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Abstract
In this study, we consider identification of parameters in a non-linear continuum-mechanical
model of arteries by fitting the models response to clinical data. The fitting of the model is
formulated as a constrained non-linear, non-convex least-squares minimization problem. The
model parameters are directly related to the underlying physiology of arteries, and correctly
identified they can be of great clinical value. The non-convexity of the minimization problem
implies that incorrect parameter values, corresponding to local minima or stationary points
may be found, however. Therefore, we investigate the feasibility of using a branch-and-bound
algorithm to identify the parameters to global optimality. The algorithm is tested on three
clinical data sets, in each case using four increasingly larger regions around a candidate global
solution in the parameter space. In all cases, the candidate global solution is found already
in the initialization phase when solving the original non-convex minimization problem from
multiple starting points, and the remaining time is spent on increasing the lower bound
on the optimal value. Although the branch-and-bound algorithm is parallelized, the overall
procedure is in general very time-consuming.

Keywords Global optimization · Branch-and-bound · Artery · In vivo

1 Introduction

The initiation and development of cardiovascular diseases has been associatedwith changes in
the mechanical properties of the underlying arterial tissue [1,2]. Measures reflecting arterial
stiffness, such as the pulse wave velocity (PWV) [3], the stiffness index (β) [4], and the
pressure-strain elastic modulus (Ep) [5], are often used to assess patients in the clinic [2,6,
7]. The amount of information obtainable from these popular clinical measures is limited,
however, since they typically average stiffness over the artery or assume a constant stiffness
despite the distinctive non-linear stiffening behavior of the arterial wall [8]. Several research
groups have tried to address these shortcomings and proposed methods to identify more
realistic patient specific mechanical properties of arteries in vivo (in the living human) [9–
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13]. These studies use non-linear continuum-mechanical models and identify the material
parameters by fitting the models to clinical data. The fitting is performed by solving an
optimization problem; typically minimization of the non-linear least-squares differences of
measured and predicted pressure-radius response.

Although these new methods offer more insight into the mechanical properties of arteries
in vivo, they suffer a fundamental problem: the non-linear optimization problem to be solved
is non-convex and generally possesses local solutions which are not the global solution.
This becomes a problem when the new information is used to develop diagnostic tools and
intervention criteria. Intrasubject comparison requires a set of parameters for each patient
which is uniquely relatable to a ‘normal’ set for healthy individuals, and the global solution
is a natural candidate.

The issue of non-convexity is commonly addressed by using a gradient-based optimization
algorithm which finds a local solution in combination with multiple starting points [11–13].
The best local solution is then taken to be the global solution. Unfortunately, there is no
guarantee that this heuristic method identifies the global solution. Furthermore, no estimate
can be provided for the difference between the best local and the true global solution.

In biomedicine, simulated annealing, particle swarm and genetic algorithms are frequently
used to solve optimization problems [14–17], but these algorithms are also of heuristic nature
and do not necessarily identify the global solution.Deterministic global optimizationmethods
such as branch-and-bound (B&B) on the other hand, guarantee that in finite time, a solution
is found whose optimal value is at worst a user-specified value higher than that of the global
solution [18].

B&B algorithms have been used previously to solve least-squares minimization prob-
lems to global optimality [19,20]. These studies show that the algorithm’s efficiency strongly
depends on the reformulation of the original optimization problem and benefits from a low
number of unknown parameters and simple functional expressions. The parameter identifi-
cation method in Gade et al. [13] exhibits these characteristics, thus making B&B a suitable
candidatewhen searching for the global solution.General purpose global optimization solvers
exist that can be used as black-box solvers [21–24], but efficient global optimization requires
exploitation of problem-specific characteristics, something which is difficult without access
to source code.

In this paper, we propose a B&B-type algorithm for the parameter identification method
presented in Gade et al. [13] and explore the feasibility of computing global solutions for the
mechanical properties of arteries in vivo. In particular, we compute global solutions for the
clinical data of three subjects. For each data set we analyze four successively larger parameter
regions around a candidate global solution to study the algorithms efficiency.

2 Parameter identificationmethod

The parameter identificationmethod is taken fromGade et al. [13]. For a thorough description
and discussion, the reader is referred to the original paper.

In the parameter identification method, an artery is treated as a homogeneous, incom-
pressible, thin-walled cylinder which consists of an isotropic matrix with embedded collagen
fibers. In the unloaded state, i.e. outside the human body, the artery has an inner radius Ri,
a wall thickness H , and a length L , see Fig. 1a. In vivo, the artery is subjected to the blood
pressure P from the inside and stretched to a length l which is invariant with respect to the
changing blood pressure [25], see Fig. 1b. The stretch in the axial direction, i.e. λz = l/L ,
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Unloaded state Loaded state(a) (b)

Fig. 1 Unloaded (a) and loaded (b) state of an artery. The coordinates r , θ , and z of the cylindrical coordinate
system are associated with the radial, circumferential, and axial direction, respectively. The thin dark-grey
lines represent the collagen fibers embedded in the isotropic matrix which is colored in light grey

results in an axial reaction force F . Furthermore, the inner radius and wall thickness in the
loaded state are denoted with lower case letters, i.e. ri and h, and the cross-sectional area of
the arterial wall A = 2πrih + πh2 is constant because the arterial tissue is assumed to be
incompressible and the axial stretch is constant. In this loaded state, two sets of stresses are
calculated for an artery: equilibrium stresses and constitutively determined stresses.

