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Abstract
Regularization is used in many different areas of optimization when solutions are sought
which not only minimize a given function, but also possess a certain degree of regularity.
Popular applications are image denoising, sparse regression and machine learning. Since the
choice of the regularization parameter is crucial but often difficult, path-following methods
are used to approximate the entire regularization path, i.e., the set of all possible solutions
for all regularization parameters. Due to their nature, the development of these methods
requires structural results about the regularization path. The goal of this article is to derive
these results for the case of a smooth objective function which is penalized by a piecewise
differentiable regularization term. We do this by treating regularization as a multiobjective
optimization problem. Our results suggest that even in this general case, the regularization
path is piecewise smooth. Moreover, our theory allows for a classification of the nonsmooth
features that occur in between smooth parts. This is demonstrated in two applications, namely
support-vector machines and exact penalty methods.

Keywords Regularization · Nonsmooth analysis · Multiobjective optimization
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1 Introduction

In optimization, regularization is one of the basic tools for dealing with irregular solutions.
For an objective function f : Rn → R, the idea is to add a regularization term g : Rn → R

to f which enforces regularity, and to weight g with a regularization parameter λ ≥ 0 to

B Bennet Gebken
bgebken@math.upb.de

Katharina Bieker
bieker@math.upb.de

Sebastian Peitz
sebastian.peitz@upb.de

1 Department of Mathematics, Paderborn University, 33098 Paderborn, Germany

2 Department of Computer Science, Paderborn University, 33098 Paderborn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-022-01223-2&domain=pdf
http://orcid.org/0000-0002-4542-8620
https://orcid.org/0000-0002-6762-9730
https://orcid.org/0000-0002-3389-793X


710 Journal of Global Optimization (2023) 85:709–741

control to which extent this regularity is enforced. So instead of optimizing f , the regularized
problem

min
x∈Rn

f (x) + λg(x)

with λ ≥ 0 is solved. For λ = 0 the original problem is recovered. Increasing λ leads to
successively more regular solutions, at the cost of an increased objective value of f .

Depending on the application, the term “regularity” above can have many different mean-
ings: In sparse regression, regularity of the solution means sparsity, and a prominent example
for the regularization term is the �1-norm [1, 2]. In hyperplane separation for data classi-
fication (also known as support-vector machines), regularity is related to robustness of the
derived classifier, and a possible regularization term can be derived from the scalar product
of the data points with the hyperplane (known as the hinge loss) [2, 3]. In image denoising,
regularity means the absence of noise in the reconstructed image, which can be measured
using the total variation [4]. In (exact) penalty methods for constrained optimization prob-
lems, regularity refers to feasibility, and the sum of the individual constraint violations can
be used as a regularization term [5, 6]. Finally, in deep learning, regularization is used to
avoid overfitting, which is usually related to the �2- or �1-norm of the weights [3, 7].

Clearly, the choice of the regularization parameter λ has a large impact on the solution of
the regularized problem. If λ is chosen too small, then solutions are almost optimal for f but
irregular. If it is chosen too large, then solutions are highly regular but have an unacceptably
large objective value with respect to f . One way of dealing with this issue is to not only com-
pute a regularized solution for a single λ, but to compute the entire so-called regularization
path R, which is the set of all regularized solutions for all λ ≥ 0. The properties and features
of R (e.g., knee points [8]) can then be used to better choose a desirable solution. Obviously,
simply solving the regularized problem for many λ ≥ 0 to obtain a discretization of R is
inefficient. Instead, so-called path-following methods (also known as continuation methods,
homotopy methods or predictor–corrector methods) can be used, which iteratively compute
new points on the regularization path close to already known points until the complete path is
explored. By exploiting the smoothness properties of the path, the computation of each new
point tends to be cheap. For the development of such methods, it is crucial to have a good
understanding of the structure of the regularization path. In [9, 10], it was shown that for
sparse regression, the regularization path R is piecewise linear and a path-following method
was proposed for its computation. Similar results were shown in [11] for support-vector
machines. In a more general setting in [12], it was shown that if f is piecewise quadratic and
g is piecewise linear, then R is always piecewise linear. In case of the exact penalty method in
constrained optimization, it was shown in [13] that if the constrained problem is convex (and
the equality constraints are affinely linear), then R is piecewise smooth. Recently, in [14], the
structure of the regularization path was analyzed for the case where f is twice continuously
differentiable and g is the �1-norm, with the results suggesting that R is piecewise smooth.

The goal of this article is to analyze the structure of the regularization path in a more
general setting. Note that in the applications above, we have the pattern that f is always
smooth while g is always nonsmooth. Thus, in this article, we will also assume that f is
smooth. For g, we will assume that it is merely piecewise differentiable (as defined in [15]).
Compared to weaker assumptions in nonsmooth analysis like local Lipschitz continuity, this
has the advantage that the Clarke subdifferential of g is easy to compute and that the set of
nonsmooth points of g can essentially be described as a level set of certain smooth functions.
Since all of the regularization terms in the above applications (except for the �2-norm) are
in fact piecewise differentiable, our setting generalizes many of the existing approaches. We
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will analyze the structure of R by approximating it with the critical regularization path Rc,
which is based on the first-order optimality conditions of the regularized problem, and then
identifying sufficient conditions for Rc to be smooth around a given point. More precisely,
our main result will be that if these conditions are met, then Rc is locally the projection
of a higher-dimensional smooth manifold onto R

n (cf. Theorem 2). In particular, all points
violating these conditions are potential “kinks” (or “nonsmooth points”) of Rc. Depending
on which condition is violated, this allows for a classification of nonsmooth features of the
regularization path. Furthermore, the nature of our sufficient conditions suggests that Rc (and
R) is still piecewise smooth.

From a theoretical point of view, the core idea of this article is the application of the level
set theorem (cf. [16], Theorem 5.12) to a smooth function h whose projected zero level set
locally coincides with Rc. For h to be smooth, we have to carefully construct it by considering
the so-called smooth selection functions that g consists of. Compared to the previous results
in [9–13], this general approach has to be followed since, apart from smoothness, no other
properties of the selection functions can be exploited. For the case where g is the �1-norm,
this methodology reduces to the approach in [14], which is significantly easier to handle due
to the simplicity of the �1-norm. In the more general case that is considered in this article,
more care has to be taken when working with the selection functions.

The remainder of this article is structured as follows. In Sect. 2, we begin by briefly intro-
ducing the basic concepts that we use in our theoretical results (A more detailed introduction
can be found in the electronic supplementary material). Besides piecewise differentiability,
these aremultiobjective optimization and affine geometry. The former can be used to obtain an
(almost) equivalent formulation of the regularization problem as a multiobjective optimiza-
tion problem, while the latter is required for working with the subdifferential of g. In Sect. 3,
we will analyze the structure of the regularization path R. We will do this by expressing Rc

as the union of the intersection of certain sets, whose structure we can analyze by applying
standard results from differential geometry. We will also formulate an abstract algorithm for
a path-following method based on our results. In Sect. 4, we will apply our results to two
problem classes, which are support-vector machines and the exact penalty method. Finally,
we draw a conclusion and discuss possible future work in Sect. 5.

2 Basic concepts

In this section, we will introduce the basic ideas of piecewise differentiable functions, mul-
tiobjective optimization and affine geometry. As these topics may not be common in the
optimization community, we also compiled a more detailed introduction with the specific
results that we use in this article and included it in the electronic supplementary material.

For the regularization termwewill assume piecewise differentiability [15] in the following
sense.

Definition 1 Let U ⊆ R
n be open. Let g : U → R be continuous and gi : U → R, i ∈

{1, . . . , k}, be a set of r -times continuously differentiable (or Cr ) functions for r ∈ N∪{∞}.
If g(x) ∈ {g1(x), . . . , gk(x)} for all x ∈ U , then g is piecewise r-times differentiable (or a
PCr -function). In this case, {g1, . . . , gk} is called a set of selection functions of g.

If g : U → R is a PCr -function with selection functions {g1, . . . , gk}, then the Clarke
subdifferential [17] of g is given by

∂g(x) = conv({∇gi (x) : i ∈ I e(x)}) ∀x ∈ U , (1)
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where conv(·) denotes the convex hull and I e(x) is the set of essentially active selection
functions in x . In particular, ∂g(x) is a polytope and, assuming the essentially active selection
functions are known, easy to compute.

For the derivation of our theoretical results, we will interpret regularization problems as
multiobjective optimization problems (MOPs) [18–20]. For general functions f : Rn → R

and g : Rn → R, the MOP minimizing f and g is denoted by

min
x∈Rn

(
f (x)

g(x)

)

and its solution is defined in the following.

Definition 2 A point x ∈ R
n is called Pareto optimal if there is no y ∈ R

n with

f (y) < f (x) and g(y) ≤ g(x) or f (y) ≤ f (x) and g(y) < g(x).

The set of all Pareto optimal points is the Pareto set. Its image under the objective vector
( f , g), i.e., the set {( f (x), g(x))� : x is Pareto optimal} ⊆ R

2, is the Pareto front.

If both f and g are at least locally Lipschitz continuous and x is Pareto optimal, then

0 ∈ conv(∂ f (x) ∪ ∂g(x)) (2)

or, equivalently,

∃α1, α2 ≥ 0, ξ1 ∈ ∂ f (x), ξ2 ∈ ∂g(x) : α1ξ
1 + α2ξ

2 = 0, α1 + α2 = 1. (3)

Points that satisfy this optimality condition are called Pareto critical and the set of all such
points is the Pareto critical set Pc. The quantities α1 and α2 in (3) will be referred to as KKT
multipliers of f and g in x , respectively.

Finally, the structure of the condition (3) will make it possible to use affine geometry
[21–23] to relate properties of the Pareto critical set Pc to properties of the subdifferentials
∂ f (x) and ∂g(x).

Definition 3 (a) Let k ∈ N and ai ∈ R
n , i ∈ {1, . . . , k}. Let λ ∈ R

k with
∑k

i=1 λi = 1.
Then

∑k
i=1 λi ai is an affine combination of {a1, . . . , ak}.

(b) Let E ⊆ R
n . Then aff(E) is the set of all affine combinations of elements of E , called

the affine hull of E . Formally,

aff(E) :=
{

k∑
i=1

λi a
i : k ∈ N, ai ∈ E, λi ∈ R, i ∈ {1, . . . , k},

k∑
i=1

λi = 1

}
.

(c) Let E ⊆ R
n . If aff(E) = E , then E is called an affine space.

Analogously to linear algebra, it is possible to define the affine dimension affdim(A) and
affine bases of an affine space A. An important result about affine spaces (and convex sets)
is Carathéodory’s theorem:

Theorem 1 Let A be a finite subset of Rn. Then every element in conv(A) can be written as
a convex combination of affdim(aff(A)) + 1 elements of A.
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3 The structure of the regularization path

Let f : Rn → Rbe continuously differentiable and g : Rn → Rbe PC1. For a regularization
parameter λ ≥ 0, consider the parameter-dependent problem

min
x∈Rn

f (x) + λg(x). (4)

The set

R :=
{

x̄ ∈ R
n : ∃λ ≥ 0 with x̄ ∈ argmin

x∈Rn
f (x) + λg(x)

}
(5)

is known as the regularization path of (4) [11, 24, 25] and the goal of this article is to analyze
its structure.

