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Abstract
In this paper we consider a problem, called convex projection, of projecting a convex set
onto a subspace. We will show that to a convex projection one can assign a particular multi-
objective convex optimization problem, such that the solution to that problem also solves the
convex projection (and vice versa), which is analogous to the result in the polyhedral convex
case considered in Löhne and Weißing (Math Methods Oper Res 84(2):411–426, 2016). In
practice, however, one can only compute approximate solutions in the (bounded or self-
bounded) convex case, which solve the problem up to a given error tolerance. We will show
that for approximate solutions a similar connection canbeproven, but the tolerance level needs
to be adjusted. That is, an approximate solution of the convex projection solves the multi-
objective problem only with an increased error. Similarly, an approximate solution of the
multi-objective problem solves the convex projectionwith an increased error. In both cases the
tolerance is increased proportionally to amultiplier. Thesemultipliers are deduced and shown
to be sharp. These results allow to compute approximate solutions to a convex projection
problem by computing approximate solutions to the corresponding multi-objective convex
optimization problem, for which algorithms exist in the bounded case. For completeness, we
will also investigate the potential generalization of the following result to the convex case. In
Löhne and Weißing (Math Methods Oper Res 84(2):411–426, 2016), it has been shown for
the polyhedral case, how to construct a polyhedral projection associated to any given vector
linear program and how to relate their solutions. This in turn yields an equivalence between
polyhedral projection, multi-objective linear programming and vector linear programming.
We will show that only some parts of this result can be generalized to the convex case, and
discuss the limitations.
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1 Introduction

Let us start with a short motivation, describing a field of research where convex projection
problems, the main object of this paper, arise. A dynamic programming principle, called a
set-valued Bellman principle, for a particular vector optimization problem has been proposed
in [4], and has also been applied in [3,5] to other multivariate problems. Often, dynamic opti-
mization problems depend on some parameter, in the above examples the initial capital. Then,
the dynamic programming principle leads to a sequence of parametrized vector optimiza-
tion problems, that need to be solved recursively backwards in time. A parametrized vector
optimization problem can equivalently be written as a projection problem. If the problem
happens to be polyhedral, the theory of [8] can be applied, which allows to rewrite the poly-
hedral projection as a particular multi-objective linear program, and thus, known solvers can
be used to solve the original parametrized vector optimization problem for all values of the
parameter. This method has been used e.g. in [5]. However, in general the problem is convex,
and not necessarily polyhedral, and thus leads to a convex projection problem.

The aim of this paper is to develop the needed theory to treat these problems. That is, to
define the problem of convex projection, find appropriate solution concepts and, in analogy
to the polyhedral case, relate those to a multi-objective convex problem, for which, at least
in the bounded case, solvers are already available that compute approximate solutions, see
[1,2,7]. It is left for future research to develop algorithms to solve also unbounded multi-
objective convex problems, which would, by the results of this paper, also allow to solve
certain unbounded convex projection problems. This, in turn, would then enable to solve
the above mentioned problems arising from multivariate dynamic programming as they are
by construction unbounded. Thus, the present research can be seen as a first step into that
direction, but might also be of independent interest.

Let us start with a short description of the known results in the polyhedral case. Polyhedral
projection is a problem of projecting a polyhedral convex set, given by a finite collection of
linear inequalities, onto a subspace. This problem is considered in [8], where an equiva-
lence between polyhedral projection, multi-objective linear programming and vector linear
programming is proven.

The following problem is called a polyhedral projection:

compute Y = {y ∈ Rm | ∃x ∈ Rn : Gx + Hy ≥ h},
where the matrices G ∈ Rk×n, H ∈ Rk×m and a vector h ∈ Rk define a polyhedral feasible
set S = {(x, y) ∈ Rn × Rm | Gx + Hy ≥ h} to be projected. To the above polyhedral
projection corresponds a multi-objective linear program

min

(
y

−1Ty

)
with respect to ≤Rm+1+

subject to Gx + Hy ≥ h.

In [8] it is proven that every solution of the associated multi-objective linear program is
also a solution of the polyhedral projection (and vice versa) and, moreover, a solution exists
whenever the polyhedral projection is feasible. This enables to solve polyhedral projection
problems using the existing solvers for multi-objective (vector) linear programs such as [9].
Furthermore, [8] shows how to construct a polyhedral projection associated to any given
vector linear program. A solution of the given vector linear program can then, under some
assumptions, be recovered from a solution of the associated polyhedral projection. This
yields the aforementioned equivalence between polyhedral projection, multi-objective linear
programming and vector linear programming.
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In this paper we are interested in a projection problem, where the feasible set S ⊆ Rn×Rm

is convex, but not necessarily polyhedral. Our problem, which we call a convex projection,
is of the form

compute Y = {y ∈ Rm | ∃x ∈ Rn : (x, y) ∈ S}. (CP)

Under computing the set Y we understand computing a collection of feasible points that
(exactly or approximately) span the set Y . The question we want to answer is whether there
exists a similar connection between convex projection, multi-objective convex optimization
and convex vector optimization as there is in the linear (polyhedral) case. Inspired by [8], we
consider the multi-objective convex problem

min

(
y

−1Ty

)
with respect to ≤Rm+1+

subject to (x, y) ∈ S. (1)

Just as in the polyhedral case, there is a close link between the problems (CP) and (1).
Relating solutions of the two problems, however, becomes somehowmore involved. Namely,
we need to make clear with which solution concept we work and also consider the bounded-
ness of the problem. The notion of an exact solution does exist, but it is mostly a theoretical
concept as it usually does not consist of finitely many points. In practice, instead, one obtains
approximate solutions (i.e. finite ε-solutions), which solve the problem up to a given error
tolerance.We consider exact solutions, as well as approximate solutions of bounded and self-
bounded problems. Precise definitions will be given in the following sections. The results
for exact solutions (which does not assume (self-)boundedness) are parallel to those for the
linear case considered in [8], we obtain an equivalence between exact solutions of the convex
projection (CP) and the associated multi-objective problem (1). For approximate solutions
(of bounded or self-bounded problems) a connection also exists, but the tolerance needs
to be adjusted. That is, an approximate solution of the convex projection solves the multi-
objective problem only with an increased error. Similarly, an approximate solution of the
multi-objective problem solves the convex projection with an increased error. In both cases
the tolerance is increased proportionally to a multiplier that is roughly equal to the dimension
of the problem.

A problem similar to (CP) was considered in [12], where an outer approximation Benson
algorithmwas adapted to solve it under some compactness assumptions. Here, we take amore
theoretical approach to relate the different problem classes. For this reason we also consider
a general convex vector optimization problem. There does exist an associated convex projec-
tion, which spans (up to a closure) the upper image of the vector problem. However, instead of
having a correspondence between solutions of the two problems, we can only connect (exact
or approximate) solutions of the associated projection to (exact or approximate) infimizers
of the vector optimization.

The paper is organized as follows: Sect. 2.1 contains preliminaries and introduces the
notation, Sect. 2.2 summarizes the solution concepts and properties of a convex vector opti-
mization problem. In Sect. 3.1, we define a convex projection and introduce the corresponding
solution concepts. Section 3.2 contains the main results, the connection between the convex
projection and an associated multi-objective problem is established. Section 4 formulates a
convex projection corresponding to a given convex vector optimization problem. Finally, in
Sect. 5 the derived results are considered under a slightly different solution concept based on
the Hausdorff distance, which was recently proposed in [1].
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2 Preliminaries

2.1 Notation

For a set A ⊆ Rm we denote by conv A, cone A, cl A and int A the convex hull, the conical
hull, the closure and the interior of A, respectively. The recession cone of the set A ⊆ Rm

is A∞ = {y ∈ Rm | ∀x ∈ A, λ ≥ 0 : x + λy ∈ A}. A cone C ⊆ Rm is solid if it has a
non-empty interior, it is pointed if C ∩ −C = {0} and it is non-trivial if {0} � C � Rm . A
non-trivial pointed convex cone C ⊆ Rm defines a partial ordering on Rm via q(1) ≤C q(2) if
and only if q(2) − q(1) ∈ C . Given a non-trivial pointed convex cone C ⊆ Rm and a convex
setX ⊆ Rn , a function Γ : X → Rm is C-convex, if for all x (1), x (2) ∈ X and λ ∈ [0, 1] it
holdsΓ (λx (1)+(1−λ)x (2)) ≤C λΓ (x (1))+(1−λ)Γ (x (2)). TheMinkowski sum of two sets
A, B ⊆ Rm is, as usual, denoted by A+B = {a+b | a ∈ A, b ∈ B}. As a short hand notation
we will denote the Minkowski sum of a set A ⊆ Rm and the negative of a cone C ⊆ Rm by
A − C = A + (−C). The positive dual cone of C is C+ = {w ∈ Rm |wTc ≥ 0∀c ∈ C}.

Throughout the paper we fix p ∈ [1,∞] and denote by ‖ ·‖ the p-norm and by Bε = {z ∈
Rm | ‖z‖ ≤ ε} the closed ε-ball around the origin in this norm. The standard basis vectors
are denoted by e(1), . . . , e(m). In the following, we work with Euclidean spaces of various
dimensions, mainly with Rm and Rm+1. In order to keep the notation as simple as possible
we do not explicitly denote the dimensions of most vectors (e.g. e(1)) or sets (e.g. Bε), as
they should be clear from the context. One exception is the vector of ones, where we denote
1 ∈ Rm and 1 ∈ Rm+1 to avoid any confusion.

We use three projection mappings, projy : Rn × Rm → Rm, projx : Rn × Rm → Rn

and proj−1 : Rm+1 → Rm . The mapping projy , given by the matrix projy = (
0 I

)
,

projects a vector (x, y) ∈ Rn × Rm onto y ∈ Rm . The mapping projx , given by the matrix
projx = (

I 0
)
, projects a vector (x, y) ∈ Rn × Rm onto x ∈ Rn . The mapping proj−1

drops the last element of a vector from Rm+1.