By stating equilibrium in the circumferential and axial direction, the corresponding equi-
librium stresses are calculated as, i.e. Laplace laws,

σ
Lp
θθ =

(
ri
h

+ 1

2

)
P, (1)

σ
Lp
zz = πr2i P + F

πh (2ri + h)
, (2)

respectively. The axial reaction force cannot bemeasured in vivo and is estimated by assuming
that the ratio between the axial and circumferential stresses is γ =0.59 at the mean arterial
blood pressure P̄=13.3 kPa [9]. Using Eqs. (1) and (2), the axial force is estimated as

F̄ = P̄π
[γ

2

(
2r̄i + h̄

)2 − r̄2i

]
, (3)

where the inner radius r̄i and the wall thickness h̄ are associated with P̄ .
The second set of stresses is determined using the Holzapfel–Gasser–Ogden (HGO) con-

stitutive model [26]. Following Gade et al. [13], the constitutively determined stresses are:
in the circumferential direction

σmod
θθ = 2c

[
λ2θ − (λθλz)

−2
]

+ 4k1 (I4 − 1) exp
[
k2 (I4 − 1)2

]
λ2θ cos

2 β, (4)

and in the axial direction

σmod
zz = 2c

[
λ2z − (λθλz)

−2
]

+ 4k1 (I4 − 1) exp
[
k2 (I4 − 1)2

]
λ2z sin

2 β, (5)

where c > 0 is a material constant describing the isotropic matrix, k1, k2 > 0 are material
constants associated with the embedded collagen fibers, and β ∈ [0, π/2] is the pitch angle
of the symmetrically arranged collagen fibers relative to the circumferential direction, see
Fig. 1a. Furthermore, I4 is the squared stretch along the collagen fibers calculated as

I4 = λ2θ cos2β + λ2z sin2β, (6)
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and λθ is the stretch in the circumferential direction defined as the ratio of the loaded to the
unloaded mid-wall circumference, i.e.

λθ = π (2ri + h)

π (2Ri + H)
= 2ri + h

Ri +
√
R2
i + λzh (2ri + h)

, (7)

where H has been replaced by Ri, λz , ri, and h using that the wall volume is constant due to
incompressibility.

The equilibrium stresses in Eqs. (1) and (2) are fully determined given a data set compris-
ing time-resolved blood pressure (P) and inner radius (ri) measurements sampled n times
and information about the cross-sectional area (A) of the arterial wall. The constitutively
determined stresses in Eqs. (4) and (5), however, contain six unknown model parameters:
the unloaded inner radius Ri, the axial stretch λz , the material constants c, k1, k2, and the
angle β. These parameters are determined by solving the following non-convex weighted
least-squares minimization problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
κ∈R6

n∑
j=1

{
ψ

[
σmod

θθ

(
κ, ri, j

) − σ
Lp
θθ

(
ri, j , Pj

)]2+
(1 − ψ)

[
σmod
zz

(
κ, ri, j

) − σ
Lp
zz

(
ri, j , Pj

)]2}

subject to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κL ≤ κ ≤ κU,

0.5 ≤ λθ, j ≤ 2,

1 ≤ I4, j ≤ 2,

k2
(
I4, j − 1

)2 ≤ 20,

(UP)

where UP denotes upper problem in anticipation of the B&B algorithm, κ = (
Ri, λz, c, k1,

k2, β
)
is the parameter vector, j =1, . . . , n indicates a data point sample, and the superscripts

L and U denote lower and upper bound, respectively. The weighting factor ψ =0.99 is used
to let the objective function be dominated by the circumferential stresses [13]. The non-linear
inequality constraints in (UP) are not present in the original optimization problem and are
introduced to reduce the parameter space to obtain physiologically reasonable values, see
the Discussion. The fitting ranges and the limits on the non-linear constraints are based on
experimentally observed values [27–30] and summarized in Table 1.

The parameter identificationmethod inGade et al. [13] has been numerically validated and
the 95% limits of agreement have been determined for each of the six parameters, see Table
2. These limits represent the interval around the identified value in which the true parameter
is lying and are used to create the vicinity regions around a candidate global solution later on
in the Sect. 5. For parameter k2 the difference of the identified and the correct value increases
as the correct value increases. To compensate for this systematic error, the 95% limits of
agreement are based on the ratio instead [13].

3 Global optimization approach

A B&B algorithm is used to solve the problem (UP) to global optimality, meaning that the
relative difference between the optimal values of the estimated and the true global solution
is less than the tolerance ε. The basic idea is to generate a sequence of non-increasing upper
bounds UB and a sequence of non-decreasing lower bounds LB on the global solution.
By successive subdivision of the parameter space along the B&B tree, ε-convergence is
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Table 1 Fitting ranges of the model parameters and constraint limits

Model parameters κ Non-linear constraints

Ri λz c k1 k2 β λθ, j I4, j k2
(
I4, j − 1

)2
[mm] [–] [kPa] [kPa] [–] [◦] [–] [–] [–]

Lower limit (L) 1 1 1 · 10−3 1 · 10−3 1 · 10−3 0 0.5 1 0a

Upper limit (U) 20 1.5 1 · 103 1 · 103 1 · 103 90 2 2 20

aThis constraint is implicitly enforced by the constraint on I4, j

Table 2 Limits of agreement for
each parameter taken from Gade
et al. [13]

95% limits of agreement

Parameter Unit Lower limit Upper limit

Ri [mm] 0.34 0.52

λz [–] 0.13 0.20

c [kPa] 1.80 2.51

k1 [kPa] 10.23 10.21

k2 [–] 0.75a 1.21a

β [◦] 9.97 2.37

aBased on the ratio instead

guaranteed in a finite number of iterations [18]. In each region of the parameter space, the
original non-convex problem, i.e. the upper problem (UP), is solved to local optimality and
the upper bound is updated in case this local solution provides a lower value on the upper
bound. Then the convex relaxation of the original problem, which will be referred to as the
lower problem (LBP), is solved to local, hence global optimality to establish a new lower
bound on the global solution in the current region. If the lower bound is above the upper
bound, the current region cannot contain the global solution and can therefore be excluded.
Otherwise the current region is added to a list of active problems A which possibly contain
the global optimum and the process is repeated until the relative difference between the upper
and lower bound is less than the specified tolerance ε.

