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Abstract
We study convex relaxations of nonconvex quadratic programs. We identify a family of so-
called feasibility preserving convex relaxations, which includes the well-known copositive
and doubly nonnegative relaxations, with the property that the convex relaxation is feasible
if and only if the nonconvex quadratic program is feasible. We observe that each convex
relaxation in this family implicitly induces a convex underestimator of the objective func-
tion on the feasible region of the quadratic program. This alternative perspective on convex
relaxations enables us to establish several useful properties of the corresponding convex
underestimators. In particular, if the recession cone of the feasible region of the quadratic
program does not contain any directions of negative curvature, we show that the convex
underestimator arising from the copositive relaxation is precisely the convex envelope of the
objective function of the quadratic program, strengthening Burer’s well-known result on the
exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also
present an algorithmic recipe for constructing instances of quadratic programs with a finite
optimal value but an unbounded relaxation for a rather large family of convex relaxations
including the doubly nonnegative relaxation.
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1 Introduction

In this paper, we are interested in nonconvex quadratic programs that can be represented as
follows:

(QP) �∗ = min q(x)
s.t. Ax = b,

x ≥ 0,

where q : Rn → R is given by

q(x) = xT Qx + 2cT x .

The parameters are given by Q ∈ R
n×n , which is a symmetric matrix, c ∈ R

n , A ∈ R
m×n ,

and b ∈ R
m , and x ∈ R

n is the decision variable. We denote the optimal value of (QP) by
�∗ ∈ R ∪ {−∞} ∪ {+∞}, with the usual conventions that �∗ = −∞ if (QP) is unbounded
below, and �∗ = +∞ if (QP) is infeasible. We denote the feasible region of (QP) by S, i.e.,

S = {
x ∈ R

n : Ax = b, x ≥ 0
}
. (1)

Apart from being interesting in their own right, nonconvex quadratic programs also arise
as subproblems in sequential quadratic programming algorithms and augmented Lagrangian
methods for general nonlinear programming problems (see, e.g., [29]).

In this paper, we identify a family of convex relaxations of (QP) that includes the well-
known copositive and doubly nonnegative relaxations, with the property that each convex
relaxation in this family is feasible if and only if (QP) is feasible. We therefore refer to this
family of convex relaxations as feasibility preserving relaxations. Our contributions are as
follows:

1. For each feasibility preserving convex relaxation of (QP), we identify a decomposition
of any feasible solution of the corresponding relaxation that plays a central role for
establishing several properties of the relaxation (see Lemma 2).

2. We present an alternative perspective of feasibility preserving convex relaxations of
(QP), based on the observation that each such relaxation implicitly gives rise to a convex
underestimator of the objective function q(·) on S (see Proposition 1).

3. If the objective function q(·) is convex over the feasible region S, we show that the
convex underestimator arising from each feasibility preserving convex relaxation of (QP)
agrees with q(·) over S (see Lemma 4). We also investigate the implications of the
absence of convexity on some convex relaxations including the semidefinite relaxation
(see Proposition 2).

4. Under the assumption that the recession cone of S does not contain any direction of
negative curvature, we show that the convex underestimator arising from the copositive
relaxation is in fact the convex envelope of q(·) on S (see Proposition 3).

5. Under the assumption that S is nonempty and bounded, we show that the convex underes-
timator arising from the doubly nonnegative relaxation agrees with the objective function
value at any local minimizer of (QP) (see Proposition 4).

6. For any n ≥ 5, we present an algorithmic recipe to construct an instance of (QP) such that
�∗ is finite but the lower bound arising from a rather large family of convex relaxations
including the doubly nonnegative relaxation equals −∞ (see Proposition 5).

We next briefly review the related literature, with a focus on more recent studies. Semidef-
inite relaxations of (QP) arising from the “lifting” idea proposed in [34] have been studied
extensively in the literature since the early 1990s. More recently, Burer [8] established that
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a rather large class of nonconvex optimization problems, which includes (QP) as a special
case, admits an exact copositive relaxation, which unified, extended, and subsumed a number
of similar results previously established for more specific classes of optimization problems.
Burer’s result yields an explicit representation of a nonconvex optimization problem as a
convex conic optimization problem, where the difficulty is now shifted to the copositive cone
that does not admit a polynomial-time membership oracle (see, e.g., [28]). Nevertheless, this
unifying result led to intensive research activity along two main directions. On the one hand,
Burer’s result has been extended to larger classes of nonconvex optimization problems by
introducing generalized notions of the copositive cone (see, e.g., [2–4,6,9,11,14,16,32], and
also [24] for a recent geometric view of copositive reformulations). On the other hand, vari-
ous tractable inner and outer approximations of the copositive cone have been proposed (see,
e.g., [7,12,19,25,30,31,35]). In particular, by duality, Burer’s result implies that any tractable
inner approximation of the copositive cone immediately gives rise to a convex relaxation of
(QP).

Despite the fact that the exactness of copositive relaxation has been established for more
general classes of nonconvex optimization problems than quadratic programs, which is our
focus in this paper, our perspective allows us to establish several properties of a very large class
of convex relaxations in a unified manner for this smaller class of nonconvex optimization
problems, and pinpoints the relations between the underlying structures of feasible solutions
of convex relaxations and the behavior of the relaxations. In particular, this perspective
allows us to introduce the concept of feasibility preserving convex relaxations as well as
induced convex underestimators and to study a fairly general class of convex relaxations of
(QP) in this framework. We identify several new properties and extend some of the earlier
results in the literature. Through this perspective, we obtain a strengthening of Burer’s well-
known copositive reformulation result for the special case of (QP). Finally, we identify a
key property that enables us to construct an instance of (QP) with a finite optimal value
but an unbounded convex relaxation for a large family of relaxations including the doubly
nonnegative relaxation.

This paper is organized as follows. We define our notation in Sect. 1.1. We review several
results about nonconvex quadratic programs and introduce various convex cones in Sect. 2.
Feasibility preserving convex relaxations and the corresponding convex underestimators are
introduced in Section 3. Section 4 discusses the implications of convexity of the objective
function of (QP) on convex relaxations. In Sect. 5, we study copositive relaxations and
establish that the corresponding convex underestimator is in fact the convex envelope of
the objective function under mild assumptions. In Sect. 6, we study properties of feasibility
preserving convex relaxations for quadratic programs with bounded and unbounded feasible
regions. Finally, we conclude the paper in Sect. 7.