We will do this by not analyzing R directly, but by analyzing the (potentially larger) set
that is defined by the first-order optimality condition of (4): If x̄ is a solution of (4) for some
λ ≥ 0, then it is a critical point of f + λg, i.e., 0 ∈ ∂( f + λg)(x̄) (cf. Theorem 4.1 in [6]).
This is the motivation for defining the critical regularization path

Rc := {
x̄ ∈ R

n : ∃λ ≥ 0 with 0 ∈ ∂( f + λg)(x̄)
}
. (6)

In general we have R ⊆ Rc. If f + λg is convex (e.g., if both f and g are convex), then
criticality is sufficient for optimality (cf. Theorem 4.2 in [6]), so R = Rc. For example, this
is the case for the Lasso problem [1] (where f contains some least squares error and g is
the �1-norm) and total variation denoising [4] (where f contains some least squares error
and g is the total variation). The extend to which structural result about Rc apply to R in the
general nonconvex case will be discussed in Remark 5.

Our main result in this section will be that Rc has a piecewise smooth structure. More
precisely, we will derive five conditions (Assumptions A1 to A5) for a point x0 ∈ Rc which,
when combined, assure that locally around x0, Rc is the projection of a smoothmanifold from
a higher-dimensional space onto R

n . In turn, these assumptions allow for a classification of
kinks of Rc by checking which assumption is violated. Throughout this article, we will use
the term kinks to loosely refer to points in Rc around which Rc is not a smooth manifold.

In order to analyze the structure of Rc, we first show that Rc is related to the Pareto critical
set Pc of the MOP

min
x∈Rn

(
f (x)

g(x)

)
. (7)

More precisely, we have the following lemma.

Lemma 1 It holds:

(a) Rc = {x̄ ∈ R
n : ∃ξ ∈ ∂g(x̄), α1 > 0, α2 ≥ 0 with α1∇ f (x̄) + α2ξ = 0 and α1 + α2 =

1} ⊆ Pc.
(b) Rc ∪ {x ∈ R

n : 0 ∈ ∂g(x)} = Pc.

Proof (a) Since f is continuously differentiable we have ∂ f (x) = {∇ f (x)} for all x ∈ R
n .

Furthermore, from basic calculus for subdifferentials (cf. Corollary 1 in [17], Section
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2.3) it follows that x̄ ∈ Rc is equivalent to

∃λ ≥ 0 : 0 ∈ ∂( f + λg)(x̄) = ∂ f (x̄) + λ∂g(x̄) = ∇ f (x̄) + λ∂g(x̄)

⇔ ∃λ ≥ 0 : 0 ∈ 1

1 + λ
∇ f (x̄) + λ

1 + λ
∂g(x̄)

⇔ ∃ξ ∈ ∂g(x̄), λ ≥ 0 : 1

1 + λ
∇ f (x̄) + λ

1 + λ
ξ = 0

⇔ ∃ξ ∈ ∂g(x̄), α1 > 0, α2 ≥ 0 : α1∇ f (x̄) + α2ξ = 0 and α1 + α2 = 1.

(8)

By (3) this implies x̄ ∈ Pc.
(b) Due to (a) we only have to show the implication “⊇”, so let x̄ ∈ Pc. By (3) there are

ξ ∈ ∂g(x̄) and α1, α2 ≥ 0 with α1 + α2 = 1 and α1∇ f (x̄) + α2ξ = 0. If α1 = 0 then
α2 = 1, so 0 = ξ ∈ ∂g(x̄). Otherwise, α1 > 0 and from (8) it follows that x̄ ∈ Rc (with
λ = α2

α1
). ��

By the previous lemma, Rc and Pc coincide up to critical points of g in which all KKT
multipliers corresponding to f are zero. Roughly speaking, these points correspond to “λ =
∞” in (4).

Remark 1 It is important to note that Lemma 1 does not imply that critical points of g are not
contained in Rc, i.e., that Rc ∩ {x ∈ R

n : 0 ∈ ∂g(x)} = ∅. For example, if 0 ∈ int(∂g(x)),
then it is possible to show that there is some λ̄ with 0 ∈ ∂( f + λg)(x) for all λ ≥ λ̄.

ByLemma1, structural results about Pareto critical sets can be used to analyze the structure
of the critical regularization path Rc. For example, under some mild regularity assumptions
on f and g, Theorem 5.1 in [26] shows that in areas where g is (twice continuously) differen-
tiable, the set of Pareto critical points with non-vanishing KKT multipliers is the projection
of a 1-dimensional manifold from R

n+2 onto R
n . To derive our main result, we will extend

the ideas in [26] to the whole Pareto critical set up to certain kinks.
We begin by taking a closer look at the Pareto critical set Pc of (7). By definition, Pc

is characterized by the optimality condition (2). Since f is continuously differentiable and
g is PC1, the subdifferential of f is simply its gradient, and the subdifferential of g is the
convex hull of all essentially active selection functions (cf. (1)). Thus, for a fixed x ∈ R

n ,
(2) is equivalent to the existence of a vanishing convex combination of a finite number of
elements. This is the same type of condition as in the smooth case, except that there is now
no continuous dependency of these elements on x . Furthermore, the number of elements is
not constant. Nonetheless, by iterating over all possible essentially active sets, Pc can at least
be written as the union of sets that behave similarly to Pareto critical sets in the smooth case.
Let {g1, . . . , gk} be a set of selection functions of g. Then formally, these considerations lead
to the following decomposition of Pc:

Pc = {x ∈ R
n : 0 ∈ conv({∇ f (x)} ∪ ∂g(x))}

= {x ∈ R
n : 0 ∈ conv({∇ f (x)} ∪ {∇gi (x) : i ∈ I e(x)})}

=
⋃

I⊆{1,...,k}
P I

c ∩ �I , (9)

where

P I
c := {x ∈ R

n : 0 ∈ conv({∇ f (x)} ∪ {∇gi (x) : i ∈ I })},
�I := {x ∈ R

n : I e(x) = I }. (10)
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Fig. 1 Decomposition of Pc into
the sets P I

c ∩ �I as in (9)

In words, P I
c is the Pareto critical set of the (smooth) MOP with objective vector

( f , gi1 , . . . gi|I |)
� (for I = {i1, . . . , i|I |}) and �I is the set of points in R

n in which pre-
cisely the selection functions with an index in I are essentially active. Thus, (9) expresses
Pc as the union of Pareto critical sets of smooth MOPs that are intersected with the sets of
points with constant essentially active sets. A visualization of this decomposition is shown
in the following example.

Example 1 Consider problem (7) for f : R2 → R, x �→ (x1 − 2)2 + (x2 − 1)2, and

g1 : R2 → R, x �→ x1 + x2,

g2 : R2 → R, x �→ x1 − x2,

g3 : R2 → R, x �→ −x1 + x2,

g4 : R2 → R, x �→ −x1 − x2,

g : R2 → R, x �→ max({g1(x), g2(x), g3(x), g4(x)}) = ‖x‖1.
It is possible to show that the Pareto critical (and in this case Pareto optimal) set is given by

Pc = {(0, 0)�} ∪ ((0, 1] × {0}) ∪ {x ∈ R
2 : x1 ∈ (1, 2], x2 = x1 − 1}

= (P{1,2,3,4}
c ∩ �{1,2,3,4}) ∪ (P{1,2}

c ∩ �{1,2}) ∪ (P{1}
c ∩ �{1}).

Figure 1 shows the decomposition of Pc into the sets P I
c ∩ �I as in (9).

We will analyze the piecewise smooth structure of Pc via (9) by first analyzing �I , then
the intersection P I

c ∩ �I and finally the union over all P I
c ∩ �I . Furthermore, as we expect

Pc to possess kinks, we will only consider its local structure around a given point. In other
words, for x0 ∈ Pc, we will only consider the structure of Pc ∩ U for open neighborhoods
U ⊆ R

n of x0.
The strategy for our analysis in this section is to derive assumptions for x0 which are

sufficient for Pc to have a smooth structure locally around x0. These assumptions represent
different sources and types of nonsmoothness of Pc and will allow for a classification of
nonsmooth points.

3.1 The structure ofÄI

By definition, the set �I only depends on g. For I = {i} ⊆ {1, . . . , k}, �{i} is the set of
points where only the selection function gi is essentially active. From Lemma SM1 it follows
that �{i} is an open subset of Rn in this case. For I ⊆ {1, . . . , k} with |I | > 1, �I is the
set of points where precisely the selection functions corresponding to the elements of I are
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essentially active. Typically (but not necessarily), these are points where g is nonsmooth,
which by Rademacher’s Theorem ( [27], Theorem 3.2) form a null set. In the following, we
will analyze its structure.

Since we are only interested in the structure of �I in a local sense, we also only have to
consider restrictions g|U of g to open neighborhoods of a point x0 ∈ R

n . In terms of the open
neighborhood U of x0 and the set of selection functions of g|U , we introduce the following
assumption:

Assumption A1 For x0 ∈ R
n there is an open neighborhood U ⊆ R

n of x0 and a set of
selection functions {g1, . . . , gk} of g|U such that

(i) I (x0) = {1, . . . , k},
(ii) I e(x) = I (x) ∀x ∈ U ,
(iii) affdim(aff({∇gi (x) : i ∈ {1, . . . , k}})) = affdim(aff({∇gi (x0) : i ∈ {1, . . . , k}})) ∀x ∈

U .

Assumption A1 can be interpreted as follows: A1(i) ensures that all selection functions we
consider are actually relevant for the representation of g in U . The condition A1(ii) ensures
that it does not matter if we consider the active or the essentially active set in U , which
allows for an easier representation of �I . Finally, A1(iii) makes sure that the representation
of ∂g(x0) via the gradients of our selection functions is “stable” on U with respect to its
affine dimension.

In the following, we will discuss the restrictiveness of Assumption A1. By (SM1), A1(i)
can always be satisfied by choosing U sufficiently small. For A1(ii) and (iii), we consider
the following example.

Example 2 (a) Let

g1 : R2 → R, x �→ x22 − x1,

g2 : R2 → R, x �→
{

x21 − x1, x1 ≤ 0,

−x1, x1 > 0,

g : R2 → R, x �→ max({g1(x), g2(x)}).
Then g is PC1 with selection functions g1 and g2. The graph and the level sets of g are
shown in Fig. 2. For the activity of g2 we have

2 ∈ I (x) ⇔ g(x) = g2(x) ⇔
{

x2 ∈ [x1,−x1], x1 ≤ 0,

x2 = 0, x1 > 0,

and

2 ∈ I e(x) ⇔ x ∈ cl(int({y ∈ R
2 : g(y) = g2(y)}))

⇔ x1 ≤ 0, x2 ∈ [x1,−x1].
Thus, for any open neighborhood U ⊆ R

2 of x0 = (0, 0)�, there is some x ∈ U with
I e(x) �= I (x). In other words, A1(ii) does not hold in x0 for this set of selection functions.
But note that in this case, this can easily be fixed by modifying the behavior of g2 for
x1 > 0. For example, replacing g2 by

g̃2 : R2 → R, x �→
{

x21 − x1, x1 ≤ 0,

−x21 − x1, x1 > 0.

solves the issue.
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Fig. 2 a The graph of the PC1-function g in Example 2a. b The level sets of g

(b) For the selection functions g1 and g̃2 of g as in a), we have

∇g1(x) =
(−1
2x2

)
and ∇ g̃2(x) =

{
(2x1 − 1, 0)�, x1 ≤ 0,

(−2x1 − 1, 0)�, x1 > 0.