3.1 Construction of convex relaxation

To facilitate the construction of the convex relaxation, the model equations (4) and (5) are not
introduced in the objective function but enforced as constraints instead [19]. This makes the
objective function convex in the auxiliary variables σmod

θθ, j , σ
mod
zz, j which represent the model

stresses and are introduced as additional unknowns to the optimization problem. The added
constraints enforcing the model equations are non-linear due to the presence of bilinear,
fractional, and componentwise convex terms. To facilitate the creation of convex relaxations
of themodel equations, the terms ri, j , Ri, λz, β are replaced by scaled counterparts according
to
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r̃ j =
(
2ri, j + h j

)2
s

, R̃ = s

(
Ri +

√
R2
i + λz

A

π

)−2

, λ̃z = λ2z , β̃ = sin2 β, (8)

where s=1000 is a scaling factor chosen such that the magnitude of R̃ is similar to the other
unknown parameters. After substitution of the scaled counterparts in the model equations,
the following auxiliary variables are introduced:

w1 → cR̃, w2 → R̃λ̃z, w3 → cλ̃z, w4 → c

w2
, w5 → R̃β̃,

w6 → λ̃z β̃, w7 → k1 R̃, w8 → k1w5, w9 → k1w6,

w10 → w7 − w8, w11, j → r̃ j
(
R̃ − w5

)
+ w6 − 1,

w12, j → w11, jw10, w13, j → w11, jw9, w14, j → k2w
2
11, j ,

(9)

where → means an auxiliary variable replacing the term following the arrow. The auxiliary
variables w1, w2, w3, w5, w6, w7, w8, w9, w12, j , w13, j replace bilinear terms, w4 a frac-
tional term, and w14, j componentwise convex terms. For each of the bilinear, fractional, and
componentwise convex auxiliary variables in Eq. (9), four inequality constraints are added
to the optimization problem, see “Appendix A”. The auxiliary variables w10 and w11, j are
enforced as linear equality constraints and are introduced to decrease the total number of
auxiliary variables. The resulting intermediate optimization problem is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
u∈R16+6n

n∑
j=1

{
ψ

[
σmod

θθ, j − σ
Lp
θθ

(
ri, j , Pj

)]2+
(1 − ψ)

[
σmod
zz, j − σ

Lp
zz

(
ri, j , Pj

)]2}

subject to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uL ≤ u ≤ uU,

−σmod
θθ, j +2

(
r̃ jw1 − w4

r̃ j

)
+4r̃ jw12, j expw14, j = 0,

−σmod
zz, j +2

(
w3 − w4

r̃ j

)
+4w13, j expw14, j = 0,

constraints for auxiliary variables in Eq. (9),

(INP)

where u= [
κ̃, σmod

θθ , σmod
zz ,w

]
, κ̃ =

(
R̃, λ̃z, c, k1, k2, β̃

)
, and w contains the auxiliary vari-

ables wa . Due to the introduction of auxiliary variables, the degree of non-linearity in the
model equations has been greatly reduced. However, the model equations in (INP) still
have componentwise convex terms of the form x exp(y) which are addressed according to
“Appendix A.4”. For these terms, instead of introducing new auxiliary variables, the relax-
ation is incorporated directly into the model equations. The complete convex relaxation of
(UP) now reads
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
u∈R16+6n

n∑
j=1

{
ψ

[
σmod

θθ, j − σ
Lp
θθ

(
ri, j , Pj

)]2+
(1 − ψ)

[
σmod
zz, j − σ

Lp
zz

(
ri, j , Pj

)]2}

subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uL ≤ u ≤ uU,

−σmod
θθ, j + 2

(
r̃ jw1 − w4

r̃ j

)
+ 4r̃ j

[(
w12, j−

wL
12, j

)
expwL

14, j + wL
12, j expw14, j

]
≤ 0,

−σmod
θθ, j + 2

(
r̃ jw1 − w4

r̃ j

)
+ 4r̃ j

[(
w12, j−

wU
12, j

)
expwU

14, j + wU
12, j expw14, j

]
≤ 0,

σmod
θθ, j + 2

(
−r̃ jw1 + w4

r̃ j

)
− 4r̃ j

[
w12, j ·

expwL
14, j + wU

12, j e
(
w14, j − wL

14, j

)]
≤ 0,

σmod
θθ, j + 2

(
−r̃ jw1 + w4

r̃ j

)
− 4r̃ j

[
w12, j ·

expwU
14, j + wL

13, j e
(
w14, j − wU

14, j

)]
≤ 0,

−σmod
zz, j + 2

(
w3 − w4

r̃ j

)
+ 4

[(
w13, j − wL

13, j

)
·

expwL
14, j + wL

13, j expw14, j

]
≤ 0,

−σmod
zz, j + 2

(
w3 − w4

r̃ j

)
+ 4

[(
w13, j − wU

13, j

)
·

expwU
14, j + wU

13, j expw14, j

]
≤ 0,

σmod
zz, j + 2

(
−w3 + w4

r̃ j

)
− 4

[
w13, j expwL

14, j+
wU
13, j e

(
w14, j − wL

14, j

)]
≤ 0,

σmod
zz, j + 2

(
−w3 + w4

r̃ j

)
− 4

[
w13, j expwU

14, j+
wL
13, j e

(
w14, j − wU

14, j

)]
≤ 0,

constraints for auxiliary variables in Eq. (9),

(LBP)

where

e =

⎧⎪⎪⎨
⎪⎪⎩
expwL

14, j , if wU
14, j = wL

14, j ,

expwL
14, j

exp
(
wU
14, j − wL

14, j

)
− 1

wU
14, j − wL

14, j
, otherwise.

