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Abstract
The 2-sets convex feasibility problem aims at finding a point in the nonempty intersection of
two closed convex sets A and B in a Hilbert space H . Themethod of alternating projections is
the simplest iterative procedure for finding a solution and it goes back to vonNeumann. In the
present paper, we study some stability properties for this method in the following sense: we
consider two sequences of closed convex sets {An} and {Bn}, each of them converging, with
respect to theAttouch-Wets variational convergence, respectively, to A and B. Given a starting
point a0, we consider the sequences of points obtained by projecting on the “perturbed” sets,
i.e., the sequences {an} and {bn} given by bn = PBn (an−1) and an = PAn (bn). Under
appropriate geometrical and topological assumptions on the intersection of the limit sets, we
ensure that the sequences {an} and {bn} converge in norm to a point in the intersection of A
and B. In particular, we consider both when the intersection A ∩ B reduces to a singleton
and when the interior of A ∩ B is nonempty. Finally we consider the case in which the limit
sets A and B are subspaces.

Keywords Convex feasibility problem · Stability · Set-convergence · Alternating
projections method

Mathematics Subject Classification Primary: 47J25; Secondary: 90C25 · 90C48

1 Introduction

The 2-sets convex feasibility problem is the classical problem of finding a point in the
nonempty intersection of two closed and convex sets A and B in a Hilbert space H (see [6,
Section 4.5] for some basic results on this subject). Many efforts have been devoted to the
study of algorithmic procedures to solve convex feasibility problems, both from a theoretical
and from a computational point of view (see, e.g., [1,4,5,9,19] and the references therein).
Themethod of alternating projections is the simplest iterative procedure for finding a solution
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and it goes back to von Neumann [27]. Let us denote by PA and PB the projections onto the
sets A and B, respectively, and introduce the following definition.

Definition 1.1 Given a starting point c0 ∈ H , the alternating projections sequences {cn} and
{dn} with starting point a0, are defined inductively by

dn := PB(cn−1) and cn := PA(dn) (n ∈ N).

In the case inwhich the sequences {cn} and {dn} converge in norm to a point in the intersection
of A and B, we say that the method of alternating projections converges.

Many concrete problems in applications can be formulated as a convex feasibility prob-
lem. As typical examples, we mention solution of convex inequalities, partial differential
equations, minimization of convex nonsmooth functions, medical imaging, computerized
tomography and image reconstruction. For some details and other applications see, e.g., [1]
and the references therein.

In the present paperwe investigate some“stability” properties of the alternating projections
method. We deem that two motivations to develop this study are especially relevant. First,
often the data in concrete applications are affected by some uncertainties, hence the “stability”
of solutions of a convex feasibility problem may be a useful property in the development
of computational method. On the other hand, the other (and the main) motivation of the
paper is theoretical and consists in proving that some conditions ensuring the convergence of
the classical alternating projection method (and well-known in literature, see e.g. [1,5]) also
imply the “stability” of the same convex feasibility problem in the sense described below.

Let us suppose that {An} and {Bn} are two sequences of closed convex sets such that
An → A and Bn → B for the Attouch-Wets variational convergence (see Definition 2.2)
and let us introduce the definition of perturbed alternating projections sequences.

Definition 1.2 Given a0 ∈ H , the perturbed alternating projections sequences {an} and {bn},
w.r.t. {An} and {Bn} and with starting point a0, are defined inductively by

bn := PBn (an−1) and an := PAn (bn) (n ∈ N).

In the sequel, the notations {an} and {bn} always refer to the perturbed alternating projections
sequences, whereas {cn} and {dn} refer to the standard alternating projections sequences.

Our aim is to find some conditions on the limit sets A and B that guarantee, for each choice
of the sequences {An} and {Bn} and for each choice of the starting point a0, the convergence
in norm of the corresponding perturbed alternating projections sequences {an} and {bn}. If
this is the case, we say that the couple (A, B) is stable.

The results reported in this paper can be seen as a continuation of the research considered
in [11]. However, compared with the notion of stability studied in that paper, the approach
developed here seems to be more interesting also from a computational point of view since
it does not require to find an exact solution of the “perturbed problems” (i.e. the problems
given by the sets An and Bn) but only to consider projections on the “perturbed” sets An and
Bn . Moreover, the techniques used in the proofs are completely different from those of [11].