2.2 Convex vector optimization problem

In this section we recall the definition of a convex vector optimization problem, its properties
and solution concepts from [7,13], which are adopted within this work, and which are based
on the lattice approach to vector optimization [6].

A convex vector optimization problem is

minΓ (x) with respect to ≤C subject to x ∈ X , (CVOP)

whereC ⊆ Rm is a non-trivial, pointed, solid, convex ordering cone,X ⊆ Rn is a convex set
and the objective function Γ : X → Rm is C-convex. The convex feasible setX is usually
specified via a collection of convex inequalities. A convex vector optimization problem is
called a multi-objective convex problem if the ordering cone is the natural ordering cone,
i.e. if C = Rm+. A particular multi-objective convex problem that helps in solving a convex
projection problem will be considered in Sect. 3.2. The general convex vector optimization
problem and its connection to convex projections will be treated in Sect. 4.

The image of the feasible set X is defined as Γ [X ] = {Γ (x) | x ∈ X }. The closed
convex set

G = cl(Γ [X ] + C)
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is called the upper image of (CVOP). A feasible point x̄ ∈ X is a minimizer of (CVOP) if it
holds ({Γ (x̄)}−C\{0})∩Γ [X ] = ∅. It is aweakminimizer if ({Γ (x̄)}−intC)∩Γ [X ] = ∅.

Definition 1 (see [13]) The problem (CVOP) is bounded if for some q ∈ Rm it holds
G ⊆ {q} + C . If (CVOP) is not bounded, it is called unbounded. The problem (CVOP) is
self-bounded if G = Rm and for some q ∈ Rm it holds G ⊆ {q} + G∞.

Self-boundedness is related to the tractability of the problem, i.e., to the existence of
polyhedral inner and outer approximations to the Pareto frontier of (CVOP) such that the
Hausdorff distance between the two is finite, see [13]. Self-boundedness allows to turn an
unbounded problem into a bounded one by replacing the ordering cone C by G∞. One
can notice that a bounded problem is a special case of a self-bounded one. The following
relationship holds.

Lemma 1 A self-bounded (CVOP) is bounded if and only if G∞ = clC.

Proof Boundedness of (CVOP) implies G∞ ⊆ clC , together with clC ⊆ G∞ one obtains
G∞ = clC . For the reverse, note that self-boundedness andG∞ = clC implyG ⊆ {q}+clC .
To prove the boundedness of (CVOP), one needs to show that also G ⊆ {q̄} + C for some
q̄ ∈ Rm . This follows from clC ⊆ {−δc}+C for arbitrary δ > 0 and c ∈ intC , which holds
as C is a solid convex cone. Thus one can set q̄ = q − δc. ��

Boundedness of the problem (CVOP) is defined as boundedness of the upper imageG with
respect to the ordering coneC . According to the above proof, for a solid coneC boundedness
of G with respect to C , with respect to clC and with respect to intC are equivalent.

(Self-)boundedness is important for the definition of approximate solutions. In the fol-
lowing, a normalized direction c ∈ intC , i.e. ‖c‖ = 1, and a tolerance ε > 0 are fixed.

Definition 2 (see [7,13]) A set X̄ ⊆ X is an infimizer of (CVOP) if it satisfies

G = cl conv(Γ [X̄ ] + C).

An infimizer X̄ of (CVOP) is called a (weak) solution if it consists of (weak) minimizers
only. A nonempty finite set X̄ ⊆ X is a finite ε-infimizer of a bounded problem (CVOP) if

G ⊆ convΓ [X̄ ] + C − ε{c}. (2)

A nonempty finite set X̄ ⊆ X is a finite ε-infimizer of a self-bounded problem (CVOP)
if

G ⊆ convΓ [X̄ ] + G∞ − ε{c}. (3)

A finite ε-infimizer X̄ of (CVOP) is called a finite (weak) ε-solution if it consists of (weak)
minimizers only.

There are algorithms such as [1,2,7] for finding finite ε-solutions of a bounded (CVOP)
(under some assumptions, e.g. compact feasible set, continuous objective). The definition of
a finite ε-solution in the self-bounded case is more of a theoretical concept, as it assumes that
the recession cone of the upper image is known. Nevertheless, we consider also this case, as
it can be treated jointly with the bounded case. To the best of our knowledge, there is, so far,
no algorithm for solving an unbounded (CVOP), which also means, there is no definition yet
of an approximate solution in the not self-bounded case.
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The definition of a finite ε-solution in [1] differs slightly from the one used here that is
based on [7]. However, the structure of the main results (Theorems 2, 3, 4 and 5) remain
valid using the definition from [1] under some minor adjustments of some details, which are
given in Sect. 5.

In this paper we will often refer to a solution as an exact solution and to a finite ε-solution
as an approximate solution.

3 Convex projections

3.1 Definitions

The object of interest is the convex counterpart of the polyhedral projection, that is, the
problem of projecting a convex set onto a subspace. Thus, let a convex set S ⊆ Rn × Rm be
given. Just as the feasible set X of (CVOP), it could be specified via a collection of convex
inequalities. The aim is to project the feasible set S onto its y-component, that is to

compute Y = {y ∈ Rm | ∃x ∈ Rn : (x, y) ∈ S}. (CP)

First, we introduce the properties of boundedness and self-boundedness for the convex
projection problem.

Definition 3 The convex projection (CP) is called bounded if the set Y is bounded, i.e. Y ⊆
BK for some K > 0. The convex projection (CP) is called unbounded if it is not bounded.
The convex projection (CP) is called self-bounded if Y = Rm and there exist finitely many
points y(1), . . . , y(k) ∈ Rm such that

Y ⊆ conv{y(1), . . . , y(k)} + (cl Y )∞. (4)

The reader can justifiably question the differences between Definition 3 for the projection
problem and Definition 1 for the vector optimization problem. As far as bounded problems
are concerned, these differences are intuitively reasonable: Each of the two problems is
represented by a set, (CVOP) by the upper image G and (CP) by the set Y . The upper image
G is a so-called closed upper set with respect to the ordering cone C . Boundedness of the
problem (CVOP), therefore, corresponds to boundedness of G with respect to the ordering
cone, in particular as an upper set cannot be topologically bounded. On the other hand, the
set Y is not an upper set and it can be bounded in the usual topological sense. Furthermore,
as no ordering cone was specified to define the convex projection, boundedness with respect
to the ordering cone is not the appropriate concept here. The difference for the self-bounded
problems is less intuitive.Wediscuss in detail in Sect. 3.2.1why for convexprojectionsfinitely
many points are necessary, while for convex vector optimization problems it is enough to
consider one point in the definition of self-boundedness, which provides a motivation for
the definition we proposed here. Finally, we will prove in Proposition 1 below that the
definitions of boundedness and self-boundedness in Definition 3 for the projection problem
and Definition 1 for a particular multi-objective convex optimization problem correspond
one-to-one to each other.

Now, we give a definition of solutions—both exact and approximate—for the convex
projection. Since we aim towards relating the projection to vector optimization, we only
define approximate solutions for the bounded and the self-bounded case. Let a tolerance
level ε > 0 be fixed.
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Definition 4 A set S̄ ⊆ S is called a solution of (CP) if it satisfies

Y ⊆ cl conv projy[S̄]. (5)

A non-empty finite set S̄ ⊆ S is called a finite ε-solution of a bounded problem (CP) if

Y ⊆ conv projy[S̄] + Bε. (6)

A non-empty finite set S̄ ⊆ S is called a finite ε-solution of a self-bounded problem (CP)
if

Y ⊆ conv projy[S̄] + (cl Y )∞ + Bε. (7)

3.2 An associatedmulti-objective convex problem

We are interested in examining the connection between convex projections and convex vector
optimization. The linear counterpart suggests that multi-objective optimization might be
helpful also for solving the convex projection problem. Inspired by the polyhedral case of
[8] and the case of convex bodies in [12], we construct a multi-objective problem with the
same feasible set S and one additional dimension of the objective space. That is, we consider
the following problem

min

(
y

−1Ty

)
with respect to ≤Rm+1+

subject to (x, y) ∈ S, (8)

which is a multi-objective convex optimization problem with a linear objective function and
a convex feasible set S. To increase readability we add the following notations. Themappings

P : Rn × Rm → Rm+1 and Q : Rm → Rm+1 are given by the matrices P =
(
0 I
0 −1T

)

and Q =
(

I
−1T

)
, respectively. The image of the feasible set of (8) is given by P[S] =

{P(x, y) | (x, y) ∈ S}, its upper image is denoted by

P = cl(P[S] + Rm+1+ ).

The aim of this section is to establish a connection between the convex projection (CP) and
the multi-objective problem (8), between their properties and their solutions. Then, a solution
provided by a solver for problem (8) would lead the way to a solution to problem (CP). The
following observations are immediate, most importantly the connection between the sets
P[S] and Y .

Lemma 2 1. Every feasible point (x, y) ∈ S is a minimizer of (8).
2. For the sets Y and P[S] it holds Y = proj−1[P[S]] and P[S] = Q[Y ].
Proof The first claim follows from the form of the matrix P . Since Y = projy[S], the second
claim follows from the matrix equalities projy = proj−1 ·P and P = Q · projy . ��

A similar observation was made in [12] about the problem studied there. Also here,
convexity is not usedwithin the proof, so the claimwould hold also for non-convex projection
problems.

For convenience, we restate from Definition 2 the definition of exact and approximate
solutions specifically for problem (8) with the direction ‖1‖−11 ∈ int Rm+1+ , and applying
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Lemma 2 (1). A set S̄ ⊆ S is a solution of (8) if

P = cl conv(P[S̄] + Rm+1+ ). (9)

A nonempty finite set S̄ ⊆ S is a finite ε-solution of a self-bounded (8) if

P ⊆ conv P[S̄] + P∞ − ε{‖1‖−11}. (10)

This includes also the case of a bounded problem (8), where P∞ = Rm+1+ .