(10)

The non-linear inequality constraints present in (UP) are enforced as simple box constraints
on the corresponding (auxiliary) variables R̃, w11, j , and w14, j . The bounds on auxiliary
variables w11, j , w12, j , and w13, j are non-trivial due to the non-linear dependence on R̃, λ̃z ,
and β̃, see “Appendix B”. Furthermore, tight bounds on the auxiliary variables representing
the model stresses are added, see Sect. 4.1.

The lower bounding problem (LBP) has in total 16+6n variables and 37+21n constraints.
A comparison of the size of (UP) and (LBP) is provided in Table 3.
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Table 3 Formulation statistics of
(UP) and (LBP)

(UP) (LBP)

Convex variables 0 16 + 6n

Non-convex variables 6 0

Total number of variables 6 16 + 6n

Linear equality constraints 0 1 + n

Linear inequality constraints 0 34 + 14n

Convex inequality constraints 0 2 + 6n

Non-convex constraints 5n 0

Total number of constraintsa 5n 37 + 21n

aExcluding box constraints on the variables

3.2 Branchingmethod

A crucial choice for the efficiency of a B&B algorithm is the branching method, i.e. the
selection of the parameter to branch on. The proposed strategy follows the ideas in Esposito
and Floudas [19] and considers the deviations between the values of the auxiliary variables
wa ∈ w and the non-convex terms they replace expressed in terms of the sixmodel parameters
p ∈ κ̃ . The deviations are thus calculated as

δa = ∣∣w∗
a − wa

(
κ̃∗)∣∣ , (11)

wherew∗
a denotes the value of the ath auxiliary variable at the solution of (LBP) andwa

(
κ̃∗)

is the ath auxiliary variable expressed as an explicit function, see Eq. (9), of the model
parameters and evaluated at the solution of (LBP). The deviation of auxiliary variable w1 is
for example defined as

δ1 =
∣∣∣w∗

1 − c∗ R̃∗
∣∣∣ . (12)

In order to account for w14, j being an exponent, the associated deviation is calculated using

δ14, j =
∣∣∣exp[w∗

14, j

]
− exp

[
w14, j

(
κ̃∗)]∣∣∣ , (13)

instead.
Given the deviations in Eqs. (11) and (13), a region-reduction measure is introduced for

every model parameter according to

rp = pU − pL

pU,orig − pL,orig , (14)

where pU, pL are the upper and lower bounds of parameter p in the current region and
pU,orig, pL,orig are the original upper and lower bounds. Finally, a total deviation δp is calcu-
lated for every model parameter p by summing up all δa’s in which this parameter is present
and multiplying by the corresponding region reduction measure rp . The parameter which has
the highest δp is chosen to branch on and the corresponding region is bisected.
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3.3 Proposed branch-and-bound algorithm

The rudimentary B&B algorithm described in the beginning of Sect. 3 is adapted to the
properties of the problem at hand. In Gade et al. [13], the non-convex problem is solved from
several starting points and the solution with the lowest error function value is taken to be the
global solution. The same methodology is applied here when solving the upper problem for
the first time. The supposedly good estimate of the global solution allows for not solving the
upper problem until the lower bound reaches a user-specified threshold t .

The solution of both (UP) and (LBP) can be accelerated by using a good starting point.
Since the upper problem is solved prior to the lower problem, little information about the
current region is available. Therefore, when solving (UP) the only criteria for choosing a
starting point is whether it is feasible or not. For that purpose ten feasible or nearly feasible
starting points are generated using Latin Hypercube Sampling [31] in the current parameter
region. The starting point of the lower problem is determined by using the solution of the
upper problem if available, otherwise it is generated using the same method as for the upper
problem.

To speed up the B&B algorithm even further it is parallelized. Since it is not essential for
the B&B algorithm that the sequence of lower bounds is always non-decreasing, it is possible
to split the list of active problems A into A1, . . . ,Av , where v is the number of available
CPUs, and assess them individually.1 The individual assessment is done for a certain time
T and then A1, . . . ,Av are merged again into one list of active problems and the process
is repeated until in less than 1000 active regions the lower bound is below a user-specified
threshold t . From then on, the B&B algorithm is executed serially to make sure that the
sequence of lower bounds is non-decreasing considering all active regions. The whole B&B
algorithm is summarized in Algorithm 1.

3.4 Implementation

The proposed B&B algorithm is implemented inMatlab R2019b [32]. The upper problem
(UP) is solved using the function fminconwith the interior-point optimization algorithm. For
numerical efficiency the model parameters c, k1, k2, and β are replaced in (UP) by scaled
counterparts [13],

c = ec̃, k1 = ek̃1 , k2 = ek̃2 , and β = arcsin
√

β̃, (15)

where the superscribed tilde indicates a scaled parameter. The analytical gradient of the
objective function, the analytical gradient of the non-linear inequality constraints, and the
analytical Hessian of the Lagrangian are determined with Maple 2019.1 [33] and supplied
to fmincon. To solve the upper problem from 10 starting points, theMultiStart-class feature
is used.

The lower problem (LBP) is solved using the Interior Point Optimizer (IPOPT ) software
package [34] which is interfaced to Matlab as mex code. Again, the analytical gradient of
the objective function, the analytical gradient of the constraints, and the analytical Hessian
of the Lagrangian are provided.