1.1 Notation

We useRn,Rn+,Rm×n , and Sn to denote the n-dimensional Euclidean space, the nonnegative
orthant, the set of m × n real matrices, and the space of n × n real symmetric matrices,
respectively. The vector of all ones and the identitymatrix are denoted by e and I , respectively,
whose dimensions will always be clear from the context. We use 0 to denote the real number
0, the vector of all zeroes, as well as the matrix of all zeroes. The convex hull of a set is
denoted by conv(·). We reserve uppercase calligraphic letters to denote the subsets of Sn .
For an index setA ⊆ {1, . . . , n}, we denote by |A| the cardinality ofA. For x ∈ R

n , Q ∈ Sn ,
A ⊆ {1, . . . , n}, and B ⊆ {1, . . . , n}, we denote by xA ∈ R

|A| the subvector of x restricted to
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the indices in A and by QAB the submatrix of Q whose rows and columns are indexed by A
and B, respectively. Therefore, QAA denotes a principal submatrix of Q. We simply use x j
and Qi j for singleton index sets. We also adopt Matlab-like notation. We use 1 : n to denote
the index set {1, . . . , n}. For x ∈ R

n and y ∈ R
m , we denote by [x; y] ∈ R

n+m the column
vector obtained by stacking x and y. For matrices in Sn+1, rows and columns are indexed
using {0, 1, . . . , n}. We use superscripts to denote different elements in a set of vectors or
matrices. For any U ∈ R

m×n and V ∈ R
m×n , the trace inner product is denoted by

〈U , V 〉 :=
m∑

i=1

n∑

j=1

Ui j Vi j .

For any x ∈ R
n and Q ∈ Sn , note that xT Qx = 〈Q, xxT 〉. For x̃ ∈ R

n+, we define the
following index sets:

P(x̃) = {
j ∈ {1, . . . , n} : x̃ j > 0

}
, (2)

Z(x̃) = {
j ∈ {1, . . . , n} : x̃ j = 0

}
. (3)

For a closed convex cone K ⊆ Sn , the dual cone, denoted by K∗, is given by

K∗ = {Y ∈ Sn : 〈X , Y 〉 ≥ 0, for all X ∈ K}. (4)

For any two convex cones K1 and K2, we have

K1 ⊆ K2 �⇒ K∗
2 ⊆ K∗

1.

2 Preliminaries

In this section, we review several results that will be useful for the subsequent exposition.
Consider an instance of (QP). In addition to S given by (1), which denotes the feasible

region of (QP), we define the following sets:

L = {d ∈ R
n : Ad = 0, d ≥ 0} (5)

L0 = {d ∈ R
n : Ad = 0, d ≥ 0, dT Qd = 0} (6)

L∞ = {d ∈ R
n : Ad = 0, d ≥ 0, dT Qd < 0} (7)

Note that L denotes the recession cone of S. L0 and L∞ are subsets of L that consist of
recession directions of zero and negative curvature, respectively.

If S = ∅, then (QP) is infeasible andwe define �∗ = +∞. Otherwise, if (QP) is unbounded
below, we define �∗ = −∞. The following well-known result, which completely character-
izes unbounded instances of (QP), reveals that (QP) is unbounded below if and only if q(·)
is unbounded below on a ray of S.

Lemma 1 [15, Theorem 3] (QP) is unbounded below if and only if S �= ∅ and at least one
of the following two conditions holds:

1. L∞ �= ∅.
2. There exist x̃ ∈ S and d̃ ∈ L0 such that (Qx̃ + c)T d̃ < 0, where L0 is given by (6).
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If S is nonempty and bounded, then −∞ < �∗ < +∞ and there exists x∗ ∈ S such
that q(x∗) = �∗. If S is an unbounded polyhedron and q(·) is bounded below on S, then the
well-known result of Frank and Wolfe [17] implies that the optimal value is attained, i.e.,
there exists x∗ ∈ S such that q(x∗) = �∗. Therefore, in each of these two cases, we denote
the set of optimal solutions of (QP) by

S∗ = {
x∗ ∈ S : q(x∗) = �∗} . (8)

We next recall two definitions (see, e.g., [33]). A function g : Rn → R is said to be a
convex underestimator of q(·) on S if

g(·) is convex and g(x) ≤ q(x), x ∈ S.

The pointwise supremum of all convex underestimators of q(·) on S, denoted by fS(·), is
called the convex (lower) envelope of q(·) on S:

fS(x) = sup {g(x) : g(x) is a convex underestimator of q(·) on S} , x ∈ S. (9)

Note that

�∗ = min
x∈S q(x) = min

x∈S fS(x), and conv(S∗) ⊆ {
x ∈ S : fS(x) = �∗} . (10)

The first relation in (10) simply follows by combining fS(x̃) ≤ q(x̃) for each x̃ ∈ S with
the observation that g(x) = �∗ is a convex function such that g(x) ≤ q(x) for each x ∈ S,
which implies that fS(x̃) ≥ �∗ for each x̃ ∈ S by (9). The second relation in (10) follows
from the first one and the convexity of fS(·).

2.1 Local minimizers

In this section, we review a characterization of the set of local minimizers of (QP).
Consider an instance of (QP). Since S is a polyhedral set, the constraint qualification holds

at every feasible point. Therefore, if x̃ is a local minimizer of (QP), then there exist ỹ ∈ R
m

and s̃ ∈ R
n such that the following KKT conditions are satisfied:

Qx̃ + c − AT ỹ − s̃ = 0, (11)

Ax̃ = b, (12)

x̃ j s̃ j = 0, j = 1, . . . , n, (13)

x̃ ∈ R
n+, (14)

s̃ ∈ R
n+. (15)

We remark that ỹ and s̃ are actually the Lagrange multipliers scaled by 1/2.
In addition, any local minimizer x̃ satisfies the following second order necessary condi-

tions:

dT Qd ≥ 0, d ∈ Cx̃ , (16)

where

Cx̃ =
{
d ∈ R

n : Ad = 0, dT (Qx̃ + c) = 0, d j ≥ 0, j ∈ Z(x̃)
}

, (17)

and Z(·) is given by (3).
Conversely, any x̃ ∈ R

n that satisfies the KKT conditions (11)–(15) and the second order
necessary conditions (16) is, in fact, a local minimizer of (QP) (see, e.g., [21,27]). Therefore,
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the conditions (11)–(16) provide a complete characterization of the set of all local minimizers
of (QP).

2.2 Convex cones of interest

Let us define the following cones in Sn :

N n = {
Y ∈ Sn : Yi j ≥ 0, 1 ≤ i ≤ j ≤ n

}
,

PSDn =
⎧
⎨

⎩
Y ∈ Sn : Y =

k∑

j=1

y j (y j )T , y j ∈ R
n, j = 1, . . . , k

⎫
⎬

⎭
,

Dn = {
Y ∈ Sn : Y ∈ PSDn, Y ∈ N n} ,

CPn =
⎧
⎨

⎩
Y ∈ Sn+1 : Y =

k∑

j=1

y j (y j )T , y j ∈ R
n+, j = 1, . . . , k

⎫
⎬

⎭
,

COPn =
{
Y ∈ Sn : uT Yu ≥ 0, for all u ∈ R

n+
}

.