In particular, in x0 = (0, 0)� we have ∇g1(x0) = ∇ g̃2(x0) = (−1, 0)�, so

affdim(aff({∇g1(x0),∇ g̃2(x0)})) = 0.

But it is easy to see that

affdim(aff({∇g1(x),∇ g̃2(x)})) = 1 ∀x ∈ R
2 \ {0}.

In particular, A1(iii) does not hold in x0 (for this set of selection functions).

By Lemma SM1, for a given x0 ∈ R
n , we can always choose the open neighborhood U

of x0 such that all selection functions of the local restriction g|U of g are essentially active
in x0. In particular, we can assume that I e(x0) = I (x0). While this does not imply that (ii)
holds in Assumption A1, the previous example shows how A1(ii) may be satisfied through
modifications of the selection functions in areas where they are active, but not essentially
active. Although we will not prove that this is always possible, it motivates us to believe that
A1(ii) is not a strong assumption in practice.

In contrast to A1(ii), modifying the selection functions will have less impact on A1(iii).
The reason for this is the fact that if A1(i) and A1(ii) hold, then the right-hand side of A1(iii)
is the dimension of the affine hull of the subdifferential of g in x0 (cf. (1)). In particular, the
right-hand side does not depend on the choice of selection functions. In light of this, A1(iii)
implies that the dimension of the affine hull of the subdifferential of g is constant in all x ∈ U
with I e(x) = I e(x0), i.e., in all x ∈ �I e(x0) (cf. (10)). Thus, A1(iii) is more related to the
function g and less related to the choice of selection functions. In Example 2 a), we see that
the set �{1,2} (in blue) has a kink in x0 = (0, 0)�. The following lemma suggests that this
is caused by A1(iii) being violated. Thus, by assuming A1(iii), we limit ourselves to local
restrictions g|U for which �I e(x0) has a smooth structure.

Lemma 2 Let x0 ∈ R
n. Let U ⊆ R

n be an open neighborhood of x0 and let {g1, . . . , gk} be
a set of selection functions of g|U as in Assumption A1. Let d = affdim(aff(∂g(x0))) and
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let {i1, . . . , id+1} ⊆ {1, . . . , k} such that {∇gi (x0) : i ∈ {i1, . . . , id+1}} is an affine basis of
aff({∇gi (x0) : i ∈ {1, . . . , k}}). Then there is an open neighborhood U ′ ⊆ U of x0 such
that

gi (x) − g1(x) = 0 ∀i ∈ {2, . . . , k} ⇔ gi (x) − gi1(x) = 0 ∀i ∈ {i2, . . . , id+1}
for all x ∈ U ′ and �{1,...,k} ∩ U ′ is an embedded (n − d)-dimensional submanifold of U ′. In
particular,

�{1,...,k} ∩ U ′ = {x ∈ U ′ : gi (x) − gi1(x) = 0 ∀i ∈ {i2, . . . , id+1}}.
Proof The direction "⇒" is obvious, so consider the converse. By A1(iii) and since the
gradients ∇gi , i ∈ {i1, . . . , id+1}, are continuous, there is an open neighborhood U ′ ⊆ U of
x0 such that {∇gi (x) : i ∈ {i1, . . . , id+1}} is an affine basis of {∇gi (x) : i ∈ {1, . . . , k}} for
all x ∈ U ′. Let

ϕ : U ′ → R
k−1, x �→

⎛
⎜⎝

g2(x) − g1(x)
...

gk(x) − g1(x)

⎞
⎟⎠ .

By A1(iii) the Jacobian Dϕ(x) has constant rank d for all x ∈ U ′. By A1(i) we have
ϕ(x0) = 0, so the level set L := ϕ−1(0) = �{1,...,k} ∩ U ′ is nonempty. Thus, by Theorem
5.12 in [16], L is an embedded (n − d)-dimensional submanifold of U ′. Additionally, let

ϕ′ : U ′ → R
d , x �→

⎛
⎜⎝

gi2(x) − gi1(x)
...

gid+1(x) − gi1(x)

⎞
⎟⎠ .

By construction, Dϕ′(x) has constant rank d for all x ∈ U ′. With the same argument as
above, it follows that L ′ := ϕ′−1(0) is an embedded (n − d)-dimensional submanifold of U ′
as well. Since L ⊆ L ′, L is also an embedded (n − d)-dimensional submanifold of L ′ (cf.
[16], Proposition 4.22). By Proposition 5.1 in [16], this implies that L is an open subset of
L ′. As L ′ is endowed with the subspace topology ofU ′ ⊆ R

n , this means that we can assume
w.l.o.g. that U ′ is an open neighborhood of x0 with U ′ ∩ L ′ = L , completing the proof. ��

By the previous lemma, AssumptionA1 allows us to assumew.l.o.g. that for the restriction
g|U , the set of points with a constant active set �I e(x0) is a smooth manifold around x0 ∈ U
of dimension n − affdim(aff(∂g(x0))). Furthermore, it shows that for the representation of
�I e(x0) as a level set, it is sufficient to only consider a subset of the set of selection functions
whose gradients form an affine basis of ∂g(x0).

3.2 The structure of PIc ∩ ÄI

After analyzing the structure of�I , we will now turn towards the structure of the intersection
P I

c ∩ �I in (9). First of all, as for �I , we will show that not all selection functions of
g are required for the representation of P I

c ∩ �I . More precisely, a simple application of
Carathéodory’s theorem (Theorem 1) to the definition of P I

c yields the following result.

Lemma 3 Let x0 ∈ Pc and let {g1, . . . , gk} be a set of selection functions of g. If x0 is
not a critical point of g, then there is an index set {i1, . . . , ir } ⊆ {1, . . . , k} with r =
affdim(aff({∇ f (x0)} ∪ ∂g(x0))) such that
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(a) 0 ∈ conv({∇ f (x0)} ∪ {∇gi (x0) : i ∈ {i1, . . . , ir }}),
(b) {∇ f (x0)} ∪ {∇gi (x0) : i ∈ {i1, . . . , ir }} is affinely independent.

Proof By Theorem 1, there is an affinely independent subset of

{∇ f (x0)} ∪ {∇gi (x0) : i ∈ {1, . . . , k}}
of size r + 1 with zero in its convex hull. Since x0 is not a critical point of g, ∇ f (x0) must
be contained in that subset. ��

With Lemma 2 and Lemma 3, we have ways to simplify �I and P I
c , respectively, by only

considering certain selection functions of g. But note that we can not necessarily choose the
same selection functions for both results: Although the set {∇gi (x0) : i ∈ {i1, . . . , ir }} in
Lemma 3 is affinely independent, the index set {i1, . . . , ir } can not necessarily be used in
Lemma 2 since we might have r < d + 1, i.e.,

affdim(aff({∇ f (x0)} ∪ ∂g(x0))) < affdim(aff(∂g(x0))) + 1

⇔ aff({∇ f (x0)} ∪ ∂g(x0)) = aff(∂g(x0))

⇔ ∇ f (x0) ∈ aff(∂g(x0)).

(11)

In particular, since x0 is Pareto critical, this would imply that 0 ∈ aff(∂g(x0)) (even though
x0 is not critical for g, i.e., 0 /∈ conv(∂g(x0))). The following lemma shows that this scenario
is related to the uniqueness of the KKT multiplier corresponding to f in x0.

Lemma 4 Let x0 ∈ Pc such that x0 is not a critical point of g.

(a) If the KKT multiplier α1 of f in x0 (cf. (3)) is not unique, then ∇ f (x0) ∈ aff(∂g(x0)).
(b) If ∇ f (x0) ∈ aff(∂g(x0)) and 0 is contained in the relative interior (cf. Definition SM9)

of conv({∇ f (x0)} ∪ ∂g(x0)), then the KKT multiplier α1 of f in x0 is not unique.

Proof See “Appendix A.1”. ��
Remark 2 In [26], Section 4.3, it was shown that in the smooth case and under certain reg-
ularity assumptions on f and g, the coefficient vector of the vanishing convex combination
in the KKT condition in a point x ∈ Pc, i.e., the vector (α1, α2)

� in (3), is orthogonal to the
tangent space of the image of the Pareto critical set at ( f (x), g(x))�. Thus, roughly speaking,
non-uniqueness of (α1, α2)

� suggests that this tangent space is “degenarate”, i.e., that the
Pareto front possesses a kink at ( f (x), g(x))�.

The following example shows what behavior may occur if the KKT multiplier of f is not
unique.

Example 3 Consider problem (7) for f : R2 → R, x �→ x21 + x22 , and

g1 : R2 → R, x �→ x21 + (x2 − 1)2,

g2 : R2 → R, x �→ x21 + (x2 − 1)2 −
(

x2 − 1

2

)
,

g : R2 → R, x �→ max({g1(x), g2(x)}).
Then g is PC1 with selection functions g1 and g2. It is easy to see that

�{1,2} = {x ∈ R
n : I e(x) = {1, 2}} = R ×

{
1

2

}
,
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Fig. 3 a Pareto critical set Pc and �I , I ⊆ {1, 2}, in Example 3. b Pointwise discretization of the image
{( f (x), g(x))� : x ∈ R

2} of the objective vector ( f , g) and the image of the Pareto critical set under ( f , g)

as depicted in Fig. 3a.
The Pareto critical (and in this case Pareto optimal) set is given by Pc = {0} × [0, 1].

In particular, x0 = (0, 1
2 )

� is the only Pareto critical point where more than one selection

function is active, i.e., P{1,2}
c ∩ �{1,2} = {x0}. By computing the gradients in x0, we obtain

∇ f (x0) = (0, 1)�, ∇g1(x0) = (0,−1)�, ∇g2(x0) = (0,−2)�.

We see that

1

2
∇ f (x0) + 1

2
∇g1(x0) = 0 and

2

3
∇ f (x0) + 1

3
∇g2(x0) = 0,

so the KKTmultiplier of f is not unique. By Lemma 4 this implies∇ f (x0) ∈ aff({∂g(x0)}).
More explicitly, for this example, it is easy to check that

∇ f (x0) = 3∇g1(x0) − 2∇g2(x0).

Figure 3b shows an approximation of the image of ( f , g) and the image of the Pareto critical
set. As discussed in Remark 2, we see that the image of Pc has a kink at ( f (x0), g(x0))� =
( 14 ,

1
4 )

�.

