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Abstract
In many real-world problems there is often the requirement to optimise multiple conflicting 
objectives in an efficient manner. In such problems there can be the requirement to optimise 
a mixture of continuous and discrete variables. Herein, we propose a new multi-objective 
algorithm capable of optimising both continuous and discrete bounded variables in an effi-
cient manner. The algorithm utilises Gaussian processes as surrogates in combination with 
a novel distance metric based upon Gower similarity. The MVMOO algorithm was com-
pared to an existing mixed variable implementation of NSGA-II and random sampling for 
three test problems. MVMOO shows competitive performance on all proposed problems 
with efficient data acquisition and approximation of the Pareto fronts for the selected test 
problems.

Keywords Global optimisation · Hypervolume · Multi-objective · Mixed variable · 
Bayesian optimisation

1 Introduction

As the requirement for optimising process efficiency, whilst simultaneously improv-
ing other environmental or economic factors becomes a necessity, utilising optimisation 
methodologies has become increasingly more important. This has led to optimisation tasks 
requiring an ever-increasing resource demand to solve. Consequently, efficient and acces-
sible optimisation methodologies are required to guide complex systems to their optimal 
conditions.

Many real-world optimisation problems consist of multiple conflicting objectives and 
constraints which can be composed of both continuous and discrete variables. Continuous 
variables are variables in which we have access to any real value in the desired optimisation 
range of the variable. Given their inherent continuous nature they are often easier to solve 
with a wider array of applicable optimisation techniques. Discrete variables can take the 
form of integer values or categorical values (materials, reaction solvents). In many cases 
these optimisations can be expensive to evaluate in terms of time or monetary resources. 
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It is therefore necessary to utilise algorithms that can efficiently guide the search towards 
the optimum set of conditions for a given problem. Commonly for real-world problems 
derivative information may be unavailable, therefore, the use of derivative free optimisa-
tion techniques is required.

For many multi-objective problems there does not exist a common optimal for all objec-
tives. As such, algorithms will work towards the trade-off between the competing objec-
tives. This non-dominated set of points is known as the Pareto front [1]. The Pareto front 
can then be utilised to inform the decision maker as to conditions which act as the best 
compromise for their given problem and requirements. There are two main techniques for 
solving multi-objective problems; scalarisation or Pareto based methods. Scalarisation 
involves converting the multi-objective problem into a problem with a single objective. 
This can often be done by applying weightings to each objective and additively combining 
them into a single objective, although there exist many alternative scalarisation techniques 
[2]. As scalarization combines the objective functions into a single objective, often the 
methodology needs to be rerun with alternative weightings or weightings changed during 
the optimisation to develop a complete picture of the Pareto set for a problem. The settings 
or procedure for weight generation can have a significant effect on the efficacy of the opti-
misations [3].

Pareto based methods look to iteratively improve a set of non-dominated solutions 
towards an optimal front. Here, evolutionary algorithms (EAs) have been widely applied 
for the solution of multi-objective problems [4]. In general, EAs iteratively change a set of 
candidate solutions towards an optimum set of values. The most notable example of this 
would be the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm [5], with 
the algorithm being successfully applied to a wide array of simulated and real world prob-
lems [6, 7]. A key disadvantage for their application on expensive to evaluate problems is 
the requirement for many function evaluations to progress to an optimum set of points. In 
these instances, EAs are often coupled with surrogate models of the real process to reduce 
this burden [8, 9].

Bayesian optimisation approaches have been applied to multi-objective problems. For 
Bayesian approaches, typically, a Gaussian process surrogate is built from past evaluations, 
and is utilised in tandem with an acquisition function to determine the next point for the 
optimisation [10]. The Expected Hypervolume Improvement acquisition function provides 
an extension of the single objective expected improvement to the multi-objective domain 
[11]. The algorithm provides good convergence to the true Pareto front, however requires 
a high computational budget for computing the infill criteria for more than three objec-
tives [12, 13]. Alternative acquisition functions and approaches have been suggested all 
looking to reduce the computational burden for acquisition evaluation as well as improve 
the efficiency of the optimisations. Recently, the TSEMO algorithm employing Thompson 
sampling with an internal NSGA-II optimisation has been proposed [14]. The authors uti-
lise the inherent exploratory nature of Thompson sampling to build Gaussian surrogates, 
which are subsequently optimised utilising NSGA-II to suggest points that maximise the 
hypervolume improvement.