Note that N n is the cone of componentwise nonnegative matrices, PSDn is the cone of
positive semidefinite matrices, Dn is the cone of doubly nonnegative matrices, CPn is the
cone of completely positive matrices, and COPn is the cone of copositive matrices. Each of
these cones is a proper convex cone. For K ∈ {N n,PSDn}, we have K∗ = K, where K∗ is
defined as in (4). On the other hand, the following relations can be easily established (see,
e.g., [5]):

(Dn)∗ = PSDn + N n, (18)
(CPn)∗ = COPn, (19)

(COPn)∗ = CPn . (20)

The following set of inclusions directly follows from the definitions:

CPn ⊆ Dn ⊆ PSDn ⊆ PSDn + N n ⊆ COPn . (21)

Furthermore, by [13],

CPn = Dn, and PSDn + N n = COPn if and only if n ≤ 4. (22)

In addition, we define the following closed convex cone in Sn+1:

Pn+1 = {
Y ∈ Sn+1 : Y ∈ PSDn+1, Y0,1:n ∈ R

n+
}
, (23)

i.e., Pn+1 is the cone of positive semidefinite matrices in Sn+1 with an additional nonnega-
tivity constraint on the 0th row and 0th column. It is easy to verify that

Dn+1 ⊆ Pn+1 ⊆ PSDn+1. (24)

We finally define the following family of convex cones in Sn+1:

K = {K ∈ Sn+1 : K is a closed convex cone s.t. CPn+1 ⊆ K ⊆ Pn+1} . (25)
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3 Feasibility preserving convex relaxations

In this section, we introduce a family of convex relaxations of (QP) and establish several
properties of such relaxations.

Consider the following family of optimization problems:

(P(K)) �K = min 〈Q̂, Y 〉
s.t. 〈 Â, Y 〉 = 0

Y00 = 1
Y ∈ K,

where

Q̂ =
[
0 cT

c Q

]
, (26)

Â =
[

bT b −bT A
−AT b AT A

]
=
[

bT

−AT

] [
bT

−AT

]T
, (27)

and K ∈ K. The optimal value is denoted by �K ∈ R ∪ {−∞} ∪ {+∞}, with the usual
aforementioned conventions.

For anyK ∈ K, it is easy to verify that (P(K)) is a convex relaxation of (QP) since (P(K))

is a convex optimization problem and Ỹ = [1; x̃][1; x̃]T is a feasible solution of (P(K)) for
any x̃ ∈ S with the same objective function value q(x̃). Therefore, we immediately obtain

�K ≤ �∗. (28)

Furthermore,

K1 ∈ K, K2 ∈ K, K1 ⊆ K2 �⇒ �K2 ≤ �K1 ≤ �∗. (29)

For the specific choices of K = CPn+1 and K = Dn+1, we will henceforth refer to the
corresponding convex relaxation (P(K)) as the copositive relaxation and doubly nonnegative
relaxation, respectively.

The next result establishes a useful property of (P(K)) for anyK ∈ K and forms the basis
of our alternative perspective.

Lemma 2 Let K ∈ K, where K is given by (25). Then,

Ỹ =
[
1 x̃ T

x̃ X̃

]
∈ Sn+1 (30)

is a feasible solution of (P(K)) if and only if

1. Ỹ ∈ K,
2. x̃ ∈ S, and

3. there exist d̃ j ∈ R
n, j = 1, . . . , k such that X̃ = x̃ x̃ T +

k∑

j=1
d̃ j (d̃ j )T , where Ad̃ j = 0

for each j = 1, . . . , k.

Proof Let K ∈ K and Ỹ given by (30) be a feasible solution of (P(K)). Clearly, Ỹ ∈ K.
By (25), we have x̃ ∈ R

n+ and X̃ − x̃ x̃ T = D̃ ∈ PSDn , i.e., D̃ = ∑k
j=1 d̃

j (d̃ j )T for some

d̃ j ∈ R
n, j = 1, . . . , k. Furthermore,

〈 Â, Ỹ 〉 = ‖b − Ax̃‖2 + 〈AT A, D̃〉 = 0,
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which implies that ‖b − Ax̃‖2 = 〈AT A, D̃〉 = 0 since AT A ∈ PSDn and D̃ ∈ PSDn . It
follows that Ax̃ = b and Ad̃ j = 0 for each j = 1, . . . , k. The converse implication can be
easily established. ��

Since (P(K)) is a convex relaxation of (QP), it follows that (QP) is infeasible if (P(K))

is infeasible. The proof of Lemma 2 implies the following converse result.

Corollary 1 If (QP) is infeasible, then (P(K)) is infeasible for any K ∈ K, where K is given
by (25).

Proof The assertion immediately follows from Lemma 2. ��
By Corollary 1, any convex relaxation of (P(K)) of (QP), where K ∈ K, will be referred

to as a feasibility preserving relaxation.
For anyK ∈ K, Lemma 2 implies that S is given by the following projection of the feasible

region of (P(K)):

S =
{
x ∈ R

n : ∃ Y =
[
1 xT

x X

]
∈ Sn+1 such that Y is feasible for (P(K))

}
. (31)

For a givenK ∈ K, this observationmotivates us to define the following optimization problem
parametrized by x̃ ∈ S:

(P(K, x̃)) �K(x̃) = min 〈Q̂, Y 〉
s.t. 〈 Â, Y 〉 = 0

Y0,1:n = x̃
Y00 = 1
Y ∈ K,

where �K(x̃) ∈ R∪{−∞}∪ {+∞}. Note that (P(K, x̃)) is a constrained version of (P(K)).
Similar to (29), we have

K1 ∈ K, K2 ∈ K, K1 ⊆ K2 �⇒ �K2(x̃) ≤ �K1(x̃), x̃ ∈ S. (32)

The following result establishes a useful property of the function �K(·).
Proposition 1 Given an instance of (QP), let K ∈ K, where K is given by (25). Then, �K(·)
is a convex underestimator of q(·) on S, i.e., �K(·) is convex and

�K(x̃) ≤ q(x̃), x̃ ∈ S. (33)

Furthermore,

�K = min
x∈S �K(x). (34)

Proof Let K ∈ K. The convexity of �K(·) follows from the fact that the optimal value
function of a convex optimization problem is convex as a function of the right-hand side
parameter varying on a convex set (see, e.g., [33, Theorem 29.1]). For any x̃ ∈ S, note that
Ỹ = [1; x̃][1; x̃]T ∈ Sn+1 is a feasible solution of (P(K, x̃)) with 〈Q̂, Ỹ 〉 = q(x̃), which
establishes (33). Therefore, �K(·) is a convex underestimator of q(·) on S.

