP) is subset of
positive orthant, one replacement for Q+(Rn) can be quadratic functions with non-negative
coefficients. In this case, we get the following bound

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x
T Qi x + 2cTi x − bi )+

p∑
i=1

αi (x)(Ai x − di ) −
n∑

i=1

βi (x)xi +
n∑

i=1

γi (x)(xi − 1) ∈ QN (Rn),

λi ≥ 0, αi ∈ A(Rn), i = 1, ...,m

βi , γi ∈ A+(Z), i = 1, ..., p. (3)

whereQN (Rn) denotes quadratic functions with non-negative coefficients. The above prob-
lem can be formulated as a linear program. Indeed, by the non-homogeneous Farkas’ Lemma,
constraints βi , γi ∈ A+(Z) may be written as some linear inequalities and the rest of con-
straints are linear. It can be shown that problem (3) is the dual of a linear RLT [25].

Another interesting substitute for Q+(Rn) may be non-negative quadratic functions on
B. Recall that B = [0, 1]n . In this case, the following program provides a bound

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di ) ∈ Q+(B),

λ ≥ 0, αi ∈ A(Rn), i = 1, ...,m. (4)
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Since for each q ∈ Q(Rn), there exists � with q − � ∈ Q+(B), problem (4) is always
feasible. Needless to say, bound (4) dominates all the above-mentioned bounds. Nevertheless,
this bound is not necessarily exact for general QCQPs. Note that a bound or a relaxation is
said to be exact if it provides a lower bound equal to the optimal value of the problem under
question. Next theorem gives some sufficient conditions for exactness.

Theorem 1 Bound (4) is exact if

xT Qi x + 2cTi x − bi ≤ (or ≥)0, ∀x ∈ Z, i = 1, ...,m.

Proof First we prove the case that there does not exist any quadratic constraint. By Lemma
4 in [8],

Q+(B) =
{(

xT 1
)
Q

(
x
1

)
: Q ∈ K ∗

B

}
,

Q+(Z) =
{(

xT 1
)
Q

(
x
1

)
: Q ∈ K ∗

Z

}
,

where

KB = conv
{
zzT : z ∈ R

n+1+ , zi ≤ zn+1 i = 1, ..., n
}

,

KZ = conv
{
zzT : z ∈ R

n+1+ ,
(
A −d

)
z = 0, zi ≤ zn+1 i = 1, ..., n

}
.

Remark that M(Q+(B))∗ = KB and M(Q+(Z))∗ = KZ . We establish that Q+(Z) =
Q+(B) + {∑p

i=1 αi (x)(Ai x − di ) : αi ∈ A(Rn)}. The inclusion ⊇ is trivial. We prove
the inclusion ⊆ by contradiction. Let q(x) = xT Qx + 2cT x + c0 ∈ Q+(Z) while q /∈
Q+(B) + {∑p

i=1 αi (x)(Ai x − di ) : αi ∈ A(Rn)}. By separation theorem, there exists

O ∈ M (Q+(B))∗ ∩ M
({ p∑

i=1

αi (x)(Ai x − di ) : αi ∈ A(Rn)

})∗
,

with M(q) • O = −1. Because M(Q+(B))∗ = KB , we have O = ∑l
k=1 z

k(zk)T , where
zk ∈ {z ∈ R

n+1+ : zi ≤ zn+1 i = 1, ..., n} (k = 1, ..., l). As (ai x − di )(ai x − di ) and
−(ai x−di )(ai x−di ) aremembers of {∑p

i=1 αi (x)(Ai x−di ) : αi ∈ A(Rn)} for i = 1, ..., p,
we have O ∈ KZ . This implies that O ∈ M(Q+(Z))∗. Thus, we haveM(q)•O ≥ 0 which
contradicts the assumption M(q) • O = −1.
Now we consider the case that quadratic constraints exist. If xT Qi x + 2cTi x ≤ bi for each
x ∈ Z and i = 1, ...,m, the quadratic constraints are redundant and theorem follows from
the first part.
For the case that xT Qi x + 2cTi x ≥ bi for each x ∈ Z and i = 1, ...,m, we establish that the
dual cones corresponding toM(Q+(F)) andM(Q+(Z)+{∑m

i=1 λi (xT Qi x +2cTi x −bi ) :
λ ≤ 0}) are the same. The following inclusion is immediate,

M (Q+(F))∗ ⊆ M
(
Q+(Z) +

{
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) : λ ≤ 0

})∗
.

We establish the reverse inclusion. Suppose that

O ∈ M
(
Q+(Z) +

{
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) : λ ≤ 0

})∗
.
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By the representation of Q+(Z), we have O = ∑l
k=1 z

k(zk)T , where

zk ∈
{
z ∈ R

n+1+ : (
A −d

)
z = 0, zi ≤ zn+1 i = 1, ..., n

}
, k = 1, ..., l.