Generally, mixed variable multi-objective problems have received less attention when 
compared with other optimisation fields. However, a significant volume of research has 
made use of EAs such as genetic algorithms (GAs) to solve a wide variety of real-world 
problems, often being coupled with simulated systems or surrogate models [15–20]. In 
many of these works the direct system is rarely optimised with preliminary work instead 
used to construct accurate surrogate models. Surrogate-based techniques utilise a cheap 
model constructed from a training dataset generated from the expensive objective 
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function. For each iteration, the surrogate is used to guide the optimisation and deter-
mine the next point of evaluation. Gaussian processes (GPs) have often shown excellent 
performance in these surrogate based techniques; however, their use has usually been 
limited to continuous variable only processes. This limitation is linked with the correla-
tion function requiring a distance metric which can be difficult to define between differ-
ent levels of discrete variables. Previous methods [21–24] propose modifications to the 
covariance function to ensure a valid covariance matrix can be defined for mixed inputs.

More recently, Zhang et  al. [25] adopted a latent variable approach to enable the 
Bayesian optimisation for material design. The proposed methodology maps the qualita-
tive variables to underlying quantitative latent variables, from which a standard covari-
ance function can be used. The latent variables for each discrete variable combination 
are determined utilising maximum likelihood estimation with each combination being 
mapped to a 2D latent variable domain. The authors compared their suggested single 
objective optimisation methodology to MATLAB’s bayesopt which utilises dummy var-
iables in place of the qualitative variables.

Herein we present a mixed variable multi-objective Bayesian optimisation algorithm 
and provide three test cases with comparison to both random sampling and a mixed 
variable version of NSGA-II provided in jMetalPy [26]. The algorithm looks to extend 
Bayesian multi-objective methodologies to the mixed variable domain, which to the best 
of the authors’ knowledge has limited prior work [27]. Utilising the recently proposed 
Expected Improvement Matrix [28] and an adapted distance metric, the algorithm pro-
vides an efficient approach to optimising expensive to evaluate mixed variable multi-
objective optimisation problems without the need for reparameterization of the discrete 
variables.

2  Overview

2.1  Gaussian processes

A Gaussian process can be defined as a collection of random variables. A GP is fully 
defined by a mean function, m(�) , and a covariance function, k

(

�, �′
)

 of a real process f (�) 
[29].

With � being an arbitrary input vector and �[⋅] the expectation. The mean function 
defines the average of the function, with the covariance function or kernel specifying the 
covariance or the relationship between pairs of random variables. The kernel is composed 
of several hyperparameters for which the optimal values can be determined through model 
training. The application of GP models in optimisation literature is principally restricted 
to the continuous domain utilising a stationary kernel. When considering mixed variable 
optimisation, one must ensure that a valid kernel can be constructed.

(1)m(�) = �
[

f (�)
]
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2.2  Covariance function

The application of Bayesian techniques is often limited to continuous variable optimisation 
problems with the covariance being a function of the distance between points in the input 
domain.

The difficulty for mixed variable optimisation problems when using a GP as the sur-
rogate for the response is formulating a proper correlation structure. As discrete variables 
can vary in similarity by a large degree, assuming continuous methods can be applied to 
determine the covariance matrix is not appropriate and may result in an invalid covari-
ance matrix. The covariance function that characterises a GP is customisable by the user, 
however, to ensure that it is valid it is a requirement for the covariance function to be sym-
metric and positive semi-definite; this will be true if its eigenvalues are all non-negative.

Qian et  al. [21] were amongst the first to implement GP modelling for systems with 
mixed variable types. The method requires an extensive estimation procedure, requiring 
the solution of an internal semidefinite programming problem to ensure a valid covariance 
matrix is computed during model training. Due to the large number of hyperparameters 
required, it can be difficult to obtain their optimum value, especially in efficient optimisa-
tion application, where the number of evaluations is often restricted.

Halstrup [30] developed a novel covariance function based upon the Gower distance 
metric. This metric requires significantly fewer hyperparameters and exhibits good scal-
ability to higher dimensional problems. Gower [31] initially proposed the metric to meas-
ure the similarity between two objects with mixed variable data, with the metric modified 
to represent distance.

The first term considers the quantitative factors and is the weighted Manhattan distance 
between the two variables, where Δwk is the range of the kth quantitative variable s

wi
m
w
j
m
 

considers the mth qualitative variable. This is set to 0 if wi
m
 is equal to wj

m and 1 if they are 
not equal. d and q are the number of qualitative and quantitative variables, respectively.