We clearly have �K ≤ �K(x̃) for any x̃ ∈ S since (P(K, x̃)) is a constrained version of
(P(K)). If the optimal solution of (P(K)) is attained and given by Y ∗ ∈ Sn+1, then Y ∗ is
also an optimal solution of (P(K, x∗)), where x∗ = Y ∗

0,1:n , proving (34). Otherwise, if Y k ∈
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Sn+1, k = 1, 2, . . . is a sequence of feasible solutions of (P(K)) such that 〈Q̂, Y k〉 → �K,
then

�K ≤ �K(xk) ≤ 〈Q̂, Y k〉, k = 1, 2, . . . ,

where xk = Y k
0,1:n , which implies that �K(xk) → �K, also establishing (34) in this case. ��

For each K ∈ K, Proposition 1 reveals that �K(·) is a convex underestimator of q(·)
on S. By (21) and (24), the tightest and the weakest convex underestimators are given by
K = CPn+1 and K = Pn+1, respectively.

4 Role of convexity on feasibility preserving relaxations

In this section, we focus on the implications of convexity of the objective function in (QP)
on feasibility preserving convex relaxations. We also consider the effect of the absence of
convexity on the weakest convex relaxation in this family.

First, we focus on the instances of (QP) in which the objective function q(·) is convex
over the feasible region S. We remark that this is a weaker condition than and is implied by
the convexity of q(·) over Rn . The next lemma presents necessary and sufficient conditions
for the convexity of q(·) over S.
Lemma 3 Given an instance of (QP) with S �= ∅, the objective function q(·) is convex over
S if and only if Q is positive semidefinite on the null space of A, i.e.,

Ad = 0, d ∈ R
n �⇒ dT Qd ≥ 0. (35)

Proof Let x̃ ∈ S, ỹ ∈ S, and let λ ∈ [0, 1]. Let us define d̃ = ỹ − x̃ so that Ad̃ = 0. The
assertion immediately follows from the identity below together with λ ∈ [0, 1]:

q((1 − λ)x̃ + λỹ) = (1 − λ) q(x̃) + λ q(ỹ) − λ(1 − λ) d̃T Qd̃.

��
Under the assumption that the objective function q(·) is convex over the feasible region

S, the following lemma shows that the convex underestimator arising from any feasibility
preserving convex relaxation coincides with the objective function q(·) and is therefore exact.
Lemma 4 Given an instance of (QP) with S �= ∅, suppose that the objective function q(·) is
convex over S. Then, for any K ∈ K,

�K(x) = q(x), x ∈ S.

Therefore, the convex relaxation (P(K)) is exact, i.e., �K = �∗. Furthermore, for any optimal
solution Y ∗ ∈ Sn+1 of (P(K)), x∗ = Y ∗

0,1:n∈ R
n is an optimal solution of (QP).

Proof Let x̃ ∈ S and let Ỹ ∈ Sn+1 given by (30) be a feasible solution of (P(K, x̃)). By
Lemma 2,

〈Q̂, Ỹ 〉 = 2cT x̃ + x̃ T Qx̃ +
k∑

j=1

(d̃ j )T Qd̃ j ≥ q(x̃),

where the inequality follows from (35) since q(·) is convex over S and Ad̃ j = 0 for each
j = 1, . . . , k by Lemma 2. By Proposition 1, we obtain �K(x̃) = q(x̃), and �K = �∗. Finally,
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if Y ∗ ∈ Sn+1 is an optimal solution of (P(K)), it follows from Proposition 1 and (35) that
�∗ = �K = 〈Q̂, Y ∗〉 ≥ q(x∗) = (x∗)T Qx∗ + 2cT x∗ ≥ �∗, where x∗ = Y ∗

0,1:n , which
implies that x∗ is an optimal solution of (QP). ��

By Lemma 4, the convex underestimator arising from any K ∈ K coincides with the
objective function q(·) over S. In addition, solving the convex relaxation (P(K)) not only
yields the optimal value �∗ of (QP) but also an optimal solution of (QP) if it is attained.
We would like to also highlight the role played by Lemma 2 in the proof of Lemma 4 (i.e.,
K ⊆ Pn+1 ⊆ PSDn+1). In particular, alternative convex relaxations arising from using, for
instance, K = N n+1 may not necessarily yield an exact relaxation even if q(·) is convex
over S. On the other hand, we remark that the choice ofK = N n+1 does not necessarily give
rise to a feasibility preserving relaxation (P(K)) unless one explicitly adds the constraint
Ax = b to (P(K)).

Clearly, if q(·) is convex overRn , then it is also convex over S. Under this more restrictive
convexity assumption on q(·), a similar result for the doubly nonnegative relaxation follows
from [23, Lemma 2.7]. On the other hand, for the special case of standard quadratic programs,
Gökmen and Yıldırım [18, Proposition 4] establish the exactness of the doubly nonnegative
relaxation under the same corresponding assumption as in Lemma 4. Therefore, Lemma 4
subsumes and extends these results in two directions. First, the exactness result holds under
the slightly weaker condition of convexity of q(·) over the feasible region. Second, it holds
for anyK ∈ K, including the weaker convex relaxation arising fromK = Pn+1, where Pn+1

is given by (23).
We now focus on the implications of relaxing the convexity assumption on the objective

function of (QP) on convex relaxations. To that end, our next result establishes that the
weakest convex relaxation arising from K = Pn+1 yields a trivial convex underestimator
whenever the objective function q(·) is not convex over S.
Proposition 2 Given an instance of (QP) with S �= ∅, suppose that the objective function
q(·) is not convex over S. Then, for K = Pn+1, �K(x̃) = −∞ for all x̃ ∈ S, and �K = −∞.

Proof Let K = Pn+1 and let x̃ ∈ S. By Lemma 3, there exists d̃ ∈ R
n such that Ad̃ = 0 and

d̃T Qd̃ < 0. By Lemma 2, for any λ ≥ 0,

Ỹ (λ) =
[
1
x̃

] [
1
x̃

]T
+ λ

[
0
d̃

] [
0
d̃

]T

is a feasible solution of (P(K, x̃)) and 〈Q̃, Ỹ 〉 = q(x̃) + λd̃T Qd̃ → −∞ as λ → +∞,
establishing that �K(x̃) = −∞ for all x̃ ∈ S. The last assertion follows from Proposition 1.