3.2.1 Relation of boundedness

The definition of an approximate solution and the availability of solvers (for (CVOP)) depend
on whether the problem is (self-)bounded. So before we can relate approximate solutions of
the two problems, we need to relate their properties with respect to boundedness. Which also
brings us back to the question raised in the previous section—why does our definition of a
self-bounded problem differ between the projection and the vector optimization problem?

An analogywith the corresponding definition in convex vector optimizationwould suggest
that the convex projection (CP) should be considered self-bounded if Y = Rm and there exists
a single point y ∈ Rm such that

Y ⊆ {y} + Y∞. (11)

Instead, we suggested to replace the single point y with a convex polytope and to use
the recession cone of the closure of Y . This led to the following notion of self-boundedness
in Definition 3: The convex projection problem (CP) is called self-bounded if Y = Rm and
there exist finitely many points y(1), . . . , y(k) ∈ Rm such that

Y ⊆ conv{y(1), . . . , y(k)} + (cl Y )∞. (4)

Two considerations motivate the definition via (4): First, the recession cone Y∞ might
have an empty interior. Second, the set Y does not need to be closed. Both of these can lead
to situations where the multi-objective problem (8) is self-bounded, but the projection (CP)
does not satisfy (11). We illustrate this in Examples 1 and 2, where for simplicity the trivial
projection, i.e. the identity, is used. In both of our examples these issues can be resolved by
replacing condition (11) with condition (4). We will prove in Proposition 1 below, that this
is also in general the case.

Example 1 Consider the set

Y = S = {
(y1, y2) | y21 + y22 ≤ 1

} + cone{(0, 1)}
and its recession cone Y∞ = cone {(0, 1)}. The associated multi-objective problem (8) with
the upper image

P = {
(y1, y2,−y1 − y2) | y21 + y22 ≤ 1

} + cone{(0, 1,−1), (1, 0, 0), (0, 0, 1)},
is self-bounded asP ⊆ {(−1,−1,−2)}+P∞. However, the set Y does not satisfy (11) for
any single point y ∈ Rm . Because of its empty interior, no shifting of the cone Y∞ can cover
the set Y with a non-empty interior. But already two points y(1) = (−1,−1), y(2) = (1,−1)
suffice for (4).
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Example 2 Consider the convex, but not closed, set

Y = S = {(y1, y2) | 0 ≤ y1 < 1, 0 ≤ y2} ∪ {(1, 0)}.
It is not bounded, but its recession cone is trivial,Y∞ = {0}. The associatedmulti-objective

problem (8) with the upper image

P = {(y1, 0,−y1) | 0 ≤ y1 ≤ 1} + cone{(0, 1,−1), (1, 0, 0), (0, 0, 1)},
is self-bounded as P ⊆ {(0, 0,−1)} + P∞. However, the set Y with its trivial recession
cone Y∞ = {0} clearly cannot satisfy (11). It also wouldn’t suffice to just replace the single
point y in (11) by a convex polytope conv{y(1), . . . , y(k)}, since the set Y is not bounded.
But the recession cone (cl Y )∞ = cone {(0, 1)} satisfies (4) with e.g. the pair of points
y(1) = (0, 0), y(2) = (1, 0).

The two considerations illustrated here were the motivation for defining self-boundedness
via (4). The condition (4) can be considered as a generalization of the definition of self-
boundedness found in the literature. For vector optimization problems, Definition 1 and a
definition via (4) coincide because of two properties of upper images. An upper image is
always a closed set and its recession cone is solid as it always contains the ordering cone.

We will now prove that, as long as one uses the more general notion of self-boundedness
(Definition 3) for (CP), boundedness, self-boundedness, and unboundedness of the pro-
jection (CP) are equivalent to boundedness, self-boundedness, and unboundedness of the
multi-objective problem (8), respectively.

Proposition 1 1. The convex projection (CP) is bounded if and only if the multi-objective
problem (8) is bounded.

2. The convex projection (CP) is self-bounded if and only if the multi-objective problem (8)
is self-bounded.

3. The convex projection (CP) is unbounded if and only if the multi-objective problem (8)
is unbounded.

The proof of Proposition 1 will require the following two lemmas. The first one is a trivial
observation and thus stated without proof, but comes in handy as it will also be used later.
The second lemma provides a crucial connection between the recession cones of the two
problems.

Lemma 3 Let A ⊆ Rn be a set andC ⊆ Rn be a convex cone. Then, cl(A+C) = cl(cl A+C).

Lemma 4 For the recession cones of the sets Y and P[S] it holds
(P[S])∞ = Q[Y∞] and Y∞ = proj−1[(Q[Y ])∞],
(cl P[S])∞ = Q[(cl Y )∞] and (cl Y )∞ = proj−1[(cl Q[Y ])∞].

For the recession cone of the upper image it holds

P∞ = Q[(cl Y )∞] + Rm+1+ . (12)

Proof The first four equalities follow from P[S] = Q[Y ] (Lemma 2 (2)) and cl P[S] =
Q[cl Y ], the matrix Q being the right-inverse of proj−1 (Lemma 2 (2)) and the fact that
cl P[S] ⊆ Q[Rm] = {x ∈ Rm+1|1Tx = 0}.

According to Lemma 3, for the upper image it holds P = cl(Q[cl Y ] + Rm+1+ ). The
sets Q[cl Y ] and Rm+1+ are both closed and convex. One easily verifies that Q[(cl Y )∞] ⊆
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Q[Rm] = {x ∈ Rm+1|1Tx = 0}, so Q[(cl Y )∞] ∩ −Rm+1+ = {0} and the sets Q[cl Y ] and
Rm+1+ satisfy all assumptions of Corollary 9.1.2 of [11]. Thus, the set Q[cl Y ] + Rm+1+ is
closed and (Q[cl Y ] + Rm+1+ )∞ = Q[(cl Y )∞] + Rm+1+ . ��
Proof of Proposition 1 Let us first prove the second claim.

⇒ Let (CP) be self-bounded. Applying the mapping Q onto (4) and adding the standard
ordering cone yields

P[S] + Rm+1+ ⊆ conv{Qy(1), . . . , Qy(k)} + Q[(cl Y )∞] + Rm+1+ .

For a vectorq ∈ Rm+1, element-wise definedbyqi = min
j=1,...k

(Qy( j))i for i = 1, . . .m+1,

it holds conv{Qy(1), . . . , Qy(k)} ⊆ {q} + Rm+1+ , so

P[S] + Rm+1+ ⊆ {q} + Q[(cl Y )∞] + Rm+1+ = {q} + P∞,

where the last equality is due to (12). Since the shifted cone {q} + P∞ is closed, self-
boundedness of (8) follows.

⇐ If the problem (8) is self-bounded, then there is a point q ∈ Rm+1 such that

P ⊆ {q} + P∞. (13)

Since Q[Y ] + Rm+1+ ⊆ Q[Rm] + Rm+1+ = {x ∈ Rm+1|1Tx ≥ 0}, for the upper image
P = cl(Q[Y ]+Rm+1+ ) and its recession coneP∞ it holdsP,P∞ ⊆ {x ∈ Rm+1|1Tx ≥
0}. As the upper image P contains elements of Q[Rm], inclusion (13) is only possible
if 1Tq ≤ 0.
As Q[Y ] ⊆ P ∩ Q[Rm], from (13) and (12) it follows

Q[Y ] ⊆ ({q} + P∞) ∩ Q[Rm] = ({q} + Rm+1+ ) ∩ Q[Rm] + Q[(cl Y )∞]
= conv{q(1), . . . , q(m+1)} + Q[(cl Y )∞],

where q(i) := q + |1Tq| · e(i) for i = 1, . . . ,m + 1. By applying the projection proj−1
we obtain

Y ⊆ conv{proj−1 q
(1), . . . , proj−1 q

(m+1)} + (cl Y )∞.

The first claim is a consequence of the second claim, relation (12) and the fact that for a
bounded (CP) it holds (cl Y )∞ = {0} and for a bounded problem (8) it holds P∞ = Rm+1+ .
The last claim is an equivalent reformulation of the first claim. ��

3.2.2 Relation of solutions

Note that under some compactness assumptions the convex projection problem (CP) can
be approximately solved using the algorithm in [12]. Here, we are however interested in the
connection between problem (CP) and themulti-objective problem (8) and to see if one can be
solved in place of the other. Lemma 2 already provides uswith a close connection between the
two problems, which suggests that interchanging the two problems (in some manner) should
be possible. We will now examine if, and in what sense, an (exact or approximate) solution of
one problem solves the other problem. We start with the exact solutions, where we obtain an
equivalence. Note that this result does not need any type of boundedness assumption. Then,
we will move towards approximate solutions for the bounded and the self-bounded case.

123



Journal of Global Optimization (2022) 83:301–327 311

Theorem 1 A set S̄ ⊆ S is a solution of the convex projection (CP) if and only if it is a
solution of the multi-objective problem (8).

Proof ⇒ Let S̄ ⊆ S be a solution of (CP). Applying the mapping Q onto (5), we obtain

P[S] ⊆ cl conv P[S̄],
see Lemma 2 (2). Adding the ordering cone, taking the closure and Lemma 3 give

cl(P[S] + Rm+1+ ) ⊆ cl(conv P[S̄] + Rm+1+ ),

therefore, S̄ is an infimizer of (8), cf. Definition 2. According to Lemma 2, it is also a
solution.

