
Journal of Global Optimization (2021) 80:779–804
https://doi.org/10.1007/s10898-021-01053-8

On newmethods to construct lower bounds in simplicial
branch and bound based on interval arithmetic

B. G.-Tóth1 · L. G. Casado2 · E. M. T. Hendrix3 · F. Messine4

Received: 1 December 2020 / Accepted: 8 May 2021 / Published online: 10 July 2021
© The Author(s) 2021

Abstract
Branch and Bound (B&B) algorithms in Global Optimization are used to perform an exhaus-
tive search over the feasible area. One choice is to use simplicial partition sets. Obtaining
sharp and cheap bounds of the objective function over a simplex is very important in the
construction of efficient Global Optimization B&B algorithms. Although enclosing a sim-
plex in a box implies an overestimation, boxes are more natural when dealing with individual
coordinate bounds, and bounding ranges with Interval Arithmetic (IA) is computationally
cheap. This paper introduces several linear relaxations using gradient information and Affine
Arithmetic and experimentally studies their efficiency compared to traditional lower bounds
obtained by natural and centered IA forms and their adaption to simplices. A Global Opti-
mization B&B algorithm with monotonicity test over a simplex is used to compare their
efficiency over a set of low dimensional test problems with instances that either have a box
constrained search region or where the feasible set is a simplex. Numerical results show that
it is possible to obtain tight lower bounds over simplicial subsets.

Keywords Simplex · Branch and bound · Interval arithmetic · Affine arithmetic · Linear
programming

This work has been funded by grant RTI2018-095993-B-I00 from the Spanish Ministry.

B E. M. T. Hendrix
eligius.hendrix@wur.nl

B. G.-Tóth
boglarka@inf.szte.hu

L. G. Casado
leo@ual.es

F. Messine
frederic.messine@laplace.univ-tlse.fr

1 Department of Computational Optimization, University of Szeged, Szeged, Hungary

2 Informatics Department, University of Almería, CeiA3, Almería, Spain

3 Universidad de Málaga and Wageningen University, Wageningen, Netherlands

4 LAPLACE-ENSEEIHT, Toulouse-INP, University of Toulouse, Toulouse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01053-8&domain=pdf
http://orcid.org/0000-0003-1572-1436

780 Journal of Global Optimization (2021) 80:779–804

1 Introduction

A review of simplicial Branch and Bound (B&B) can be found in [15]. Recently, there is a
renewed interest in generating tight bounds over simplicial partition sets.Karhbet andKearfott
[7] discuss the idea of using range computation over simplices based on Interval Arithmetic.
In [12], focus is on using second derivative enclosures for generating bounds. These works
do not take monotonicity considerations over the simplex into account as discussed by [6].
Our research question is how information on the bounds of first derivatives can be used to
derive tight bounds and to create new monotonicity tests in simplicial B&B. To investigate
this question, we derive bounds based on derivative information and implement them in a
B&B algorithm to compare the different techniques.

The rest of this paper is organized as follows. Section 2 introduces the notation. Section
3 presents several approaches to obtain lower bounds of a function over a simplex. Section
4 deals with monotonicity over a simplex. Section 5 describes the Global Optimization
B&B algorithm to compare lower bounding methods over a simplex. Section 6 compares
the results of the bounding techniques numerically on a large number of instances. Finally,
Sect. 7 presents our findings.

2 Preliminaries

Consider a function f : R
n → R which has to be minimized over a feasible set D ⊂ R

n ,
which is either a box or a simplex, on which f is differentiable:

min
x∈D f (x).

The simplicial B&B algorithm to be investigated uses simplicial partition sets S and lower
bounds of minx∈S f (x).

Notation 1 Let V = {v0, . . . , vn} ⊂ R
n denote a set of n + 1 affinely independent vertices.

For the component i of vertex j , we use the notation (v j)i .

Notation 2 An n-simplex S is determined by the convex hull of V , i.e. S = conv(V)

S =
⎧
⎨

⎩
y =

n∑

j=0

λ jv j | λ j ≥ 0, j = 0, . . . , n,

n∑

j=0

λ j = 1

⎫
⎬

⎭
. (1)

Notation 3 We denote intervals by boldface letters and their lower and upper bound by
‘underline’ and ‘overline’, respectively. The radius of an interval x = [x, x] is denoted by

rad (x) = x−x
2 and its midpoint bymid (x) = x+x

2 . For an interval vector (also called a box)
these are taken component-wise. The width of a box x = (x1, . . . , xn)T is to be understood
as wid (x) = 2 max

i=1,...,n
rad (xi).

Notation 4 The interval hull of a simplex S is denoted by �S = �conv(V), that is the
smallest interval box enclosing the simplex S. Let x = �S, where

xi = [xi , xi] = [min
v∈V (v)i ,max

v∈V (v)i] ∀i ∈ {1, . . . , n}. (2)

Remark 1 For cases where x = �S ⊆ D, f is differentiable over x. Notice that if D is a
box and S ⊂ D, automatically we have �S ⊆ D. However, if D is a simplex, then f is not
necessarily differentiable over x = �S.

123

Journal of Global Optimization (2021) 80:779–804 781

Notation 5 The boundary and interior of set S is denoted by ∂S and int S, respectively, where
S = ∂S ∪ int S and ∂S ∩ int S = ∅.

3 Bounding techniques over a simplex

3.1 Extension of standard interval bounding techniques to simplices

Extensive investigation on Interval Arithmetic has lead to many ways to derive rigorous
bounds, see for instance [5,8,13,17].

Notation 6 Let f denote the natural interval extension [13] of an expression f with

f (x) = [f (x), f (x)] ⊇ [min
x∈x f (x),max

x∈x f (x)], ∀x ⊆ D.

Remark 2 ∀x ∈ S ⊂ x = �S, f (x) ∈ f (x).

Notation 7 Let∇ f (x)denote an enclosureof the gradient and∇ f i (x) = [∇ f
i
(x),∇ f i (x)]

the i-th component of the interval gradient. They can be computed using Interval Arithmetic1

and Automatic Differentiation2 [16].

Remark 3 ∀x ∈ x, ∂ f
∂xi

(x) ∈ ∇ f i (x). Then, ∀x ∈ S ⊂ x = �S, ∂ f
∂xi

(x) ∈ ∇ f i (x).

Notation 8 A centered form on a box x with center c is denoted by f c(x). It is in fact the
interval extension of the first-order Taylor expansion using ∇ f (x):

f c(x) = f (c) + (x − c)T∇ f (x),with c ∈ x.

Usually c is the midpoint (or center) of box x. In that case, we refer to f cb(x) where
cb = mid (x). The lower bound f c(x) can also be written as f (c) + (x − c)T∇ f (x) =
f (c)+ (x − c)T∇ f (x), where underline takes the lower bound of the formula computed by
IA.

Remark 4 ∀x ∈ S ⊂ x = �S, f (x) ∈ f c(x). Thus, f c(x) provides lower and upper bounds
of f over S, even if c /∈ S.

Baumann [3] proposed another base-point instead of the center cb to improve the lower
and upper bounds of the centered form.

Notation 9 We denote the Baumann base-point for the optimal lower bound in the centered
form on a box by bb−. Component i is given by

bb−
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi∇ f i (x) − xi∇ f
i
(x)

wid (∇ f i (x))
if 0 ∈ ∇ f i (x)

xi if ∇ f
i
(x) > 0

xi if ∇ f i (x) < 0.

Any centered form (with a base-point y ∈ x) can be tightened based on the vertices of
simplex S.

1 cs.utep.edu.
2 autodiff.org.

123

http://www.cs.utep.edu/interval-comp/main.html
http://www.autodiff.org/

782 Journal of Global Optimization (2021) 80:779–804

Proposition 1 Let

f y(S) = f (y) + min
v∈V {(v − y)T∇ f (x)}, y ∈ x. (3)

Then f y(S) ≤ minx∈S f (x).

Proof A first-order Taylor form provides a concave lower bounding function [3,25]. A con-
cave function takes its minimum over a convex set at its extreme points. Consequently, the
lower bounding function over the simplex takes its minimum at a vertex of the simplex.
Thus, instead of computing the interval enclosure over x=�S, taking the minimum over the
simplex vertices provides a valid lower bound. ��
Remark 5 We can use y = cb or y = bb− in (3).