An applied example for Gower distance calculation for a sample set of experiments is 
provided below. Consider we have three variables in which two are quantitative and one is 
qualitative, we have an initial dataset (Table 1) and we want to determine the overall dis-
tance between each entry, such that we may be able to model a response.

For each quantitative variable we can initially calculate the variable range normalised 
Manhattan distance and for the single qualitative variable we can perform a binary com-
parison between each entry. Finally, we combine each distance matrix using (4), the results 
of which are displayed in Fig. 1.

(4)
rgow

�

��,��
�

=

∑k=q

k=1

�

�

�

wi
k
−w

j

k

�

�

�

Δwk

d + q
+

∑m=d

m=1
s
wi
m
w
j
m

d + q

Table 1  Example distance 
calculation input domain for 
two quantitative variables 
(temperature and residence time) 
and one qualitative (solvent)

Index Temperature (°C) Solvent Residence 
time (min)

1 30 MeCN 1
2 100 DMF 5
3 50 EtOH 8
4 70 DMSO 2
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With a valid distance metric this permits the use of pre-existing correlation functions 
such as the square exponential or the Matérn kernels. An example of a mixed Matérn 5/2 
kernel is given below:

where dim is the problem dimension, with � and � the covariance function’s 
hyperparameters.

Prior work by Halstrup has looked at the application of the Gower distance metric for 
use in enabling Bayesian single objective optimisation techniques to be used on mixed 
variable systems. This work was further developed by Pelamatti et al. [32] in which they 
compared the currently available techniques for optimising mixed variable systems utilis-
ing Gaussian approaches. They found the suggested methodology adopted by Halstrup 
performed comparatively well to other techniques whilst offering the benefit of a reduced 
number of hyperparameters.

2.3  Model training

For effective use and application of Bayesian techniques it is recommended to optimise the 
hyperparameters of the GP model prior to application of the acquisition function. The hyper-
parameters in this instance were tuned through maximising the likelihood of the available data 
points. The Python package GPflow (version 1.3) [33] was utilised alongside a modified ver-
sion of the Matérn kernel to construct and fit the GP model to the data for all test examples 

(5)
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Fig. 1  Example distance calculation. Individual distance matrices are initially calculated and then combined
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investigated. When utilising GPflow this is achieved through maximising the log marginal 
likelihood:

where Ky is the covariance matrix of noisy response values, − 1

2
yTK−1

y
y assesses how well 

the model fits the data given the current hyperparameters, � . A complexity penalty in the 
form of − 1

2
log

|

|

|

Ky
|

|

|

 is included to reduce overfitting of the model. − n

2
log 2� is a normalisa-

tion constant, where n is the number of training data points.

2.4  Acquisition function

To select the next evaluation point Bayesian optimisation utilises an acquisition function 
which is computed using the surrogate GP model built upon previously collected data. The 
acquisition function is typically inexpensive so that it can be evaluated extensively to guide the 
proceeding data acquisition.

One such acquisition function is the expected improvement matrix (EIM) [28]. EIM is a 
multi-objective adaptation of EI, with the expected improvement for each candidate and each 
objective calculated in a matrix.

f
j

i
 are the current best values along the Pareto front with k the number of points in the best 

solution and m the number of objectives, ŷi(�) is the predicted mean of the model, with 
si(�) the standard deviation of the prediction. Φ(�) and �(x) are the Gaussian cumulative 
distribution and probability density functions, respectively.

This matrix representation of expected improvement resembles the current best solution in 
multi-objective optimisation, which is also a matrix.

The matrix representations of EI for each objective are then combined for each point using 
three possible transformations; Euclidean, min/max distance and hypervolume based transfor-
mations. In this work we have elected to use a Euclidean based transformation to give a com-
bined expected improvement for a given point with respect to all the objectives and the current 
non-dominated front:
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As the EI equation is in its closed form it can be rapidly calculated and optimised utilis-
ing evolutionary algorithms or multi-start local search methods. This should allow a global 
solution for the optimisation of EIM to be found at a reduced computational cost. EIM has 
been previously implemented in the form of the EIM-EGO algorithm. The implementation 
was tested on a series of continuous test problems, displaying competitive results to the 
state-of-the-art multi-objective algorithms, whilst providing efficient scaling when increas-
ing the number of optimised objectives [28].