⇐ Let S̄ ⊆ S be a solution of (8). We prove that

P[S] ⊆ cl conv P[S̄]
via contradiction: Assume that there is q ∈ P[S] and ε > 0 such that ({q} + Bε) ∩
conv P[S̄] = ∅. According to (9), for all δ > 0 it holds ({q}+Bδ)∩(conv P[S̄]+Rm+1+ ) =
∅. That is, there exist b ∈ Bδ, q̄ ∈ conv P[S̄] and r ∈ Rm+1+ such that q + b = q̄ + r . As
bi ≤ δ one has1Tb ≤ (m+1)δ. Thus, ‖b−r‖ ≤ ‖b‖+‖−r‖ ≤ ‖b‖+1Tr = ‖b‖+1Tb ≤
δ + (m+1)δ, where 1Tr = 1Tb follows from q +b = q̄ +r and 1Tq = 1Tq̄ = 0. Hence,
one obtains b− r ∈ Bδ·(m+2), so for the choice of δ := ε/(m+2) we get a contradiction.
Finally, applying proj−1 gives Y ⊆ cl conv projy[S̄] and S̄ is a solution of (CP).

��
This result is analogous to Theorem 3 of [8] for the polyhedral case. Here it is unnecessary

to prove the existence of a solution when the problem is feasible as the full feasible set is
a solution according to Definitions 2 and 4 (consider Lemma 2). Since (exact) solutions
are usually unattainable in practice, it is of greater interest to see how the approximate
solutions relate. It turns out, the approximate solutions are equivalent only up to an increased
error. We will see that in order to use an approximate solution of one problem to solve
the other problem, we need to increase the tolerance proportionally to a certain multiplier.
These multipliers depend both on the dimension m of the problem and on the p-norm under
consideration. Recall that the definition of a finite ε-solution of either of the two problems
depends implicitly on the fixed p ∈ [1,∞]. For this reason, we denote the p explicitly in
this section.

We deal with the bounded and the self-bounded case jointly. As we mentioned before, a
bounded (CP) has a trivial recession cone (cl Y )∞ = {0} and if (8) is bounded it holdsP∞ =
Rm+1+ . This verifies that (7) and (10) correcly define a finite ε-solution of a bounded (CP)
and a bounded problem (8), respectively. Proposition 1 provided an equivalence between the
self-boundedness of the two problems. The following two theorems contain the main results.

Theorem 2 Let the convex projection (CP) be self-bounded and fix p ∈ [1,∞]. If S̄ ⊆ S is a
finite ε-solution of (CP) (under the p-norm), then it is a finite

(
κ · ε

)
-solution of (8) (under

the p-norm), where κ = κ(m, p) = m
p−1
p · (m+1)

1
p for p ∈ [1,∞) and κ = κ(m,∞) = m

for p = ∞.

Proof Multiplying (7) with Q and adding the ordering cone Rm+1+ yields

P[S] + Rm+1+ ⊆ conv P[S̄] + Q[(cl Y )∞] + Rm+1+ + Q
[
B p

ε

]
. (14)
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Let p ∈ [1,∞). For b ∈ B p
ε it holds |bi | ≤ ε for each i = 1, . . . ,m. By considering the

problem max
∑m

i=1 bi s.t.
∑m

i=1 b
p
i ≤ 1, we also obtain | ∑m

i=1 bi | ≤ m
p−1
p · ε. Thus, we

have −
(
m

p−1
p · ε

)
1 ≤ Qb for all b ∈ B p

ε , which leads to

Q
[
B p

ε

] ⊆ −
(
m

p−1
p · ‖1‖p · ε

) {
‖1‖−1

p 1
}

+ Rm+1+ . (15)

From the Eqs. (12), (14) and (15) and ‖1‖p = (m + 1)
1
p it follows

P[S] + Rm+1+ ⊆ conv P[S̄] + P∞ −
(
m

p−1
p · (m + 1)

1
p · ε

) {
‖1‖−1

p 1
}

.

Now consider p = ∞. It similarly holds |bi | ≤ ε, i = 1, . . . ,m , as well as | ∑m
i=1 bi | ≤

m · ε for b ∈ B∞
ε . Therefore, the same steps yield Q

[
B∞

ε

] ⊆ −(m · ε) {1} + Rm+1+ and

P[S] + Rm+1+ ⊆ conv P[S̄] + P∞ − (m · ε)
{
‖1‖−1

p 1
}
.

Finally, the sets conv P[S̄] and P∞ satisfy the assumptions of Corollary 9.1.2 of [11]—
both sets are closed convex and conv P[S̄] has a trivial recession cone as it is bounded—
therefore, the set conv P[S̄] + P∞ is closed. Since the shifted set is also closed, we obtain

P ⊆ conv P[S̄]+P∞ − (
κ · ε

) {
‖1‖−1

p 1
}
and S̄ is a finite

(
κ · ε

)
-solution of (8) according

to Lemma 2. ��
Theorem 3 Let the multi-objective problem (8) be self-bounded and fix p ∈ [1,∞]. If S̄ ⊆ S
is a finite ε-solution of (8) (under the p-norm), then it is a finite (κ · ε)-solution of (CP) (under

the p-norm), where κ = κ(m, p) =
(
mp+m−1

m+1

) 1
p
for p ∈ [1,∞) and κ = κ(m,∞) = m

for p = ∞.

Proof We give the proof for p ∈ [1,∞). For p = ∞ the same steps work, only the expres-

sions (mp + m − 1)
1
p and

(
mp+m−1

m+1

) 1
p
need to be replaced by their value in the limit, m.

For the set Q[Y ] = P[S] ⊆ P ∩ Q[Rm], according to (10) and (12), we obtain

Q[Y ] ⊆
(
conv P[S̄] + P∞ − ε

{
‖1‖−1

p 1
})

∩ Q[Rm]
= conv P[S̄] + Q[(cl Y )∞] +

(
Rm+1+ − ε

{
‖1‖−1

p 1
})

∩ Q[Rm].
A projection onto the first m coordinates yields

Y ⊆ conv projy[S̄] + (cl Y )∞ + proj−1

[(
Rm+1+ − ε

{
‖1‖−1

p 1
})

∩ Q[Rm]
]
.

What remains is to show that the last set on the right-hand side is contained in an error-ball

proj−1

[(
Rm+1+ − ε

{
‖1‖−1

p 1
})

∩ Q[Rm]
]

⊆ B p(
mp+m−1

m+1

) 1
p ·ε

, (16)

which would finish the proof.
Now, to see that (16) holds true, note that by Q[Rm] = {x ∈ Rm+1|1Tx = 0} one has(

Rm+1+ −ε
{
‖1‖−1

p 1
})

∩ Q[Rm] = ε‖1‖−1
p ·

{
r−1 | r ∈ Rm+1+ , 1T(r − 1) = 0

}
.
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Table 1 Multipliers κ(m, p) and κ(m, p) for p = 1, 2 and ∞
p 1 2 ∞

κ = m
p−1
p · (m + 1)

1
p m + 1

√
m(m + 1) m

κ =
(
mp+m−1

m+1

) 1
p 2m−1

m+1

√
m2+m−1

m+1 m

A projection onto the first m coordinates yields

proj−1

[(
Rm+1+ −ε

{
‖1‖−1

p 1
})

∩ Q[Rm]
]
=ε · ‖1‖−1

p ·
{
r−1 ∈ Rm |r ∈ Rm+, 1Tr ≤ m+1

}
.

The optimization problem

max ‖r − 1‖p s.t. r ∈ Rm+, 1Tr ≤ m + 1 (17)

maximizes a convex objective over a compact polyhedron. As such, the maximum needs to
be attained in one of the vertices of the polyhedron. Therefore, the optimal objective value

of problem (17) is ‖(m + 1) · e(1) − 1‖p = (mp + m − 1)
1
p , which shows

{
r − 1 ∈ Rm | r ∈ Rm+, 1Tr ≤ m + 1

}
⊆ B p

(mp+m−1)
1
p
.

Multiplication with the constant ε · ‖1‖−1
p yields (16). ��

Both of the above theorems involve increasing the error tolerance proportionally to a
certain multiplier. The multipliers κ and κ both depend on the dimension m and on the p-
norm. Of those two the dimension plays a more important role. One can verify that for all
p ∈ [1,∞] the value of κ(m, p) lies between m and m + 1 and the value of κ(m, p) is
bounded from above by m. The multipliers in the maximum norm correspond to the limits,
i.e. it holds κ(m,∞) = lim

p→∞ κ(m, p) and κ(m,∞) = lim
p→∞ κ(m, p). We list the values of

the two multipliers for the three most popular norms, the Manhattan, the Euclidean and the
maximum norm, in Table 1.

Theorem 2 (respectively Theorem 3) guarantees that increasing the tolerance κ-fold
(respectively κ-fold) is sufficient. We could, however, ask if some smaller increase of the
tolerance might not suffice instead. In Sect. 3.3 below, we provide examples where the mul-
tipliers κ and κ are attained. Therefore, the results of Theorems 2 and 3 cannot be improved.

A finite ε-solution of a (self-)bounded (CVOP) depends not only on the tolerance ε and
the underlying p-norm, but also on the direction c ∈ intC used within the defining rela-
tion (2), respectively (3). As we stated at the beginning of this section, for the multi-objective
problem (8) we use the direction ‖1‖−11 ∈ int Rm+1+ . Since this direction appears within
the proofs of Theorems 2 and 3, how much do our results depend on it? The structure of the
results would remain unchanged regardless of the considered direction, only the multipliers
κ and κ are direction-specific—variants of relations (15) and (16) hold for arbitrary fixed
direction r ∈ int Rm+1+ with appropriately adjusted multipliers.

The last question that remains open iswhether approximate solutions exist. In the following
lemma we prove their existence for self-bounded convex projections.