Now, it is interesting to see how the Baumann point bb− can be generalized to a simplicial
base-point. For bb−, the aim is to select the best base-point for the Taylor form, such that
the lower bound is as high as possible. For a simplex, instead of using the limits of enclosing
box x=�S, we use the simplex vertices.

The highest lower bound in (3) over a simplex is taken at the base-point

argmax
y∈x

min
v∈V

(
f (y) + (v − y)T∇ f (x)

)
= argmax

y∈x

(
f (y) + minv∈V (v − y)T∇ f (x)

)
.

(4)

Obviously, optimizing (4) is a nonlinear problem as it includes the optimization of f (y)
varying y. Therefore, it is advisable to optimize only the second part.

Definition 1 Let us define bs− = argmax
y∈x

minv∈V (v − y)T∇ f (x) as the Baumann point

over the simplex. This point can be found by an interval linear program:

max
y∈x,z∈R z

s.t. z ≤ (v − y)T∇ f (x), ∀v ∈ V.
(5)

Let (z∗, y∗) be the optimum of (5). Then we take base point bs− = y∗ with the corre-
sponding lower bound f bs−(x) = f (bs−) + z∗.

Notation 10 ∇w f (x) ∈ R
n denotes gradient bounds with components∇w f i (x) = ∇ f

i
(x)

if wi = xi and ∇w f i (x) = ∇ f i (x) if wi = xi .

Remark 6 In Notation 10, all possible variations of lower and upper bounds of the gradients
are taken into account when considering all vertices w of x.

Writing (5) as a linear program requires 2n constraints for each vertex v ∈ V:
max

y∈x,z∈R z

s.t. z ≤ (v − y)T∇w f (x), ∀v ∈ V, ∀w vertex of x.

(6)

The constraints in (6) can be written as 2n linear inequalities

max
y∈x,z∈R z

s.t. z + yT∇w f (x) ≤ min
v∈V vT∇w f (x), ∀w vertex of x.

(7)

123

Journal of Global Optimization (2021) 80:779–804 783

Note that we do not force bs− to be in simplex S, because it may happen that a point outside
S would give the best lower bound. In case we want to use f (bs−) to update the upper bound
of the global minimum in a B&B algorithm, bs− has to be in the initial search region. In our
experiments we force bs− to be in S by adding y ∈ S using simplex inclusion constraints
(1) to (7) in a similar way as it is done in (10).

Notice that (5), (6) and (7) are equivalent descriptions of the same problem, thus providing
the same optimum corresponding to the same bound.

3.2 Linear relaxation based lower bounds

Following earlier results in interval based B&B [14,20,21], we can now define other lower
bounds for simplicial subsets.

3.2.1 Standard linear relaxation of f over a box

Let w be a vertex of x = �S and consider a first order Taylor expansion

f w(x) = f (w) + (x − w)T∇w f (x) ≤ f (x) ∀x ∈ x. (8)

Since we have 2n vertices of x, we obtain 2n inequalities from Eq. (8), see [10] for more
details. Consider the linear program

min
x∈x,z∈R z

s.t. z ≥ f (w) + (x − w)T∇w f (x), ∀w vertex of x.
(9)

Let (x∗, z∗) be the optimal solution of (9), then

f (x) ≥ z∗,∀x ∈ x,

such that z∗ is a lower bound of f over x. z∗ is also a lower bound of f over S ⊂ x = �S.

3.2.2 Linear relaxation of f over a simplex

We now focus on the bounds of f over simplex S = conv(V). The earlier bound in (9) is
valid for f over x = �S, such that it is also a bound over the simplex S. However, it is
interesting to force x ∈ x to be inside S, like in (1). Introducing the corresponding linear
equations into problem (9) provides linear program

min
x∈x,z∈R

λ∈[0,1]n+1

z

s.t. z ≥ f (w) + (x − w)T∇w f (x), ∀w vertex of x

x =
n∑

j=0

λ jv j

n∑

j=0

λ j = 1.

(10)

Let (x∗, z∗, λ∗) be the solution of (10). Then we have that

f (x) ≥ z∗,∀x ∈ S

123

784 Journal of Global Optimization (2021) 80:779–804

and therefore, z∗ is a lower bound of f over S.
A straightforward idea is to consider the vertices of the simplex instead of the vertices of

the enclosing box. Unfortunately, such a formulation leads to a Mixed Integer Programming
problem, as the piece-wise linear lower bounding function is neither convex nor concave
anymore.

3.3 Bounding technique using Affine Arithmetic

This section describes the use of Affine Arithmetic (see [2,4,9,11,18,22]) to generate a linear
underestimation of function f over x=�S. We add the constraint that the solution has to be
inside the simplex S = conv(V), see (1). This provides a linear program.

First, we focus on the transformation of an interval vector into a vector of affine forms.
Second, we describe how the computations are made using Affine Arithmetic to provide
linear equations. Third, we sketch how the so-obtained linear equations are used to provide
linear underestimations of f over x and then we provide the linear program to find a lower
bound of f over the simplex S. Fourth, we show a simple way to solve the linear program.

3.3.1 Conversion into affine forms

The interval vector x=�S can be converted to an affine form vector, denoted by x̂ , as follows

x =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
...

xi
...

xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[x1, x1]
...

[xi , xi]
...

[xn, xn]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

→ x̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̂1
...

x̂i
...

x̂n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

mid (x1) + rad (x1)ε1
...

mid (xi) + rad (xi)εi
...

mid (xn) + rad (xn)εn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

where εi ∈ [−1, 1] for all i ∈ {1, . . . , n}. The affine form x̂ can be transformed back into an
interval by changing εi to [−1, 1]. Moreover, for all x ∈ x, there is exactly one corresponding
value for ε in the affine description,

x = T (x, ε) = mid (x) + rad (x)ε,

where εi = xi−mid (xi)
rad (xi)

, i = 1, . . . , n.

3.3.2 Affine arithmetic

By replacing all the occurrences of the variable xi by the corresponding affine form x̂i in an
expression of f , and by performing the computations using Affine Arithmetic, we obtain a
resulting affine form, denoted by

f̂ (T (x, ε)) = r0 +
n∑

i=1

riεi +
N∑

k=n+1

rkεk, (12)

where ε j is in [−1, 1] for all j ∈ {1, . . . , N }. Note that some error terms rkεk are added for
all k ∈ {n + 1, . . . , N }, which come from non affine operations in f .

123

Journal of Global Optimization (2021) 80:779–804 785

3.3.3 Linear underestimation of f over x

Using Affine Arithmetic, (12) underestimates f over x

f (x) = f (T (x, ε)) ≥ f̂ (T (x, ε)) = r0 +
n∑

i=1

riεi −
N∑

k=n+1

|rk |, (13)

because all error terms are taken into account using their worst value.

Remark 7 Equation (13) is a linear underestimation of f over x using the new variables εi .

3.3.4 Linear program to provide lower bounds

In order to compute a lower bound of f over the simplex S (and not only on the x=�S), we
constrain the point x to be inside S by adding (1). In this case, we describe x by its affine
form T (x, ε) and thus, we obtain the following linear program

min
ε∈[−1,1]n
λ∈[0,1]n+1

n∑

i=1

riεi

s.t. T (x, ε) =
n∑

i=0

λivi

n∑

i=0

λi = 1.

(14)

Denoting the exact solution of (14) by (ε∗, λ∗), we have that

f (x) = f (T (x, ε)) ≥
n∑

i=1

riε
∗
i + r0 −

N∑

k=n+1

|rk |, ∀x ∈ S (15)

and therefore, this is a lower bound of f over S.
Note that to solve the above linear program, we just need to evaluate f at each vertex of

S and then take the minimum value of the linear underestimation (13). If rad (xi) �= 0 (else
ri = 0), εi (v j) is a transformation of component i of vertex v j into variable ε

εi (v j) =
⎧
⎨

⎩

(v j)i − mid (xi)

rad (xi)
, if rad (xi) > 0

0, if rad (xi) = 0.
∀i ∈ {1, . . . , n}, and ∀v j ∈ V.

Then, the lower bound of (15) becomes

min
j∈{0,...,n}

n∑

i=1

riεi (v j) + r0 −
N∑

k=n+1

|rk |. (16)

Therefore, instead of solving linear program (14), we can determine (16) and this yields
directly the lower bound of f over S. The solution corresponds to the solution of linear
program (14).