2.5  Algorithm overview

Figure 2 provides an overview of the optimisation process for the MVMOO algorithm.
For the initial space filling design in all cases, we performed a 5 sample Latin hyper-

cube for each combination of the discrete variables. It is noted that this can lead to a large 
initial cost to the optimisations when there are multiple discrete variables or discrete vari-
able levels in the optimisation problem.

Upon completion of the initial data collection a GP model was constructed for each 
objective function and hyperparameters optimised using GPflow’s internal Adam opti-
miser. The trained GP models are then used with the EIM acquisition function to determine 

Fig. 2  Flowchart overview for 
MVMOO
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the next point for evaluation. The optimisation of the acquisition function occurs in two 
stages; initially a large sample of the acquisition function is taken using a Halton sequence 
for each discrete variable combination. The leading variable combination was then taken 
forward with additional local optimisation performed using SciPy’s [34] implementation of 
sequential least squares programming (SLSQP) [35].

2.6  Test functions

The algorithm has been applied to three test problems [36–38] to evaluate the selected 
approach and provide comparison with existing mixed variable multi-objective optimisa-
tion methods.

For the first two test problems, the true Pareto front optimal set was known and has 
been detailed below. For the final test problem, the true Pareto front has been determined 
through comprehensive evaluation of the function domain utilising the mixed variable 
NSGA-II algorithm.

Tables 2 and 3 provide details of the initial dataset size, algorithm evaluation budgets 
and settings for NSGA-II for all test problems. NSGA-II termination criteria was set to be 
once the prespecified number of generations had been evaluated.

Table 2  Algorithm budgets for test problems

Discrete VLMOP2 Ordinary differential equation 
catalytic system

Fuel 
injector 
design

MVMOO initial dataset size 10 40 20
MVMOO, LHC and random function 

evaluation budget
40 125 100

NSGA-II generations 20 85 80
NSGA-II population size 40 125 100

Table 3  NSGA-II settings, where n is the problem input dimension. Recommended settings from the origi-
nal paper were utilised for all test problems [5]

Setting Operator Probability Distri-
bution 
index

Selection function Binary tournament
Recombination function SBX crossover 0.9 20

Integer SBX crossover
Mutation function Polynomial mutation 1

n
20

Integer polynomial mutation
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2.7  Discrete VLMOP2

The VLMOP2 test function [36] is a well-known bi-objective test problem. Here we have 
adapted the original problem to create a mixed variable equivalent:

Like the original function, the Pareto front is concave with the Pareto optima line gener-
ally from xi = −

1
√

n
 to xi =

1
√

n
.

Figure 3 details the Pareto front and Pareto optimal set for the discrete VLMOP2 prob-
lem. This provides a useful initial test for the algorithm to determine whether it can effec-
tively switch between the two levels of the discrete variable.

2.8  Ordinary differential equation (ODE) catalytic system

The following test problem involved the optimisation of 3 continuous variables and a single 
qualitative variable for two objective functions obtained through the solution of a system 
of ordinary differential equations (ODEs). Solution of the ODE system can be obtained 
through application of an initial value problem algorithm, such as the Runge–Kutta meth-
ods [39]. The system of ODEs was used to describe a chemical reaction where the qualita-
tive variable is the choice of catalyst utilised in system and varies the activation energy of 
the reaction as described in (12), (13) and Table 4.

(11)

min
�

f1(�, d), f2(�, d)
�

xi ∈ [−2, 2] d ∈ [a, b]
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⎨

⎪

⎩
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−
∑
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√

n

�2
�
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−
∑
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√
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⎧

⎪

⎨

⎪

⎩
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−
∑
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xi +
1
√

n

�2
�

if d = a

0.75 − exp

�

−
∑
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�
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1
√

n

�2
�

if d = b

Fig. 3  Pareto front (a) and Pareto optimal set (b) for VLMOP2 test problem. Points where d = a are shown 
in blue and points where d = b are shown in red. Link to interactive plots are given as follows: a https:// 
chart- studio. plotly. com/ ~jmans on377/ 188, b https:// chart- studio. plotly. com/ ~jmans on377/ 191. (Color figure 
online)

https://chart-studio.plotly.com/~jmanson377/188
https://chart-studio.plotly.com/~jmanson377/188
https://chart-studio.plotly.com/~jmanson377/191
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This problem was initially reported as a single objective mixed variable problem by 
Baumgartner et  al. [37]; we have modified the problem to formulate a multi-objective 
example for this test case. The system involves optimising the catalyst, d , catalyst con-
centration, Ccat , temperature, T  , and the reaction time, tres , in which the catalyst effects the 
activation energy of the reaction, EAi