��
By Lemma 4 and Proposition 2, it follows that the weakest convex relaxation arising from

K = Pn+1 is exact if the objective function q(·) is convex over S, and provides no useful
information otherwise. It is worth pointing out that Proposition 2 also holds for the weaker
convex relaxation arising from K = PSDn+1. We remark, however, that the corresponding
convex relaxation is not necessarily a feasibility preserving relaxation.

5 Copositive relaxation and convex envelope

Having established some properties of the weakest convex relaxation in the family of feasi-
bility preserving relaxations arising fromK = Pn+1 in Sect. 4, we now focus on the strongest
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convex relaxation, namely the copositive relaxation, given by choosing K = CPn+1. Note
that Burer [8] already established the exactness of the copositive relaxation for a family of
optimization problems that include (QP) as a special case. In this section, for the specific
class of quadratic programs, we establish the stronger result that the copositive relaxation
in fact yields the convex envelope under a mild assumption on the directions of negative
curvature.

Recall that Lemma 1 presents necessary and sufficient conditions for the unboundedness
of the objective function q(·) over S. In particular, we first focus on the condition L∞ �= ∅,
where L∞ is given by (7). In this case, the following corollary reveals that the convex
underestimator arising from any K ∈ K is the trivial one.
Corollary 2 Suppose that S �= ∅ and L∞ �= ∅, where L∞ is given by (7). Then, for any x̃ ∈ S
and any K ∈ K, we have �K(x̃) = −∞, and �K = �∗ = −∞.

Proof By (32), it suffices to prove the assertions forK = CPn+1, which directly follow from
the hypothesis L∞ �= ∅, Lemma 2, Proposition 1, and Lemma 1. ��

In light of Corollary 2, we henceforth make the following assumption.

Assumption 1 We assume that L∞ = ∅, i.e.,
d ∈ L �⇒ dT Qd ≥ 0.

Note thatAssumption1 is clearly satisfied if S is nonempty andbounded. If S is unbounded,
Lemma 1 implies that (QP) may still be unbounded below under Assumption 1.

We next present the following decomposition result from [8] that outlines a useful prop-
erty of the copositive relaxation (see also [2] for the equivalence between Burer’s original
formulation and the simplified formulation (P(K)) for K = CPn+1).

Lemma 5 [8, Lemma 2.2] Given an instance of (QP) with S �= ∅, let x̃ ∈ S andK = CPn+1.
Then, Ỹ ∈ Sn+1 given by (30) is a feasible solution of (P(K, x̃)) if and only if there exist
x̃ j ∈ S, j = 1, . . . , k1, λ j ≥ 0, j = 1, . . . , k1, and d̃ j ∈ L, j = 1, . . . , k2, where L is

given by (5), such that
k1∑

j=1
λ j = 1, and

Ỹ =
[
1 x̃ T

x̃ X̃

]
=

k1∑

j=1

λ j

[
1
x̃ j

] [
1
x̃ j

]T
+

k2∑

j=1

[
0
d̃ j

] [
0
d̃ j

]T
. (36)

Relying on this result, Burer [8] established the following well-known exactness result
for a larger class of optimization problems that includes (QP) as a special case. We present
this result for quadratic programs.

Theorem 1 [8, Theorem 2.6] For any instance of (QP) with S �= ∅, the copositive relaxation
of (QP) arising from K = CPn+1 is exact, i.e., �K = �∗. In addition, if �K(x̃) = �∗, then
x̃ ∈ conv(S∗), where S∗ is given by (8).

For the specific class of quadratic programs, we remark that the assumption S �= ∅ in
Theorem 1 can be removed due to Corollary 1.

Next, we present our main result in this section, which shows that Lemma 5 can in fact
be used to establish a stronger result on copositive relaxations of quadratic programs.
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Proposition 3 Let K = CPn+1. For any instance of (QP) with S �= ∅ that satisfies Assump-
tion 1, the convex underestimator �K(·) is the convex envelope of q(·) on S, i.e.,

�K(x) = fS(x), x ∈ S,

where fS(·) denotes the convex envelope of q(·) on S given by (9).

Proof Let x̃ ∈ S. Since S is nonempty, the feasible region of (P(K, x̃)) is nonempty by
Corollary 1. Let Ỹ ∈ Sn+1 be an arbitrary feasible solution of (P(K, x̃)). By Lemma 5, Ỹ
admits a decomposition given by (36), i.e.,

Ỹ =
[
1 x̃ T

x̃ X̃

]
=

k1∑

j=1

λ j

[
1
x̃ j

] [
1
x̃ j

]T
+

k2∑

j=1

[
0
d̃ j

] [
0
d̃ j

]T
,

where x̃ j ∈ S, j = 1, . . . , k1, λ j ≥ 0, j = 1, . . . , k1 and d̃ j ∈ L, j = 1, . . . , k2, where L

is given by (5), such that
k1∑

j=1
λ j = 1. Therefore,

〈Q̂, Ỹ 〉 =
k1∑

j=1

λ j q(x̃ j ) +
k2∑

j=1

(d̃ j )T Qd̃ j

≥
k1∑

j=1

λ j q(x̃ j )

≥
k1∑

j=1

λ j fS(x̃
j )

≥ fS

⎛

⎝
k1∑

j=1

λ j x̃
j

⎞

⎠

= fS(x̃),

where we used Assumption 1 in the second line, (9) in the third line, the convexity of fS(·) on
the fourth line, and (36) in the last line. It follows that �K(x̃) ≥ fS(x̃), which, together with
(9) and Proposition 1, implies that �K(x̃) = fS(x̃). Therefore, �K(·) is the convex envelope
of q(·) on S. ��

For the specific family of quadratic programs, Proposition 3 reveals that the copositive
relaxation is not only exact, but also gives rise to the convex envelope fS(·) of q(·) on
S under Assumption 1. We note that the convex envelope of a quadratic function over a
polytope was earlier characterized by an optimization problem in [1, Theorem 1]. Together
with [8, Corollary 2.5], this result yields another proof of Proposition 3 under the assumption
that S is nonempty and bounded. However, Proposition 3 generalizes this result to quadratic
programs with an unbounded feasible region. Furthermore, we think that our perspective
based on the optimization problem (P(K, x̃)) clearly pinpoints the role played by the convex
underestimator arising from the copositive relaxation and highlights the usefulness of our
view of convex relaxations from this perspective.

The following corollary summarizes the implications for any quadratic program.

Corollary 3 LetK = CPn+1. For any instance of (QP), �K = �∗. In addition, if −∞ < �∗ <

+∞, then �K(x̃) = �∗ if and only if x̃ ∈ conv(S∗), where S∗ is given by (8).
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Proof The assertion follows from Proposition 3, Corollary 2, Corollary 1, Theorem 1, and
(10). ��

By relying on (22), we close this section by discussing the implications of Proposition 3
in lower dimensions. To that end, let us next define the following subset of K:

K0 = {K ∈ K : K ⊆ Dn+1} . (37)

The following corollary extends Proposition 3 to any convex cone K ∈ K0 in lower
dimensions.