123

786 Journal of Global Optimization (2021) 80:779–804

4 Monotonicity test

In this paper, we use a concise monotonicity test which excludes an interior partition set S if
it does not contain a stationary point. To be more precise:

Proposition 2 Let S ⊂ int(D) be a simplex in the interior of the search area D. If ∃i ∈
{1, . . . , n} with 0 /∈ ∇ f i (�S) then S does not contain a global minimum point.

Proof The condition implies that

∀x ∈ S,
∂ f

∂xi
(x) �= 0.

such that S cannot contain an interior minimum of D. Moreover, S does not touch the
boundary, i.e. S ∩ ∂D = ∅, such that neither it can contain a boundary optimum point. ��
The test is not very strong, as initial partition sets typically touch the boundary. A slight
relaxation is the following corollary, where a simplicial partition set has only vertices in
common with the boundary.

Corollary 1 Let S ⊂ D be a partition set, where the number of boundary points is finite, i.e.
S ∩ ∂D ⊂ V , and 0 /∈ ∇ f (�S). Then S can be eliminated from the search tree.

Proof The same reasoning as in the proof of Proposition 2 applies with respect to the interior
of S. Now a minimum point could be attained in a vertex v ∈ S ∩ ∂D. However, vertex v

is also part of another simplicial partition set which covers part of the boundary of D, such
that we do not have to store S anymore. ��
This corollary is not very strong, but it is relatively easy to check. For practical tests, Propo-
sition 2 offers the conditions for removing an interior simplicial partition set S. We can also
remove it, if just several vertices of S touch the boundary of D according to Corollary 1.
Otherwise, we should store the facets of S which are completely in a face of the search region
as new simplicial partition sets with less than n + 1 vertices.

In our former investigation [6], we focused on bounds of the directional derivative in
a direction d , denoted by dT∇ f (S) and dT∇ f (S). In this context, one can consider for
instance an upper bound of the directional derivative

dT∇ f (S) =
n∑

i=1

max{di∇ f
i
(�S), di∇ f i (�S)}. (17)

Notice that a necessary condition for dT∇ f (S) ≤ 0 according to (17) is that f is monotone
on �S, i.e. 0 /∈ ∇ f (�S).

Proposition 3 Let V be a vertex set, S = conv(V), w ∈ V , V̂ = V \ {w}, facet F = conv(V̂)

and d = 1
n

∑
v∈V̂ v−w. If dT∇ f (S) ≤ 0, then F contains a minimum point ofminx∈S f (x).

Proof Consider the vertices of V ordered such that w = v0. Let x = ∑n
j=1 λ jv j + λ0w be

a minimum point x /∈ F . We construct a point z on F walking in direction d according to
z = x +λ0d = ∑n

j=1(λ j + 1
n)v j . Then we have that f (z) ≤ f (x)+λ0∇dT f T (S) ≤ f (x).

Thus, minimum point x either does not exist, or z is also a minimum point of minx∈S f (x)
and it is located on facet F . ��

123

Journal of Global Optimization (2021) 80:779–804 787

Corollary 2 LetV be a vertex set, S = conv(V),w ∈ V , V̂ = V \{w}, facet F = conv(V̂) and
d = 1

n

∑
v∈V̂ v − w. If dT∇ f (S) < 0, then F contains all minimum points ofminx∈S f (x),

i.e argminx∈S f (x) ⊂ F.

The corresponding test allows us to perform a dimension reduction of S by removing the
vertex w. In case the conditions are not true, one can check each border facet if it can contain
a minimum point. If we show it cannot, we do not have to deal further with the facet. In case
no border facet can contain the minimum, it follows that S can be disregarded.

Corollary 3 Let V be a vertex set, S = conv(V), w ∈ V , V̂ = V \ {w}, facet F = conv(V̂)

and d = 1
n

∑
v∈V̂ v − w. If dT∇ f (S) > 0, then F cannot contain a minimum point of

minx∈S f (x).

5 Simplicial B&B algorithm (SBB)

Algorithm 1 uses an AVL tree3 [1]�, a self-balancing binary search tree, for storing partition
sets. Such a structure has a computational complexity of sorted insertion and extraction of
an element of O(log2 |�|). Evaluated and not rejected simplices are sorted in � by non
decreasing order of the bounds on the objective using any of the methods from Sect. 3. This
means [x, x] < [y, y] when x < y or when x = y and x < y. Simplicial partition sets
having the same bounds are stored in the same node of the AVL tree using a linked list.

All vertices of a simplex are also stored in an AVL tree. Vertices may be shared among
several simplices, such that we avoid duplicate storage. Although Algorithm 1 describes
vertices to be evaluated in order to update the incumbent f̃ (see Algorithm 1, lines 5 and
13), their evaluation depends on the actual lower bounding method. The simplex S with the
lowest value of f (S) is extracted from � (lines 8 and 19). The lower bound of f (S) is used
in the stopping criterion of the algorithm (line 9).

Evaluation of a simplex S always includes computation of the natural inclusion f (S) =
f (�S) of the objective function and inclusion of the gradient ∇ f (S) = ∇ f (�S) using
Automatic Differentiation (see Algorithm 1, lines 4 and 16, and Algorithm 2 line 6). Other
bounding methods can be applied afterwards in order to improve the calculated bounds in f .

Simplices with a lower bound greater than the incumbent f̃ are rejected. They are also
rejected using Proposition 2 when they are in the relative interior of the search space D and
0 /∈ ∇ f i (�S) (see Algorithm 1, lines 14 and 17, and Algorithm 2, line 7).

In case f is monotone on �S and S ∩ ∂D �= ∅, S can be reduced to a number of facets by
Corollary 3 (see calls to Algorithm 2 from Algorithm 1, lines 6 and 10). From computational
perspective it is better to label the vertex border or not-border. A border vertex means that
when it is removed from S, the remaining facet is on the boundary of D. If the search region
is a simplex, P contains just the initial simplex, and all initial facets are at the boundary, such
that all vertices are labelled border. In case the search region is a box, P contains the result
of the combinatorial vertex triangulation of the box into n! simplices [24,26].

This technical detail has not been included in Algorithm 1 for the sake of simplicity. The
specific triangulation is not appealing for large values of n. We use this here because box
constrained problems are used to compare methods. Each of the n! initial simplices has two
border facets. They are determined by removing the smallest and largest vertex (numbered
in a binary system), see the grey nodes in Fig. 1. In the binary system, 0 is the lower bound
and 1 is the upper bound of the given component of the box.

3 named after the inventors Adelson-Velsky and Landis

123

788 Journal of Global Optimization (2021) 80:779–804

Algorithm 1 SBB(f , P, α)

Require:
f : the n dimensional objective function.
P: initial simplicial partition of the search region D.
α: termination criterion.

1: � = ∅ � Storage structure
2: f̃ = ∞ � Incumbent value
3: for S ∈ P do
4: Evaluate f (S), ∇ f (S) � + other lower bounds
5: f̃ ← min{ f̃ , minv j∈S f (v j)}

6: if f (S) ≤ f̃ and not ReduceToFacets(f ,S,�) then
7: � ← S � Store S and its bounds in �

8: S ← � � Retrieve S from � with smallest f (S) value
9: while wid ([f (S)), f̃]) > α do
10: if not ReduceToFacets(f ,S,�) then
11: {S1, S2} ← Divide(S) � Longest Edge Bisection
12: if f (new vertex) < f̃ then
13: f̃ = f (new vertex)
14: � = CutOff(�) � Remove S ∈ � : f (S) > f̃

15: for each subset S j do
16: Evaluate f (S j), ∇ f (S j) � + other lower bounds

17: if f (S j) ≤ f̃ and not (Monotone and � vertex labelled border) then
� See Proposition 2

18: � ← S j � Store S j and its bounds in �

19: S ← �

20: return [f (S), f̃]

A simplicial partition set, whichwas neither rejected nor reduced, is divided using Longest
EdgeBisection (LEB), seeAlgorithm 1, line 11.When several longest edges exist, the longest
edge with a vertex with the lowest value of f and the other vertex having the highest value
of f is selected. In case vertices are not evaluated, the first longest edge is selected.