 . Equations describing the system are provided below.

where � is the residence time of the reactor, k0 is the Arrhenius constant for the reaction 
( 3.1×107 L

1

2 mol−
3

2 s−1×107 L
1

2 mol−
3

2 s−1 ), [A] and [B] are the concentrations of A and B 
in the reactor (Initial values: [A]0 = 0.167 M and [B]0 = 0.250 M ) and EAR

 is the reaction 
activation energy ( 55 kJ mol−1).

The system of ODEs was solved utilising MATLAB’s ode45 numerical integration 
solver with the algorithm optimising for both space time yield and product yield.

Figure 4 details the Pareto front for the simulated systems with details of the Pareto 
optimal set provided.

(12)

max (Yield, STY)

Ccat ∈ [0.835mM, 4.175mM]T ∈
[

30 ◦C, 110 ◦C
]

tres ∈ [1min, 10min]

d ∈ {1, 2, 3, 4, 5, 6, 7, 8}

A + B
k
→P

k = C
1

2

catk0e
−

EAR
+EAi

RT

dA

d�
= −k[A][B]

dB

d�
= −k[A][B]

dP

d�
= k[A][B]

(13)
Yield =

[P]final

[A]initial

STY =
100 × [P]final

tres

Table 4  Catalytic effect on 
reaction activation energy

Catalyst EAi (kJ  mol−1)

1 (T < 80 °C) − 5.0
1 (T > 80 °C) − 5.0 + 0.3 (T − 80)
2 0.7
3 0.7
4 0.7
5 0.7
6 2.2
7 3.8
8 7.3
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As the Pareto front in this test problem is comprised solely of a single discrete vari-
able level, this allows for comparison with a continuous multi-objective optimisation 
algorithm. In this instance comparison versus the Thompson Sampling Efficient Multi-
Objective Optimisation (TSEMO) [14] algorithm was performed.

2.9  Fuel injector design

This problem is comprised of a mixed integer fuel injector design problem proposed by 
Burachik et al. [38]. The authors adjusted the problem to impose an integer constraint on 
one of the design variables. The problem is described as follows (Fig. 5):

Fig. 4  Pareto front for catalytic ODE example. Pareto set at the following conditions: 
Ccat = 4.175mM, T = 80

◦
C, tres ∈ [1min, 10min] and d = 1 . Link to interactive plot: https:// plotly. com/ 

~jmans on377/ 193/

https://plotly.com/~jmanson377/193/
https://plotly.com/~jmanson377/193/
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(14)

min
(

f1(�), f2(�), f3(�), f4(�)
)

x2−4 ∈ [−2, 2] x̄1 ∈ {0, 1, 2, 3}

x1 = 0.2x̄1

f1(�) = 0.692 + 0.4771x1 − 0.687x4 − 0.08x3 − 0.065x2 − 0.167x2
1

− 0.0129x1x4 + 0.0796x2
4
− 0.0634x1x3 − 0.0257x3x4

+ 0.0877x2
3
− 0.0521x1x2 + 0.00156x2x4 + 0.00198x2x3

+ 0.0184x2
2

f2(�) = 0.37 − 0.205x1 + 0.0307x4 + 0.108x3 + 1.019x2 − 0.135x2
1

+ 0.0141x1x4 + 0.0998x2
4
+ 0.208x1x3 − 0.0301x3x4

− 0.226x2
3
+ 0.353x1x2 − 0.0497x2x3 − 0.423x2

2

+ 0.202x2
1
x4 − 0.281x2

1
x3 − 0.342x1x

2
4
− 0.245x3x

2
4

+ 0.281x2
3
x4 − 0.184x1x

2
2
+ 0.281x1x3x4

f3(�) = 0.153 − 0.322x1 + 0.396x4 + 0.424x3 + 0.0226x2 + 0.175x2
1

+ 0.0185x1x4 − 0.0701x2
4
− 0.251x1x3 + 0.179x3x4

+ 0.015x2
3
+ 0.0134x1x2 + 0.0296x2x4 + 0.0752x2x3

+ 0.0192x2
2

f4(�) = 0.758 + 0.358x1 − 0.807x4 + 0.0925x3 − 0.0468x2 − 0.172x2
1

+ 0.0106x1x4 + 0.0697x2
4
− 0.146x1x3 − 0.0416x3x4
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+ 0.0173x2
2