By the assumption

(
Qi ci
cTi bi

)
• zk zTk ≥ 0 (i = 1, ...,m, k = 1, ..., l), we have zTi Ozi = 0.

Suppose that

KF = conv{zzT : z ∈Rn+1+ ,
(
A −d

)
z = 0, zi ≤ zn+1 i = 1, ..., n, zTM(q j )z ≤ 0,

j = 1, ...,m}.

As Q+(F) =
{(

xT 1
)
Q

(
x
1

)
: Q ∈ K ∗

F

}
, we have O ∈ M(Q+(F))∗, which completes

the proof. 
�
It is worth mentioning that Theorem 1 can be proved by using strong duality for conic

programs andProposition 6 in [3], but herewe present a newproof. The next proposition states
that bound (4) is exact for linearly constrained quadratic programs with binary variables.

Proposition 2 Bound (4) is exact for linearly constrained quadratic programs with binary
variables.

Proof Consider the problem

min xT Q0x + 2cT0 x
s. t. AT

i x = di , i = 1, ..., p
xi ∈ {0, 1} i ∈ I
0 ≤ x ≤ e,

where index set I ⊆ {1, ..., n} denotes binary variables. This problem can be formulated as

min xT Q0x + 2cT0 x
s. t. AT

i x = di , i = 1, ..., p
xi (1 − xi ) ≤ 0, i ∈ I
0 ≤ x ≤ e.

As all conditions of Theorem 1 holds for the above problem, bound (4) is exact for linearly
constrained quadratic programs with binary variables. 
�

By Theorem 2.6 in [7] and strong duality for conic programs q ∈ A+(B) if and only if
the following system has a solution

q(x) +
n∑

i=1

αi (x, s)(xi + si − 1) ∈ Q+(R2n+ ),

αi (x, s) ∈ A(R2n+ ), i = 1, ..., n,

where variables s1, ..., sn are slack variables. A quadratic function q(x) = xT Qx + 2cT x +
b ∈ Q+(Rn+) if and only if matrix M(q) is copositive [5]. Therefore, bound (4) can be
formulated as a copostive program. Copostive programs are intractable in general. In fact,
they are NP-hard. Nonetheles, there exist efficient methods which approximate copositive
cone [6, 20].

It is well-known that Shor relaxation is the dual of (QCQP) when affine multipliers are
constant functions. In addition, we showed that the dual of (1) is Shor relaxation with partial
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first-level RLT. It is may be of interest to know whether other SDRs can be also obtained in
this manner. In the sequel, we will demonstrate that some SDRs can be obtained as the dual
of bounds in the form of (1) by a suitable choice of affine multipliers or adding some valid
cuts.

Let mc = {i : Qi � 0, Qi �= 0}. In the rest of the section, we make the assumption
that for each i ∈ mc there exists x̄ i ∈ R

n such that (x̄ i )T Qi x̄ i + 2cT x̄ i < bi . Due to the
semipositiveness of Qi (i ∈ mc), there exists a matrix Ri with Qi = RT

i Ri . By the Schur
Complement Lemma, xT Qi x + 2cTi x ≤ bi is equivalent to(

I −Ri x
−xT RT

i −2cTi x + bi ,

)
� 0.

So affine function α(x) = f T x+g is non-negative on Li = {x ∈ R
n : xT Qi x+2cTi x ≤ bi }

if and only if the optimal value of the following semidefinite program is greater than or equal
to −g.

min f T x

s. t.

(
I −Ri x

−xT RT
i −2cTi x + bi ,

)
� 0. (5)

Note that problem (5) can be reformulated as a second-order cone program. Recently, Zheng
et al. [31] proposed some SDRs for QCQPs. In fact, they introduced a unified framework for
generating convex relaxations for QCQPs. They propose the following SDR for (QCQP),

min Q0 • X + 2cT0 x

s. t. Qi • X + 2cTi x ≤ bi , i = 1, ...,m

X AT
i = di x, i = 1, ..., p

Ax = d,

X ≥ 0, X − xxT � 0,

exT − X ≥ 0,

X − exT − xeT + eeT ≥ 0,(
xk I Ri Xek

(Ri Xek)T −2cTi Xek + bi eTk x

)
� 0, i = 1, ...,mc, k = 1, ..., n

(
(1 − xk)I −Ri Xek + Ri x

(−Ri Xek + Ri x)T 2cTi Xek − (2cTi + bi eTk )x + bk

)
� 0, i = 1, ...,mc, k = 1, ..., n,

(6)

and they call it SDP relaxation with rank-2 second-order cone valid inequalities. Note that
the above SDR is obtained by adding the last two constraints of problem (6) to Shor relaxation
with partial first-level RLT. We demonstrate that SDR (6) is the dual of the following bound,