Remark 8 The interior of a new facet generated by LEB is always in the relative interior of
the bisected simplex. This contributes to reduce the number of vertices labelled as border in
the new sub-simplices.

Descendants of a partition set having all its vertices labelled as not-border have all facets in
the interior of D, so labelling is no longer necessary.

Algorithm 2 ReduceToFacets(f ,S,�)
1: Reduced=false
2: if Mon(f ,S) andS ∩ ∂D �= ∅ then � See Proposition 2
3: for each border facet F do
4: if not dT ∇ f (S) > 0 then � See Corollary 3
5: Reduced=true
6: Evaluate f (F), ∇ f (F) � + other lower bounds
7: if f (F) ≤ f̃ and not (Monotone and � vertex labelled border) then

� See Proposition 2
8: � ← F � Store F and its bounds in �

9: return Reduced

123

Journal of Global Optimization (2021) 80:779–804 789

001 101

000 100

011 111

010 110

01 11

00 10

000 100

111

110

101

000 100

111

000

111

010 110

000

011 111

010

001 101

000

111

001

000

011 111

Fig. 1 Combinatorial vertex triangulation of an hyper-rectangle. Vertices 000 and 111 are labelled border in
all sub-simplices. Removing one of them leaves a facet that is completely on the boundary of D

6 Numerical results

Algorithm 1 was run on an Asus UX301L NoteBook with Intel(R) Core(TM) i7-4558U
CPU and 8GB of RAM running Fedora 32 Linux distribution. The algorithm was
coded with g++ (gcc version 10.1.1) and it uses Kv-0.4.50 for Interval Arithmetic and
Affine Arithmetic (AA). Kv uses boost libraries. Algorithms were compiled with -O3
-DNDEBUG -DKV_FASTROUND options and AA uses #define AFFINE_SIMPLE 2
and #define AFFINE_MULT 2 in Kv. For the Linear Programming, we use PNL 1.10.4
with -DCMAKE_BUILD_TYPE = Release -DWITH_MPI = OFF, as a C++ wrapper
to LPsolve 5.5.2.0.

Notice that Kv Affine Arithmetic is slow in execution speed:When the direction of round-
ing is fixed as "upward", the downward calculation is performed as "sign inversion", and
it currently does not support division by affine variables containing zero. Additionally, the
execution time for Interval Arithmetic can be reduced on processors supporting Advanced
Vector Extensions SIMD (AVX-512) (see last table at kv-rounding web page), which is not
our case. Moreover, the PNL library has support for MPI, which is not used here.

Table 1 describes the studied instances. Their detailed description can be found in [7] and
the optimization web page.

The used termination accuracy is α = 10−6 and Interval Arithmetic is applied with
Automatic Differentiation to obtain bounds of f and ∇ f on �S. The following notation is
used to describe the variants to calculate lower bounds:

IA : Natural IA.
+CFcb : IA + Centered form on a box (see Not. 8) using the center of �S.
+CFbb : IA + Centered form on a box (see Not. 8) using the Baumann point bb− on�S (see

Not. 9).
+CFcs : IA + Centered form on a simplex (see Prop. 1) using the centroid as the base-point

and the gradient on �S.
+CFbs : IA + Centered form on a simplex (see Prop. 1) using base-point y = bs− (see Def.

1) and the gradient on �S.

123

http://verifiedby.me/kv
https://www.boost.org/
https://pnlnum.github.io/pnl/
http://lpsolve.sourceforge.net/
https://en.wikipedia.org/wiki/AVX-512
http://verifiedby.me/kv/rounding/index.html
https://www.mpi-forum.org/
https://www.sfu.ca/~ssurjano/optimization.html

790 Journal of Global Optimization (2021) 80:779–804

Table 1 Test problems. The
problems are box constrained
apart from KE2-1 and KE2-2
with search regions
{(−3,-1),(1,1),(1.5,−2)} and
{(−2,0),(0,−3),(2,3)},
respectively. An asterisk at n
indicates that this is the selected
dimension for a varying
dimension test instance

Instance Description n

KE2-1 Karhbet example 6 over simplex 1 2

KE2-2 Karhbet example 6 over simplex 2 2

GP2 Goldstein-Price 2

THCB2 Three Hump Camel Back 2

SHCB2 Six Hump Camel Back 2

G7 Griewank 7*

S4 Shekel 10 4

H3 Hartmann 3 3

H4 Hartmann 4 4

H6 Hartmann 6 6

L8 Levy 8*

SCH2 Schubert 2

MC2 McCormick 2

RB2 Rosenbrock 2*

MCH2 Michalewicz 2*

MCH5 Michalewicz 5*

ST2 Styblinski-Tang 2*

ST5 Styblinski-Tang 5*

DP2 Dixon-Price 2*

DP5 Dixon-Price 5*

+CFvs : IA + Centered form on a simplex (see Prop. 1) using base-point y = argmax
v∈S

{ f (v)}
and the gradient on �S.

+AA : IA + Affine Arithmetic lower bound (16) over �S.
+LR : IA + Linear Relaxation bound (9) on �S.

+LRS : IA + Linear Relaxation bound (10) on �S, forcing the solution on S.

Rejection tests like the ones on monotonicity, are checked after the bound calculations.
This is not efficient, but it allows us to compare the calculated bounds.

Improvement of the best function value found f̃ is done by point evaluation. Together with
the IA bound calculation we evaluate simplex vertices. When other lower bound methods are
added to IA, the evaluation of simplex vertices can be disabled in order to save computation.
However, this may imply another (worse) update of f̃ and a different course of the algorithm,
due to Longest Edge Bisection (LEB) by the first longest edge, instead of the best LEB [19].

The following points are evaluated for each method. +CFc* methods (*=b or s) evaluate
only the center and +CFb* evaluate only base-points bb− or bs−. Such points are not stored.
Notice that base point bb− might be located outside the simplicial search region. +CFvs and
+AA evaluate and store simplex vertices. +LR and +LRS evaluate and store box vertices
when the search region is a box. Additionally, simplex vertices are evaluated when the search
region is a simplex, because vertices of �S may be outside the search region and should not
be used to improve f̃ .

The +CF*s (*=c,b or v)methods only update lower bounds. The othermethods also update
upper bounds, which may affect the partition set storage order.

123

Journal of Global Optimization (2021) 80:779–804 791

R
B

2
K

E
2-

2
D

P2
M

C
H

2
K

E
2-

1
M

C
2

ST
2

SH
C

B
2

T
H

C
B

2
H

3

G
7 S4

SC
H

2

L
8

D
P5

G
P2 H

4

M
C

H
5

H
6

ST
5

Problem

0,0001

0,001

0,01

0,1

1

>15m
N

or
m

al
iz

ed
 n

um
be

r
of

 s
im

pl
ex

 e
va

lu
at

io
ns

IA
+CFcb
+CFbb
+CFcs
+CFbs
+CFvs
+AA
+LR
LRS

Fig. 2 Normalized number of simplex evaluations in log scale. A value of > 15m means time out of 15
minutes or execution error. The ranges of evaluated simplices per problem are as follow: RB2∈ [44, 66],
KE2-2∈ [47, 60], DP2∈ [16, 112], MCH2∈ [128, 192], EX2-1∈ [186, 510], MC2∈ [434, 1, 052], ST2∈
[558, 1, 382], SHCB∈ [556, 1, 646], THCB∈ [626, 1, 986], H3∈ [2, 286, 4, 430], G7∈ [5, 040, 5, 314],
S4 ∈ [3, 984, 5, 288], SCH2∈ [4, 862, 6, 834], L8∈ [40, 462, 40, 662], DP5∈ [97, 060, 188, 476], GP2∈
[2, 272, 167, 800], H4∈ [53, 368, 170, 622], MCH5∈ [189, 198, 210, 356], H6∈ [2, 641, 024, 4, 944, 040],
and ST5∈ [2, 569, 082, 6, 358, 328]

Figures 2 and 3 show the normalized (to the range [0,1]) number of simplex evalua-
tions (NS) and execution time (T), respectively. The number of simplex evaluations can be
considered as the number of iterations, as in each iteration one simplex is evaluated. The
problems are sorted by NS in both figures. The data for the figures is taken from Table 2 to
Table 21 in Appendix A. Reduction to border facets due to monotonicity does not occur in
box constrained problems. It happens in the simplex constrained instances (see Corollary 3).
The monotonocity test reduces the number of simplex evaluations significantly for all test
problems. Without that test, the algorithm lasts more than the limit of 15 minutes for several
problems. Therefore, we always apply the monotonicity test.