Fig. 5  Fuel Injector Pareto front displayed for the first three objective functions. Link to interactive plot: 
https:// chart- studio. plotly. com/ ~jmans on377/ 195

https://chart-studio.plotly.com/~jmanson377/195
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As with the discrete VLMOP2 example, the Pareto front is made up of multiple dis-
crete variable levels so should provide a good test problem to determine how effectively the 
algorithm can switch between different discrete variable combinations in a larger problem.

3  Results

For the three test cases presented the algorithm was compared against random sampling, a 
split Latin hypercube (LHC) design and the mixed variable NSGA-II.

3.1  Performance indicators

There exists a wide plethora of performance metrics that have been developed over the 
last few decades for the comparison of different multi-objective optimisation algorithms. 
Riquelme et al. [40] provide a comprehensive review of many performance metrics high-
lighting their usage and the associated advantages/disadvantages. To evaluate the perfor-
mance of the newly proposed algorithm we have utilised three performance metrics. A 
summary for each of the chosen metrics is provided below.

3.2  Hypervolume

The Hypervolume performance metric measures the volume of the objective space dom-
inated by the calculated Pareto front given a specified reference point. The indicator 
provides a measure for both convergence and diversity and has been widely used as a 
comparison tool for multi-objective algorithms [41].

3.3  Modified inverted generational distance (IGD+)

The modified Inverted Generational Distance (IGD+) performance metric was first pro-
posed by Ishibuchi et  al. [42]. Modification of the IGD performance metric [43] was 
performed to achieve a weakly Pareto compliant version. The metric provides a measure 
on the convergence towards the true Pareto front as well as the diversity of the calcu-
lated front, with a smaller value suggesting the calculated Pareto front is close to that of 
the true Pareto front. IGD+ is calculated as follows:

where d+
i
= max

{

ai − zi, 0
}

 , with ai being a point from the calculated Pareto front A and zi 
being a point from the true Pareto front Z.

3.4  Worst Attainment Surface

The Worst Attainment surfaces are defined by a set of Pareto points for a specific algo-
rithm and test function that are dominated by all other points for the specific algorithm 

(15)IGD+(A) =
1

|Z|

(

|Z|
∑

i=1

d+
i

2

)

1

2
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on a specific test function. They highlight the divide between dominated and non-dom-
inated points for the given set [44]. This provides insight as to where the different algo-
rithms perform differently and to what extend and thus can highlight a specific algo-
rithm’s weakness.

3.5  Discrete VLMOP2

Firstly, we will consider the results of the optimisation of the discrete VLMOP2 test 
problem. Summary plots for all performance metrics, as well as iterative summary 
plots, are shown in Fig. 6. For the hypervolume performance indicator a reference point 
of R = [1.0, 1.25] was used.

Overall, the MVMOO algorithm performs comparatively well compared to the mixed 
version of the NSGA-II algorithm with the novel MVMOO algorithm exceeding the 
performance in terms of both Hypervolume and IGD+, with a 21-fold reduction in itera-
tions for Hypervolume and a 36-fold reduction for IGD+ for comparative performance 
to NSGA-II.

The iterative results for both Hypervolume and IGD+ (Fig. 6a, b) appear to indicate pre-
mature termination of both MVMOO and NSGA-II with MVMOO plateauing to a lesser 
extent than NSGA-II. The budget for this test problem was kept deliberately small due to 
only two variables being optimised and the desire for efficient multi-objective optimisation.

Figure 6(e) illustrates well how in the MVMOO algorithm was able to achieve points 
at the extremes of the Pareto front and correlate well for the two outlying points for both 
Hypervolume and IGD+. Here the algorithm has failed to correctly obtain the mixed 
central aspect of the Pareto front (see Fig. 6(e)) suggesting the algorithm may at times 
struggle to switch between discrete variables where the effects of the continuous vari-
ables are similar, this behaviour is further explored in the fuel injector design test prob-
lem. Again, it is likely this effect, combined with the limited evaluation budget, has 
likely led to the two outlying points in both IGD+ and Hypervolume. In this case where 
the evaluation budget is limited the initial training data collection plays a key role in the 
efficacy of the algorithm.