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di )−
n∑

i=1

(
βi (x) +

∑
j∈mc

βi j (x)
)
xi +

n∑
i=1

(
γi (x) +

∑
j∈mc

γi j (x)
)
(xi − 1) ∈ Q+(Rn),

123



602 Journal of Global Optimization (2023) 85:595–613

αi ∈ A(Rn), i = 1, ..., p

λ ≥ 0, βi , γi ∈ A+(Z), i = 1, ..., n

βi j , γi j ∈ A+(L j ), i = 1, ..., n, j ∈ mc. (7)

It is easily seen (7) is a bound for (QCQP). For convenience, to show bound (7) is the dual
of (6) we consider the QCQP

min xT Q0x + 2cT0 x

s. t. xT Q1x + 2cT1 x ≤ b1,

aT1 x ≤ d1, (8)

which has a convex quadratic constraint and a linear inequality constraint. Bound (7) for
problem (8) is formulated as

max �

s. t. xT Q0x + 2cT0 x − � + α(xT Q1x + 2cT1 x − b1) + ( f T x + g)(aT1 x − d1) ∈ Q+(Rn),

α ≥ 0, f T x + g ∈ A+(L1). (9)

As int(L1) �= ∅, strong duality holds for problem (5). Accordingly, f T x + g ∈ A+(L1)

is equivalent that the optimal value of the following semidefinite program is greater than or
equal to −g,

max−I • Y − b1y0

s. t. −R1y − c1y0 = 1

2
f ,

(
Y y
yT y0

)
� 0.

Hence, problem (9) is reformulated as follows,

max �

s. t. xT Q0x + 2cT0 x − � + α(xT Q1x + 2cT1 x − b1)+
(2(−R1y − c1y0)

T x + g)(aT1 x − d1) ∈ Q+(Rn),

− I • Y − b1y0 ≥ −g,

α ≥ 0,

(
Y y
yT y0

)
� 0.

By a little algebra, the dual of the above problem may be written as follows,

min Q0 • X + 2cT0 x

s. t. Q1 • X + 2cT1 x ≤ b1,

aT1 x ≤ d1,

X − xxT � 0,(
(d1 − aT1 x)I −R1Xa1 + d1R1x

(−R1Xa1 + d1R1x)T 2cT1 Xa1 − (2d1c1 + b1a1)T x + b1d1

)
� 0,
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which clarifies the point that bound (7) is the dual of problem (6). Since problem (7) is
strongly feasible, strong duality also holds.

Adding valid cuts is a typical method to tighten the relaxation gap. Zheng et al. [31]
introduced a class of quadratic valid cuts for QCQP and they proposed a new SDR by using
these valid cuts. Theirmethod generates a quadratic valid cut as follows. Let F ⊆ Ω . Suppose
that u ∈ int(Rn+) and 0 < uΩ = {max uT x : x ∈ Ω}. They showed that for S � 0, the
convex quadratic inequality xT Sx − uΩ Diag(S)T diag(u)−1x ≤ 0 is valid for (QCQP); see
[31, Proposition 3]. We remark that the set of generated cuts by this method forms a convex
cone in Q(Rn).

By the above discussion, one can extend bound (7) as follows,

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di )−
n∑

i=1

(βi (x) +
∑
j∈mc

βi j (x))xi +
n∑

i=1

(γi (x) +
∑
j∈mc

γi j (x))(xi − 1)+
∑
i∈R

μi (x
T Si x − uΩ Diag(Si )

T diag(u)−1x) ∈ Q+(Rn),

αi ∈ A(Rn), i = 1, ..., p

λ ≥ 0, βi , γi ∈ A+(Z), i = 1, ..., n

βi j , γi j ∈ A+(L j ), i = 1, ..., n, j ∈ mc

μi ≥ 0, Si � 0, i ∈ R,

which is a non-convexoptimizationproblemwith infinite number of constraints andvariables.
As mentioned above, the set of valid cuts is a convex cone, so the above bound may be
formulated as the following semidefinite program,

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di )−
n∑

i=1

(βi (x) +
∑
j∈mc

βi j (x))xi +
n∑

i=1

(γi (x) +
∑
j∈mc

γi j (x))(xi − 1)+

xT Sx − uΩ Diag(S)T diag(u)−1x ∈ Q+(Rn),

αi ∈ A(Rn), i = 1, ..., p

λ ≥ 0, S � 0, βi , γi ∈ A+(Z), i = 1, ..., n

βi j , γi j ∈ A+(L j ), i = 1, ..., n, j ∈ mc. (10)

The dual of bound (10) may be written as follows,

min Q0 • X + 2cT0 x

s. t. Qi • X + 2cTi x ≤ bi , i = 1, ...,m

X AT
i = di x, i = 1, ..., p

Ax = d,
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X ≥ 0, X − xxT � 0,

exT − X ≥ 0,

X − exT − xeT + eeT ≥ 0,(
xk I Ri Xek

(Ri Xek)T −2cTi Xek + bi eTk x

)
� 0, i = 1, ...,mc, k = 1, ..., n

(
(1 − xk)I −Ri Xek + Ri x

(−Ri Xek + Ri x)T 2cTi Xek − (2cTi + bi eTk )x + bk

)
� 0, i = 1, ...,mc, k = 1, ..., n

uΩ diag(u)−1 diag(x) − X � 0, (11)

which is the SDRproposed in [31]; see problem (SDPαu ). Since problem (10) is also strongly
feasible, we have strong duality. Here we just investigate some well-known SDRs and show
that they can be interpreted as the dual of a bound in the form of (1). However, by similar
arguments one can show that most SDRs can be obtained as the dual of a bound in the form
of (1).