Going over the results of the test problems, problem G7 appears to be a special case, see
Table 7. Apparently, adding methods to IA does not provide better lower bounds. For L8 only
the +AA method improves the bound a few times and for RB2 only the LR* methods show
tighter bounds, see Table 12.

A value of > 15m in Figs. 2 and 3 means that i) the algorithm reached the 15 minute time
limit, or ii) there was a problem with the Linear Programming solver in methods +LR and
+LRS or iii) a division by zero occurred. The latter only happens for the +AA method for
problemL8, because theKv library does not implement division by zero inAffineArithmetic.

Focusing on the number of required simplex evaluations (NS), Fig. 2 shows that the +AA
method requires the least evaluations for most of the test cases. The second best methods
regarding the NS metric are those using LP (+LR* and +CFbs). The +LRS lower bounding

123

792 Journal of Global Optimization (2021) 80:779–804

R
B

2
K

E
2-

2
D

P2
M

C
H

2
K

E
2-

1
M

C
2

ST
2

SH
C

B
2

T
H

C
B

2
H

3

G
7

S1
0

SC
H

2

L
8

D
P5

G
P2 H

4
M

C
H

5
H

6

ST
5

Problem

0,0001

0,001

0,01

0,1

1

>15m
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

IA
+CFcb
+CFbb
+CFcs
+CFbs
+CFvs
+AA
+LR
LRS

Fig. 3 Normalized execution time (seconds) in log scale. A value of > 15m means time out of 15 min-
utes or execution error. The ranges of execution time per problem are as follow: RB2∈ [0.005, 0.014],
EX2-2∈ [0.005, 0.010], DP2∈ [0.005, 0.019], MCH2∈ [0.006, 0.024], EX2-1∈ [0.005, 0.034],
MC2∈ [0.005, 0.019], ST2∈ [0.006, 0.085], SHCB2∈ [0.006, 0.101], THCB2∈ [0.008, 0.1], H3∈
[0.032, 0.415], G7∈ [0.048, 6.69], S4 ∈ [0.056, 0.995], SCH2∈ [0.104 0.696], L8∈ [0.566, 159.124],
DP5∈ [0.526, 61.352], GP2∈ [0.051, 1.461], H4∈ [1.196, 19.844], MCH5∈ [3.611, 60.438], H6∈
[51.057, 187.538], and ST5∈ [58.476, 184.924]

Table 2 Results for KearEx6 on
{(−3,−1),(1,1),(1.5,−2)}
simplex. Global min. is interior.
+CFcb and +CFcs show vertex
evaluations due to reduction

LB NS NSV MTS MTP NNV NBV NI T

IA 510 165 12 165 0 0 0 0.019s

+CFcb 218 4 10 73 218 0 213 0.006s

+CFbb 200 67 9 67 200 0 199 0.007s

+CFcs 216 4 10 73 216 0 213 0.005s

+CFbs 204 0 8 69 204 0 204 0.034s

+CFvs 218 74 9 74 0 0 212 0.006s

+AA 186 63 8 63 0 0 186 0.007s

+LR 194 66 9 397 0 331 194 0.024s

+LRS 192 66 8 391 0 325 192 0.029s

requires less simplex evaluations than +LR for some cases, and +CFcb has the best NS values
for only a few test cases.

For smooth functions, the algorithm converges to a region which is captured by a convex
quadratic function. To study the limit convergence behaviour of the algorithm, we run all
variants over the so-called Trid function from [23], which represents a convex quadratic
function. The results can be found in Tables 22–24 (Appendix B). One can observe for this
limit situation that the Linear Relaxation variants are relatively close models and require less
simplex evaluations than other lower bounding methods. This means that, for all cases, the

123

Journal of Global Optimization (2021) 80:779–804 793

Table 3 Results for KearEx6 on
{(−2,0),(0,−3),(2,3)} simplex.
Global Min at border.+CFcb and
+CFcs show vertex evaluations
due to reduction

LB NS NSV MTS MTP NNV NBV NI T

IA 60 27 7 27 0 0 0 0.007s

+CFcb 59 8 5 27 59 0 51 0.005s

+CFbb 49 24 5 24 49 0 48 0.005s

+CFcs 57 8 5 26 57 0 53 0.007s

+CFbs 48 1 4 24 48 0 47 0.010s

+CFvs 60 27 6 27 0 0 52 0.005s

+AA 51 24 4 24 0 0 49 0.005s

+LR 49 24 4 86 0 62 48 0.010s

+LRS 47 23 3 81 0 58 46 0.010s

Table 4 Results for Goldstein-Price on box [−2, 2]2. (1) Unacceptable accuracy found (worse than required
5e-07). linprog fails

LB NS NSV MTS MTP NNV NBV NI T

IA 167,800 43,288 10,924 43,288 0 0 0 0.658s

+CFcb 17,442 0 1,407 4,589 17,442 0 15,838 0.076s

+CFbb 12,640 0 1,036 3,371 12,640 0 11,737 0.061s

+CFcs 15,352 0 1,153 4,046 15,352 0 13,995 0.071s

+CFbs (1)

+CFvs 21,910 5,936 1,701 5,936 0 0 19,570 0.089s

+AA 2,272 683 177 683 0 0 2,165 0.051s

+LR 12,118 0 959 4,788 0 4,282 11,253 1.249s

+LRS 12,080 0 950 4,788 0 4,282 11,229 1.461s

Table 5 Results for Three Hump Camel Back on box [−5, 5]2

LB NS NSV MTS MTP NNV NBV NI T

IA 1,986 581 132 581 0 0 0 0.013s

+CFcb 934 0 58 281 934 0 508 0.008s

+CFbb 802 0 52 245 802 0 558 0.008s

+CFcs 944 0 58 290 944 0 556 0.008s

+CFbs 798 0 50 245 798 0 564 0.098s

+CFvs 1,050 317 58 317 0 0 516 0.008s

+AA 626 183 32 183 0 0 494 0.012s

+LR 790 0 46 375 0 373 632 0.083s

+LRS 786 0 48 375 0 373 628 0.100s

+LR variants have an advantage in the final stages of the algorithm. It is worth tomention that,
when the dimension increases, the required Linear Programming gets more time consuming
and also the +AA variant starts to do better.

The execution time is a difficult performance indicator, as it depends on the used external
subroutines. Figure 3 provides normalized values. In the first 9 test cases (ordered according
to NS), the execution time is similar for most of the methods apart from those using LP

123

794 Journal of Global Optimization (2021) 80:779–804

Table 6 Results for Six Hump Camel Back on box [−3, 3] × [−2, 2]
LB NS NSV MTS MTP NNV NBV NI T

IA 1,646 535 108 535 0 0 0 0.009s

+CFcb 890 0 78 291 890 0 642 0.007s

+CFbb 802 0 64 267 802 0 664 0.009s

+CFcs 874 0 66 287 874 0 668 0.006s

+CFbs 786 0 66 261 786 0 656 0.101s

+CFvs 934 305 64 305 0 0 618 0.009s

+AA 556 198 41 198 0 0 522 0.012s

+LR 734 0 70 385 0 377 610 0.079s

+LRS 734 0 70 385 0 377 610 0.095s

Table 7 Results for Griewank on box [−600, 600]7. Notice that 7!=5,040
LB NS NSV MTS MTP NNV NBV NI T

IA 5,042 129 5,041 129 0 0 0 0.048s

+CFcb 5,040 0 5,040 128 5,040 0 0 0.053s

+CFbb 5,040 5,040 128 5,040 0 0 0 0.057s

+CFcs 5,314 0 5,088 265 5,314 0 0 0.082s

+CFbs 5,040 0 5,040 128 5,040 0 0 6.551s

+CFvs 5,042 129 5,041 129 0 0 0 0.052s

+AA 5,042 129 5,041 129 0 0 0 0.157s

+LR 5,290 0 5,078 13,165 0 13,040 0 6.005s

+LRS 5,290 0 5,078 13,165 0 13,040 0 6.690s

Table 8 Results for Shekel 10 on box [0, 10]4. (1):affine: division by 0
LB NS NSV MTS MTP NNV NBV NI T

IA 5,288 470 345 470 0 0 0 0.076s

+CFcb 4,560 0 301 378 4,560 0 1,172 0.075s

+CFbb 4,504 0 76 367 4,504 0 1,244 0.068s

+CFcs 4,520 0 313 373 4,520 0 1,232 0.072s

+CFbs 4,456 0 76 361 4,456 0 1,300 0.970s

+CFvs 3,984 355 345 355 0 0 1,164 0.056s

+AA (1)

+LR 4,466 0 383 9455 0 9323 1962 0.776s

+LRS 4,424 0 340 5,333 0 5,277 1,508 0.995s

(+LR* and +CFbs). In fact, methods using LP are in general the most time consuming due
to the called routines, followed by +AA which avoids solving an LP due to (16). According
to the Kv library documentation, Affine Arithmetic is slow and its implementation could be
improved.