Clearly, in order that the couple (A, B) is stable, it is necessary that the alternating pro-
jections sequences {cn} and {dn} converge in norm (indeed, we can consider the particular
case in which the sequences of sets {An} and {Bn} are given by An = A and Bn = B,
whenever n ∈ N). Since, in general, this is not the case (see [19,24]), we shall restrict our
attention to those situations in which the method of alternating projections converges. After
some preliminaries, contained in Sect. 2, we consider, in Sects. 3, 4 and 5, respectively, the
following three cases:
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(i) A and B are separated by a strongly exposing functional for the set A, i.e., there exist
x0 ∈ A ∩ B and a linear continuous functional f such that inf f (A) = f (x0) =
sup f (B) and such that (− f ) strongly exposes A at x0 (see Definition 2.6);

(ii) the intersection between A and B has nonempty interior;
(iii) A and B are closed subspaces.

The structure of the paper is based on the study of the three classes of problems presented
above. Let us point out that these three cases are not exhaustive, i.e., there are situation, not
included in (i)–(iii), in which the alternating projections sequences converge in norm (as a
typical example see [2, Section 5]).

In Sect. 3, we deal with (i). First, it is useful to recall why if (i) is satisfied then the method
of alternating projections for the couple (A, B) converges: by [6, Lemma 4.5.11] or by [21,
Theorem 1.4], the alternating projections sequences {cn} and {dn} satisfy ‖cn − dn‖ → 0.
Then it is easy to verify that f (cn), f (dn) → f (x0) and hence, since f strongly exposes
A at x0, we have that cn, dn → x0 in norm. Similar assumption on the limit sets has been
considered by the authors and E. Molho in the recent paper [11], in which they proved,
among other things, that if (i) is satisfied and if xn ∈ An, yn ∈ Bn are such that ‖xn − yn‖
coincides with the distance between An and Bn then xn, yn → x0 in norm (see the proof of
[11, Theorem 4.5]). In Sect. 3 of the present paper, we prove that if A and B are separated by
a strongly exposing functional f for the set A then, for each choice of sequences {An}, {Bn}
and starting point a0, the corresponding perturbed alternating projections sequences {an} and
{bn} converge in norm to x0 (cf. Theorem 3.4 below). In this case, our approach is essentially
based on suitable approximations of the sets An and Bn by convex and non-convex cones,
respectively.

In Sect. 4, we investigate to what extent it is possible to guarantee convergence of the
perturbed alternating projections in the case A ∩ B is nonempty but does not reduce to a
singleton. Example 4.4 show that, in general, even in the finite-dimensional setting and even
if A ∩ B is bounded, the couple (A, B) may be not stable. On the other hand, Theorem 4.2
ensures that the couple (A, B) is stable whenever int (A ∩ B) �= ∅. We point out that
boundedness of A∩ B is not required. Moreover, we apply the results of this section to study
a typical mathematical programming problem. Indeed, we investigate the convergence of
perturbed alternating projections for the inequality constraints problem.

Finally, Sect. 5 is devoted to case (iii) where A and B are closed subspaces. The convex
feasibility problemwhere A and B are subspaces is the original problem studied by von Neu-
mann. In his, now classical, theorem (see [27]), he proved that the alternating projections
sequences {cn} and {dn} converge in norm to PA∩B(a0). This theorem was rediscovered by
several authors and many alternative proofs were provided (see, e.g., [21,22] and the ref-
erences therein). In Sect. 5, we study the problem of convergence of perturbed alternating
projections sequences in the case in which A and B are subspaces. Example 5.1 below shows
that even in the finite-dimensional setting it is conceivable that the perturbed projections
sequences are unbounded in the case A∩ B �= {0}. For this, in Sect. 5, we focus on the situa-
tion in which A and B are closed subspaces such that A∩ B = {0}. It turns out that if A+ B
is a closed subspace then the couple (A, B) is stable (Theorem 5.2). On the other hand, in
Theorem 5.9, we provide a couple (A, B) of closed subspaces such that A∩B = {0} and such
that there exist sequences of sets {An}, {Bn} and starting point a0 such that the corresponding
perturbed projections sequences are unbounded. Our construction is based on the example,
contained in [16], of two subspaces of a Hilbert space with non-closed sum such that the
convergence of the corresponding alternating projections method is not geometric (for the
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definition of geometric convergence see [16], see also [26] for some results concerning the
convergence rate of the alternating projection algorithm for the case of n subspaces).

2 Notations and preliminaries

In this sectionwe introduce some preliminary notions and related results, valid in real normed
spaces. Let X be a real normed space with the topological dual X∗. We denote by BX and SX
the closed unit ball and the unit sphere of X , respectively. For x, y ∈ X , [x, y] denotes the
closed segment in X with endpoints x and y. For a subset K of X , α > 0, and a functional
f ∈ SX∗ bounded on K , let

S( f , α, K ) := {x ∈ K ; f (x) ≥ sup f (K ) − α}
be the closed slice of K given by α and f .