As the previous example suggests, a scenario where the KKTmultiplier of f is not unique
may occur if the Pareto critical set goes transversally through the set of nonsmooth points
instead of moving tangentially along it. In other words, it may occur if arbitrarily close to
x0 ∈ Pc, there are Pareto critical points with essentially active sets I1 and I2 such that I1 �= I2
and I1 �= I e(x0) �= I2. Due to continuity of the gradients, the KKT multipliers for both sets
I1 and I2 have accumulation points that are KKT multipliers of x0. Since I1 �= I2, these
accumulation points may not coincide, such that the KKT multipliers in x0 are not unique.
In terms of the structure of P I

c ∩ �I , we see that it is a 0-dimensional set in Example 3 (for
I = {1, 2}) as it is just a single point.

Although Pareto critical points x0 with ∇ f (x0) ∈ aff(∂g(x0)) may not necessarily cause
nonsmoothness of Pc, we will still exclude them from our consideration of the local structure
of Pc around x0 to avoid the irregularities discussed above. So formally, we introduce the
following assumption:
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Fig. 4 The gradients of f , g1 and
g2 in x0 = (1, 0)� in Example 4.
The dashed line shows the
(relative) boundary of the convex
hull conv({∇ f (x0)} ∪ ∂g(x0))

Assumption A2 For x0 ∈ Pc we have

∇ f (x0) /∈ aff(∂g(x0)).

Roughly speaking, since affdim(aff(∂g(x0))) < n in most cases, we expect that the
set of points that violate Assumption A2 is small compared to Pc (or even empty). By (11),
Assumption A2 implies that there is an index set as in Lemma 3 that satisfies the requirements
of Lemma 2. In particular, P I

c ∩�I can then be expressed using only a subset of the selection
functions of g.

The discussion of P I
c ∩ �I so far was mainly focused on the removal of redundant

information in the subdifferential of g to simplify our analysis. We will now turn towards its
actual geometrical structure. To this end, we again consider Example 1.

Example 4 Let f and g be as in Example 1 (The corresponding Pareto critical set is shown in
Fig. 1). Let x0 = (1, 0)� and U ⊆ R

2 be the open ball with radius one around x0. Then a set
of selection functions of g|U is given by {g1, g2} and we have P{1,2}

c ∩�{1,2} = (0, 1]× {0}.
In particular, x0 is a boundary point of P{1,2}

c ∩�{1,2}, such that P{1,2}
c ∩�{1,2} is not smooth

around x0 (in the sense of smooth manifolds). The gradients of f , g1 and g2 are shown in
Fig. 4.

We see that there is a unique convex combination

1

3
∇ f (x0) + 2

3
∇g1(x0) + 0∇g2(x0) = 0 (12)

where the coefficient of ∇g2(x0) is zero.

Note that in the previous example, there is still a vanishing affine combination of the
gradients of f , g1 and g2 for x = (x1, 0)�, x1 > 1. But it is not a convex combination, as
the coefficient corresponding to ∇g2(x) is negative. Due to the continuity of the gradients,
this can only happen if one of the coefficients in x0 is already zero (as in (12)). To exclude
the type of nonsmoothness caused by this, we introduce the following assumption.

Assumption A3 For x0 ∈ Pc and a set of selection functions {g1, . . . , gk} of g, there is
an index set {i1, . . . , ir } ⊆ {1, . . . , k} as in Lemma 3 and positive coefficients α0 > 0,
β0 ∈ (R>0)r with α0 + ∑r

j=1 β0
j = 1 and α0∇ f (x0) + ∑r

j=1 β0
j ∇gi j (x0) = 0.

The following lemma yields a necessary condition for Assumption A3 to hold, which is
related to the relative interior (cf. Definition SM9) of conv({∇ f (x0)}∪∂g(x0)). In particular,
it is independent of the choice of selection functions.
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Lemma 5 Let x0 ∈ Pc. If there is a set of selection functions such that Assumption A3 holds,
then

0 ∈ ri(conv({∇ f (x0)} ∪ ∂g(x0))).

Proof See “Appendix A.2”. ��
After introducing the Assumptions A1, A2 and A3, we are now able to show the first

structural result about P I
c ∩ �I . The following lemma shows that P I

c ∩ �I is the projection
of a level set from a higher-dimensional space onto the variable space Rn .

Lemma 6 Let x0 ∈ Pc. Let U ⊆ R
n be an open neighborhood of x0 and let {g1, . . . , gk} be

a set of selection functions of g|U satisfying Assumptions A1 and A3. Assume that Assump-
tionA2 holds. Then there is an index set {i1, . . . , ir } ⊆ {1, . . . , k} and an open neighborhood
U ′ ⊆ U of x0 such that

P{1,...,k}
c ∩ �{1,...,k} ∩ U ′ = prx (h

−1(0)) ∩ U ′, (13)

where prx : Rn × R × R
r → R

n is the projection onto the first n components and

h : Rn ×R
>0×(R>0)r → R

n ×R×R
r−1, (x, α, β) �→

⎛
⎝α∇ f (x) + ∑r

j=1 β j∇gi j (x)

α + ∑r
j=1 β j − 1

(gi j (x) − gi1(x)) j∈{2,...,r}

⎞
⎠ .

Proof Let {i1, . . . , ir } ⊆ {1, . . . , k} be an index set as in A3. Since the gradients ∇ f and
∇gi j , j ∈ {1, . . . , r}, are continuous and {∇ f (x0)} ∪ {∇gi j (x0) : j ∈ {1, . . . , r}} is affinely
independent, there is an open neighborhood U ′ ⊆ U of x0 such that {∇ f (x)} ∪ {∇gi j (x) :
j ∈ {1, . . . , r}} is affinely independent for all x ∈ U ′. In particular,

r ≤ affdim(aff({∇ f (x)} ∪ {∇gi (x) : i ∈ {1, . . . , k}))
≤ affdim(aff({∇gi (x) : i ∈ {1, . . . , k})) + 1 ∀x ∈ U ′.

(14)

By A1, A2 and A3, we have

r
A3= affdim(aff({∇ f (x0)} ∪ ∂g(x0)))

A2= affdim(aff(∂g(x0))) + 1

A1(i),(i i)= affdim(aff({∇gi (x0) : i ∈ {1, . . . , k})) + 1

A1(i i i)= affdim(aff({∇gi (x) : i ∈ {1, . . . , k})) + 1 ∀x ∈ U ′.

(15)

Combining (14) and (15), we obtain

affdim(aff({∇ f (x)} ∪ {∇gi (x) : i ∈ {1, . . . , k})) = r ∀x ∈ U ′,

so {∇ f (x)} ∪ {∇gi j (x) : j ∈ {1, . . . , r}} is an affine basis of {∇ f (x)} ∪ {∇gi (x) : i ∈
{1, . . . , k}} for all x ∈ U ′.
Let x ∈ P{1,...,k}

c ∩�{1,...,k} ∩U ′. By Lemma SM4, every element of aff({∇ f (x)}∪{∇gi (x) :
i ∈ {1, . . . , k}}) can be uniquely written as an affine combination of elements of {∇ f (x)} ∪
{∇gi j (x) : j ∈ {1, . . . , r}}. Let α0 and β0 as in A3. Since α0 > 0, β0 ∈ (R>0)r and the
gradients ∇ f , ∇gi j , j ∈ {1, . . . , r}, are continuous, we can assume w.l.o.g. that U ′ is small
enough such that there are α > 0, β ∈ (R>0)r with α + ∑r

j=1 β j = 1 and

α∇ f (x) +
r∑

j=1

β j∇gi j (x) = 0.
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Furthermore, gi j (x) − gi1(x) = 0 holds for all j ∈ {2, . . . , r} since x ∈ �{1,...,k}. Thus,
h(x, α, β) = 0, i.e., x ∈ prx (h

−1(0)) ∩ U ′.
Now let x ∈ prx (h

−1(0)) ∩ U ′. Then x ∈ P{1,...,k}
c trivially holds since {i1, . . . , ir } ⊆

{1, . . . , k}. By A1 and Lemma 2, we can assume w.l.o.g. that U ′ is small enough such that
gi j (x) − gi1(x) = 0 for all j ∈ {2, . . . , r} implies x ∈ �{1,...,k}, completing the proof. ��

Up to this point, we assumed f to be continuously differentiable and g to be PC1. This
means that themap h in the previous lemma is at least continuous. If h is actually continuously
differentiable, then standard results from differential geometry can be used to analyze the
structure of its level sets on the right-hand side of (13). To this end, we will assume for the
remainder of this section that f is twice continuously differentiable and g is PC2.

Theorem 2 In the setting of Lemma 6 it holds:

(a) If Dh(x, α, β) has full rank for all (x, α, β) ∈ h−1(0), then h−1(0) is a 1-dimensional
submanifold of Rn × R

>0 × (R>0)r .
(b) If Dh(x, α, β) has constant rank m ∈ N for all (x, α, β) ∈ R

n × R
>0 × (R>0)r , then

h−1(0) is an (n + r + 1 − m)-dimensional submanifold of Rn × R
>0 × (R>0)r .

In both cases, the tangent space of h−1(0) is given by

T(x,α,β)(h
−1(0)) = ker(Dh(x, α, β)). (16)

Proof Part a) follows from Corollary 5.14 and part b) follows from Theorem 5.12 in [16].
The formula for the tangent space follows from Proposition 5.38 in [16]. ��
Remark 3 Equation (16) in the previous theorem can be used to compute tangent vectors of
the regularization path in practice by computing elements of prx (ker(Dh(x, α, β))). Thus,
it is an essential result for the construction of path-following methods.

The previous theorem is the main result in this section. It shows that the structure of
h−1(0) (and thus the structure of P I

c ∩ �I due to (13)) is related to the rank of the Jacobian
Dh, given by⎛

⎜⎜⎜⎜⎜⎝

α∇2 f (x) + ∑r
j=1 β j∇2gi j (x) ∇ f (x) ∇gi1(x) . . . ∇gir (x)

0 1 1 . . . 1
(∇gi2(x) − ∇gi1(x))� 0 0 . . . 0

...
...

...
...

(∇gir (x) − ∇gi1(x))� 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

∈ R
(n+r)×(n+r+1)

for (x, α, β) ∈ R
n × R

>0 × (R>0)r . Note that in Theorem 2 b), the assumption on the rank
has to hold for all (x, α, β) ∈ R

n × R
>0 × (R>0)r whereas in a), it only has to hold for all

(x, α, β) ∈ h−1(0). The following remark shows how the structure of Dh can be used to
analyze its rank.

Remark 4 In the setting of Lemma 6, let (vx , vα, vβ) ∈ ker(Dh(x, α, β)) ⊆ R
n × R

>0 ×
(R>0)r , i.e.,⎛

⎝α∇2 f (x) +
r∑

j=1

β j∇2gi j (x)

⎞
⎠ vx + vα∇ f (x) +

r∑
j=1

v
β
j ∇gi j (x) = 0,

vα +
r∑

j=1

v
β
j = 0,

(∇gi j (x) − ∇gi1(x))�vx = 0 ∀ j ∈ {2, . . . , r}.