Although both optimization algorithms are based on the interior-point method, fmincon
solves (UP) and IPOPT (LBP) more efficiently. The same stopping criteria are used for

1 Within each split part ofA the sequence of lower bounds is non-decreasing.
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Algorithm 1: Branch-and-bound algorithm for mechanical properties of arteries
input : pressure-radius data set, bounds on parameter space, ε, and t
output: mechanical properties κ∗ to global optimality
initialize optimization

generate
[
κSP1 , . . . , κSP10

]
∈

[
κL, κU

]
(feasible) startpoints

solve (UP) 10 times in region
[
κL, κU

]
using

[
κSP1 , . . . , κSP10

]
UB ← min [UB1, . . . ,UB10]; κ∗ ← argmin [UB1, . . . ,UB10]

determine uL, uU for region
[
κL, κU

]
and uSP based on κ∗

solve (LBP) in region
[
uL, uU

]
using uSP to get LB

add LB,u∗, κL, κU toA
i terBB ← 0

while |UB − LB|/UB > ε do

determine number r of regions
[
κLo , κUo

]
with LBo < t inA

if r > 1000 then
split A intoA1, . . . ,Av and execute Algorithm 2 in parallel
merge A1, . . . ,Av intoA and determine lowest lower bound LBk ofA

LB ← LBk ; i terBB ← i terBB +
v∑

i=1
i terBBi

else
execute Algorithm 2 and determine lowest lower bound LB ofA

i terBB ← i terBB + 1
end

end

both algorithms: absolute change of objective function value must be less than 10−10, and
constraint violation must be less than 10−8.

4 Material

The material for this study comes from the abdominal aorta of three healthy, non-smoking
Caucasian males, representative for each age group. Subjects I, II, and III are 25, 41, and 69
years of age, respectively. The pressure-radius data is taken from Sonesson et al. [35] and for
details about the data acquisition the reader is referred to that paper. From the raw data we
create a pressure-radius curve consisting of n = 18 equidistant data points for each subject
according to Stålhand [36], see Fig. 2. The total number of data points is chosen as small
as possible, see the Discussion. Neither the deformed wall thickness nor the deformed wall
cross-sectional area were recorded in Sonesson et al. [35]. The deformed wall cross-sectional
area A is therefore estimated according to A=19.6+0.8 · age, where A is in mm2 and age
is in years [36].

4.1 Bounds on the auxiliary variables representingmodel stresses

The pressure-radius measurements show distinctive hysteresis, see Fig. 2. When the input
data is converted into the Laplace stresses according to Eqs. (1) and (2), the hysteresis is
still present, see Fig. 3. The constitutive model in Sect. 2 assumes a purely elastic material,
however, and neglects hysteresis accordingly. The curves describing the model stresses in the
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Algorithm 2: Branch-and-bound iteration
input : A,UB, t , and allowed execution time T
output: A, i terBB, UB, κ∗

ct ← current time; et ← ct + T ; i terBB ← 0
while ct < et and A �= ∅ do

get and remove region
[
κLk , κUk

]
with lowest LBk and corresponding u∗

k fromA
LB ← LBk ; i terBB ← i terBB + 1

divide region
[
κLk , κUk

]
into

[
κLk1, κ

U
k1

]
and

[
κLk2, κ

U
k2

]
based on u∗

k

for l ← 1 to 2 do

generate (feasible) startpoint κSPkl ∈
[
κLkl , κ

U
kl

]
if LB > t then

solve (UP) in region
[
κLkl , κ

U
kl

]
using κSPkl

if UBkl < UB and κ∗
kl is feasible then

UB ← UBkl ; κ∗ ← κ∗
kl

end

determine uLkl , u
U
kl in region

[
κLkl , κ

U
kl

]
and uSPkl based on κ∗

kl

else

determine uLkl , u
U
kl in region

[
κLkl , κ

U
kl

]
and uSPkl based on κSPkl

end

solve (LBP) in region
[
uLkl , u

U
kl

]
using uSPkl

if LBkl < UB and u∗
kl is feasible then

add LBkl , u∗
kl , κ

L
kl , κ

U
kl to A

end
end
ct ← current time
if LB > t then

return to Algorithm 1
end

end

Fig. 2 Pressure-radius data for subjects I, II, and III. The markers denote the 18 path-equidistant samples and
the lines denote the complete pressure-radius loops of the corresponding subject
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Circumferential direction Axial direction(a) (b)

Fig. 3 Bounds on the auxiliary variables representing the circumferential and axial model stresses for subject I.
The black circles denote the pressure-radius measurements converted into Laplace stresses, the black lines
are the hysteresis loops, and the red bars are the bounds for each auxiliary variable representing the model
stresses. (Color figure online)

circumferential and axial direction must, therefore, be (mostly) contained within the corre-
sponding hysteresis loops if they are to be the best solution to the least-squares optimization
problem. Individual lower andupper bounds on each auxiliary variable representing themodel
stresses are therefore introduced based on the hysteresis loops of the Laplace stresses. After-
wards the average difference between the upper and lower bounds, excluding the endpoints,
is calculated and the stress ranges smaller than this average difference are symmetrically
enlarged. The lower and upper limits for the endpoints are created by using twice the average
stress difference. The resulting bounds on the auxiliary variables representing the circumfer-
ential and axial model stresses are shown in Fig. 3.