For f ∈ SX∗ and α ∈ (0, 1), we denote

C( f , α) := {x ∈ X; f (x) ≥ α‖x‖}, V ( f , α) := {x ∈ X; f (x) ≤ α‖x‖}.
It is easy to see that C( f , α) and V ( f , α) are nonempty closed cones and that C( f , α) is
convex.

For a subset A of X , we denote by int (A), ∂A, conv (A) and conv (A) the interior, the
boundary, the convex hull and the closed convex hull of A, respectively. We denote by

diam(A) := supx,y∈A ‖x − y‖,
the (possibly infinite) diameter of A. For x ∈ X , let

dist(x, A) := inf
a∈A

‖a − x‖.
Moreover, given A, B nonempty subsets of X , we denote by dist(A, B) the usual “distance”
between A and B, that is,

dist(A, B) := inf
a∈A

dist(a, B).

Let us now introduce some definitions and basic properties concerning convergence of
sets. By c(X) we denote the family of all nonempty closed subsets of X . Let us introduce the
(extended) Hausdorff metric h on c(X). For A, B ∈ c(X), we define the excess of A over B
as

e(A, B) := sup
a∈A

dist(a, B).

Moreover, if A �= ∅ and B = ∅ we put e(A, B) = ∞, if A = ∅ we put e(A, B) = 0. For
A, B ∈ c(X), we define

h(A, B) := max
{
e(A, B), e(B, A)

}
.

Definition 2.1 A sequence {A j } in c(X) is said to Hausdorff converge to A ∈ c(X) if

lim j h(A j , A) = 0.

Next we recall the definition of the so called Attouch-Wets convergence (see, e.g., [23,
Definition 8.2.13]), which can be seen as a localization of the Hausdorff convergence. If
N ∈ N and A,C ∈ c(X), define

eN (A,C) := e( Ã,C) ∈ [0,∞),
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where Ã = A ∩ NBX , and define

hN (A,C) := max{eN (A,C), eN (C, A)}.
Definition 2.2 A sequence {A j } in c(X) is said to Attouch-Wets converge to A ∈ c(X) if,
for each N ∈ N,

lim j hN (A j , A) = 0.

In the sequel, we shall use the following two results several times.

Theorem 2.3 (see, e.g., [23, Theorem 8.2.14]) The sequence of sets {An} Attouch-Wets con-
verges to A iff

sup‖x‖≤N |dist(x, An) − dist(x, A)| → 0 (n → ∞),

whenever N ∈ N.

As an easy consequence of the theorem above we have the following fact.

Fact 2.4 Let A be a nonempty closed convex set in X. Suppose that {An} is a sequence of
closed convex sets such that An → A for the Attouch-Wets convergence. Then, if {an} is a
bounded sequence in X such that an ∈ An (n ∈ N), we have that dist(an, A) → 0.

Proof Since {an} is bounded, there exists N ∈ N such that ‖an‖ ≤ N , whenever n ∈ N. By
Theorem 2.3, we have

dist(an, A) ≤ sup‖x‖≤N |dist(x, An) − dist(x, A)| → 0 (n → ∞),

and the proof is concluded. �

The Attouch-Wets convergence is widely used to study approximation and optimization

problems and it is a natural variation of the Hausdorff convergence. Moreover, Theorem 2.3
shows that it coincides with uniform convergence on bounded sets of the functions dist(·, An)

(n ∈ N). The use of such convergence may be more appropriate than the Hausdorff conver-
gence especially when we work with unbounded sets. To see this, consider the following
example: take closed hyperplanes An, A ⊂ X being the kernels of functionals x∗

n , x
∗ ∈ SX∗

(n ∈ N), respectively. It is easy to see that {An} Hausdorff converges to A iff eventually
An = A. On the other hand, if x∗

n → x∗ in norm then {An} Attouch-Wets converges to A.
For more details on the Attouch-Wets convergence see [23] and the references therein.

Let us recall that, given a normed space Z , the modulus of convexity of Z is the function
δZ : [0, 2] → [0, 1] defined by

δZ (η) = inf

{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ ; x, y ∈ BX , ‖x − y‖ ≥ η

}
.

It is clear that δZ (η1) ≤ δZ (η2), whenever 0 ≤ η1 ≤ η2 ≤ 2. Moreover, if r > 0 and
η ∈ [0, 2r ], we have

rδZ
( η
r

) = inf

{
r −

∥∥∥∥
x + y

2

∥∥∥∥ ; x, y ∈ r BX , ‖x − y‖ ≥ η

}
.