(17)
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Since {∇ f (x),∇gi1(x), . . . , ∇gir (x)} is affinely independent by construction (cf. proof of
Lemma 6), the set

W :=
⎧⎨
⎩vα∇ f (x) +

r∑
j=1

v
β
j ∇gi j (x) : vα ∈ R, vβ ∈ R

r , vα +
r∑

j=1

v
β
j = 0

⎫⎬
⎭

is an r -dimensional linear subspace ofRn . Similar to Lemma SM4, it is possible to show that
for each element of W , the corresponding coefficients vα and vβ are unique. If α∇2 f (x) +∑r

j=1 β j∇2gi j (x) is regular, then the first two lines of (17) are equivalent to

vx ∈ −
⎛
⎝α∇2 f (x) +

r∑
j=1

β j∇2gi j (x)

⎞
⎠

−1

W =: V1,

where V1 is an r -dimensional linear subspace of Rn . In particular, vα and vβ are uniquely
determined by vx . Furthermore, if we denote by V ⊥ the orthogonal complement of a subspace
V , then the last line of (17) is equivalent to

vx ∈ span({∇gi j (x) − ∇gi1(x) : j ∈ {2, . . . , r}})⊥ =: V2,

where V2 is an (n − (r − 1))-dimensional subspace of Rn since {∇gi1(x), . . . ,∇gir (x)} is
affinely independent. Thus, the dimension of ker(Dh(x, α, β)) is given by the dimension of
the intersection V1 ∩ V2. If we assume that V1 and V2 are generic subspaces, then we can
apply a basic result from linear algebra to see that

dim(ker(Dh(x, α, β))) = dim(V1 ∩ V2) = dim(V1) + dim(V2) − dim(V1 + V2)

= r + (n − (r − 1)) − n = 1,

i.e., the rank of Dh(x, α, β) is full and Theorem 2(a) can be applied.

The previous remark suggests that h−1(0) is typically a 1-dimensional manifold such
that we expect its projection P I

c ∩ �I to be “1-dimensional” as well by (13). Nonetheless,
we will see later that there are applications where h−1(0) is a higher-dimensional manifold.
Furthermore, there are cases where h−1(0) is not a manifold at all (Note that this is not
necessarily caused by the nonsmoothness of g and can also happen for smooth objective
functions (cf. Example 1 in [28])). Thus, for P I

c ∩ �I to have a smooth structure around a
(corresponding) x0 ∈ Pc, we have to make the following assumption:

Assumption A4 In the setting of Lemma 6, Theorem 2 can be applied, i.e.,

(a) rk(Dh(x, α, β)) = n + r ∀(x, α, β) ∈ h−1(0) or
(b) rk(Dh(x, α, β)) is constant ∀(x, α, β) ∈ R

n × R
>0 × (R>0)r .

We conclude the discussion of the structure of P I
c ∩ �I by considering the special case

where f is quadratic and g is piecewise (affinely) linear. Remark A.3 in the “Appendix”
shows that in this case, P I

c ∩ �I is (locally) an affinely linear set around points that satisfy
the assumptions of Lemma 6. This coincides with the results in [12].

3.3 The structure of Pc

After analyzing the structure of P I
c ∩ �I , we are now in the position to analyze the structure

of the Pareto critical set Pc of (7). By (9), Pc can be written as the union of P I
c ∩ �I for
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all possible combinations I of selection functions. Since we already discussed the structure
of the individual P I

c ∩ �I , the only additional nonsmooth points in Pc may arise by taking
their union. More precisely, nonsmooth points may arise where the different P I

c ∩ �I touch,
i.e., where the set of (essentially) active selection functions changes. The following lemma
yields a necessary condition for identifying such points.

Lemma 7 Let x0 ∈ Pc and let {g1, . . . , gk} be a set of selection functions of g with I e(x0) =
{i1, . . . , il}, l ∈ N. If for all open neighborhoods U ⊆ R

n of x0, there is some x ∈ Pc ∩ U
with I e(x) �= I e(x0), then there are α ≥ 0 and β ∈ (R≥0)l such that α + ∑l

j=1 β j = 1,

α∇ f (x0) +
l∑

j=1

β j∇gi j (x0) = 0

and β j = 0 for some j ∈ {1, . . . , l}.
Proof See “Appendix A.4”. ��

A visualization of the previous lemma can be seen in Example 1: In x0 = (1, 0)�, the
sets P{1,2}

c ∩ �{1,2} and P{1}
c ∩ �{1} touch and there is a convex combination with a zero

component (cf. (12)). In this case, this causes a kink in Pc.
Note that in general, the existence of a coefficient vector with a zero component as in

Lemma 7 is not a useful criterion to find points in Pc where the active set changes. For
example, by Lemma 3, if the number of essentially active selection functions in x0 is larger
than affdim(aff({∇ f (x0)} ∪ ∂g(x0))), then there is always a coefficient vector with a zero
component. A stricter condition would be that every coefficient vector has a zero compo-
nent, i.e., that zero is located on the relative boundary of conv({∇ f (x0)} ∪ ∂g(x0)) (cf.
Definition SM9). By Lemma 5, this would imply that Assumption A3 cannot hold, such that
P I

c ∩ �I may be nonsmooth around x0. Although the theory suggests (and we will later
explicitly see this in Example 6) that this must not necessarily be the case in points where
the active set changes, we believe it may be a useful criterion in practice.

Nonetheless, from a theoretical point of view, the only reliable assumption we can make
to exclude points where the essentially active set changes is the following:

Assumption A5 For x0 ∈ Pc and a set of selection functions {g1, . . . , gk} of g, there is an
open neighborhood U ⊆ R

n of x0 such that

I e(x) = I e(x0) ∀x ∈ Pc ∩ U .

From our considerations up to this point it follows that if x0 ∈ Pc is a point in which
Assumptions A1 to A5 hold (for the same set of selection functions), then Pc is the projection
of a smooth manifold around x0 as in Theorem 2. An overview of all five assumptions is
shown in Table 1. Unfortunately, in contrast to Assumptions A1, A2, A3 and A4, A5 is only
an a posteriori condition, i.e., we already have to know Pc around x0 to be able to check if
Assumption A5 holds.

Remark 5 (a) For the development of path-following methods, it is crucial to be able to
detect nonsmooth points during computation of the regularization path. If the different
sets Pc ∩�I are computed separately, then typically (but not necessarily), the nonsmooth
points of the path are the end points of these sets (in case the path is “1-dimensional”,
cf. Remark 4). Thus, since path-following methods compute a pointwise approximation
of the path, these end points roughly appear as points where the method fails to continue
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Table 1 An overview of the five assumptions required to have a smooth structure of Pc around x0 ∈ Pc

Let x0 ∈ Pc .

A1 There is an open nbd. U � x0 and a set of sel. fct. {g1, . . . , gk } of g|U with

(i) I (x0) = {1, . . . , k},
(ii) I e(x) = I (x) ∀x ∈ U ,

(iii) affdim(aff({∇gi (x) : i ∈ {1, . . . , k}}))
= affdim(aff({∇gi (x0) : i ∈ {1, . . . , k}})) ∀x ∈ U .

A2 It holds ∇ f (x0) /∈ aff(∂g(x0)).

A3 Let {g1, . . . , gk } be a set of selection functions of g.

It exists {i1, . . . , ir } ⊆ {1, . . . , k} and α0 ∈ R, β0 ∈ R
r

with α0 + ∑r
j=1 β0

j = 1 such that

(i) r = affdim(aff({∇ f (x0)} ∪ ∂g(x0))),
(ii) {∇ f (x0)} ∪ {∇gi (x0) : i ∈ {i1, . . . , ir }} aff. ind.,

}
(cf. Lemma 3)

(iii) α0∇ f (x0) + ∑r
j=1 β0

j ∇gi j (x0) = 0,

(iv) α0 > 0, (β0) j > 0 ∀ j ∈ {1, . . . , r}.
A4 Assume that A1, A2 and A3 hold and let h be defined as in Lemma 6.

(a) rk(Dh(x, α, β)) = n + r ∀(x, α, β) ∈ h−1(0) or

(b) rk(Dh(x, α, β)) is constant ∀(x, α, β) ∈ R
n × R

>0 × (R>0)r .

A5 Let {g1, . . . , gk } be a set of selection functions of g.

There is an open neighborhood U � x0 with I e(x) = I e(x0) ∀x ∈ Pc ∩ U .

with the currently active set I ⊆ {1, . . . , k}. To find the exact nonsmooth point, one could
try to find the closest point where one of the Assumptions A1 to A5 is violated. While it
is not clear how this can be done numerically in our general setting, it is easier in specific
applications like �1-regularization [14] (where more structure can be exploited).

(b) If Assumption A5 is violated in x0 ∈ Pc, then there are Pareto critical points arbitrarily
close to x0 with a different (essentially) active set I ′ �= I e(x0). In practice, it may
be of interest to find I ′. For example, in path-following methods, I ′ could be used
to compute the direction in which Pc continues once the nonsmoothness in x0 was
detected. To this end, let {g1, . . . , gk} be the set of selection functions which are all
essentially active at x0. While it is not possible to determine I ′ solely from the set
conv({∇ f (x0)}∪∂g(x0)) = conv({∇ f (x0)}∪{∇g1(x0), . . . ,∇gk(x0)}), we can at least
determine all potential candidates for I ′ by finding all subsets {i1, . . . , im} ⊆ {1, . . . , k}
with

0 ∈ conv({∇ f (x0)} ∪ conv({∇gi1(x0), . . . ,∇gim (x0)})).
(c) As the union of different P I

c ∩ �I for I ⊆ {1, . . . , k}, we expect that Pc (and thus
Rc by Lemma 1) is typically a “1-dimensional” set. In this case, as long as the actual
regularization path R (cf. (5)) is not discrete, both Rc and R have the same “dimension”.
Thus, outside of kinks, we expect that Rc and R coincide locally (More precisely, we
expect that for x ∈ R there is some open set U ⊆ R

n with x ∈ U such that R ∩ U =
Rc ∩ U ). In this way, structural result about Rc could also be applied to R in the general
nonconvex case.
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We conclude this section with Algorithm 1, which is an abstract path-following method
for Pc based on our results (for the case where Pc is connected and “1-dimensional”).

Algorithm 1 Abstract path-following method

Require: Step size t > 0, initial point x1 ∈ Pc and I ⊆ {1, . . . , k} such that x1 ∈ P I
c ∩ �I .

1: Initialize i = 1.
2: Compute the projected tangent space of P I

c ∩ �I in xi via Lemma 6 and Theorem 2 and choose a tangent
vector v with ‖v‖2 = 1 in the current direction of continuation. (Predictor step)

3: Compute a point xi+1 in P I
c ∩ �I close to xi + tv. (Corrector step)

4: if the end of P I
c ∩ �I is detected then

5: Compute the end point x̄ of P I
c ∩ �I .