123

Journal of Global Optimization (2021) 80:779–804 795

Table 9 Results for Hartmann3 on box [0, 1]3
LB NS NSV MTS MTP NNV NBV NI T

IA 4,430 617 116 617 0 0 0 0.043s

+CFcb 2,690 0 100 378 2,690 0 1,815 0.037s

+CFbb 2,554 0 95 364 2,554 0 1,971 0.039s

+CFcs 2,684 0 98 378 2,684 0 1,895 0.041s

+CFbs 2,514 0 95 362 2,514 0 1,980 0.415s

+CFvs 2,714 383 116 383 0 0 1,702 0.032s

+AA 2,286 336 94 336 0 0 1,919 0.102s

+LR 2,434 0 95 880 0 870 1,851 0.293s

+LRS 2,434 0 95 880 0 870 1,856 0.396s

Table 10 Results for Hartmann4 on box [0, 1]4
LB NS NSV MTS MTP NNV NBV NI T

IA 170,622 11,125 7,686 11,125 0 0 0 1.788s

+CFcb 119,942 0 7,022 9,211 119,942 0 69,387 1.709s

+CFbb 95,636 0 5,497 7,310 95,636 0 70,851 1.371s

+CFcs 102,678 0 5,393 7,745 102,678 0 69,827 1.501s

+CFbs 86,138 0 4,483 6,391 86,138 0 66,847 19.844s

+CFvs 110,130 7,002 6,535 7,002 0 0 64,093 1.196s

+AA 53,368 3,545 3,416 3,545 0 0 44,630 2.709

+LR 85,152 0 4,935 160,048 0 157,273 67,065 14.965s

+LRS 84,092 0 4,857 158,012 0 155,251 66,557 19.472s

Table 11 Results for Hartmann6 on box [0, 1]6
LB NS NSV MTS MTP NNV NBV NI T

IA 4,944,040 51,671 112,878 51,671 0 0 0 1m14.548s

+CFcb 3,253,420 0 105,566 39,135 3,253,420 0 1,495,023 1m2.928s

+CFbb 3,155,816 0 105,421 37,652 3,155,816 0 1,739,241 1m1.153s

+CFcs 3,170,950 0 105,794 37,882 3,170,950 0 1,635,979 1m3.736s

+CFbs >15m.

+CFvs 3,288,994 32,677 112,890 32,677 0 0 1,742,240 51.057s

+AA 2,641,024 26,308 106,304 26,308 0 0 1,690,829 3m7.538s

+LR >15m.

+LRS >15m.

The +CFvs method requires the least execution time for most of the instances. Comparing
+CFvs with other +CF* methods, the centered form used in +CFvs has to evaluate one sum
term less and the base-point vertex can already have been evaluated and stored. On average,
+CFbb is the best method, but this is because it is the best for the ST5 test problem, which
is one of the most time consuming instances.

123

796 Journal of Global Optimization (2021) 80:779–804

Table 12 Results for Levy 8 on [−10, 10]8 box. (1)Unacceptable accuracy found (worse than required 5e-07).
linprog fails

LB NS NSV MTS MTP NNV NBV NI T

IA 40,662 381 40,353 381 0 0 0 0.640s

+CFcb 40,526 0 40,352 359 40,526 0 0 0.924s

+CFbb 40,462 0 40,351 327 40,462 0 0 0.958s

+CFcs 40,536 0 40,352 364 40,536 0 0 0.990s

+CFbs 40,488 0 40352 340 40488 0 0 2m39.124s

+CFvs 40,662 381 40,353 381 0 0 0 0.666s

+AA 40,662 381 40,353 381 0 0 3 3.150s

+LR (1)

+LRS 40,538 0 40,355 27,037 0 26,928 0 2m34.620s

Table 13 Results for Schubert on box [−10, 10]2
LB NS NSV MTS MTP NNV NBV NI T

IA 6,834 2,297 1,076 2,297 0 0 0 0.138s

+CFcb 5,106 0 655 1,649 5,106 0 1,742 0.129s

+CFbb 4,950 0 639 1,595 4,950 0 1,756 0.127s

+CFcs 5,106 0 599 1,649 5,106 0 1,806 0.134s

+CFbs 4,942 0 655 1,597 4,942 0 1,770 0.696s

+CFvs 5,070 1,649 1,076 1,649 0 0 1,726 0.104s

+AA 5,106 1,649 1,076 1,649 0 0 1,788 0.230s

+LR 4,862 0 1,076 2,553 0 2,450 1,752 0.566s

+LRS 4,862 0 1,076 2,553 0 2,450 1,758 0.649s

Table 14 Results for McCormick on box [−1.5, 4] × [−3, 4]
LB NS NSV MTS MTP NNV NBV NI T

IA 1,052 329 24 329 0 0 0 0.010s

+CFcb 558 0 22 178 558 0 487 0.009s

+CFbb 482 0 20 149 482 0 451 0.007s

+CFcs 526 0 19 165 526 0 473 0.010s

+CFbs 470 0 19 145 470 0 442 0.065s

+CFvs 548 177 21 177 0 0 477 0.009s

+AA 442 141 18 141 0 0 427 0.009s

+LR 444 0 21 239 0 228 424 0.048s

+LRS 434 0 19 239 0 228 414 0.062s

123

Journal of Global Optimization (2021) 80:779–804 797

Table 15 Results for Rosenbrock
on box [−5, 10]2 LB NS NSV MTS MTP NNV NBV NI T

IA 52 29 16 29 0 0 0 0.005s

+CFcb 50 0 15 28 50 0 0 0.006s

+CFbb 44 0 12 25 44 0 0 0.006s

+CFcs 66 0 21 36 66 0 0 0.006s

+CFbs 54 0 16 30 54 0 0 0.014s

+CFvs 52 29 16 29 0 0 0 0.007s

+AA 52 29 16 29 0 0 0 0.007s

+LR 54 0 17 69 0 69 3 0.012s

+LRS 54 0 17 69 0 69 3 0.012s

Table 16 Results for
Michalewicz on box [0, 3.1416]2 LB NS NSV MTS MTP NNV NBV NI T

IA 192 74 9 74 0 0 0 0.008s

+CFcb 144 0 9 56 144 0 66 0.008s

+CFbb 136 0 4 53 136 0 78 0.006s

+CFcs 144 0 12 56 144 0 67 0.006s

+CFbs 136 0 6 53 136 0 75 0.024s

+CFvs 144 56 9 56 0 0 63 0.007s

+AA 144 56 9 56 0 0 66 0.013s

+LR 128 0 9 81 0 81 70 0.019s

+LRS 128 0 9 81 0 81 70 0.023s

Table 17 Results for Michalewicz on box [0, 3.1416]5. (1) matrix contains zero-valued coefficients. (2)
Unacceptable accuracy found (worse than required 5e-07). linprog fails

LB NS NSV MTS MTP NNV NBV NI T

IA 210,356 6,964 14,087 6,964 0 0 0 3.870s

+CFcb 202,790 0 12,031 7,236 202,790 0 25,216 5.329s

+CFbb 201,320 0 8,935 7,172 201,320 0 30,857 5.098s

+CFcs 202,200 0 9,304 7,203 202,200 0 27,757 5.389s

+CFbs (1,2)

+CFvs 189,274 6,153 14,087 6,153 0 0 26,046 3.611s

+AA 189,198 6,150 14,087 6,150 0 0 26,217 19.981s

+LR(1) 200,016 0 12,791 1,001,262 0 996,620 34,764 1m0.438

+LRS (1,2)