Lemma 5 There exists a finite ε-solution to a self-bounded convex projection (CP) for any
ε > 0.
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Proof This proof is based on Proposition 3.7 of [13]. We use it to prove the existence of a
finite ε

κ
-solution of the associated problem (8) and then apply Theorem 3. Fix ε > 0 and

set ξ := ε
2κ and δ := ε

2κ‖1‖ . Since problem (8) is self-bounded, the upper image P and its
recession coneP∞ satisfy the assumptions of Proposition 3.7 of [13]. Then, for a tolerance
ξ > 0 there exists a finite set of points Ā ⊆ P such that

P ⊆ conv Ā + P∞ − ξ{‖1‖−11}. (18)

Since P = cl(P[S] + Rm+1+ ), for each ā ∈ Ā there exists (x̄, ȳ) ∈ S such that ā ∈
P(x̄, ȳ) + Rm+1+ + Bδ . Denote by S̄ ⊆ S the (finite) collection of such feasible points
(x̄, ȳ) ∈ S, one per each element of Ā. We obtain

Ā ⊆ P[S̄] + Rm+1+ + Bδ ⊆ P[S̄] + Rm+1+ − (δ‖1‖){‖1‖−11}. (19)

Equations (18) and (19) jointly give

P ⊆ conv P[S̄]+P∞+Rm+1+ − (ξ+δ‖1‖) {‖1‖−11}= conv P[S̄] + P∞ − ε

κ
{‖1‖−11},

which shows that S̄ is a finite ε
κ
-solution of (8).According toTheorem3, S̄ is a finite ε-solution

of (CP). ��

Lemma 5 also proves the existence of a finite ε-solution of a self-bounded problem (8).
Unlike Proposition 4.3 of [7], this result does not require a compact feasible set. In practice,
however, we are restricted by the assumptions of the solvers.

3.3 Examples

We start with three theoretical examples, one for each theorem of the previous subsection,
before providing two numerical examples. For simplicity, Examples 4 and 5 contain a trivial
projection, i.e. the identity. One could modify the feasible sets to include additional dimen-
sions, but since these examples are intended to illustrate theoretical properties, we chose to
keep them as simple as possible.

First, we look at exact solutions for which equivalence was proven in Theorem 1. Exam-
ple 3 illustrates that a solution of (8) solves (CP) only ’up to the closure’, i.e. the closure
in (5) mirrors the closure in (9).

Example 3 Consider the feasible set S = {(x, y) | x2 + y2 ≤ 1}, which projects onto
Y = {y | x2 + y2 ≤ 1} = [−1, 1]. Correspondingly, P[S] = {y · (1,−1) | y ∈ [−1, 1]}.
The set

S̄ = {(x, y) | x2 + y2 = 1}\{(0,−1)}
is a solution of the multi-objective problem. However, projected onto its y-element it gives
projy[S̄] = (−1, 1]. Therefore, S̄ is a solution of the projection but Y = conv projy[S̄].

Second, we give an example where the multiplier κ introduced in Theorem 2 is attained.
Namely, we provide a convex projection and its finite ε-solution S̄. This S̄ is not a finite ε̄-
solution of the associatedmulti-objective problem for any ε̄ < κε. This shows that Theorem 2
would not hold with any smaller multiplier. The example holds for all dimensions m and for
all p-norms, so p ∈ [1,∞] is explicitly denoted.
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Example 4 Let us start with an example in dimension m = 2. Consider the approximate
solution S̄ = {(0, 0), (1, 0), (0, 1)} of the projection

Y = S = {(y1, y2) : y21 + y22 ≤ 1, y1 ≥ 0, y2 ≥ 0}.
The smallest tolerance for which the set S̄ is a finite ε(p)-solution of this convex projection

(under the p-norm) is ε(p) = ‖( 1√
2
, 1√

2
) − ( 12 ,

1
2 )‖p =

√
2−1
2 · 2 1

p . Now consider the

associated multi-objective problem. To cover the vector
(

1√
2
, 1√

2
,−√

2
)

∈ P[S] by the set

conv P[S̄] − x{1} + R3+ we need x ≥ √
2 − 1. Considering normalization by ‖1‖p = 3

1
p ,

the set S̄ is a finite ε̄(p)-solution of the multi-objective problem (under the p-norm) only if

ε̄(p) ≥ (
√
2 − 1) · 3 1

p = κ · ε(p), where κ = 2
p−1
p · 3 1

p .
For a self-bounded example consider Y = S = {(y1, y2) : y21 + y22 ≤ 1, y1 ≥ 0, y2 ≥

0} + cone{(0,−1)} with the same approximate solution.
The same structure yields an example also in the m-dimensional space for any m ≥ 2.

Consider the approximate solution S̄ = {0, e(1), . . . , e(m)} of the projection

Y = S =
{
y ∈ Rm+ :

m∑
i=1

y2i ≤ 1

}
.

The smallest tolerance for which S̄ is a finite ε(p)-solution of this convex projection

(under the p-norm) is ε(p) = ‖ 1√
m
1− 1

m 1‖ =
√
m−1
m m

1
p . The upper image of the associated

multi-objective problem contains the vector
(

1√
m

, . . . , 1√
m

,−√
m

)
. Therefore, the set S̄

is a finite ε̄(p)-solution of the multi-objective problem (under the p-norm) only if ε̄(p) ≥
(
√
m − 1) · (m + 1)

1
p , where (

√
m − 1) · (m + 1)

1
p = κ · ε(p).

Third, we give an example where the multiplier κ introduced in Theorem 3 is attained.
Here a multi-objective problem (associated to a given projection) and its finite ε-solution
S̄ are given. We show that this S̄ is a finite ε̄-solution of the projection only for ε̄ ≥ κε.
This shows that Theorem 3 would not hold with a smaller multiplier. The p-norm is again
explicitly denoted.

Example 5 Let us start with an example in dimension m = 2. Consider the pro-
jection Y = S = conv{(0, 0), (2,−1)} with the associated upper image P =
conv{(0, 0, 0), (2,−1,−1)}+R3+. The smallest tolerance for which the set S̄ = {(0, 0)} is a
finite ε(p)-solution of the multi-objective problem (under the p-norm) is ε(p) = ‖1‖p = 3

1
p .

On the other hand, the set S̄ is a finite ε̄(p)-solution of the convex projection (under the p-

norm) only for a tolerance ε̄(p) ≥ ‖(2,−1)‖p = (2p +1)
1
p = κ · ε(p), where κ =

(
2p+1
3

) 1
p
.

For a self-bounded example consider Y = S = conv{(0, 0), (2,−1)} + cone{(−1, 0)}
with the same approximate solution.

This example can be extended to any dimension m ≥ 2. Consider the projection Y =
S = conv{0, (m,−1, . . . ,−1)} ⊆ Rm , the associated multi-objective problem with upper
image P = conv{0, (m,−1, . . . ,−1)} + Rm+1+ , and the approximate solution S̄ = {0}.
The set S̄ is a finite ε(p)-solution of the multi-objective problem (under the p-norm) for

ε(p) = ‖1‖p = (m + 1)
1
p . However, it is a finite ε̄(p)-solution of the convex projection

(under the p-norm) only for a tolerance ε̄(p) ≥ ‖(m,−1, . . . ,−1)‖p = (mp + m − 1)
1
p ,

where (mp + m − 1)
1
p = κε(p).
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Fig. 1 Intersection of two three-dimentional ellipses projected on the first two coordinates. Approximations
obtained for various error tolerances of the associated multi-objective problem

Finally, we provide two numerical examples. As both have a compact feasible set, one
could apply also the algorithm in [12] to approximately solve the convex projection problem
directly. As here, our motivation is to illustrate the theory of the last subsection, we will use in
both cases the algorithm of [7] for convex vector optimization problems to solve the convex
projection problem by applying Theorem 3.

Example 6 Consider the feasible set

S =
{
(y1, y2, x) | (y1 − 1)2 + (y2 − 2)2

22
+ (x − 1)2 ≤ 1,

(y1 − 2)2

22
+ (y2 − 1)2 + (x − 2)2

22
≤ 1

}

consisting of an intersection of two three-dimensional ellipses. We project this set onto the
first two coordinates, so we are interested in the set Y = {(y1, y2) | (y1, y2, x) ∈ S}. We used
the associated multi-objective problem to compute an approximation of Y . The algorithm of
[7]was used for the numerical computations. In Figure 1we depict the (inner) approximations
obtained for various error tolerances of the algorithm.

Example 7 We add one more dimension. This means, we are computing a three-dimensional
set Y = {(y1, y2, y3) | (y1, y2, y3, x) ∈ S} obtained by projecting an intersection of two
four-dimensional ellipses

S =
{
(y1, y2, y3, x) | (y1 − 1)2 + (y2 − 2)2

22
+ (y3 − 1)2 + (x − 2)2

22
≤ 1,

(y1 − 2)2

22
+ (y2 − 1)2 + (y3 − 2)2

22
+ (x − 1)2 ≤ 1

}

123



Journal of Global Optimization (2022) 83:301–327 317

Fig. 2 Intersection of two four-dimensional ellipses projected on the first three coordinates. Approximation
obtained for a tolerance ε = 0.01

onto the first three coordinates. Figure 2 contains an (inner) approximation of the set Y
obtained by solving the associated multi-objective problem with an error tolerance ε = 0.01.
Once again the algorithm of [7] was used.

4 Convex projection corresponding to (CVOP)

In the polyhedral case it is also possible to construct a projection associated to any given
vector linear program. In [8], it is shown that if a solution of the vector linear program
exists, it can be obtained from a solution of the associated projection. This, together with
the connection between polyhedral projection and its associated multi-objective problem,
led to an equivalence between polyhedral projection, multi-objective linear programming
and vector linear programming in [8]. This also allows to construct a multi-objective linear
program corresponding to any given vector linear program, where the dimension of the
objective space is increased only by one.

We will now investigate this in the convex case. We start with a general convex vector
optimization problem and construct an associated convex projection problem, once again
taking inspiration from the polyhedral case in [8]. Analogously to the previous section, we
investigate the connection between the two problems, their properties and their solution.
While the connection does exist, two issues arise, which show that the equivalence obtained
in the polyhedral case cannot be generalized to the convex case in full extent. Firstly, the
associated convex projection is never a bounded problem. So even if a bounded (CVOP)
is given, its associated convex projection (and thus, its associated multi-objective convex
optimization problem) is just self-bounded. Recall that while solvers for a bounded (CVOP)
are available, there is not yet a solver for self-bounded problems. Secondly, and even more
severely, the convex projection provides only (exact or approximate) infimizers of the convex

123



318 Journal of Global Optimization (2022) 83:301–327

vector optimization problem, but not (exact or approximate) solutions. For exact solutions
one can provide conditions to resolve this issue (see Lemma 8 below). This is, however, not
possible for the in practice more important approximate solutions.