We conclude the section by mentioning some points. As the dual of the proposed bounds
are well-known SDRs, we have just reinvented the wheel. Of course, this statement is correct,
but viewingSDRs from this aspect can supply uswithmore tools for analyzing a SDRmethod.
Furthermore, it paves the road for introducing and analyzing new relaxations or bounds. For
instance, one can extend bound (7) as follows,

max �

s. t. xT Q0x + 2cT0 x − � +
k∑

i=1

λi (x
T Qi x + 2cTi x − bi ) +

k∑
i=1

αi (x)(Ai x − di )−

k∑
i=1

βi (x)xi +
k∑

i=1

γi (x)(xi − 1) ∈ Q+(Rn),

αi ∈ A(Rn), i = 1, ..., p

λi ≥ 0, βi , γi ∈ A+(V ), i = 1, ..., n, (12)

where V = {x ∈ Z : xT Qi x + 2cTi x ≤ bi , i ∈ mc}. As A+(Z) ∪i∈mc A+(Li ) ⊆ A+(V ),
bound (12) dominates (7). Therefore, the dual of (12) leads to a SDR which dominates (6).
Here, it is assumed that int(∩i∈mc Li ) ∩ Z �= ∅. It is worth mentioning that bound (12) is
exact for QCQP in the following form,

min xT Q0x + 2cT0 x

s. t. xT Q1x + 2cT1 x ≤ b1,

aT1 x ≤ d1,

in which Q1 � 0, a1 ∈ R
n , d1 ∈ R and the feasible set has non-empty interior; see [30,

Proposition 1]. The aforementioned problemmay be interpreted as an extension of S-Lemma.
We refer the interested reader to [21] for more information about S-Lemma.

In the same line, one can formulate the following bound which dominates (10),

max �

s. t. xT Q0x + 2cT0 x − � +
k∑

i=1

λi (x
T Qi x + 2cTi x − bi ) +

k∑
i=1

αi (x)(Ai x − di )−
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k∑
i=1

βi (x)xi +
k∑

i=1

γi (x)(xi − 1) + xT Sx − uΩ Diag(S)T diag(u)−1x ∈ Q+(Rn),

αi ∈ A(Rn), i = 1, ..., p

λ ≥ 0, S � 0, βi , γi ∈ A+(W ), i = 1, ..., n, (13)

where W = {x ∈ V : xT Sx − uΩ Diag(S)T diag(u)−1x ≤ 0, ∀S � 0}. Note that if there
exists x̄ ∈ Z with x̄ T Sx̄ −uΩ Diag(S)T diag(u)−1 x̄ < 0 for S � 0 and x̄ T Qi x̄ +2cTi x̄ < bi
(i ∈ mc), then f T x + g ∈ A+(W ) is equivalent to the consistency of the system

f T x + g + λT (Ax − d) + μT (x − e) − νT x + xT Sx − uΩ Diag(S)T diag(u)−1x ∈ Q+(Rn),

μ, ν ≥ 0, S � 0.

Thus, bound (13) is reformulated as a semidefinite program, and consequently its dual
gives a SDR which dominates (11).

To the best knowledge of author, bounds (12) and (13) or their dual have not been proposed
in the literature. Another point about the proposed bounds is that they not only provide a
lower bound, but also give a convex underestimator. The given convex underestimator can
be employed in optimization methods for generating a solution.

It is well-known when an optimal solution of a SDR has rank one the SDR is exact [15].
The next proposition gives necessary and sufficient conditions for exactness. For convenience
to state the proposition, we consider bound (1). Let Fopt denote the optimal solution set of
(QCQP).

Proposition 3 Bound (1) is exact if and only if there exists feasible point λ̄, ᾱi (i = 1, ..., p),
β̄i , γ̄i (i = 1, ..., n) and �̄ with

x̄ ∈ argmin
x∈Rn

xT Q0x + 2cT0 x − �̄ +
m∑
i=1

λ̄i (x
T Qi x + 2cTi x − bi )+

p∑
i=1

ᾱi (x)(Ai x − di ) −
n∑

i=1

β̄i (x)xi +
n∑

i=1

γ̄i (x)(xi − 1),

x̄ T Q0 x̄ + 2cT0 x̄ = �̄, ∀x̄ ∈ Fopt .