Corollary 4 Let n ≤ 3. For any instance of (QP) with S �= ∅ that satisfies Assumption 1 and
any K ∈ K0, the convex underestimator �K(·) is the convex envelope of q(·) on S, i.e.,

�K(x) = fS(x), x ∈ S,

where fS(·) denotes the convex envelope of q(·) on S given by (9). Furthermore, this result
also holds for n = 4 if there exists ỹ ∈ R

m such that AT ỹ = a ∈ R
n+ and bT ỹ = 1.

Proof For n ≤ 3, the result is an immediate corollary of Proposition 3 and (22) since K =
CPn+1 for any K ∈ K0 and any n ≤ 3.

Let n = 4. We follow a similar argument as in [8, Sect. 3]. By the hypothesis, there exists
ỹ ∈ R

m such that AT ỹ = a ∈ R
n+ and bT ỹ = 1. Therefore, x̃ ∈ S implies aT x̃ = 1.

Let K ∈ K0. If K = CP5, then the result follows from Proposition 3. Suppose that
K �= CP5. Let x̃ ∈ S and Ỹ ∈ Sn+1 given by (30) be a feasible solution of (P(K, x̃)). By

Lemma 2, X̃ = x̃ x̃ T + D̃, where D̃ =
k∑

j=1
d̃ j (d̃ j )T and Ad̃ j = 0 for each j = 1, . . . , k.

Therefore,

AX̃ AT = Ax̃ x̃T AT + A

⎛

⎝
k∑

j=1

d̃ j (d̃ j )T

⎞

⎠ AT = bbT ,

which implies that ỹT AX̃ AT ỹ = aT X̃a = (ỹT b)2 = 1. Furthermore,

X̃a =
(
aT x̃

)
x̃ + D̃a = x̃ + D̃a.

Therefore, 1 = aT X̃a = aT x̃ + aT D̃a = 1 + aT D̃a, which implies that aT D̃a = 0. Since
D̃ ∈ PSDn , it follows that D̃a = 0. Therefore, we obtain X̃a = x̃ , and

[
aT

I

]
X̃

[
aT

I

]T
=
[
aT X̃a aT X̃
X̃a X̃

]
=
[
1 x̃ T

x̃ X̃

]
= Ỹ .

Furthermore, since Ỹ ∈ K andK ∈ K0, it follows that X̃ ∈ Dn , which implies that X̃ ∈ CPn

by (22). Therefore, there exists U ∈ R
n×k such that U is componentwise nonnegative and

X̃ = UUT . Combining this with the last equation above, we obtain

Ỹ =
[
aT

I

]
UUT

[
aT

I

]T
∈ CPn+1,

since a ∈ R
n+. Therefore, the feasible region of (P(K, x̃)) is the same as that of the corre-

sponding copositive relaxation. The result follows from Proposition 3. ��
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As observed in [8, Section 3], we note that the assumption for the n = 4 case is satisfied
if, for instance, S is nonempty and bounded, or if a subset of the variables in (QP) is bounded.

Corollary 4 implies that the value of the convex envelope fS(x̃), where x̃ ∈ S, can be
computed within any precision in polynomial time for any instance of (QP) that satisfies
the assumptions of the corollary. We remark that Locatelli [26] formulated a semidefinite
programming problem for the computation of the value of the convex envelope of a quadratic
form over a polytope for any value of n under the assumption that all vertices and all maximal
convex faces of the polytope are known.

6 Bounded and unbounded feasible regions

In this section, we present several results for feasibility preserving convex relaxations of (QP)
with bounded and unbounded feasible regions.

First, we focus on the relation between the boundedness of the feasible region S of (QP)
and that of the feasible region of (P(K)) forK ∈ K. By (31), it is clear that the boundedness
of the latter set implies the boundedness of the former, and the unboundedess of the former set
implies the unboundedness of the latter set. However, the converse implications, in general,
do not hold for a given K ∈ K. For instance, even if S is a nonempty polytope, Proposition 2
reveals that the feasible region of (P(K)) can be unbounded for K = Pn+1 if the objective
function q(·) is not convex over S.

On the other hand, under the stronger assumption that K ∈ K0, the aforementioned
converse implications were established in [22, Lemma 2], i.e., the boundedness of S implies
the boundedness of the feasible region of any feasibility preserving convex relaxation (P(K)).
We state this result in a slightly different form below and give a slightly different proof that
highlights the relation between the recession cone of S and that of the feasible region of
(P(K)).

Lemma 6 Let K ∈ K0, where K0 is given by (37). Then, S is unbounded if and only if the
feasible region of (P(K)) is unbounded.

Proof LetK ∈ K0. By the preceding discussion, if S is unbounded, then the feasible region of
(P(K)) is unbounded. Conversely, suppose that the feasible region of (P(K)) is unbounded.
By Lemma 2, S �= ∅. Then, by [33, Theorem 8.4], the recession cone of the feasible region
of (P(K)) is nonempty, i.e., there exists D ∈ K such that D �= 0, D00 = 0, which implies
that D0,1:n = 0 since D ∈ PSDn+1, and 〈 Â, D〉 = 0. Therefore, D is given by

D =
[
0 0
0 D̃

]
,

where D̃ ∈ Dn and 〈AT A, D̃〉 = 0. Using a similar argument as in the proof of Lemma 2, it

follows that D̃ =
k∑

j=1
d̃ j (d̃ j )T , where Ad̃ j = 0 for each j = 1, . . . , k. Since D̃ ∈ N n\{0},

we have d̃ = D̃e ∈ R
n+\{0}, i.e., d̃ =

k∑

j=1
(eT d̃ j )d̃ j . Therefore, Ad̃ = 0, which implies that

d̃ ∈ L . Therefore, S is unbounded since d̃ ∈ R
n+\{0}. ��

Under the assumption that K ∈ K0, Lemma 6 reveals that the corresponding convex
relaxations not only preserve feasibility but also boundedness of the feasible region.
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For anyK ∈ K0, the proof of Lemma 6 gives a recipe for computing a recession direction
of S by using any recession direction of the feasible region of (P(K)). We next provide some
insight on this process. Let B ∈ R

n×k be a matrix whose columns form a basis for the null
space of A. For anyK ∈ K0, the recession cone of the feasible region of (P(K)), denoted by
L(K), then satisfies

L(K) ⊆
{
D =

[
0 0
0 D̃

]
∈ Sn+1 : D̃ = BMBT , M ∈ PSDk, D̃ ∈ N n

}
.