3.6  ODE Catalytic System

Summary plots for all performance metrics, as well as iterative summary plots for the ODE 
catalytic system test problem are shown in Fig. 7. For the hypervolume performance indi-
cator a reference point of R = [0, 0] was used.

Comparative performance can be observed in Fig.  7(a–d) for the MVMOO algo-
rithm compared with a solely continuous multi-objective optimisation counterpart. Fig-
ure  7(e) details how the algorithm in the worse instance struggles to achieve the points 
at the extremes of the pareto front, possibly accounting for the lower values of Hypervol-
ume observed. NSGA-II was able to achieve superior performance across all metrics with 
extremely good approximation of the Pareto front in the worst attainment summary surface 
plot, Fig. 7(e).

Considering both Fig. 7(a, b), we can see there is a significant stall in the iterative pro-
gress for both performance metrics. This behaviour is linked to the current initial data gath-
ering procedure for the MVMOO algorithm with a 5 sample Latin hypercube taken for each 
level of the discrete variable. As the system only has a single optimum discrete variable 
level this leads to this stalling behaviour. Further work investigating improved techniques 



879Journal of Global Optimization (2021) 80:865–886 

1 3

for initial data collection may prove beneficial for systems when there is a single optimal 
discrete variable level. The steepness of the gradient of improvement for Hypervolume in 
Fig. 7(a) indicates how the MVMOO algorithm efficiently works towards the Pareto front 
for the system with final results comparable to that of the continuous algorithm which was 
afforded a larger algorithm iteration budget. This highlights the efficiency of the algorithm 

Fig. 6  Optimisation results for discrete VLMOP2 test problem for 10 runs. Algorithms are shown as fol-
lows:  MVMOO,  LHC,  Random and  NSGA-II. For a and b 95% confidence interval (CI) for 
each algorithm indicated by the shaded areas. For a, b NSGA-II was afforded a total of 800 function evalu-
ations per run (20 generations with a population size of 40). Interactive plots for all subfigures are given 
as follows: a https:// plotly. com/ ~jmans on377/ 207/, b https:// plotly. com/ ~jmans on377/ 218/, c https:// plotly. 
com/ ~jmans on377/ 139/, d https:// plotly. com/ ~jmans on377/ 135/ and e https:// plotly. com/ ~jmans on377/ 137/. 
(Color figure online)

https://plotly.com/~jmanson377/207/
https://plotly.com/~jmanson377/218/
https://plotly.com/~jmanson377/139/
https://plotly.com/~jmanson377/139/
https://plotly.com/~jmanson377/135/
https://plotly.com/~jmanson377/137/
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particularly given the search domain was 8 times larger than that of the continuous algo-
rithm when you consider the discrete variable levels. Comparing performance with regards 
to Hypervolume and IGD+ against NSGA-II the algorithm achieves the same level of per-
formance in approximately 7% and 8% of the iterations to that required by NSGA-II.

Fig. 7  Optimisation results for ODE catalytic system test problem for 10 runs. Algorithms are shown as fol-
lows:  MVMOO,  LHC,  Random,  TSEMO and  NSGA-II. For a and b 95% confidence inter-
val (CI) for each algorithm indicated by the shaded areas. NSGA-II was afforded a total of 10,200 function 
evaluations per run (85 generations with a population size of 120). Interactive plots for all subfigures are 
given as follows: a https:// plotly. com/ ~jmans on377/ 224/, b https:// plotly. com/ ~jmans on377/ 226/, c https:// 
plotly. com/ ~jmans on377/ 146/, d https:// plotly. com/ ~jmans on377/ 148/ and e https:// plotly. com/ ~jmans 
on377/ 153/. N.B. The y axis for b is plotted using a log scale to allow discernment between algorithms. The 
large jumps in CI are where the CI tends to zero. (Color figure online)

https://plotly.com/~jmanson377/224/
https://plotly.com/~jmanson377/226/
https://plotly.com/~jmanson377/146/
https://plotly.com/~jmanson377/146/
https://plotly.com/~jmanson377/148/
https://plotly.com/~jmanson377/153/
https://plotly.com/~jmanson377/153/
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3.7  Fuel injector design

Summary plots for all performance metrics, as well as iterative summary plots for the fuel 
injector design test problem are shown in Figs. 8, 9 and 10. For the hypervolume perfor-
mance indicator a reference point of R = [0.8, 1.4, 1.7, 1.0] was used.