6: for all I ′ ⊆ I e(x̄), I ′ �= I , P I ′
c ∩ �I ′ �= ∅ do

7: Restart this method with I = I ′ and some x1 ∈ P I ′
c ∩ �I ′

close to x̄ .
8: end for
9: else
10: Set i = i + 1 and go to step 2.
11: end if

Note that this algorithm is purely motivated by the structure of Pc without taking any
computational regards into account. As such, to obtain a practical method for specific cases,
ways to implement the steps 3 to 6 have to be further investigated.

4 Examples

In this section, we will show how our results from Sect. 3 can be used to analyze the structure
of regularization paths in two common applications. These are support vector machines
(SVMs) in data classification [2] and the exact penalty method in constrained optimization
[5, 29].

4.1 Support vector machine

Given a data set {(xi , yi ) : xi ∈ R
l , yi ∈ {−1, 1}, i ∈ {1, . . . , N }}, the goal of the support

vector machine (SVM) is to find w ∈ R
l and b ∈ R such that

sign(w�xi + b) = yi ∀i ∈ {1, . . . , N }.

In other words, the goal is to find a hyperplane {x ∈ R
l : w�x + b = 0} such that all xi with

yi = 1 lie on one side and all xi with yi = −1 lie on the other side of the hyperplane. Since
such a hyperplane may not be unique, an additional goal is to find the one where the minimal
distance of the xi to the hyperplane, also known as the margin, is as large as possible. One
way of solving this problem is the penalization approach

min
(w,b)∈Rl×R

f (w, b) + λg(w, b) (18)

123



728 Journal of Global Optimization (2023) 85:709–741

for λ ≥ 0 and

f : Rl × R → R, (w, b) �→ 1

2
‖w‖22,

g : Rl × R → R, (w, b) �→
N∑

i=1

max{0, 1 − yi (w�xi + b)}.

Roughly speaking, minimizing g ensures that the hyperplane separates the data, while
minimizing f maximizes the margin. In theory, the most favorable hyperplane would be the
one with g(w, b) = 0 (if existent) and f (w, b) as small as possible. But in practice, when
working with large and noisy data sets, an imperfect separation where only few points violate
the separation may be more desirable. The balance between the margin and the quality of
the separation can be controlled via the parameter λ in (18), yielding a regularization path
RSVM as in (5) (for n = l + 1).

Remark 6 In the literature, the roles of f and g in problem (18) are typically reversed. The
resulting problem is equivalent to our formulationwith the regularization parameter 1

λ
(except

for critical points of f and g) (cf. Section 12.3.2 in [2]). Nonetheless, when the regularization
path of the SVM is considered, λ in (18) is more commonly used for its parametrization.

The structure of the regularization path of the SVM was already considered in earlier
works. In [11], it was shown that RSVM is 1-dimensional and piecewise linear up to certain
degenerate points, and a path-following method was proposed that exploits this structure.
It was conjectured (without proof) that the existence of these degenerate points is related
to certain properties of the data points (xi , yi ), like having duplicates of the same point
or having multiple points with the same margin. In [30], these degeneracies were analyzed
further and a modified path-following method was proposed, specifically taking degenerate
data sets into account. Other methods for degenerate data sets were proposed in [31–33]. In
the following, we will analyze how these degeneracies relate to the nonsmooth points we
characterized in our results.

Obviously, f is twice continuously differentiable and g is PC2 with selection functions{
(w, b) �→

∑
i∈I

1 − yi (w�xi + b) : I ⊆ {1, . . . , N }
}

.

Furthermore, both f and g are convex, so RSVM coincides with the critical regularization
path (cf. (6)). Thus, we can apply our results from Sect. 3 to analyze the structure of RSVM.
Since f is quadratic and all selection functions are linear, Remark A.3 shows that the regu-
larization path is piecewise linear up to points violating the Assumptions A1 to A5. Due to
the properties of g, the Assumption A1 always holds for the SVM, as shown in Remark A.5
in the “Appendix”.

In the following, we will consider the remaining Assumptions A2 to A5 in the context of
the SVM and relate them to the degeneracies reported in [11]. We will do this by considering
Example 1 from [30], which was specifically constructed to have a degenerate regularization
path.

Example 5 Consider the data set{
((0.7, 0.3)�, 1), ((0.5, 0.5)�, 1), ((2, 2)�,−1),

((1, 3)�,−1), ((0.75, 0.75)�, 1), ((1.75, 1.75)�,−1)
}

.
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Fig. 5 a Regularization path of the SVM in Example 5 and the points x1 = 1
372 (−35,−65, 137)�, x2 =

1
93 (−35, −65, 137)�, x3 = 1

3 (−2, −2, 5)� and x4 = 1
5 (−4, −4, 11)�. b Image of the regularization path

with yi = ( f (xi ), g(xi ))�, i ∈ {1, . . . , 4}, and the same coloring as in (a)

Fig. 6 Gradient of f , subdifferential of g and the (relative) boundary of the convex hull (dashed) in x2, x3

and x4 in Example 5

The regularization path for this data set can be computed analytically and is shown in Fig. 5a.
In the following, we will analyze the points x1, x2, x3 and x4 highlighted in Fig. 5a with
respect to the Assumptions A2 to A5.

The point x1 lies in one of the 2-dimensional parts of the regularization path and it is
possible to show that g is smooth around x1. It is easy to verify that Assumptions A2, A3
and A5 are satisfied. With regard to Assumption A4, it holds r = affdim(aff({∇ f (x1)} ∪
∂g(x1))) = 1 (cf. Lemma 3) and

Dh(x, α, β) =

⎛
⎜⎜⎝
2α 0 0 − 35

372
14
5

0 2α 0 − 65
372

26
5

0 0 0 0 0
0 0 0 1 1

⎞
⎟⎟⎠

with rk(Dh(x, α, β)) = 3 for all (x, α, β) ∈ R
n × R

>0 × R
>0. Thus, A4(b) holds which

by Theorem 2 implies that the regularization path is the projection of an n + r + 1 − m =
3 + 1 + 1 − 3 = 2 dimensional manifold around x1, as expected.

The point x2 lies in a kink in the regularization path. The subdifferential of g in x2 can
be computed analytically and is shown in Fig. 6(a).
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In this case, we have affdim(aff(∂g(x2))) = 2 and∇ f (x2) /∈ aff(∂g(x2)), soAssumption
A2 holds. We see that zero lies on the relative boundary of conv({∇ f (x2) ∪ ∂g(x2)}) such
that Assumption A3 must be violated (by Lemma 5). Furthermore, it is possible to show that
the active set changes in x2, so Assumption A5 is violated as well.

The point x3 lies in another kink of the regularization path. The corresponding subdiffer-
ential of g is shown in Fig. 6b. As for x2, Assumptions A3 and A5 are violated in x3. But in
contrast to x2 we have affdim(aff(∂g(x2))) = 3, so ∇ f (x2) ∈ aff(∂g(x2)) = R

3 trivially
holds and Assumption A2 is violated. As discussed in Remark 2, this results in a kink in the
Pareto front in the image of x3 under the objective vector ( f , g), as can be seen in Fig. 5b.

Finally, x4 marks a corner of one of the 2-dimensional parts of the regularization path and
the corresponding subdifferential is shown in Fig. 6c. As for x3, Assumptions A2, A3 and
A5 are violated in x4. But unlike x3, when we consider the image of x4 in Fig. 5b, we see
that there is no kink in y4. This suggests that the KKT multiplier of f is unique even though
Assumption A2 is violated. Note that this is not a contradiction to Lemma 4 b), as 0 lies on
the relative boundary of conv({∇ f (x4)} ∪ ∂g(x4)).

4.2 Exact penalty method

Consider the constrained optimization problem

min
x∈Rn

f (x)

s.t . c1i (x) ≤ 0, i ∈ {1, . . . , p},
c2j (x) = 0, j ∈ {1, . . . , q},

(19)

where f : Rn → R, c1i : Rn → R, i ∈ {1, . . . , p}, and c2j : Rn → R, j ∈ {1, . . . , q}, are
continuously differentiable. In order to solve (19) the so-called exact penalty method can be
used, where the idea is to solve the (nonsmooth) problem

min
x∈Rn

f (x) + λg(x) (20)

with a penalty weight λ ≥ 0 and

g : Rn → R, x �→
⎛
⎝ p∑

i=1

max(c1i (x), 0) +
q∑

j=1

|c2j (x)|
⎞
⎠ .

It is easy to see that g is PC1 and that a set of selection functions is given by
⎧⎨
⎩gθ,σ : Rn → R, x �→

p∑
i=1

θi c
1
i (x) +

q∑
j=1

σi c
2
j (x) : θ ∈ {0, 1}p, σ ∈ {−1, 1}q

⎫⎬
⎭ . (21)

Themethod is based on the theoretical result that there is some λ̄ > 0 such that every strict
local minimizer of (19) is a local minimizer of (20) for every λ > λ̄, i.e., if λ is large enough,
then the constrained problem (19) can be solved via the unconstrained problem (20) (cf. [5],
Theorem 17.3). In practice, problem (20) will become ill-conditioned if λ is large compared
to λ̄. Thus, it is instead solved for multiple, increasing values of λ until a feasible solution
is found. This results in a regularization path R as in (5). Note that all feasible points of
(19) are critical points of g and the minimizer of (19) is typically the first intersection of the
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regularization path with the feasible set (when starting in the minimizer of f ). In particular,
the existence of λ̄ as above implies that the minimizer of (19) is contained in R.

In [34], R is analyzed for the case where f is quadratic (and strictly convex) and all c1i
and c2j are affinely linear. In this case, R coincides with the critical regularization path Rc (cf.
(6)). It is shown that R is piecewise linear, which coincides with our results in Remark A.3.
In [13], the more general case where f and all c1i are convex and all c2j are affinely linear
is considered. There, it still holds R = Rc and it is shown that R is piecewise smooth with
kinks occurring where the constraints become satisfied or violated.

Here, we want to use our theory to analyze the critical regularization path Rc in the more
general setting where f , c1i and c2j are merely continuously differentiable. By our results in
Sect. 3, we know that Rc is piecewise smooth up to points where the Assumptions A1 to
A5 are violated. In Remark A.6 in the “Appendix”, it is shown that if all x ∈ R

n satisfy the
linear independence constraint qualification (LICQ), i.e., if

{∇c1i (x) : c1i (x) = 0} ∪ {∇c2j (x) : c2j (x) = 0} (22)

is linearly independent for all x ∈ R
n , then Assumption A1 always holds and only Assump-

tionsA2 toA5may cause nonsmoothness in Rc. For these remaining assumptionswe consider
the following example, where the feasible set is given by continuously differentiable but non-
convex inequality constraints. It is inspired by problem (15) in [13].

Example 6 Consider the constrained optimization problem (19) with

f (x) = 1

2
x21 + x22 − x1x2 + 1

2
x1 − 2x2,

c11(x) = −
((

x1 − 1

2

)2

+ x22 − 1

)
,

c12(x) =
(

x1 + 1

2

)2

+ x22 − 1,

c13(x) = −
(

x21 +
(

x2 − 1

2

)2

− 1

)
.