We nowdeduce these results in detail. Recall fromSect. 2.2 the convex vector optimization
problem

minΓ (x) with respect to ≤C subject to x ∈ X (CVOP)

with its feasible set X and its upper image G = cl(Γ [X ] + C). To obtain an associated
projection, we define the set Sa = {(x, y) | x ∈ X , y ∈ {Γ (x)} + C}, again motivated by
[8]. The projection problem with this feasible set is

compute Ya = projy[Sa] = {y | ∃x ∈ X , Γ (x) ≤C y}. (20)

Clearly, (20) is feasible if and only if (CVOP) is feasible. Note that if the feasible setX is
given via a collection of inequalities, then the new feasible set Sa can be expressed similarly.
The following lemma provides convexity and establishes the connection between (CVOP)
and (20).

Lemma 6 The set Sa is convex and, therefore, the problem (20) is a convex projection. Addi-
tionally, Ya = Γ [X ] + C and G = cl Ya.

Proof Convexity of Sa follows from the convexity of X , the C-convexity of Γ and the
convexity of C . For the rest consider Ya = {y | ∃x ∈ X , y ∈ {Γ (x)} +C} = Γ [X ] +C . ��

Given this close connection between the sets G and Ya , we expect a similar connection
to exist between the properties and the solutions concepts of (CVOP) and (20). Since the set
Ya contains the (shifted) ordering cone C , the projection problem (20) cannot be bounded.
But still, a bounded problem (CVOP) has (by Lemma 1) its counterpart in the properties of
the (self-bounded) associated projection (20), namely (cl Ya)∞ = clC . We investigate the
connection between the two problems in Theorems 4 and 5. Recall from Definition 2 that for
a convex vector optimization an (exact or approximate) solution is an (exact or approximate)
infimizer consisting of minimizers. Recall also that the direction c ∈ intC appearing in
Definition 2 is assumed to be normalized, i.e. ‖c‖ = 1.

Theorem 4 1. If X̄ ⊆ X is an infimizer of (CVOP), then S̄ := {(x, y) | x ∈ X̄ , y ∈
{Γ (x)} + C} is a solution of the associated projection (20).

2. If the problem (CVOP) is self-bounded, then the associated projection (20) is also self-
bounded. If, additionally, the problem (CVOP) is bounded, then (cl Ya)∞ = clC.

3. Let (CVOP) be bounded or self-bounded and let X̃ ⊆ X be a finite ε-infimizer of (CVOP).
Then, S̃ := {(x, Γ (x)) | x ∈ X̃} is a finite ε-solution of the associated projection (20).

Proof 1. Theway the set S̄ is constructed implies feasibility aswell as projy[S̄] = Γ [X̄ ]+C .
Since X̄ is a infimizer of (CVOP), it follows that Ya ⊆ G ⊆ cl(convΓ [X̄ ] + C) =
cl conv projy[S̄].

2. Self-boundedness of (20) follows directly from G = cl Ya . Boundedness of (CVOP)
implies (cl Ya)∞ = G∞ = clC , see Lemma 1.

3. For a finite ε-infimizer X̃ of (CVOP) it holds G ⊆ convΓ [X̃ ] + G∞ − ε{c} (both in the
bounded and in the self-bounded case as C ⊆ G∞). Since εc ∈ Bε and Γ [X̃ ] = projy[S̃]
it follows

Ya ⊆ G ⊆ convΓ [X̃ ] + G∞ − ε{c} ⊆ conv projy[S̃] + (cl Ya)∞ + Bε.

��
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Before moving on, we illustrate that an infimizer (or even a solution) X̄ of (CVOP) can
lead towards a solution S̄ that solves the associated projection (20) only ’up to the closure’.
Compare this also to Example 3.

Example 8 Consider a set Γ [X ] = X = {(x1, x2) : x21 + x22 ≤ 1} with the ordering cone
C = R2+. The set X̄ = {(x1, x2) : x21 + x22 = 1, x1, x2 < 0} is a solution of (CVOP). The
corresponding set S̄ projects onto projy[S̄] = X̄ + R2+. It is a solution of (20), however, the
closure in (5) is essential as Ya = conv projy[S̄].

Theorem 4 shows how to construct (exact or approximate) solutions of the associated
projection from the (exact or approximate) infimizers of the vector optimization problem.
Now we look at the other direction. We will show that, given an (exact or approximate)
solution S̄ of (20), the set X̄ = projx [S̄] is an (exact or approximate) infimizer of (CVOP).
This set X̄ , however, does not need to consist of minimizers, see Example 9 below.

In the case of approximate solutions, the tolerance depends on the direction c ∈ intC . For
this purpose denote

δc := sup {δ > 0 | {c} + Bδ ⊆ C}. (21)

The quantity δc is strictly positive (c is an interior element), finite (the cone C is pointed)
and depends on the underlying norm. For example, for the standard ordering cone C = Rm+
and the direction ‖1‖−11 we have δ‖1‖−11 = ‖1‖−1.

Theorem 5 1. If S̄ ⊆ Sa is a solution of (20), then X̄ := projx [S̄] is an infimizer of (CVOP).
2. If the problem (20) is self-bounded, then also the problem (CVOP) is self-bounded. If,

additionally, (cl Ya)∞ = clC, then the problem (CVOP) is bounded.
3. Let the problem (20) be self-bounded and let S̄ ⊆ Sa be a finite ε-solution of (20). Then,

X̄ := projx [S̄] is a finite ε̃-infimizer of (CVOP) for any tolerance ε̃ >
ε

δc
.

The following lemma will be used in the proof of Theorem 5.

Lemma 7 LetC ⊆ Rn be a solid cone.For anyfinite collection of points {q(1), . . . , q(k)} ⊆ Rn

there exists a point q ∈ Rn such that q ≤C q(i), i.e. q(i) ∈ q + C, for all i = 1, . . . , k.

Proof For a solid cone C there exists c ∈ intC . Without loss of generality assume that c is
scaled in such a way that {c} + B1 ⊆ C . The set {c} + B1 generates a convex solid cone
contained within C .

Consider two points q(1), q(2) ∈ Rn . Define q := q(1) −‖q(1) −q(2)‖
(
c + q(1)−q(2)

‖q(1)−q(2)‖
)

=
q(2) − ‖q(1) − q(2)‖c. Then q(1), q(2) ∈ q + cone({c} + B1) ⊆ {q} + C . For more than two
points use an induction argument. ��
Proof of Theorem 5. 1. For the solution S̄ and the set X̄ it holds Ya ⊆ cl

(
conv projy[S̄]) ⊆

cl
(
convΓ [X̄ ] + C

)
. Since the right-hand side is closed and G = cl Ya , the set X̄ is an

infimizer of (CVOP).
2. A self-bounded problem (20) satisfies Ya = Rm and there exist y(1), . . . , y(k) ∈ Rm such

that

Γ [X ] + C = Ya ⊆ conv{y(1), . . . , y(k)} + (cl Ya)∞.

Since the set Ya is convex it follows that also G = cl Ya = Rm . Since the reces-
sion cone (cl Ya)∞ contains the solid cone C , there exists a point q ∈ Rm such that
conv{y(1), . . . , y(k)} + (cl Ya)∞ ⊆ {q} + (cl Ya)∞, see Lemma 7. As (cl Ya)∞ = G∞
and the shifted cone is closed, we obtain G ⊆ {q}+G∞. The second claim follows from
Lemma 1.
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3. The finite ε-solution S̄ of (20) satisfies

Γ [X ] + C = Ya ⊆ conv projy[S̄] + (cl Ya)∞ + Bε.

By (21) for all 0 < δ < δc it holds Bε ⊆ − ε
δ
{c} + C . For the set conv projy[S̄] it holds

conv projy[S̄] ⊆ convΓ [X̄ ] + C . Since (cl Ya)∞ = G∞ is a convex cone containing C ,
we obtain

Γ [X ] + C ⊆ convΓ [X̄ ] + G∞ − ε

δ
{c}.

Since X̄ is finite, the set convΓ [X̄ ] is closed convex with a trivial recession cone. The
sets convΓ [X̄ ] and G∞ then fulfill all assumptions of the Corollary 9.1.2 of [11] and,
therefore, the set convΓ [X̄ ] + G∞ is closed. This gives

G ⊆ convΓ [X̄ ] + G∞ − ε

δ
{c}

for all 0 < δ < δc. In the self-bounded case this proves the claim. In the bounded case
with G∞ = clC the relation clC ⊆ −δ̃{c} +C with an arbitrarily small δ̃ > 0 gives the
desired result.

��
Next we provide an example of (both exact and approximate) solutions of (20), which

yield infimizers, but not solutions of (CVOP).

Example 9 Consider the trivial example of min x s.t. x ≥ 0 with G = Γ [X ] = [0,∞) and
the associated feasible set Sa = {(x, y) | y ≥ x ≥ 0}. The set S̄1 = {(x, y) | y ≥ x > 0}
is a solution of (20). The corresponding X̄1 = projx S̄1 = (0,∞) is an infimizer, but not a
solution of (CVOP).

The situation is similar for approximate solutions: Fix ε > 0. The set S̄2 = {(ε, ε)} is a
finite ε-solution of the convex projection. The set X̄2 = projx S̄2 = {ε} is a finite ε-infimizer,
but it does not consist of minimizers.

In the polyhedral case [8] it is possible (under an assumption on the lineality space of G ) to
obtain a solution of the vector optimization problem by removing non-minimal points from
the solution of the associated projection. This is not possible for either the exact solution S̄1 or
the approximate solution S̄2 in the above example, as both consist of non-minimal points only.
However, for exact solutions, we can formulate conditions under which an (exact) solution
of (CVOP) can be constructed from a solution of (20), see Lemma 8 below. It is, however,
of theoretical interest rather than of practical use.