As illustrated by the proof of Lemma 6, the nonnegativity condition on the submatrix D̃ is
mainly responsible for the boundedness of the feasible region of (P(K)) if S is bounded. In
contrast, if K = Pn+1, then this nonnegativity condition on D̃ is removed, which leads to
a significantly larger set of recession directions L(K). In particular, this observation plays
a crucial role in the unfavorable result presented in Proposition 2 for the case that q(·) is
nonconvex over S even if S is nonempty and bounded.

6.1 Bounded feasible region

In this section, we focus on instances of (QP) for which S is a nonempty polytope. Under this
assumption, Lemma 6 implies that �K > −∞ and the optimal solution of (P(K)) is attained
for any K ∈ K0 (see also [22]).

We first establish a technical result that identifies a useful property of the set of feasible
solutions of P(K) forK ∈ K0. We will then use this property to establish a result about local
minimizers of (QP).

Lemma 7 Let K ∈ K0 and consider any instance of (QP), where S is a nonempty polytope.
Let x̃ ∈ S, and let Ỹ ∈ Sn+1 be a feasible solution of P(K, x̃) given by (30). Then, for any

decomposition of X̃ = Ỹ1:n,1:n given by X̃ = x̃ x̃ T +
k∑

j=1
d̃ j (d̃ j )T (cf. Lemma 2), we have

Ad̃ j = 0, d̃ j
i = 0, j = 1, . . . , k, i ∈ Z(x̃),

where Z(x̃) is given by (3).

Proof Suppose that S is a nonempty polytope. Let x̃ ∈ S and let K ∈ K0. Let Ỹ ∈ Sn+1

be a feasible solution of P(K, x̃) given by (30) and let X̃ = Ỹ1:n,1:n . By Lemma 2, there

exist d̃ j ∈ R
n, j = 1, . . . , k, such that X̃ = x̃ x̃ T +

k∑

j=1
d̃ j (d̃ j )T , where Ad̃ j = 0 for each

j = 1, . . . , k. Let us define P = P(x̃) and Z = Z(x̃), where P(x̃) and Z(x̃) are given by (2)
and (3), respectively. Then, by permuting the rows and columns of X̃ if necessary, we obtain

Ũ =
[
X̃PP X̃PZ

X̃ZP X̃ZZ

]
=

⎡

⎢⎢⎢
⎣

x̃P x̃ TP +
k∑

j=1
d̃ j
P(d̃ j

P)T
k∑

j=1
d̃ j
P(d̃ j

Z)T

k∑

j=1
d̃ j
Z(d̃ j

P)T
k∑

j=1
d̃ j
Z(d̃ j

Z)T

⎤

⎥⎥⎥
⎦

,
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where we used x̃Z = 0. Since Ũ ∈ Dn , it follows that

d̃ =
[
X̃PP X̃PZ

X̃ZP X̃ZZ

] [
0
e

]
=

⎡

⎢⎢⎢
⎣

k∑

j=1

(
(d̃ j

Z)T e
)
d̃ j
P

k∑

j=1

(
(d̃ j

Z)T e
)
d̃ j
Z

⎤

⎥⎥⎥
⎦

=
[
d̃P
d̃Z

]
≥ 0.

Therefore,

Ad̃ = A1:m,Pd̃P + A1:m,Zd̃Z

=
k∑

j=1

(
(d̃ j

Z)T e
)
A1:m,Pd̃

j
P +

k∑

j=1

(
(d̃ j

Z)T e
)
A1:m,Zd̃

j
Z

=
k∑

j=1

(
(d̃ j

Z)T e
) (

A1:m,Pd̃
j
P + A1:m,Zd̃

j
Z

)

=
k∑

j=1

(
(d̃ j

Z)T e
)
Ad̃ j

= 0.

Since S is bounded, Ad̃ = 0, and d̃ ≥ 0, it follows that d̃ = 0. Therefore,

d̃Z =
k∑

j=1

(
(d̃ j

Z)T e
)
d̃ j
Z =

⎛

⎝
k∑

j=1

d̃ j
Z(d̃ j

Z)T

⎞

⎠ e = 0.

Since Ũ ∈ Dn , it follows that
k∑

j=1
d̃ j
Z(d̃ j

Z)T ∈ N |Z|, which, together with the last equality,

implies that d̃ j
Z = 0 for each j = 1, . . . , k. The assertion follows. ��

This technical result enables us to establish the following property of convex underesti-
mators.

Proposition 4 Let K ∈ K0 and consider any instance of (QP), where S is a nonempty
polytope. Then, for any local minimizer x̃ ∈ S of (QP), we have

�K(x̃) = q(x̃). (38)

In particular, for any global minimizer x∗ ∈ S of (QP), �K(x∗) = q(x∗) = �∗.

Proof Let S be a nonempty polytope, K ∈ K0, and let x̃ ∈ S be a local minimizer of (QP).
Let us define P = P(x̃) and Z = Z(x̃), where P(x̃) and Z(x̃) are given by (2) and (3),
respectively. Let Ỹ given by (30) be a feasible solution of (P(K, x̃)). Then, by Lemma 2,

there exist d̃ j ∈ R
n, j = 1, . . . , k, such that X̃ = Ỹ1:n,1:n = x̃ x̃ T +

k∑

j=1
d̃ j (d̃ j )T , where

Ad̃ j = 0 for each j = 1, . . . , k. By Lemma 7, d̃ j
i = 0 for each j = 1, . . . , k and each i ∈ Z.

Since x̃ is a local minimizer, there exist ỹ ∈ R
m and s̃ ∈ R

n such that (11)–(15) are satisfied.
Therefore, for each j = 1, . . . , k,

(d̃ j )T (Qx̃ + c) = (d̃ j )T
(
AT ỹ + s̃

)
= ỹT

(
Ad̃ j

)
+ (d̃ j )T s̃ = 0 +

∑

i∈P
d̃ j
i s̃i +

∑

i∈Z
d̃ j
i s̃i = 0,
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where we used (11) in the first equality, Ad̃ j = 0 in the third equality, s̃i = 0 for i ∈ P by
(13), and d̃ j

i = 0 for i ∈ Z in the last one. By (17), we have d̃ j ∈ Cx̃ for each j = 1, . . . , k.
Since x̃ is a local minimizer, (d̃ j )T Qd̃ j ≥ 0 for each j = 1, . . . , k by (16). Therefore,

〈Q̂, Ỹ 〉 = q(x̃) +
k∑

j=1

(d̃ j )T Qd̃ j ≥ q(x̃)

for any feasible solution Ỹ of (P(K, x̃)). Therefore, �K(x̃) ≥ q(x̃). Combining this inequality
with (33) yields (38). The second assertion simply follows from the fact that any global
minimizer x∗ of (QP) is also a local minimizer. ��

ByProposition 4, the convex underestimator �K(·) agreeswith q(·) at each localminimizer
of (QP) for any K ∈ K0. By Proposition 1,

�K(x) ≤ fS(x) ≤ q(x), x ∈ S,

where fS(·) denotes the convex envelope of q(·) on S given by (9). Therefore, by Propo-
sition 4, for any local minimizer x̃ ∈ S of (QP), we obtain �K(x̃) = fS(x̃) = q(x̃) for
any K ∈ K0. In contrast, for the copositive relaxation K = CPn+1, note that the relation
�K(x̃) = fS(x̃) = q(x̃) holds at any feasible solution x̃ ∈ S by Proposition 3.