Proof Let bound (1) be exact and suppose that λ̄, ᾱi (i = 1, ..., p), β̄i , γ̄i (i = 1, ..., n) and �̄

is an optimal solution. As the bound is exact, we have x̄ T Q0 x̄ + 2cT0 x̄ = �̄ for x̄ ∈ Fopt . In
the light of q(x) = xT Q0x+2cT0 x− �̄+∑k

i=1 λ̄i (xT Qi x+2cTi x−bi )+∑k
i=1 ᾱi (x)(Ai x−

di ) − ∑k
i=1 β̄i (x)xi + ∑k

i=1 γ̄i (x)(xi − 1) ∈ Q+(Rn) and q(x̄) = 0, we have

x̄ ∈ argmin{q(x) : x ∈ R
n},

which completes the if part. The only-if part is immediate. 
�

It is worth mentioning that as strong duality holds for all proposed bounds, exactness
of SDRs and bounds are equivalent. Moreover, bound (1) or SDR (2) are exact for general
QCQP if and only if n = 2; see [2] for more details.
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3 Cubic bounds

In this section, we propose cubic bounds for QCQP. Until now, we have used affine functions
as dual variables. The most important point for applying other functions is that the obtained
problem should be tractable.

Due to the structure of (QCQP), one may consider the following convex cones for dual
variables,

1. Qc+(Z): non-negative convex quadratic functions on Z,
2. QN (Rn): quadratic functions with non-negative coefficients.

Both the above-mentioned cones have non-empty interior and verifying the membership
of a given quadratic function is tractable. Verifying q ∈ QN (Rn) is straightforward. By
alternative theorem [17], q(x) = xT Q̂x + 2ĉT c + ĉ0 belongs to Qc+(Z) if and only if there
exist λ ∈ R

p and μ, ν ∈ R
n+ with

M
(
xT Q̂x + 2ĉT c + ĉ0 + λT (Ax − d) + μT (x − e) − νT x

)
� 0.

By employing quadratic functions as dual variables, we are faced with checking non-
negativity of a cubic function. Of course, a cubic function may not be non-negative on R

n ,
unless it is quadratic. So it appears our effort by substituting some classes of quadratic
functions for affine functions was in vain. Nevertheless, checking non-negativity of some
classes of cubic functions might be tractable on non-negative orthant. For instance, one may
consider the following sets of cubic functions,

1. Cc+(Rn+): non-negative convex cubic functions on Rn+,
2. CN (Rn): cubic functions with non-negative coefficients.

Both sets are convex cones with non-empty interior. In addition, to check a cubic function
belongs to these cones is tractable. Let κ(x) = T x3 + xQx + cx + c0 be a cubic function,
where T is a symmetric tensor of order 3. Note that T x3 = ∑n

i=1
∑n

j=1
∑n

k=1 Ti, j,k xi x j xk .

Verifying κ ∈ CN (Rn) is straightforward. To check κ ∈ Cc+(Rn+), we need first to impose the
following conditions

T ei � 0, i = 1, ..., n,

Q � 0,

which guarantees convexity of κ onRn+. As κ is convex, its optimal value can be obtained by
primal interior point methods. As a result, membership verification is tractable in this case,
but cannot be checked explicitly by some linear (matrix) inequalities.

Another replacement for Cc+(Rn+) or CN (Rn) may be the set of quadratically Sum-of-
Squares. We call a cubic function κ(x) = T x3 + xT Qx + cT x + c0 quadratically Sum-
of-Squares if T (x (2))3 + (x (2))T Q(x (2)) + c(x (2)) + c0 is Sum-of-Squares, where x (2) =
(x21 , ..., x

2
n ). Note that one can check whether a polynomial is Sum-of-Squares by solving a

semidefinite program [12].
By the above discussion, we propose the following bound for (QCQP),

max �

s. t. xT Q0x + 2cT0 x − � +
m∑
i=1

λi (x)(x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di )−
n∑

i=1

βi (x)xi +
n∑

i=1

γi (x)(xi − 1) − κ(x) ∈ Q+(Rn),
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λi ∈ A+(X), α j ∈ Q(Rn), i = 1, ...,m, j = 1, ..., p

βi , γi ∈ Qc+(Z), i = 1, ..., n

κ ∈ CN (Rn). (14)

Problem (14)may be formulated as a semidefinite programand it has O(n3) variables. Similar
to Proposition 1, one can show that bound (14) is always finite and generates a lower bound
greater than or equal to that of (1).

One may wonder how the generated bound given by problem (14) can be improved. The
straightforward method for tightening can be enlargement of feasible set. In problem (14),
we have linear and quadratic function variables. One can adopt methods in Sect. 2 to tighten
bound (14). The following proposition gives necessary and sufficient conditions under which
bound (14) is exact.