5 Results

The proposed B&B algorithm is applied to the clinical data and four successively increasing
regions in the parameter space around a candidate global solution for each of the three
subjects is investigated. The candidate global solutions are determined by solving (UP) with
100 starting points generated with Latin Hypercube Sampling over the entire parameter space
defined by the fitting ranges in Table 1. For subjects I, II, and III, respectively, 81%, 79%,
and 64% of all starting points end up at the same solution with the lowest objective function
value. The fact that the same solution is not always found demonstrates the non-convexity
of the optimization problem and the associated existence of local solutions which are not
the global solution. The candidate global solutions are summarized in Table 4. Around these
candidate solutions four vicinity regions are established: 1%, 10%, 100%, and 500% of the
limits of agreement for each parameter, see Table 2. The vicinity regions respect the parameter
boundaries in Table 1 and the explicit parameter spaces are summarized in Table 5. For each
subject and each vicinity region, a stopping-tolerance in the range ε=0.01−0.095 is required
for the B&B algorithm, with larger tolerances for larger vicinity regions, see Table 6. The
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Table 4 Candidate global
solutions of investigated subjects

Subject Ri λz c k1 k2 β

[mm] [–] [kPa] [kPa] [–] [◦]

I 6.24 1.0541 43.37 28.68 5.08 44.65

II 6.93 1.0538 59.44 6.68 12.90 46.05

III 10.37 1.0103 293.53 0.02 693.81 38.03

threshold t until the B&B algorithm is executed in parallel is put to 90% of the objective
function value of the respective candidate global solution.

During the initialization step of the B&B algorithm, the respective candidate global solu-
tion is identified in every case and a better solution for (UP) is never found. The qualitative
progress of the difference between the upper and lower bound is similar for each subject
in the same vicinity region, see Fig. 4. For many iterations, the relative difference is unity,
i.e. LB=0, followed by a comparably rapid drop until the lower bound has reached approx-
imately 90% of the upper bound and the progress is substantially slowed down. The total
amount of B&B iterations to achieve the required tolerance is large, especially for the two
largest vicinity regions. Although each B&B iteration requires only a fraction of a second,
the total CPU solution times are huge and are only manageable through parallelization, see
Table 6.

6 Discussion

In all cases tested, the candidate global solution is identified during the initialization step of
the B&B algorithm and no better solution is found, even after solving (UP) several million
times in the larger parameter regions. This is not an unusual behavior of deterministic global
optimization methods which often require many iterations to verify that a promising solution
found early in the process is indeed the global solution [18]. That no better solution of (UP)
is found highlights the successful combination of using multiple starting points, selection of
starting points and the rescaling when solving (UP) in the initialization step.

Initially a tolerance of ε=0.01 was required for each subject and vicinity region. It was,
however, soon realized that ε = 0.01 is not feasible for every optimization run, since the
required computational power exceeded our available resources. An in-house cluster with
108 2.6 GHz cores and 576 GB RAM, as well as two personal computers, were running
for approximately four months to solve all optimization runs with a combined CPU time of
5.4 years.2 Especially the optimization runs for subject III lasted for a long time because
the parameter space within each vicinity region is larger compared to the other two subjects.
The increased parameter spaces for subject III are due to the higher k2-value of the candidate
global solution and the relative confidence interval for that parameter, see Sect. 2. The required
tolerance is therefore lowered on an individual basis such that (UP) is at least solved a few
million times during which no better solution must be found.

In its current form, the proposed B&B algorithm does not utilize parallelization once
the lower bound has been lifted to 90% of the upper bound. This threshold is chosen for
two reasons. First, the upper problem is solved again when the threshold has been passed.
It is assumed that (UP) becomes practically convex in the small parameter space of the

2 More than half of the total time is required for the serial execution of the B&B algorithm, i.e. once the
threshold t has been passed.
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Fig. 4 Relative difference between lower and upper bound, (UB − LB) /UB, during the solution process. The
black, blue, and red lines correspond to subjects I, II, and III, respectively. The dash-dotted, dotted, dashed,
and solid lines represent the vicinity regions 1%, 10%, 100%, and 500%, respectively. (Color figure online)

respective active region and that a better solution is found in this state. The best solution
of (UP), i.e. the lowest upper bound, should be available throughout the B&B algorithm
to exclude regions as early as possible and communication between the active regions split
into parts is not provided. Second, when the list of active regions is split into several parts,
the sequence of lower bounds will be different in each individually processed part. The
more parts the list of active regions is split into and the longer these parts are processed
individually, the more the lower bounds will diverge and the iteration number to achieve
a certain tolerance will be overestimated. This overestimation has a step-like appearance
where the tolerance progress is shifted towards higher B&B iterations. This is especially
pronounced for subject III whose optimization runs have been parallelized the most, see Fig.
4. In order to get the correct tolerance progress towards the end of each optimization run,
the B&B iterations are performed serially once the threshold is passed. Both aspects are of
minor concern and the algorithm should be parallelized throughout if the goal is solely to
identify mechanical properties of arteries with certification of global optimality.

Non-linear inequality constraints are added into the original optimization problem (UP).
Their main purpose is to reduce the parameter space to the physiological range. Circumfer-
ential stretches of 0.8< λθ < 1.6 are reported for the abdominal aorta [27,37] and we take
λLθ = 0.5 and λUθ = 2. The invariant I4 is a macroscopic quantity representing the squared
stretch of collagen fibers. Hence, the upper bound on I4 can be related to the squared failure-
stretch of collagen fibers and is estimated to be IU4 = 2 [38,39]. The lower limit on I4 is
introduced to facilitate the construction of the lower bounding problem. Collagen fibers are,
generally, considered to support tensile loads but buckle in compression [26]. Hence, the con-
tribution of collagen in the constitutive model, cf. Sect. 2, should be omitted if I4 < 1. Due
the difficulty in constructing a valid underestimator which is smooth at the transition from
non-recruited (I4<1) to recruited collagen fibers (I4≥1), collagen fibers are assumed to be
always in extension. In order to test the validity of this assumption, the model parameters
of the three subjects are identified with the original parameter identification method in Gade
et al. [13] which does not restrict I4. Collagen fibers are recruited throughout the cardiac
cycle in all cases, thus I4 ≥ 1 appears to be a valid assumption. Lastly, the upper bound of
the exponent in the exponential term appears explicitly in some constraints of (LBP), i.e.

expwU
14=exp

[
kU2

(
IU4 − 1

)2]
. Due to the high upper bound on k2 in Table 1, the exponential
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expression might become very large. To prevent numerical problems, the exponent is limited
to 20.