Lemma 8 Assume that a solution of (CVOP) exists and let the solution S̄ of (20) satisfy
Ya = conv projy[S̄]. Then, X̄ := {x | (x, y) ∈ S̄, y /∈ Γ [X ] + C\{0}} is a solution
of (CVOP).

Proof Denote S̄0 := {(x, y) ∈ S̄ | y /∈ Γ [X ] + C\{0}}. Let X̄1 ⊆ X be some solution
of (CVOP). By Lemma 6 and by assumption it holds

Γ [X̄1] ⊆ Γ [X ] ⊆ Γ [X ] + C = Ya = conv projy[S̄]. (22)

We prove that Γ [X̄1] ⊆ conv projy[S̄0]: Take arbitrary x̄1 ∈ X̄1, according to (22) we
have Γ [x̄1] = ∑

yi∈projy [S̄]
λi yi , where

∑
λi = 1 and all λi ≥ 0. Assuming that for some

λi > 0 we have yi ∈ Γ [X ] + C\{0} contradicts x̄1 ∈ X̄1 being a minimizer. The relation
Γ [X̄1] ⊆ conv projy[S̄0] proves the claim as X̄ = projx [S̄0]. ��
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Both assumption in Lemma 8 are essential. The condition Ya = conv projy[S̄] in effect
guarantees that the (exact) solution S̄ of (20) can be reduced to onlyminimal points. Compare
this to Example 9. Unfortunately, one cannot not expect a practical version of Lemma 8
for approximate solutions. Since approximate solutions contain an approximation error, the
condition Ya = conv projy[S̄] is not feasible there. We would need to assume that each
element of the approximate solution is either minimal or redundant. Such requirement is,
however, almost tautological.

In the polyhedral case, the equivalence between polyhedral projection, multi-objective
linear programming and vector linear programming makes it possible to construct a multi-
objective problem corresponding to an initial vector linear program. One could do this also in
the convex case: combine the associated projection (20) and the ideas of the previous section
to construct the multi-objective problem

min

(
y

−1Ty

)
with respect to ≤Rm+1+

subject to (x, y) ∈ Sa (23)

associated to (CVOP). As in the linear case, the dimension of the objective space of the multi-
objective problem (23) is only one higher than the original problem (CVOP). The results of
the last two sections can be combined to establish a connection between (CVOP) and (23).
Unfortunately, doing so combines all drawbacks of these results.Most importantly, it involves
only (exact or approximate) infimizers of (CVOP), but not solutions. For completeness we
list these combined results in the following corollary, the upper image of (23) is denoted
Pa = cl(P[Sa] + Rm+1+ ).

Corollary 1

1. The upper images of (CVOP) and (23) are connected via Pa = Q[G ] + Rm+1+ .
2. Problem (CVOP) is self-bounded if and only if (23) is self-bounded. Additionally, (CVOP)

is bounded if and only if (23) is self-bounded with (Pa)∞ = Q[clC] + Rm+1+ .
3. If S̄ ⊆ Sa is a solution of (23), then X̄ := projx [S̄] is an infimizer of (CVOP).
4. If X̄ ⊆ X is an infimizer of (CVOP), then S̄ := {(x, y) | x ∈ X̄ , y ∈ {Γ (x)} + C} is a

solution of (23).
5. If the problem (CVOP) is bounded or self-bounded and X̄ ⊆ X is a finite ε-infimizer

of (CVOP), then S̄ := {(x, Γ (x)) | x ∈ X̄} is a finite (κ · ε)-solution of (23).
6. If (23) is self-bounded and S̄ ⊆ Sa is a finite ε-solution of (23), then X̄ := projx [S̄] is a

finite ξ -infimizer of (CVOP) for any tolerance ξ >
κ

δc
· ε.

5 Solution concept according to [1]

In the previous sections of this paper we work with the definition of a finite ε-solution of a
bounded (or self-bounded) convex vector optimization problem from [7,13]. The idea there is
to shift the (inner) approximation in a fixed direction to cover the full upper images (i.e. obtain
an outer approximation), see (2). In [1], a slightly different definition of a finite ε-solution of
a bounded (CVOP) is proposed. Here the idea is to bound the Hausdorff distance between
the inner approximation and the upper image by the given tolerance. To distinguish between
the two definitions we will speak about [7]-finite ε-solutions and [1]-finite ε-solutions. In
this section we revisit our main results, Theorems 2 and 3 from Sect. 3.2.2 and Theorems 4
and 5 from Sect. 4, under this alternative definition.
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Given a norm ‖ · ‖, the Hausdorff distance between two sets A1 ⊆ Rn and A2 ⊆ Rn is
defined as

dH (A1, A2) = max

{
sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖, sup
a2∈A2

inf
a1∈A1

‖a1 − a2‖
}

.

One easily verifies that for sets A1 ⊆ A2 it holds dH (A1, A2) = supa2∈A2
infa1∈A1 ‖a1 −

a2‖ and the condition dH (A1, A2) ≤ ε is equivalent to the condition A2 ⊆ A1 + Bε . The
following definition is proposed in [1] for a bounded (CVOP): A nonempty finite set X̄ ⊆ X
is a [1]-finite ε-infimizer of (CVOP) if

dH
(
G , convΓ [X̄ ] + C

) ≤ ε. (24)

We now address the connection between these two definitions of finite ε-infimizers. This
was done in [1, Proposition 3.5] under the Euclidean norm. Here, we adapt that proof to the
p-norm.

Lemma 9 1. If X̄ is a [7]-finite ε-infimizer (see Definition 2) of a bounded problem (CVOP),
then it is also a [1]-finite ε-infimizer of (CVOP).

2. If X̄ is a [1]-finite ε-infimizer of a bounded problem (CVOP), then it is also a [7]-finite
(k · ε)-infimizer of (CVOP), where

k = 1

min
{
wTc | w ∈ C+, ‖w‖q = 1

} . (25)

Here q is given by 1
p + 1

q = 1 for p ∈ (1,∞), respectively q = ∞ for p = 1 and q = 1
for p = ∞.

Proof The first claim trivially follows from the fact that the element c ∈ intC is assumed to
be normalized, so (2) implies G ⊆ convΓ [X̄ ] + C + Bε .

We adapt the proof of [1, Proposition 3.5] to the case of a p-norm, we mainly highlight
the changes needed because of the different norm, we refer the reader to [1] for details. First,
note that Hölder’s inequality implies |wTc| ≤ ‖w‖q‖c‖p , so k ≥ 1. The closed convex set
convΓ [X̄ ] + C admits a representation

convΓ [X̄ ] + C =
⋂
i∈I

{
y ∈ Rm |wT

i y ≥ γi

}

for some index set I , scalars γi ∈ R and vectors wi ∈ C+ \ {0} that without loss of gen-
erality satisfy ‖wi‖q = 1. Take arbitrary g ∈ G and define kg := inf {t ≥ 1 |g + εtc ∈
convΓ [X̄ ] + C

}
. If kg = 1, then kg ≤ k holds trivially. For kg > 1 there exists an index

j ∈ I such that wT
j

(
g + εkgc

) = γ j , which allows us to express kg as kg = γ j−wT
j g

εwT
j c

.

Now we show that γ j − wT
j g ≤ ε: Since dH

(
G , convΓ [X̄ ] + C

) ≤ ε holds, there exists

u ∈ Rm with ‖u‖p ≤ ε such that g + u ∈ convΓ [X̄ ] + C . Assuming γ j − wT
j g > ε would

yield wT
j (g + u) ≥ γ j > wT

j g + ε ≥ wT
j g + ‖u‖p‖w j‖q , which contradicts the Hölder’s

inequality. This yields

kg ≤ 1

wT
j c

≤ k,

which proves the claim. ��
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Let us consider the convex projection (CP) and the associated multi-objective problem (8)
in the bounded case. Note that for the multi-objective problem (8) with C = Rm+1+ and c =
‖1‖−11 (recall that ‖ · ‖ denotes the p-norm) we have min{‖1‖−1wT1 | w ∈ Rm+1+ , ‖w‖q =
1} = ‖1‖−1, which follows by considering the problem min 1Tw s.t. ‖w‖q = 1, w ≥ 0.
Note further, that condition (6) that defines a finite ε-solution of (CP) can be equivalently
stated as dH (Y , conv projy[S̄]) ≤ ε. Recall that a nonempty finite set S̄ ⊆ S is a [7]-finite
ε-solution of (8) if it holds

P ⊆ conv P[S̄] + Rm+1+ − ε{‖1‖−11};
and a nonempty finite set S̄ ⊆ S is a [1]-finite ε-solution of (8) if

dH
(
P, conv P[S̄] + Rm+1+

)
≤ ε.

First, we revisit the question studied in Theorem 2 under the [1]-solution concept. We will
show in Proposition 2 below that an approximate solution of the projection (CP) is also an
approximate solution of (8) in the [1] sense, where the multiplier is given by the norm ‖Q‖.
The value of ‖Q‖ is deduced in the following lemma.

Lemma 10 The operator norm ‖Q‖ of the matrix Q induced by the vector-p-norm is ‖Q‖ =(
mp−1 + 1

) 1
p for p ∈ [1,∞) and ‖Q‖ = m for p = ∞.

Proof The operator norm is defined as ‖Q‖ = max‖x‖=1
‖Qx‖, which can be computed by

considering the problem max 1Tx s.t. ‖x‖ = 1. ��
Proposition 2 Let the problem (CP) be bounded and let p ∈ [1,∞] be fixed. If the set S̄ ⊆ S
is a finite ε-solution of (CP), then it is a [1]-finite (‖Q‖ · ε)-solution of (8).