Proposition 4 Bound (14) is exact if and only if there exists feasible point λ̄i (i = 1, ...,m),
ᾱi (i = 1, ..., p), β̄i , γ̄i (i = 1, ..., n), �̄ and κ̄ with

x̄ ∈ argmin
x∈Rn

xT Q0x + 2cT0 x − �̄ +
m∑
i=1

λ̄i (x)(x
T Qi x + 2cTi x − bi )+

p∑
i=1

ᾱi (x)(Ai x − di ) −
n∑

i=1

β̄i (x)xi +
n∑

i=1

γ̄i (x)(xi − 1) − κ̄(x)

x̄ T Q0 x̄ + 2cT0 x̄ = �̄, ∀x̄ ∈ Fopt .

Proof Analogous to Proposition 3 is proved. 
�
In the same line, one could consider quadratics or linear functions as Lagrange multiplies

for which the optimal value of problem (14) are non-negative. Indeed, one may consider
q(x) = xT Q̂x + 2ĉT x + ĉ0 eligible if the following system has a solution

xT Q̂x + 2ĉT x + ĉ0 +
m∑
i=1

λi (x)(x
T Qi x + 2cTi x − bi ) +

p∑
i=1

αi (x)(Ai x − di )−
n∑

i=1

βi (x)xi +
n∑

i=1

γi (x)(xi − 1) − κ(x) ∈ Q+(Rn),

λi ∈ A+(X), α j ∈ Q(Rn), i = 1, ...,m, j = 1, ..., p

βi , γi ∈ Qc+(Z), i = 1, ..., n

κ ∈ CN (Rn).

Thus, we obtain a hierarchy for tackling (QCQP). This hierarchy is increasing and each
problem is formulated as a semidefinite program. If we consider problem (14) as a first
problem of hierarchy, the number of variables of kth problem is of O(nk+2). The most
important inquiry concerning this method is its convergence in finite steps. In addition, if it is
convergent in finite steps, what the order of k will be. As the subject of the paper is quadratic
and cubic bounds, we leave these questions for further research.

The following example demonstrates that problem (14) could generate a bound tighter
than the proposed bounds in Sect. 2.

Example 1 Consider the nonconvex QCQP,

min−8x21 − x22 + x23 − 5x24 + 14x1x2 + 10x1x4 + 4x2x4 − 20x2
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s. t. 2x21 + 2x22 + 4x1x2 + 8x1 + 6x2 + x4 ≤ 8

− 8x21 − 5x22 + 2x1x4 − 8x1x2 − 4x1 + 4x2 + 2x4 ≤ −4,

2x21 + x22 + 4x24 + 2x1 + x4 ≤ 4,

x1 + 2x2 + 2x3 + x4 = 3,

x ∈ B.

The problem has two convex quadratic constraints, one nonconvex quadratic constraint
and nine linear constraints, with the optimal value of −8.0008 and the optimal solution(
0.4203, 0.4942, 0.7956, 0

)
. We set u = (

1, 2, 2, 1
)T

and uΩ = max{uT x : x ∈ F} =
3.9145. The performance of the bounds are listed in Table 1, which lb denotes the generated
lower bound.

Bound Shor
relaxation

Bound
(1)

Bound
(7)

Bound
(10)

Bound
(12)

Bound
(13)

Bound
(14)

lb −44.0945 −15.2676 −13.3647 −13.2294 −13.2518 −11.8969 −8.0008

As seen bound (14) is exact.

In the rest of the section, we investigate the relationship between bound (14) and the
conventional bounds for QCQPs. Due to the computational burdensome, cubic bounds are
not commonplace and they have been applied just for some classes of QCQPs such as stan-
dard quadratic programs. Of course, we can provide a comparison between bound (14) and
general polynomial optimization methods, including the Lasserre hierarchy [12], with O(n3)
variables, but we prefer bounds tailored for QCQPs.

Consider the standard quadratic program,

min xT Qx
s. t.

∑n
i=1 xi = 1,

x ≥ 0.
(StQP)

It is well-known that (StQP) is solvable in polynomial time provided Q is either positive
semidefinite or negative semidefinite on standard simplex. In general, however, (StQP) is
NP-hard [6]. Suppose that Δ denotes the standard simplex.

Let �Q denote the optimal value of (StQP).We remark that optimizing a quadratic function
on standard simplex can be formulated as (StQP). This is resulted from the fact that for each
x ∈ Δ, we have xT Qx + 2cT x = xT (Q + ecT + ceT )x .

One effective method for handling (StQP) is Parrilo hierarchy [6]. In this method, for
r = 0, 1, ... the following problem gives a lower bound

prQ = max{� : Q − �eeT ∈ Pr }, (15)

where Pr = {A : (
∑n

i=1 x
2
i )

r (
∑n

i=1
∑n

j=1 x
2
i Ai j x2j ) ∈ Σ[x]} and Σ[x] denotes the set of

all sum of square polynomials. It is well-known for sufficiently large r , prQ is equal to the

optimal value of (StQP) [6]. In addition, the number of variables of (15) is of O(nr+2) [20].