6.2 Unbounded feasible region

In this section, we focus on instances of (QP) with an unbounded feasible region. We will
primarily focus on the construction of instances of (QP) with a finite optimal value that admit
an unbounded convex relaxation.

Recall that if S is nonempty and bounded, we have −∞ < �K ≤ �∗ for any K ∈ K0 by
Lemma 6, i.e., the lower bound arising from any convex relaxationK ∈ K0 is finite whenever
S is nonempty and bounded. An interesting question is whether the same relation −∞ <

�K ≤ �∗ continues to hold for instances of (QP) with an unbounded feasible region and a
finite optimal value. The following example, inspired from [10], illustrates a counterexample
for n = 5 and K = Dn+1.

Example 1 Consider the following instance of (QP) given by

Q =

⎡

⎢⎢⎢⎢
⎣

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎤

⎥⎥⎥⎥
⎦

,

c = [
1 1 1 1 1

]T
,

A = [−3 2 −3 1 1
]
,

b = 4.

Then, S �= ∅ since
[
0 1 0 1 1

]T ∈ S. Furthermore, S is unbounded since
[
1 3 1 0 0

]T ∈ L .
Note that Q ∈ COP5 since it is the well-known Horn matrix (see, e.g., [20]). Since c ∈ R

n+,
it follows that q(x) = xT Qx+2cT x ≥ 0 for any x ∈ R

n+, which implies that q(·) is bounded
below on S. Therefore, −∞ < �∗ < +∞.
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Let us consider the convex relaxation of (QP) obtained from K = D6. For each x̃ ∈ S,
we claim that �K(x̃) = −∞, i.e., the convex underestimator �K(·) is the trivial one despite
the fact that −∞ < �∗ < +∞. Indeed, for any x̃ ∈ S, consider

Ỹ (λ) =
[
1
x̃

] [
1
x̃

]T
+ λ

[
0 0
0 D̃

]
,

where

D̃ =

⎡

⎢⎢⎢⎢
⎣

1
1
0
0
1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

1
1
0
0
1

⎤

⎥⎥⎥⎥
⎦

T

+

⎡

⎢⎢⎢⎢
⎣

0
1
1
1
0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

0
1
1
1
0

⎤

⎥⎥⎥⎥
⎦

T

+

⎡

⎢⎢⎢⎢
⎣

0
1
0

−1
−1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

0
1
0

−1
−1

⎤

⎥⎥⎥⎥
⎦

T

=

⎡

⎢⎢⎢⎢
⎣

1 1 0 0 1
1 3 1 0 0
0 1 1 1 0
0 0 1 2 1
1 0 0 1 2

⎤

⎥⎥⎥⎥
⎦

.

Note that D̃ ∈ D5, 〈AT A, D̃〉 = 0, and 〈Q, D̃〉 = −1 < 0. Therefore, by Lemma 2, Ỹ (λ) is
a feasible solution of (P(K, x̃)) for any λ ≥ 0, and 〈Q̂, Ỹ 〉 = q(x̃) + λ〈Q, D̃〉 → −∞ as
λ → +∞, establishing the assertion. It follows that �K = −∞ by Proposition 1, whereas
�∗ is finite.

Our next result generalizes the construction in Example 1 to any n ≥ 5 and any K ∈
K0\{CPn+1} under an additional technical assumption.

Proposition 5 Let K ∈ K0\{CPn+1} be any cone that satisfies the following property:

∃ D̃ ∈ Sn+1 s.t. D̃ =
[
0 0
0 D

]
∈ K\CPn+1, D ∈ Sn . (39)

Then, for any n ≥ 5, there exists an instance of (QP) such that −∞ < �∗ < +∞, whereas
�K(x̃) = −∞ for each x̃ ∈ S, and �K = −∞.

Proof Let n ≥ 5 and let K ∈ K0\{CPn+1} be such that (39) is satisfied. Since D̃ /∈ CPn+1

by (39), it follows that D /∈ CPn . By (4), (19), and (20), there exists a matrix Q ∈ COPn

such that 〈Q, D〉 < 0.
Choose any c ∈ R

n+. Since Q ∈ COPn , it follows that the objective function q(·) is
bounded below on the nonnegative orthant. Since D̃ ∈ K and K ⊆ Dn+1, it follows that

D ∈ Dn , i.e., there exist d j ∈ R
n, j = 1, . . . , k, such that D =

k∑

j=1
d j (d j )T . Let A ∈ R

m×n

be any matrix such that Ad j = 0, j = 1, . . . , k. Finally, choose any x ∈ R
n+ and define

b = Ax so that S �= ∅. A similar argument as in Example 1 reveals that �K(x̃) = −∞ for
each x̃ ∈ S, and therefore, �K = −∞ by Proposition 1. ��

We remark that the proof of Proposition 5 yields an algorithmic recipe for constructing
instances of (QP) with a finite optimal value for any n ≥ 5 and any K ∈ K0\{CPn+1} that
satisfies (39). In addition, it is worth noting that the assumption n ≥ 5 is crucial in the
construction since the relation (39) cannot be satisfied for n ≤ 4 due to (22).

7 Concluding remarks

In this paper, we considered a family of so-called feasibility preserving convex relaxations
of nonconvex quadratic programs. By observing that each such relaxation implicitly gives
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rise to a convex underestimator, we established several properties of such relaxations. In
particular, our results strengthen Burer’s well-known copositive representation result for the
specific case of nonconvex quadratic programs.

We believe that our perspective in this paper is particularly useful since it sheds light
onto how a convex relaxation obtained in higher dimensions translates back into the original
dimension of the quadratic program. Furthermore, our results clearly highlight the important
role played by the directions in the null space of the constraint matrix. An interesting research
direction is to extend this perspective to a larger class of nonconvex optimization problems
that can be formulated as copositive or generalized copositive optimization problems.
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