Proof First we show that dH
(
P, conv P[S̄] + Rm+1+

)
≤ dH

(
P[S], conv P[S̄]). Since

a closure does not influence the Hausdorff distance, the left-hand side is dH (P[S] +
Rm+1+ , conv P[S̄] + Rm+1+ ). Take arbitrary q ∈ P[S] and r ∈ Rm+1+ . Since the norm sat-
isfies the triangle inequality we have

inf
q̄∈conv P[S̄],

r̄∈Rm+1+

‖(q+r)−(q̄+r̄)‖ ≤ inf
q̄∈conv P[S̄],

r̄∈Rm+1+

‖q − q̄‖+‖r−r̄‖ ≤ sup
q∈P[S]

inf
q̄∈conv P[S̄]

‖q−q̄‖.

As the points q ∈ P[S] and r ∈ Rm+1+ are arbitrary, this gives the desired inequality. Now
let S̄ be a finite ε-solution of (CP). Hence, it satisfies

sup
y∈Y

inf
ȳ∈conv projy [S̄]

‖y − ȳ‖ ≤ ε. (26)

Keep in mind that the sets of interest satisfy P[S] = Q[Y ] and P[S̄] = Q[projy[S̄]] , see
Lemma 2 (2) and its proof. The induced matrix norm ‖ · ‖ : R(m+1)×m → R is consistent, so
this gives us the desired result,

dH
(
P, conv P[S̄] + Rm+1+

)
≤ sup

q∈P[S]
inf

q̄∈conv P[S̄]
‖q − q̄‖ = sup

y∈Y
inf

ȳ∈conv projy [S̄]
‖Qy − Qȳ‖

≤ sup
y∈Y

inf
ȳ∈conv projy [S̄]

‖Q‖ · ‖y − ȳ‖ = ‖Q‖ · dH
(
Y , conv projy[S̄]) ≤ ‖Q‖ · ε.

��
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Table 2 Multipliers for an approximate solution of (CP) to solve (8): Theorem 2 provides multiplier κ for the
[7]-type solution and Proposition 2 provides multiplier ‖Q‖ for the [1]-type solution

Theorem 2 Proposition 2

[7]-type solution m
p−1
p · (m + 1)

1
p <

(
mp−1 + 1

) 1
p

(m + 1)
1
p

[1]-type solution m
p−1
p · (m + 1)

1
p >

(
mp−1 + 1

) 1
p

Lemma 9 implies that κ is a feasible multiplier for the [1]-type solution and ‖Q‖ · k is a feasible multiplier
for the [7]-type solution, where k is given in (25)

Theorem 2 and Proposition 2 provide us with two different multipliers, one for each
solution concept. The two solution concepts are, however, not unrelated, as was shown in
Lemma 9. With this observation, one could now also apply Theorem 2 to a [1]-type solution
and Proposition 2 to a [7]-type solution. The resulting multipliers are listed in Table 2. One
can observe that the multipliers applied directly to the solution concepts used in Theorem 2,
respectively in Proposition 2, are better than those obtained when going through the other
solution concept first and applying Lemma 9.

Second, we revisit the question studied in Theorem 3, but now under the [1]-solution
concept. We show in Proposition 3 below, that an approximate solution of (8) in the [1]
sense is also an approximate solution of the projection (CP) and deduce the multiplier. This
multiplier was independently obtained in [10] under the Euclidean norm in a closely related
setting.

Proposition 3 Let the problem (8) be bounded and let p ∈ [1,∞] be fixed. If the set S̄ ⊆ S
is a [1]-finite ε-solution of (8), then it is a finite (‖Q‖ · ε)-solution of (CP).

To prove the proposition we will use the following result.

Lemma 11 The optimization problem

max
r ,b∈Rm+1

‖r − b‖
s.t.‖b‖ ≤ ε,

r ≥ 0,

1T(r − b) = 0

(27)

for ε > 0, has an optimal objective value ‖r∗ − b∗‖ = ε · ‖Q‖.
Proof First, note that we can restrict ourselves to vectors b satisfying b ≥ 0. Consider any
feasible pair of vectors (r , b). Construct a new pair of vectors (r̄ , b̄) by b̄i = (bi )+ and
r̄i = ri + (bi )− for all i = 1, . . . ,m + 1. The new pair (r̄ , b̄) is also feasible for the problem
and gives the same objective value as the original pair (r , b).

Second, fix some vector b ≥ 0. We now solve the problem

max
r∈Rm+1

‖r − b‖
s.t. 1Tr ≤ 1Tb,

r ≥ 0.

(28)

Note that we relaxed the equality constraint to an inequality. However, for the optimal
solution the constraint will be satisfied as an equality. Just as problem (17) considered within
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the proof of Theorem 3, problem (28) maximizes a convex objective over a compact poly-
hedron. Thus, the maximum is attained in a vertice and the optimal solution of problem (28)
is r∗(b) = (1Tb) · e(i∗), where i∗ ∈ argmini=1,...,m+1 bi .

Finally, we return to problem (27). By our first argument, it suffices to look at nonnegative
vectors b. According to the above results for problem (28), problem (27) simplifies to

max ‖(1Tb) · e(1) − b‖
s.t. ‖b‖ ≤ ε,

b ≥ 0,

where without loss of generality, one can assume that the first coordinate of the vector
b is the smallest. Consider p ∈ [1,∞). The objective function ‖(1Tb) · e(1) − b‖ =((∑m+1

i=2 bi
)p + ∑m+1

i=2 bp
i

) 1
p
and the constraint

∑m+1
i=2 bp

i ≤ ε − bp
1 yield an optimal solu-

tion b∗ = ε · (0,m− 1
p , . . . ,m− 1

p ). Hence, r∗ = (1Tb∗) · e(1) = ε · (m
p−1
p , 0, . . . , 0) and

‖r∗ − b∗‖ = ε · (
mp−1 + 1

) 1
p = ε · ‖Q‖. Finally, consider p = ∞. Thanks to non-

negativity of b the objective equals ‖(1Tb) · e(1) − b‖ = ∑m+1
i=2 bi , so an optimal solution is

e.g. b∗ = ε · (0, 1, . . . , 1). Hence, r∗ = ε · m · e(1) and ‖r∗ − b∗‖ = ε · m. ��
Proof of Proposition 3 The definition of a [1]-finite ε-solution and P[S] ⊆ P∩Q[Rm] imply

P[S] ⊆ conv P[S̄] +
(
Rm+1+ + Bε

)
∩ Q[Rm].

In order to bound the distance dH
(
P[S], conv P[S̄]) we need to contain the set(

Rm+1+ + Bε

)
∩ Q[Rm] within a ball. Finding the appropriate radius corresponds to solv-

ing problem (27) (use symmetry of the ball Bε to fit the sign convention). According to
Lemma 11, the optimal objective value of this problem is ε · ‖Q‖. Thus, one obtains P[S] ⊆
conv P[S̄] + Bε·‖Q‖. Applying proj−1 on both sides yields Y ⊆ conv projy[S̄] + Bε·‖Q‖ and
thus the desired multiplier. ��

Again, the connection between a [1]-type solution and a [7]-type solutionmakes it possible
to use Theorem 3 and Proposition 3 indirectly also for the other type of solution. The resulting
multipliers are listed in Table 3. Again, the direct results of Theorem 3 and Proposition 3 are
better than the results when going through the other solution concept first.

Finally, let us consider a bounded problem (CVOP) and the associated projection (20) and
deduce the results that correspond to Theorem 4 (3.) and Theorem 5 (3.) but for the solution
concept from [1].

Table 3 Multipliers for an approximate solution of (8) to solve (CP): Theorem 3 provides multiplier κ for the
[7]-type solution and Proposition 3 provides multiplier ‖Q‖ for the [1]-type solution

Theorem 3 Proposition 3

[7]-type solution
(
mp+m−1

m+1

) 1
p

<
(
mp−1 + 1

) 1
p

[1]-type solution
(
mp + m − 1

) 1
p >

(
mp−1 + 1

) 1
p

Lemma 9 implies that κ · k is a feasible multiplier for the [1]-type solution and ‖Q‖ is a feasible multiplier
for the [7]-type solution, where k is given in (25)
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Proposition 4 1. Let the problem (CVOP) be bounded. If X̄ ⊆ X is a [1]-finite ε-infimizer
of (CVOP), then S̄ := {(x, Γ (x))|x ∈ X̄} is a finite ε-solution of the convex projec-
tion (20).

2. Let the associated convex projection (20) be self-bounded with (cl Ya)∞ = clC. If S̄ is a
finite ε-solution of (20), then X̄ := projx [S̄] is a [1]-finite ξ -infimizer of (CVOP) for all
ξ > ε.

Proof 1. A [1]-finite ε-infimizer X̄ satisfies

G ⊆ convΓ [X̄ ] + C + Bε.

Since Ya ⊆ G ,C ⊆ (cl Ya)∞ and projx [S̄] = Γ [X̄ ], it follows that
Ya ⊆ conv projx [S̄] + (cl Ya)∞ + Bε.

2. The assumption implies a bounded problem (CVOP), see Theorem 5 (2). A finite ε-
solution S̄ satisfies

Ya ⊆ conv projy[S̄] + (cl Ya)∞ + Bε.

Since Ya = Γ [X ] + C and projy[S̄] ⊆ Γ [X̄ ] + C we get

Γ [X ] + C ⊆ convΓ [X̄ ] + clC + Bε.

For a solid coneC it holds clC ⊆ −δ1c+C for a (without loss of generality normalized)
interior point c ∈ intC and any δ1 > 0. This gives us Γ [X ] + C ⊆ convΓ [X̄ ] +
C − δ1{c} + Bε ⊆ convΓ [X̄ ] + C + Bε+δ1 for an arbitrarily small δ1 > 0. Applying
the closure, we obtain G ⊆ cl

(
convΓ [X̄ ] + C + Bε+δ1

)
and an additional arbitrarily

infinitesimal increase by δ2 > 0 of the tolerance to ξ = ε + δ1 + δ2 covers the closure.
Since both δ1 and δ2 are arbitrarily small, any tolerance ξ > ε is achievable.
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