123



Journal of Global Optimization (2023) 85:595–613 609

Bound (14) is formulated as follows for (StQP),

max �

s. t. xT Qx − � −
n∑

i=1

αi (x)xi + αn+1(x)(e
T x − 1) − κ(x) ∈ Q+(Rn),

α ∈ Qc+(Δ), i = 1, ..., n

κ ∈ CN (Rn). (16)

As mentioned earlier, the number of variables of (16) is of O(n3). So, one may wonder what
the relationship between p1Q and the optimal value of problem (16) is. The following theorem
says these bounds are equivalent. Before we get to the proof, let us mention some points. It is
shown in [6, 20], the symmetric matrix B ∈ P1 if and only if there exist symmetric matrices
K (1), ..., K (n) with

B − K (i) � 0, i = 1, ..., n (17)

K (i)
i i = 0, i = 1, ..., n (18)

K ( j)
i i + 2K (i)

i j = 0, i �= j (19)

K (i)
jk + K ( j)

ik + K (k)
i j ≥ 0, i > j > k. (20)

Let convex quadratic function q(x) = xT Sx + 2cT x + c0 be nonnegative on Δ. It is easily
seen that

(∑n
i=1 xi

)2
q

(
(
∑n

i=1 xi )
−1x

)
is homogeneous polynomial of degree two. So for

some symmetric matrix Q, we have
(

n∑
i=1

xi

)2

q

(
(

n∑
i=1

xi )
−1x

)
= xT Qx .

As q ∈ Qc+(Δ), there exist nonnegative multipliers λi (i = 1, ..., n) and λn+1 with

q(x) −
n∑

i=1

λi xi + λn+1(e
T x − 1) ∈ Q+(Rn).

By the replacement of x with (
∑n

i=1 xi )
−1x and multiplication of (

∑n
i=1 xi )

2, it is readily
seen that Q can be represented as a summation of a positive semidefinite matrix and a
nonnegative matrix.

Theorem 2 Bounds p1Q and (16) are equivalent.

Proof First, we show that the optimal value of (16) is less than or equal to p1Q . Let ᾱi (x) =
xT Si x + 2cTi x + gi , i = 1, ..., n + 1, κ̄ and �̄ be an optimal solution of (16). (Without
loss of generality, it is assumed (16) attains its optimal solution.) As κ̄ is nonnegative on
standard simplex, (eT x)3κ̄((eT x)−1x) is homogeneous polynomial of degree three with
nonnegative coefficients. Thus, for nonnegative symmetric matrix Ki , i = 1, ..., n, we have
(eT x)3κ̄((eT x)−1x) = ∑n

i=1 xi (x
T Ki x). Furthermore, (eT x)2ᾱi ((eT x)−1x) = xT (Li +

Mi )x , i = 1, ..., n, where Li and Mi are non-negative and positive semidefinite, respectively.
Therefore, we have

n∑
i=1

xi x
T (Q − �̄eeT − Ki − Li − Mi − L0 − M0)x = 0,
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where L0 ≥ 0 and M0 � 0. Due to the positive semidefiniteness of diagonal matrices with
nonnegative elements and the convexity of nonnegative and positive semidefinite matrices,
with a little algebra, we get symmetric matrices K̄i , i = 1, ..., n, which satisfy (17)–(20).
Hence, �̄ ≤ p1Q .

Now, we prove that p1Q is less than or equal to the optimal value of (16). Similar to
the former case, we assume that optimal solution is attained. Hence, there exist symmetric
matrices Ki , i = 1, ..., n, which satisfy (17)–(20) for B = Q − p1Qee

T . Let Mi = Q −
p1Qee

T − Ki , i = 1, ..., n, we have

(eT x)
(
xT (Q − p1Qee

T )x
)

−
n∑

i=1

xi x
T Mi x ∈ CN (Rn).

Hence,

xT Qx − p1Q −
n∑

i=1

xi x
T Mi x + (eT x − 1)

(
xT (Q − p1Qee

T )x
)

∈ CN (Rn),

which completes the proof. 
�
The proof of Theorem 2 reveals that one can replace Qc+(Δ) with the set of homoge-

neous convex quadratics in problem (16). Hence, problem (16) is equivalent to the following
problem

max �

s. t. xT Qx − � −
n∑

i=1

(xT Si x)xi + αn+1(x)(e
T x − 1) − κ(x) ∈ Q+(Rn),

Si � 0, i = 1, ..., n

κ ∈ CN (Rn).