The corresponding critical regularization path Rc of (20) can be computed analytically and
is shown in black in Fig. 7a, consisting of two disconnected paths. The feasible set of the
constrained problem coincides with the critical set of g, excluding the three isolated critical
points of g. Since c11 and c13 are nonconvex, g is nonconvex as well, which is why Rc does
not coincide with the actual regularization path R in this case. More precisely, R is merely
the union of the path from the minimal point of f to x2 and the intersection of Rc with the
feasible set (cf. Fig. 7).

In the followingwewill analyze the kinks of Rc, which are located in x1 to x4 and between
the minimal point of f and x1 (cf. Fig. 7a). First of all, it is easy to see that kinks occur
precisely where constraints become satisfied or violated along Rc. Due to the construction of
the selection functions (cf. (21)), this causes Assumption A5 to be violated in these points.

For x1, the gradient of f and the subdifferential of g are shown in Fig. 8a. We see that
Assumption A2 holds and that Assumption A3 is violated since zero lies on the relative
boundary of conv({∇ f (x1)}∪ ∂g(x1)) (cf. Lemma 5). The same behavior occurs in all other
kinks except for x2. For x2, ∇ f (x2) and ∂g(x2) are shown in Fig. 8b. In contrast to the other
points, Assumption A2 is clearly violated since dim(aff(∂g(x2))) = 2 = n. As discussed in
Remark 2, this causes a kink in the image of Rc, which can be seen in Fig. 7b. Moreover, zero
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Fig. 7 a R (black, solid) and Rc (black) for the exact penalty method in Example 6 and the points x1 ≈
(0.1614, 0.9409)�, x2 = (0,

√
3
2 )�, x3 ≈ (−0.8027, 0.9531)�, x4 ≈ (0.4631,−0.2691)� with a zoom of

the intersection of c13(x) = 0 and Rc . b Image of Rc with yi = ( f (xi ), g(xi )), i ∈ {1, . . . , 4}, and the same

coloring as in (a). Furthermore, a zoom of the image around y3

Fig. 8 Gradient of f , subdifferential of g and the corresponding (relative) boundary of the convex hull (dashed)
in x1 and x2 of Example 6

lies in the relative interior of conv({∇ f (x2)} ∪ ∂g(x2)) and it is easy to see that Assumption
A3 holds.

In addition to the features described so far, the image of Rc possesses so-called turning
points. If we treat the image of Rc as an actual (continuous) path, then these are points where
the direction of the path abruptly turns around. For example, this can be observed in y3 and
y4 in Fig. 7b. These points were already discussed in [14] and in Example 3.4 therein, it was
highlighted that they are not necessarily caused by any nonsmoothess of the objectives. Since
we are mainly interested in the structure of Rc in this article, we will leave their analysis for
future work.

Note that all kinks in the previous examples were points where constraints become sat-
isfied or violated, which suggests that the structural results from [13] also hold in our more
general nonconvex case, at least for the critical regularization path Rc. Furthermore, Rc is still
connecting the minimum of f to the solution of the constrained problem (19) (which is the
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intersection of Rc with the feasible set). Thus, it might be possible to apply a path-following
method similar to the one in [13] to nonconvex problems as well.

5 Conclusion

In this article, we have presented results about the structure of regularization paths for
piecewise differentiable regularization terms. We did this by first showing that the critical
regularization path is related to the Pareto critical set Pc of the multiobjective optimization
problem which contains the objective function f and the regularization term g. Afterwards,
we analyzed Pc by reformulating it as a union of the intersection of certain sets, which
allowed us to apply differential geometry to obtain structural results. During this derivation,
we identified five assumptions (A1 to A5) which (when combined) are sufficient for Pc to
have a smooth structure locally around a given x0 ∈ Pc. In turn, nonsmooth features of Pc

(like “kinks”) can be classified depending on which of these five assumptions is violated. We
demonstrated this by analyzing the regularization paths for the support-vector machine and
the exact penalty method.

Based on our results in this article, there are multiple possible directions for future work:

• We believe that most of our theoretical results would still hold (with only minor adjust-
ments) if we would assume f to be merely piecewise differentiable as well (In this case,
the regularization function f + λg would still be piecewise differentiable).

• Although the MOP (7) considered in this article has only two objectives, multiobjective
optimization can handle any number of objectives. In particular, (7) could be formulated
for arbitrarily many regularization terms. We believe that results similar to ours (with a
higher-dimensional regularization path) could be obtained for this case. This would allow
regularizationmethods such as the elastic net [35] to be incorporated into our framework.

• While we were focused on regularization in this article, our results can also be used in
the context of general multiobjective optimization to construct path-following methods
for the solution of nonsmooth MOPs, extending [12–14, 26].

• Although we provided the main ingredients for the construction of path-following meth-
ods, i.e., a way to compute the tangent space in smooth areas and a characterization of
nonsmooth points, their development and actual implementation is still non-trivial. For
example, other important ingredients are the computation of new points on Rc after taking
a step along the tangent direction (also known as a corrector), the detection of kinks in the
path and the computation of the correct tangent direction after a kink was found. Treating
these problems in our general framework could greatly simplify the development of new
path-following methods.
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Appendix A

A.1 Proof of Lemma 4

Let {g1, . . . , gk} be a set of selection functions of g and let I e(x0) = {i1, . . . , il}.

(a) By assumption, for s ∈ {1, 2}, there have to be αs
1 > 0 and βs ∈ (R≥0)l such that

αs
1 + ∑l

j=1 βs
j = 1,

αs
1∇ f (x0) +

l∑
j=1

βs
j∇gi j (x0) = 0 (A1)

and α1
1 �= α2

1 . This implies

α1
1∇ f (x0) +

l∑
j=1

β1
j ∇gi j (x0) = α2

1∇ f (x0) +
l∑

j=1

β2
j ∇gi j (x0)

⇔ ∇ f (x0) = 1

α1
1 − α2

1

l∑
j=1

(β2
j − β1

j )∇gi j (x0) =
l∑

j=1

β2
j − β1

j

α1
1 − α2

1

∇gi j (x0)

with

l∑
j=1

β2
j − β1

j

α1
1 − α2

1

= 1 − α2
1 − (1 − α1

1)

α1
1 − α2

1

= 1,

showing that ∇ f (x0) ∈ aff(∂g(x0)).
(b) Since ∇ f (x0) ∈ aff(∂g(x0)) there has to be some β ′ ∈ R

l with
∑l

j=1 β ′
j = 1 and

∇ f (x0) =
l∑

j=1

β ′
j∇gi j (x0). (A2)
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Furthermore, by Lemma SM5, zero being contained in ri(conv({∇ f (x0)} ∪ ∂g(x0))) is
equivalent to the existence of α1 > 0 and β ∈ (R>0)l with α1 + ∑l

j=1 β j = 1 and

α1∇ f (x0) +
l∑

j=1

β j∇gi j (x0) = 0. (A3)

Combination of (A2) and (A3) yields

(α1 − λ)∇ f (x0) +
l∑

j=1

(β j + λβ ′
j )∇gi j (x0) = 0 ∀λ ∈ R

and

(α1 − λ) +
l∑

j=1

(β j + λβ ′
j ) = α1 +

l∑
j=1

β j + λ

⎛
⎝−1 +

l∑
j=1

β ′
j

⎞
⎠ = 1 ∀λ ∈ R.

Since α1 > 0 and β ∈ (R>0)l , there has to be some λ �= 0 such that α1 − λ > 0 and
β + λβ ′ ∈ (R>0)l . In particular, α1 − λ �= α1 is another KKT multiplier corresponding
to f in x0, completing the proof.

A.2 Proof of Lemma 5

Let {g1, . . . , gk} be a set of selection functions that satisfies A3. Let L := {1, . . . , k} \
{i1, . . . , ir }. Since {∇ f (x0)} ∪ {∇gi (x0) : i ∈ {i1, . . . , ir }} is an affine basis of
aff({∇ f (x0)} ∪ ∂g(x0)), there are coefficients θ l ∈ R and νl ∈ R

r for every l ∈ L with
θ l + ∑r

j=1 νl
j = 1 and

∇gl(x0) = θ l∇ f (x0) +
r∑

j=1

νl
j∇gi j (x0).

Let θ̄ := −∑
l∈L θ l and ν̄ j := −∑

l∈L νl
j for j ∈ {1, . . . , r}. Then

0 =
∑
l∈L

⎛
⎝∇gl(x0) − θ l∇ f (x0) −

r∑
j=1

νl
j∇gi j (x0)

⎞
⎠

= θ̄∇ f (x0) +
r∑

j=1

ν̄ j∇gi j (x0) +
∑
l∈L

∇gl(x0)

and θ̄ + ∑r
j=1 ν̄ j + ∑

l∈L 1 = 0. Let α0 > 0 and β0 ∈ (R>0)r as in A3. Then

0 = α0∇ f (x0) +
r∑

j=1

β0
j ∇gi j (x0)

= α0∇ f (x0) +
r∑

j=1

β0
j ∇gi j (x0) + λ

⎛
⎝θ̄∇ f (x0) +

r∑
j=1

ν̄ j∇gi j (x0) +
∑
l∈L

∇gl(x0)

⎞
⎠

= (α0 + λθ̄)∇ f (x0) +
r∑

j=1

(β0
j + λν̄ j )∇gi j (x0) +

∑
l∈L

λ∇gl(x0) (A4)
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for all λ ∈ R. By construction, there is some λ > 0 such that (A4) is a vanishing convex
combination with strictly positive coefficients. Applying Lemma SM5 completes the proof.

A.3 Remark regarding Sect. 3.2

Let

f : Rn → R, x �→ 1

2
x� Ax + b�x + c

for A ∈ R
n×n , b ∈ R

n and c ∈ R. Furthermore, assume that there is a set of selection
functions {g1, . . . , gk} of g consisting of affinely linear functions, i.e.,

gi : Rn → R, x �→ d�
i x + ei

for di ∈ R
n , ei ∈ R, i ∈ {1, . . . , k}. Let x0 ∈ Pc and assume that Lemma 6 is applicable,

yielding an index set {i1, . . . , ir } ⊆ {1, . . . , k}, an open neighborhood U ′ ⊆ R
n of x0 and

coefficients α0 ∈ R
>0 and β0 ∈ (R>0)r such that h(x0, α0, β0) = 0. In this case, the map

h reduces to

h(x, α, β) =
⎛
⎜⎝

α(Ax + b) + ∑r
j=1 β j di j

α + ∑r
j=1 β j − 1

((d�
i j

− di1)
�x + ei j − ei1) j∈{2,...,r}

⎞
⎟⎠ .

We will show that

prx (h
−1(0)) ∩ U ′ = (x0 + prx (ker(Dh(x0, α0, β0)))) ∩ U ′, (A5)

which by Lemma 6 implies that P I e(x0)
c ∩�I e(x0) ∩U ′ is an affinely linear set with dimension

dim(prx (ker(Dh(x0, α0, β0)))).
To this end, let (vx , vα, vβ) ∈ ker(Dh(x0, α0, β0)). Since α0 > 0, there is some ε > 0

such that α0 − tvα > 0 for all t ∈ [0, ε). Define

s : [0, ε) → R, t �→ tα0

α0 − tvα
.