Examining Fig.  8(a–d) the results for both performance metrics indicate a significant 
improvement when using MVMOO over NSGA-II, with the algorithm achieving on par 
performance to the final mean hypervolume of NSGA-II after 55 iterations and after 42 
iterations for mean IGD+ representing a 145-fold and a 190-fold improvement in efficiency 
with respect to these performance indicators.

A notable difference between the worst attainment surfaces of MVMOO and NSGA-
II is the approximation of the bulk body of the Pareto front, with MVMOO provid-
ing a more uniform spread of points with some clustering present in NSGA-II. As with 
the ODE catalytic system example the MVMOO struggles to achieve the extremes of 
the Pareto front. This, however, may be rectified if the algorithm was allowed to con-
tinue with a lack of plateauing in performance metrics evident from the iterative Hyper-
volume plot (Fig. 8a) suggesting an improvement may be achieved through increasing 
the budget, this behaviour is echoed to a lesser extent on the iterative plot for IGD+ 
(Fig.  8b). The greater degree in plateau evident on the IGD+ could be linked to the 
algorithm struggling to achieve points at the edge of the Pareto front. In both the Hyper-
volume and IGD+ iterative plots there is clear evidence that the NSGA-II algorithm 

Fig. 8  Optimisation results for fuel injector design test problem for 10 runs. Algorithms are shown as fol-
lows:  MVMOO,  LHC,  Random and  NSGA-II. For a and b 95% confidence interval (CI) for 
each algorithm indicated by the shaded areas. NSGA-II was afforded a total of 8000 function evaluations 
per run (80 generations with a population size of 100). Interactive plots for all subfigures are given as fol-
lows: a https:// plotly. com/ ~jmans on377/ 234/, b https:// plotly. com/ ~jmans on377/ 237/, c https:// plotly. com/ 
~jmans on377/ 165/, d https:// plotly. com/ ~jmans on377/ 167/. (Color figure online)

https://plotly.com/~jmanson377/234/
https://plotly.com/~jmanson377/237/
https://plotly.com/~jmanson377/165/
https://plotly.com/~jmanson377/165/
https://plotly.com/~jmanson377/167/
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struggles with this 4-objective system with little improvement apparent for the latter 
iterations. Observing Figs. 9 and 10, this marked difference in both Hypervolume and 
IGD+ for NSGA-II could be attributed to the lack of points around the bulk sections of 
the Pareto front. Additional iterations would likely rectify this; however, this highlights 
the drastically improved efficiency in attaining near Pareto optimal points presented by 
the MVMOO algorithm.

Overall, the MVMOO displays competitive performance in term of both efficiency 
and final performance across all three test problems presented. On all examples the 
algorithm displays excellent repeatability evident through the narrow quartile ranges on 
all test problem box plots. The algorithm has been shown to be effective at switching 
between discrete variable levels should this be required and produces a uniform distri-
bution of points across the front efficiently describing the front for a minimal budget.

Fig. 9  Worst attainment summary surface for fuel injector design test problem. Reference surface shown as 
grey points, with the plots corresponding to the following algorithms: a MVMOO, b LHC, c Random and d 
NSGA-II. Link to interactive plot: https:// chart- studio. plotly. com/ ~jmans on377/ 201

https://chart-studio.plotly.com/~jmanson377/201
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4  Conclusions

In this work we present a novel Bayesian multi-objective algorithm (MVMOO) capable 
of simultaneously optimising both discrete and continuous input variables. The algo-
rithm was applied to three test cases with comparison to random and genetic algorithm-
based alternatives. MVMOO was compared to NSGA-II as well as two random sampling 
techniques for 3 test functions where it was able to outperform NSGA-II for 2 out of the 
3 test problems with a significantly reduced function evaluation budget. For the cata-
lytic ODE test problem, MVMOO compared comparatively well with NSGA-II and a 
continuous variable multi-objective algorithm, TSEMO, which were able to outperform 
the new algorithm in terms of IGD+ and hypervolume. Overall, MVMOO was able to 
perform competitively when compared to NSGA-II with a substantially reduced experi-
mental budget, providing a viable, efficient option when optimising expensive mixed 
variable multi-objective optimisation problems without the need of a priori knowledge 
of the objective function.
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