We conclude the section by noting that bound (14) dominates semidefinite relaxations
obtained in the Lasserre Hierarchy with the same order of variables for QCQPs. Strictly
speaking, as bound (14) appliesQc+(Z) instead ofQc+(Rn), it can generate tighter bounds in
comparison with the Lasserre hierarchy with the same order of variables. Moreover, bound
(14) and RLT-level 2 are not necessarily relevant.

4 Computational results

As mentioned above, two important factors which determine the efficiency of a given bound
are the tightness of the generated bound and its computational time. In the section, we
compare quadratic bounds (1) and (12) and cubic bound (14). To this end, we illustrate
numerical performance of the above-mentioned bounds on three groups of test problems.
The codes and the test problems are publicly available at https://github.com/molsemzamani/
QCQP.

We implemented the bounds using MATLAB 2020b, and the computations were run on a
laptop computer with Intel Core i7 CPU, 1.8 GHz, and 16 GB of RAM. To solve semidefinite
programs, we employed MOSEK in Matlab environment [18]. We applied YALMIP to pass
bounds (1), (12) and (14) to MOSEK [14]. To obtain the optimal value of (QCQP), we
modeled the problem via AMPL [9] and we employed BARON 21.1.13 [23] as a solver.
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Table 1 First group of instances with 20 decision variables

Bound (1) Bound (12) Bound (14)

μ σ M μ σ M μ σ M

0.0332 0.0401 0.1509 0.0327 0.0398 0.1501 0.0002 0.0007 0.0036

Table 2 Second group of instances with 25 decision variables

Bound (1) Bound (12) Bound (14)

μ σ M μ σ M μ σ M

0.0260 0.0316 0.1321 0.0256 0.0311 0.1318 0.0001 0.0006 0.0042

Table 3 Second group of instances with 30 decision variables

Bound (1) Bound (12) Bound (14)

μ σ M μ σ M μ σ M

0.0159 0.0211 0.1083 0.0157 0.0207 0.1081 0.0005 0.0023 0.0149

The test problems used in the section were randomly generated. Indeed, matrices A, Qi ’s
and vector ci ’s were generated by MATLAB’s function randn. The randn function generates
a sample of a Gaussian random variable with mean 0 and standard deviation 1. To ensure
feasibility, we set d = A( 12e) and bi = 1

4e
T Qi e + cTi e + 0.1, i = 1...,m. In addition,

to generate a convex constraint, we replaced non-positive definite matrix Qi with Qi −
(λmin(Qi ) − 0.1)I , where λmin(Qi ) denotes the smallest eigenvalue of Qi .

We generated three groups of instances. Each group included fifty problems with the
same number of variables in the form of (QCQP). To measure the accuracy of a lower bound,
similar to [19], we use the relaxation gap

RG = fopt − �b

max(|�b|, 10−3)
× 100,

where �b is the generated lower bound and fopt is the best upper bound provided by BARON
with the relaxation gap 0.02 and the maximum running time of 1000 seconds.

For the first group of the instances, we generated QCQPs with 20 decision variables, three
non-convex quadratic constraints, one convex quadratic constraint and two linear equality
constraints. The performance of the bounds are summarized in Table 1. In Tables 1, 2 and 3
for 50 instances in terms of the relaxation gap, μ and σ denote mean and standard deviation,
respectively, and M stands for the maximum relaxation gap.

The second group of the instances included 50 QCQPs with 25 decision variables, three
non-convex quadratic constraints, two convex quadratic constraints and two linear equality
constraints. Table 2 reports computational performances.

We considered 50 QCQPs with 30 decision variables, four non-convex quadratic con-
straints, two convex quadratic constraints and two linear equality constraints for the last
group of instances. The performance of the bounds are presented in Table 3.

Table 4 reports computational time and exactness. In this table, T denotes the average
running time for fifty instances and E denotes the number of instances out of fifty for which
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Table 4 Computational time and exactness

Test problems Bound (1) Bound (12) Bound (14) TBARON

T E T E T E

First group 0.12 10 1.51 10 4.23 24 218.1

Second group 0.30 8 4.12 8 18.22 22 843.9

Third group 0.54 8 11.83 9 72.09 22 1000

the relaxation gap is less than 10−4. The last column, TBARON, denotes the average running
time of BARON with the relaxation gap 0.02 and maximum running time 1000 seconds.

As seen from the tables, all bounds in question outperform lower bounds generated by
BARON with respect to both time and accuracy. In addition, the improvement of bound (12)
in comparison with (1) is not considerable. Indeed, both method generated almost near lower
bounds while the computation time for bound (1) is a small fraction of that of bound (12).

The running time of bound (14) is considerably larger than that of bound (1) and (12).
Nevertheless, bound (14) could generate a tight lower bound for all instances. This point may
be of interest as solvers spend considerable amount of time for improving the lower bound.
Hence, incorporating the following quadratic constraint

xT Q0x + 2cT0 x ≥ �c,

may reduce running time (�c denotes the generated bound by problem (14)).
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