The major determinant for the efficiency of a B&B-type algorithm is the creation of
the convex underestimator. The convex underestimator must be as close as possible to the
original function while the number of additional auxiliary variables and constraints should
be kept to a minimum. Several alternative formulations of (LBP) were examined, but the
presented one turned out to bemost efficient. In particular, the newly proposed underestimator
for componentwise convex terms [40] gave a substantial speed-up compared to the more
general α-estimator [41]. Furthermore, the introduction of physiologically inspired auxiliary
variables and the tight bounds on the auxiliary variables representing themodel stresses based
on the hysteresis loop, cf. Sect. 4.1, decrease the required computational time. With respect
to the branching method, other variants were tested, in particular strategies 1–4 proposed in
Adjiman et al. [42]: (S1) bisect the parameter which has the largest region reduction measure
defined in Eq. (14); (S2) determine the auxiliary variable whose underestimator possesses
the highest separation distance to the actual term it replaces. Bisect the involved parameter
according to S1; (S3) Determine the auxiliary variable which differs the most from the actual
term it replaces at the solution of (LBP), cf. Eq. (11). Bisect the involved parameter according
to S1; and (S4) calculate the deviation of each auxiliary variable according to S3. For every
parameter, sum up all the deviations that the parameter is involved in and bisect the parameter
with the highest sum. The branching method described in Sect. 3.2 was found to be superior,
however. Branching on auxiliary variables is not used since updating all lower and upper
bounds is non-trivial for branching on a member of u compared to a member of κ̃ .

From an implementation point of view, one point is worth discussing. By looking at the
total amount of variables and constraints of (LBP), see Table 3, it is obvious that the amount
of samples, i.e. the number of pressure-radius pairs, must be as low as possible. For the three
investigated subjects in this study, n = 18 is found to be the lower limit to get a solution
which is independent from the number of samples. For other subjects this number might be
different.

Considering the clinical application, the proposed B&B algorithm appears to be imprac-
tical. The solution time is orders of magnitude too large, even if only the vicinity around a
candidate global solution is explored and the process is massively parallelized. Furthermore,
the smaller the relative tolerance is required to be, the longer the identification process will
take since the B&B algorithm slows down substantially towards smaller relative differences
between lower and upper bound. However, no better solution than the one identified during
the initialization is found, even after solving (UP) several million times. This indicates that
the heuristic approach of using multiple starting points works well for this kind of opti-
mization problem. The original parameter identification method in Gade et al. [13] with its
comparably small computational requirements, therefore, provides a good estimate of the
global solution if it is not even obtained.
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A Convex relaxations

A.1 Bilinear term

A bilinear term of the form xy, (x, y) ∈ [
xL, xU

] × [
yL, yU

] ⊂ R
2, is replaced by the

auxiliary variablewxy and the following four linear inequality constraints are added to replace
the non-linear equality constraint wxy = xy:

xyL + yxL − xLyL − wxy ≤ 0,

xyU + yxU − xUyU − wxy ≤ 0,

−xyL − yxU + xUyL + wxy ≤ 0,

−xyU − yxL + xLyU + wxy ≤ 0.

(16)

The first two constraints represent the convex hull [43] and the latter two the concave hull
[44].

A.2 Fractional term

A fractional term of the form xy−1, (x, y) ∈ [
xL, xU

] × [
yL, yU

] ⊂ R
2
>0, is replaced by the

auxiliary variable wxy and the following four inequality constraints are added to replace the
non-linear equality constraint wxy = xy−1:

x

yU
+ xL

y
− xL

yU
− wxy ≤ 0,

x

yL
+ xU

y
− xU

yL
− wxy ≤ 0,

− x

yL
+ yxL

yLyU
− xL

yU
+ wxy ≤ 0,

− x

yU
+ yxU

yLyU
− xU

yL
+ wxy ≤ 0.

(17)

The first two convex constraints represent the convex hull [45] and the latter two linear
constraints the concave hull [46].

A.3 Componentwise convex term xy2

A componentwise convex term of the form xy2, (x, y) ∈ [
xL, xU

] × [
yL, yU

] ⊂ R
2≥0, is

replaced by the auxiliary variablewxy and the following four inequality constraints are added
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to replace the non-linear equality constraint wxy = xy2:

(
x − xL

) (
yL

)2 + y2xL − wxy ≤ 0,(
x − xU

) (
yU

)2 + y2xU − wxy ≤ 0,

−x
(
yL

)2 − (
y − yL

)
xU

(
yU + yL

) + wxy ≤ 0,

−x
(
yU

)2 − (
y − yU

)
xL

(
yU + yL

) + wxy ≤ 0.

(18)

The first two convex constraints represent the convex hull [40] and the latter two linear
constraints the concave hull, whose creation is inspired by the ideas for a bilinear term [44].