7 Conclusions

In simplicial branch and bound methods, the determination of the lower bound is of great
importance. The Interval Arithmetic lower bound on a simplex interval hull can be tight-
ened by additional calculations at a given cost. Several methods have been described and
investigated. We have used the centered form with several base-points over a simplex and
the interval hull of a simplex. The use of Affine Arithmetic and a Linear Relaxation over the

123

798 Journal of Global Optimization (2021) 80:779–804

Table 18 Results for Styblinski-Tang on [−5, 5]2 box

LB NS NSV MTS MTP NNV NBV NI T

IA 1,382 444 62 444 0 0 0 0.012s

+CFcb 750 0 54 246 750 0 642 0.008s

+CFbb 654 0 42 216 654 0 608 0.007s

+CFcs 722 0 48 242 722 0 632 0.007s

+CFbs 642 0 38 214 642 0 604 0.085s

+CFvs 794 263 56 263 0 0 608 0.006s

+AA 558 182 36 182 0 0 552 0.011s

+LR 622 0 41 305 0 292 584 0.063s

+LRS 622 0 41 305 0 292 584 0.083s

interval hull and over the simplex has also been presented. Moreover, we introduced several
theoretical results about monotonicity that can be applied to construct new rejection tests.

Results on a set of well known low dimensional test instances show that Affine Arithmetic
is a promising method to get lower bounds over a simplex. It requires the smallest number of
simplex evaluations in many problems. However, its computational time is larger than that
of several other methods. In general, methods using a Linear Programming solver suffer the
same drawback requiring more time. We found that the monotonicity tests were essential for
the reduction of computing time.

123

Journal of Global Optimization (2021) 80:779–804 799

Ta
bl
e
19

R
es
ul
ts
fo
r
St
yb

lin
sk
i-
Ta
ng

on
bo

x
[−

5,
5]5

L
B

N
S

N
SV

M
T
S

M
T
P

N
N
V

N
B
V

N
I

T

IA
36

,3
58

,3
28

84
3,
58

1
1,
73

8,
80

0
84

3,
58

1
0

0
0

3m
04

.9
24

s

+
C
Fc

b
17

,1
36

,6
00

0
1,
47

2,
28

1
48

1,
74

2
17

,1
36

,6
00

0
14

,8
66

,4
40

1m
40

.2
92

s

+
C
Fb

b
9,
97

6,
68

0
0

1,
15

3,
44

0
22

3,
78

4
9,
97

6,
68

0
0

9,
72

7,
92

0
58

.4
76

s

+
C
Fc

s
11

,4
79

,0
80

0
1,
03

3,
32

0
29

3,
83

9
11

,4
79

,0
80

0
10

,6
16

,7
60

1m
12

.9
00

s

+
C
Fb

s
>

15
m

+
C
Fv

s
16

,7
77

,8
00

34
1,
00

5
1,
30

9,
80

1
34

1,
00

5
0

0
13

,5
89

,8
80

1m
29

.0
63

s

+
A
A

2,
56

9,
08

2
43

,3
98

26
6,
04

0
43

,3
98

0
0

2,
56

8,
12

2
1m

3.
95

4s

+
L
R

>
15

m

+
L
R
S

>
15

m

123

800 Journal of Global Optimization (2021) 80:779–804

Table 20 Results for Dixon-Price
on box [−10, 10]2 LB NS NSV MTS MTP NNV NBV NI T

IA 112 50 18 50 0 0 0 0.010s

+CFcb 100 0 16 44 100 0 0 0.005s

+CFbb 16 0 5 11 16 0 2 0.006s

+CFcs 102 0 14 45 102 0 0 0.007s

+CFbs 106 0 15 47 106 0 11 0.019s

+CFvs 112 50 18 50 0 0 0 0.006s

+AA 90 40 18 40 0 0 10 0.007s

+LR 104 0 18 73 0 71 12 0.015s

+LRS 104 0 18 73 0 71 13 0.018s

Table 21 Results for Dixon-Price on box [−10, 10]5
LB NS NSV MTS MTP NNV NBV NI T

IA 153,392 4,250 6,395 4,250 0 0 0 0.526s

+CFcb 188,476 0 7,190 5,305 188,476 0 0 0.725s

+CFbb 188,362 0 2,314 5,279 188,362 0 360 0.714s

+CFcs 188,420 0 7,257 5,300 188,420 0 17 0.794s

+CFbs 188,376 0 7,180 5,286 188,376 0 1,664 58.210s

+CFvs 153,392 4,250 6,395 4,250 0 0 12 0.578s

+AA 97,060 2,917 5,676 2,917 0 0 22,387 1.461s

+LR 188,384 0 2,648 474,561 0 471,384 799 48.791s

+LRS 188,384 0 2,648 47,4561 0 471,384 8,226 1m1.352s

Table 22 Results for Trid on box [−4, 4]2
LB NS NSV MTS MTP NNV NBV NI T

IA 1,122 334 20 334 0 0 0 0.008s

+CFcb 578 0 20 174 578 0 532 0.005s

+CFbb 298 0 14 125 298 0 278 0.007s

+CFcs 570 0 20 170 570 0 534 0.006s

+CFbs 298 0 16 125 298 0 283 0.045s

+CFvs 574 175 18 175 0 0 528 0.006s

+AA 386 105 10 105 0 0 372 0.008s

+LR 282 0 18 129 0 128 266 0.030s

+LRS 282 0 18 129 0 128 268 0.043s

The method requiring least computing time in several test problems is the one based on
the center form on a simplex using the vertex of a simplex with the highest function value as
a base-point. The vertex can already have been evaluated and stored and the centered form
requires one less additional term evaluation.

123

Journal of Global Optimization (2021) 80:779–804 801

Table 23 Results for Trid on box [−9, 9]3
LB NS NSV MTS MTP NNV NBV NI T

IA 9,862 1,421 114 1,421 0 0 0 0.024s

+CFcb 4,930 0 98 715 4,930 0 4,466 0.016s

+CFbb 4,106 0 96 597 4,106 0 3,916 0.015s

+CFcs 4,690 0 102 683 4,690 0 4,332 0.017s

+CFbs 3,860 0 86 556 3,860 0 3,738 0.571s

+CFvs 4,926 721 116 721 0 0 4,468 0.016s

+AA 3,526 533 84 533 0 0 3,428 0.033s

+LR 3,658 0 96 1,486 0 1,458 3,584 0.412s

+LRS 3,510 0 102 1,478 0 1,450 3,450 0.515s

Thismeans that it is preferable to evaluate cheap lower bounds that reuse previous informa-
tion overmore simplices than expensive lower bounds over less simplices for lowdimensional
instances.

Acknowledgements This research is supported by the Spanish Ministry (RTI2018-095993-B-I00), in part
financed by the European Regional Development Fund (ERDF).

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Extended numerical results

In Tables 2 to 21 the following notation is used.

NS : number of simplex evaluations,
NSV : number of simplex vertex evaluations,
MTS : maximum number of simplices stored in the AVL tree,
MTP : maximum number of points stored in the AVL tree,
NNV : number of non simplex vertex evaluations. They can be cb, bb−, cs or bs−.
NBV : number of �S vertex evaluations,

NI : number of times the natural inclusion lower bound is improved by another lower
bounding method,

T : wall clock time. Differences smaller than 0.005s are not significant.