Since α0 > 0 and β0 ∈ (R>0)r , there is some ε′ ∈ (0, ε) such that

α0 + s(t)vα > 0,

β0
j + s(t)vβ

j > 0 ∀ j ∈ {1, . . . , r}
for all t ∈ [0, ε′). Furthermore, sinceU ′ is an open neighborhood of x0, there is some ε′′ > 0
such that x0 + tvx ∈ U ′ for all t ∈ [0, ε′′). Finally, a simple calculation shows that

h(x0 + tvx , α0 + s(t)vα, β0 + s(t)vβ) = 0 ∀t ∈ [0, ε′′).

Thus, “⊇” holds in (A5).
In turn, let (x1, α1, β1) ∈ U ′ × R

>0 × (R>0)r with h(x1, α1, β1) = 0. Let s := α0

α1 . It is
easy to show that

(x1 − x0, s(α1 − α0), s(β1 − β0)) ∈ ker(Dh(x0, α0, β0)),

implying that “⊆” holds in (A5).
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A.4 Proof of Lemma 7

By assumption there is a sequence (xs)s∈N ∈ Pc with lims→∞ xs = x0 and I e(xs) �= I e(x0)
for all s ∈ N. Assumew.l.o.g. that I e(xs) is constant for all s ∈ N. Due to the definition of the
essentially active set, we can assume w.l.o.g. that I e(xs) = {i1, . . . , im} ⊆ I e(x0) for some
m < l. Since xs ∈ Pc for all s ∈ N, there are sequences (αs)s∈N ∈ R

≥0, (βs)s∈N ∈ (R≥0)m

with αs + ∑m
j=1 βs

j = 1 and

αs∇ f (xs) +
m∑

j=1

βs
j∇gi j (xs) = 0

for all s ∈ N. Since (αs)s∈N and (βs)s∈N are bounded, we can assume w.l.o.g. that there
are α ∈ R

≥0 and β̄ ∈ (R≥0)m with lims→∞ αs = α and lims→∞ βs = β̄. In particular,
α + ∑l

j=1 β̄ j = 1. By continuity of ∇ f and ∇gi , i ∈ {1, . . . , k}, we have

α∇ f (x0) +
m∑

j=1

β̄ j∇gi j (x0) = 0.

The proof follows by setting β = (β̄i1 , . . . , β̄im , 0, . . . , 0)� ∈ (R≥0)l .

A.5 Remark regarding Sect. 4.1

Let g : Rn → R be any piecewise linear and convex function. Let x0 ∈ R
n . By Lemma SM1,

there is an open neighborhood U ⊆ R
n of x0 and a set of (affinely linear) selection functions

{g1, . . . , gk} of g|U which are all essentially active in x0. In particular, I (x0) = {1, . . . , k},
so A1(i) holds.
To see that A1(ii) holds, let z ∈ U and j ∈ I (z). Since all selection functions are essentially
active in x0, we have

x0 ∈ cl(int({y ∈ U : g(y) = g j (y)})),
so V := int({y ∈ U : g(y) = g j (y)}) �= ∅. Let y ∈ V . Since g is convex and g j is affinely
linear, we have

g((1 − λ)y + λz) ≤ (1 − λ)g(y) + λg(z) = (1 − λ)g j (y) + λg j (z)

= g j ((1 − λ)y + λz) ∀λ ∈ [0, 1]. (A6)

Assume that we have inequality in (A6), i.e., assume that there is some λ̄ ∈ [0, 1] with
g(x̄) < g j (x̄) for x̄ := (1 − λ̄)y + λ̄z. Then

g((1 − λ)y + λx̄) ≤ (1 − λ)g(y) + λg(x̄) < (1 − λ)g(y) + λg j (x̄)

= g j ((1 − λ)y + λx̄) ∀λ ∈ (0, 1].
This is a contradiction to the openness of V , so we must have equality in (A6). This implies

j ∈ I ((1 − λ)y + λz) ∀λ ∈ [0, 1].
As this holds for arbitrary y ∈ V , we have

j ∈ I (x) ∀x ∈ conv(V ∪ {z}).
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Since V is open in R
n , it is possible to show that

z ∈ cl(int(conv(V ∪ {z}))) ⊆ cl(int({y ∈ U : g(y) = g j (y)})),
showing that j ∈ I e(z).
Since ∇gi is constant for all i ∈ {1, . . . , k}, it is easy to see that A1(iii) holds as well.

A.6 Remark regarding Sect. 4.2

We begin by deriving an explicit expression for the active set. To this end, let x ∈ R
n and

assume w.l.o.g. that there are p̄ ∈ {1, . . . , p}, q̄ ∈ {1, . . . , q} such that

c1i (x) = 0, ∀i ∈ {1, . . . , p̄}, c1i (x) �= 0, ∀i ∈ { p̄ + 1, . . . , p},
c2j (x) = 0, ∀ j ∈ {1, . . . , q̄}, c2j (x) �= 0, ∀ j ∈ {q̄ + 1, . . . , q}. (A7)

For i ∈ { p̄ + 1, . . . , p} and j ∈ {q̄ + 1, . . . , q} define

θ̂i :=
{
1, if c1i (x) > 0

0, if c1i (x) < 0
,

σ̂ j := sign(c2j (x)),

(A8)

and

c̄ : Rn → R, x �→
p∑

i= p̄+1

θ̂i c
1
i (x) +

q∑
j=q̄+1

σ̂ j c
2
j (x).

Then by construction,

g(x) =
p∑

i=1

max{c1i (x), 0} +
q∑

j=1

|c2j (x)| =
p∑

i= p̄+1

max{c1i (x), 0} +
q∑

j=q̄+1

|c2j (x)|

=
p∑

i= p̄+1

θ̂i c
1
i (x) +

q∑
j=q̄+1

σ̂ j c
2
j (x) = c̄(x)

= c̄(x) +
p̄∑

i=1

θ̄i c
1
i (x) +

q̄∑
j=1

σ̄ j c
2
j (x)

= g
(θ̄ ,θ̂ ),(σ̄ ,σ̂ )

(x)

for all θ̄ ∈ {0, 1}p , σ̄ ∈ {−1, 1}q . Thus

Ī :=
{
((θ̄ , θ̂ )�, (σ̄ , σ̂ )�) : θ̄ ∈ {0, 1} p̄, σ̄ ∈ {−1, 1}q̄

}
⊆ I (x).

To show that “⊇” holds, let (θ̃ , σ̃ ) ∈ I (x). Then

θ̂i − θ̃i =

⎧⎪⎨
⎪⎩

−1, if θ̂i �= θ̃i , θ̂i = 0

1, if θ̂i �= θ̃i , θ̂i = 1

0, otherwise

, σ̂ j − σ̃ j =

⎧⎪⎨
⎪⎩

−2, if σ̂ j �= σ̃ j , σ̂i = −1

2, if σ̂ j �= σ̃ j , σ̂i = 1

0, otherwise
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for all i ∈ { p̄ + 1, . . . , p}, j ∈ {q̄ + 1, . . . , q}. Combined with (A8), this implies

0 = g(x) − gθ̃ ,σ̃ (x) =
p∑

i=1

max{c1i (x), 0} +
q∑

j=1

|c2j (x)| −
p∑

i=1

θ̃i c
1
i (x) −

q∑
j=1

σ̃ j c
2
j (x)

=
p∑

i= p̄+1

(θ̂i − θ̃i )c
1
i (x) +

q∑
j=q̄+1

(σ̂ j − σ̃ j )c
2
j (x)

=
p∑

i= p̄+1
θ̂i �=θ̃i

|c1i (x)| +
q∑

j=q̄+1
σ̂ j �=σ̃ j

2|c2j (x)|,

so both sums must be empty, i.e., θ̂i = θ̃i for all i ∈ { p̄ + 1, . . . , p} and σ̂ j = σ̃ j for all
i ∈ {q̄ + 1, . . . , q}. In particular (θ̃ , σ̃ ) ∈ Ī , so Ī = I (x) for all x ∈ R

n .
In the following, we will show that all active selection functions are essentially active. To

this end, let (θ, σ ) ∈ I (x) = Ī . Define

vi :=
{

∇c1i (x), if θi = 0

−∇c1i (x), if θi = 1
∀i ∈ {1, . . . , p̄},

w j := −σ j∇c2j (x) ∀ j ∈ {1, . . . , q̄},
C := conv({vi : i ∈ {1, . . . , p̄}} ∪ {w j : j ∈ {1, . . . , q̄}}).

The LICQ (cf. (22)) implies that 0 /∈ C . With a basic result from convex analysis (cf. Lemma
in [36]), it follows that there is some d ∈ R

n \ {0} with

0 > 〈vi , d〉 =
{

〈∇c1i (x), d〉, if θi = 0

−〈∇c1i (x), d〉, if θi = 1
∀i ∈ {1, . . . , p̄},

0 > 〈w j , d〉 = −〈σ j∇c2j (x), d〉 ∀ j ∈ {1, . . . , q̄}.

The continuity of the constraint functions implies that there is some T > 0 such that

sign(c1i (x + td)) =
{

−1, if θi = 0

1, if θi = 1
∀i ∈ {1, . . . , p},

sign(c2j (x + td)) = σ j ∀ j ∈ {1, . . . , q},

for all t ∈ (0, T ). Note that in particular, for all points x + td with t ∈ (0, T ), there is a
neighborhood of x + td on which g is smooth with g = gθ,σ . This shows that (θ, σ ) ∈ I e(x).

Let x0 ∈ R
n . From our discussion up to this point it follows that A1(i) and (ii) hold for

an appropriate open neighborhood U of x0. To show that A1(iii) holds, let (θ ′, σ ′) be any
element of Ī = I (x0) (with p̄ and q̄ as in (A7)) and z ∈ U . Clearly,

span({∇gθ,σ (z) − ∇gθ ′,σ ′(z) : (θ, σ ) ∈ Ī })
⊆ span({∇c1i (z) : i ∈ {1, . . . , p̄}} ∪ {∇c2j (z) : j ∈ {1, . . . , q̄}}). (A9)

123



740 Journal of Global Optimization (2023) 85:709–741

We will show that we actually have equality in (A9), which implies that A1(iii) holds by the
LICQ (cf. (22)). To this end, let i ′ ∈ {1, . . . , p̄}. Define

θ̃i :=

⎧⎪⎨
⎪⎩

θ ′
i , if i �= i ′

1, if i = i ′, θ ′
i = 0

0, if i = i ′, θ ′
i = 1

∀i ∈ {1, . . . , p̄}.

Then (θ̃ , σ ′) ∈ Ī , so gθ̃ ,σ ′(z)−gθ ′,σ ′(z) = ±∇c1i ′(z) and∇c1i ′(z) is contained in the left-hand

side of (A9). Analogously, it is possible to show that ∇c2j (z) is contained in the left-hand
side of (A9) for all j ∈ {1, . . . , q̄}, such that equality holds.
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