A.4 Componentwise convex term x exp y

A componentwise convex term of the form x exp y, (x, y) ∈ [
xL, xU

] × [
yL, yU

] ⊂ R
2≥0,

is replaced by the auxiliary variable wxy and the following four inequality constraints are
added to replace the non-linear equality constraint wxy = x exp y:

(
x − xL

)
exp yL + xL exp y − wxy ≤ 0,(

x − xU
)
exp yU + xU exp y − wxy ≤ 0,

−x exp yU − xLe
(
y − yU

) + wxy ≤ 0,

−x exp yL − xUe
(
y − yL

) + wxy ≤ 0,

(19)

where

e =
⎧⎨
⎩
exp yL, if yU = yL,

exp yL
exp

(
yU − yL

) − 1

yU − yL
, else.

The first two convex constraints represent the convex hull [40] and the latter two linear
constraints the concave hull, whose creation is inspired by the ideas for a bilinear term [44].

B Bounds on auxiliary variables

In order to calculate the tightest possible bounds on the auxiliary variables, they are deter-
mined by writing them as explicit functions of the original model parameters κ . For most
auxiliary variables the bounds are trivial and in the following only the non-trivial bounds are
shown.

The bounds on auxiliary variable w11, j = r̃ j R̃
(
1 − β̃

)
+ λ̃z β̃ − 1 are:

wL
11, j =

⎧⎨
⎩

w11, j

(
R̃L, λ̃Lz , β̃

L
)

, if λ̃Lz ≥ r̃ j R̃L,

w11, j

(
R̃L, λ̃Lz , β̃

U
)

, if λ̃Lz < r̃ j R̃L,
(20)

wU
11, j =

⎧⎨
⎩

w11, j

(
R̃U, λ̃Uz , β̃U

)
, if λ̃Uz ≥ r̃ j R̃U,

w11, j

(
R̃U, λ̃Uz , β̃L

)
, if λ̃Uz < r̃ j R̃U.

(21)

In addition, IL4, j − 1≤wL
11, j , w

U
11, j ≤ IU4, j − 1 must hold.
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The bounds on auxiliary variable w12, j =k1 R̃
(
1 − β̃

) [
r̃ j R̃

(
1 − β̃

)
+ λ̃z β̃ − 1

]
are:

wL
12, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w12, j

(
kL1 , R̃L, λ̃Lz , if λ̃Lz < r̃ j R̃L, β̃L ≤ β̃� ≤ β̃U, and

β̃� = 2r̃ j R̃L − λ̃Lz − 1

2
(
r̃ j R̃L − λ̃Lz

)
⎞
⎠ wL

11, j ≤ w11, j

(
R̃L, λ̃Lz , β̃

�
)

≤ wU
11, j ,

min
[
w12, j

(
kL1 , R̃L, λ̃Lz , β̃

U
)

, if wL
11, j ≤ w11, j

(
R̃L, λ̃Lz , β̃

U
)

,

w12, j

(
kL1 , R̃L, λ̃Lz , β̃

L
)]

w11, j

(
R̃L, λ̃Lz , β̃

L
)

≤ wU
11, j ,

kL1 R̃
L

(
1 − β̃U

)
wL
11, j , else,

(22)

wU
12, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w12, j

(
kU1 , R̃U, λ̃Uz , if λ̃Uz > r̃ j R̃U, β̃L ≤ β̃� ≤ β̃U, and

β̃� = 2r̃ j R̃U − λ̃Uz − 1

2
(
r̃ j R̃U − λ̃Uz

)
⎞
⎠ wL

11, j ≤ w11, j

(
R̃U, λ̃Uz , β̃�

)
≤ wU

11, j ,

max
[
w12, j

(
kU1 , R̃U, λ̃Uz , β̃U

)
, if wL

11, j ≤ w11, j

(
R̃U, λ̃Uz , β̃U

)
,

w12, j

(
kU1 , R̃U, λ̃Uz , β̃L

)]
w11, j

(
R̃U, λ̃Uz , β̃L

)
≤ wU

11, j ,

kU1 R̃U
(
1 − β̃L

)
wU
11, j , else.

(23)

The bounds on auxiliary variable w13, j =k1λ̃z β̃
[
r̃ j R̃

(
1 − β̃

)
+ λ̃z β̃ − 1

]
are:

wL
13, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w13, j

(
kL1 , R̃L, λ̃Lz , if λ̃Lz > r̃ j R̃L, β̃L ≤ β̃� ≤ β̃U, and

β̃� = 1 − r̃ j R̃L

2
(
λ̃Lz − r̃ j R̃L

)
⎞
⎠ wL

11, j ≤ w11, j

(
R̃L, λ̃Lz , β̃

�
)

≤ wU
11, j ,

min
[
w13, j

(
kL1 , R̃L, λ̃Lz , β̃

L
)

, if wL
11, j ≤ w11, j

(
R̃L, λ̃Lz , β̃

L
)

,

w13, j

(
kL1 , R̃L, λ̃Lz , β̃

U
)]

w11, j

(
R̃L, λ̃Lz , β̃

U
)

≤ wU
11, j ,

kL1 R̃
Lβ̃LwL

11, j , else,

(24)

wU
13, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w13, j

(
kU1 , R̃U, λ̃Uz , if λ̃Uz < r̃ j R̃U, β̃L ≤ β̃� ≤ β̃U, and

β̃� = 1 − r̃ j R̃U

2
(
λ̃Uz − r̃ j R̃U

)
⎞
⎠ wL

11, j ≤ w11, j

(
R̃U, λ̃Uz , β̃�

)
≤ wU

11, j ,

max
[
w13, j

(
kU1 , R̃U, λ̃Uz , β̃U

)
, if wL

11, j ≤ w11, j

(
R̃U, λ̃Uz , β̃U

)
,

w13, j

(
kU1 , R̃U, λ̃Uz , β̃L

)]
w11, j

(
R̃U, λ̃Uz , β̃L

)
≤ wU

11, j ,

kU1 R̃Uβ̃UwU
11, j , else.

(25)
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