123

http://creativecommons.org/licenses/by/4.0/

802 Journal of Global Optimization (2021) 80:779–804

Ta
bl
e
24

R
es
ul
ts
fo
r
T
ri
d
on

bo
x

[−
25

,
25

]5 .
(1
):
U
na
cc
ep
ta
bl
e
ac
cu
ra
cy

fo
un

d
(w

or
se

th
an

re
qu

ir
ed

5e
-0
7)
.l
in
pr
og

fa
ils

L
B

N
S

N
SV

M
T
S

M
T
P

N
N
V

N
B
V

N
I

T

IA
10

,8
91

,2
64

28
9,
29

3
46

,3
00

28
9,
29

3
0

0
0

42
.9
46

s

+
C
Fc

b
5,
01

8,
56

0
0

57
,1
16

14
1,
50

8
5,
01

8,
56

0
0

4,
83

7,
48

4
22

.5
28

s

+
C
Fb

b
3,
92

9,
04

4
0

64
,5
24

10
6,
79

5
3,
92

9,
04

4
0

3,
87

8,
01

2
18

.4
40

s

+
C
Fc

s
4,
07

0,
71

6
0

57
,1
12

10
9,
90

2
4,
07

0,
71

6
0

4,
00

3,
53

4
21

.1
66

s

+
C
Fb

s
(1
)

+
C
Fv

s
4,
35

7,
12

4
10

7,
70

6
57

,2
56

10
7,
70

6
0

0
4,
24

7,
01

0
19

.3
88

s

+
A
A

1,
99

5,
96

0
47

,5
97

38
,9
94

47
,5
97

0
0

1,
99

1,
16

4
28

.4
40

s

+
L
R

3,
08

0,
75

2
0

53
,4
36

18
,2
08

,4
68

0
18

,1
60

,6
14

3,
07

5,
28

6
14

m
20

.6
30

s

+
L
R
S

(1
)

123

Journal of Global Optimization (2021) 80:779–804 803

BMethods on a convex quadratic function

The Trid problem from optimization is a convex quadratic function. According to Some
Hard Global Optimization Test Problems: This is a simple discretized variational problem,
convex, quadratic, with a unique local minimizer and a tridiagonal Hessian. The scaling
behaviour for increasing n (search region is [−n2, n2]) gives an idea on the efficiency of
localizingminima once the region of attraction (which here is everything) is found;most local
methods only needO(n2) function evaluations, or onlyO(n) (function+gradient) evaluations.
A global optimization code that has difficulties with solving this problem for n=100, say,
is of limited worth only. The strong coupling between the variables causes difficulties for
genetic algorithms. The problem is typical for many problems from control theory, though
the latter are usually nonquadratic and often nonconvex.

References

1. Adelson-Velsky, G.M., Landis, E.M.: An algorithm for the organization of information. Proceed. USSR
Acad. Sci. (in Russian) 146, 263–266 (1962)

2. Andrade, A., Comba, J., Stolfi, J.: Affine arithmetic. International Conf. on Interval and Computer-
Algebraic Methods in Science and Engineering (INTERVAL/94) (1994)

3. Baumann, E.: Optimal centered forms. BIT Num. Math. 28(1), 80–87 (1988). https://doi.org/10.1007/
BF01934696

4. de Figueiredo, L., Stolfi, J.: Affine arithmetic: concepts and applications. Num. Alg. 37(1–4), 147–158
(2004). https://doi.org/10.1023/B:NUMA.0000049462.70970.b6

5. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis, 2ème edn. Marcel Dekker Inc.,
New York (2004)

6. Hendrix, E.M.T., Salmerón, J.M.G., Casado, L.G.: On function monotonicity in simplicial branch and
bound. AIP Conf. Proceed. (2019). https://doi.org/10.1063/1.5089974

7. Karhbet, S.D., Kearfott, R.B.: Range bounds of functions over simplices, for branch and bound algorithms.
ReliableComputing25, 53–73 (2017). https://interval.louisiana.edu/reliable-computing-journal/volume-
25/reliable-computing-25-pp-053-073.pdf

8. Kearfott, R.B.: Rigourous Global Search: Continuous Problems. Kluwer Academic Publishers, Newyork
(1996)

9. Messine, F.: Extensions of affine arithmetic: application to unconstrained global optimization. J. Univ.
Comput. Sci. 8(11), 992–1015 (2002). https://doi.org/10.3217/jucs-008-11-0992

10. Messine, F., Lagouanelle, J.L.: Enclosuremethods formultivariate differentiable functions and application
to global optimization. J. Univ. Comput. Sci. 4(6), 589–603 (1998). https://doi.org/10.3217/jucs-004-06-
0589

11. Messine, F., Touhami, A.: A general reliable quadratic form: an extension of affine arithmetic. Reliab.
Comput. 12(3), 171–192 (2006). https://doi.org/10.1007/s11155-006-7217-4

12. Mohand, O.: Tighter bound functions for nonconvex functions over simplexes. RAIRO Oper. Res. 55,
S2373–S2381 (2021). https://doi.org/10.1051/ro/2020088

13. Moore, R.: Interval Analysis. Prentice-Hall Inc., Englewood Cliffs (1966)
14. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization. 4OR 13(3),

247–277 (2014). https://doi.org/10.1007/s10288-014-0269-0
15. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)
16. Rall, L.B.: Automatic differentiation: Techniques and applications. Lecture Notes in Computer Science,

vol. 120. Springer, Newyork (1981)
17. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood Ltd, Chichester

(1984)
18. Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arithmetic. Nonlin. Theory

Appl. 6(3), 341–359 (2015). https://doi.org/10.1587/nolta.6.341
19. Salmerón, J.M.G., Aparicio, G., Casado, L.G., García, I., Hendrix, E.M.T., Toth, B.G.: Generating a

smallest binary tree by proper selection of the longest edges to bisect in a unit simplex refinement. J.
Comb. Optim. (2015). https://doi.org/10.1007/s10878-015-9970-y

123

https://www.sfu.ca/~ssurjano/optimization.html
https://www.mat.univie.ac.at/~neum/glopt/my_problems.html
https://doi.org/10.1007/BF01934696
https://doi.org/10.1007/BF01934696
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1063/1.5089974
https://interval.louisiana.edu/reliable-computing-journal/volume-25/reliable-computing-25-pp-053-073.pdf
https://interval.louisiana.edu/reliable-computing-journal/volume-25/reliable-computing-25-pp-053-073.pdf
https://doi.org/10.3217/jucs-008-11-0992
https://doi.org/10.3217/jucs-004-06-0589
https://doi.org/10.3217/jucs-004-06-0589
https://doi.org/10.1007/s11155-006-7217-4
https://doi.org/10.1051/ro/2020088
https://doi.org/10.1007/s10288-014-0269-0
https://doi.org/10.1587/nolta.6.341
https://doi.org/10.1007/s10878-015-9970-y

804 Journal of Global Optimization (2021) 80:779–804

20. Sherali, H., Adams, W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous
Nonconvex Problems. Kluwer Academis Publishers, Dordrecht (1999)

21. Sherali, H., Liberti, L.: Reformulation-LinearizationTechnique forGlobalOptimization. In: Encyclopedia
of Optimization, Springer, New york (2009)

22. Stolfi, J., de Figueiredo, L.: Self-Validated Numerical Methods and Applications. Monograph for 21st
Brazilian Mathematics Colloquium. IMPA/CNPq (1997)

23. Surjanovic, S., Bingham,D.: Virtual library of simulation experiments: Test functions and datasets (2013).
http://www.sfu.ca/~ssurjano

24. Todd, M.J.: The Computation of Fixed Points and Applications. Springer, Heidelberg (1976)
25. Tóth, B., Casado, L.G.: Multi-dimensional pruning from the Baumann point in an Interval Global Opti-

mization Algorithm. J. Glob. Optim. 38(2), 215–236 (2007). https://doi.org/10.1007/s10898-006-9072-
6

26. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Modell. Anal.
13(1), 145–159 (2008). https://doi.org/10.3846/1392-6292.2008.13.145-159

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.sfu.ca/~ssurjano
https://doi.org/10.1007/s10898-006-9072-6
https://doi.org/10.1007/s10898-006-9072-6
https://doi.org/10.3846/1392-6292.2008.13.145-159

	On new methods to construct lower bounds in simplicial branch and bound based on interval arithmetic
	Abstract
	1 Introduction
	2 Preliminaries
	3 Bounding techniques over a simplex
	3.1 Extension of standard interval bounding techniques to simplices
	3.2 Linear relaxation based lower bounds
	3.2.1 Standard linear relaxation of f over a box
	3.2.2 Linear relaxation of f over a simplex

	3.3 Bounding technique using Affine Arithmetic
	3.3.1 Conversion into affine forms
	3.3.2 Affine arithmetic
	3.3.3 Linear underestimation of f over x
	3.3.4 Linear program to provide lower bounds

	4 Monotonicity test
	5 Simplicial B&B algorithm (SBB)
	6 Numerical results
	7 Conclusions
	Acknowledgements
	A Extended numerical results
	B Methods on a convex quadratic function
	References