In particular, if r , M > 0 and x, y ∈ r BX are such that ‖x − y‖ ≥ M then we have
∥∥∥∥
c1 + c2

2

∥∥∥∥ ≤ r
[
1 − δZ

(M
r

)]
. (1)

We say that Z is uniformly rotund if δZ (η) > 0, whenever η ∈ (0, 2]. It is well known that
Hilbert spaces are uniformly rotund.
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Lemma 2.5 Let Z be a uniformly rotund normed space. Let K , M > 0, then there exists
ε′ > 0 such that, if ρ ∈ [0, K ] and if C is a convex set such that ρ − ε′ ≤ ‖c‖ ≤ ρ + ε′,
whenever c ∈ C, then diam(C) ≤ M.

Proof Suppose without any loss of generality that M ≤ 2. We claim that any ε′ ∈ (0, 1)

such that ε′
[
2 − δZ

(
M

K+1

)]
< M

4 δZ

(
M

K+1

)
works. Let ρ ∈ [0, K ] and let C be a convex

set such that ρ − ε′ ≤ ‖c‖ ≤ ρ + ε′, whenever c ∈ C . First, observe that, since δZ assumes
values in [0, 1], we have ε′ < M

4 . Hence, if ρ < M
4 , we have

diam(C) ≤ 2(ρ + ε′) ≤ M .

Now, suppose that ρ ≥ M
4 and let us prove that diam(C) ≤ M . Suppose on the contrary

that there exist c1, c2 ∈ C satisfying ‖c1 − c2‖ > M . Put r := ρ + ε′. By (1) and since
c1+c2

2 ∈ C , we have

ρ − ε′ ≤
∥∥∥∥
c1 + c2

2

∥∥∥∥ ≤ r
[
1 − δZ

(M
r

)] ≤ r
[
1 − δZ

(
M

K+1

)]
.

Therefore, we have ε′
[
2 − δZ

(
M

K+1

)]
≥ ρδZ

(
M

K+1

)
≥ M

4 δZ

(
M

K+1

)
, a contradiction. �


Let us recall the notions of strongly exposed point and strongly exposing functional. This
notions, and the corresponding dual versions (see, e.g., [12,Definition 6.2]), play an important
role in the theory of Banach spaces.

Definition 2.6 (see, e.g., [15, Definition 7.10]) Let A be a nonempty subset of a normed
space X , a ∈ A, and f ∈ X∗ \ {0}. We say that f strongly exposes A at a if f is a support
functional for A at a

(
i.e., f (a) = sup f (A)

)
and xn → a, whenever {xn} is a sequence in

A such that limn f (xn) = sup f (A). If this is the case, we say that a is a strongly exposed
point of A.

Let us recall the geometrical meaning of the notion of strongly exposing: f ∈ SX∗ strongly
exposes A at a iff f (a) = sup f (A) and

diam
(
S( f , α, A)

) → 0 as α → 0+;
that is, f ∈ SX∗ strongly exposes A at a iff f is a support functional for A at a and the
diameter of the slice of A given by the functional f at level α goes to 0 as α goes to 0.
Let us recall that a body in X is a closed convex set in X with nonempty interior.

Definition 2.7 (see, e.g., [20, Definition 1.3] or [14]) Let A ⊂ X be a body. We say that
x ∈ ∂A is an LUR (locally uniformly rotund) point of A if for each ε > 0 there exists δ > 0
such that if y ∈ A and dist(∂A, (x + y)/2) < δ then ‖x − y‖ < ε. We say that A is an LUR
body if each point in ∂A is an LUR point of A.

If A = BX , the previous definition coincides with the standard definition of local uniform
rotundity of the norm at x . Hence, BX is an LUR body iff the norm of X is LUR. The notion
of LUR norm is a natural generalization of uniform rotundity and plays an important role in
the theory of Banach spaces (see, e.g., [15] for the definition of and the main results on LUR
norms; see also [13,14] for some recent results involving this notion). Moreover, it is easy to
see that, in the case X is finite-dimensional, a body is LUR iff it is strictly convex (i.e., its
boundary does not contain nontrivial segments).
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Lemma 2.8 Let A be a body in X and suppose that a ∈ ∂A is an LUR point of A. Then, if
f ∈ SX∗ is a support functional for A in a, f strongly exposes A at a.

The lemma is well-known in the case the body is a ball (see, e.g., [15, Exercise 8.27]) and
in the general case the proof is similar (see, e.g., [11, Lemma 4.3]).

The next lemma gives a characterization of those functionals f that strongly expose a set
A in terms of containment of A in translations of cones of the form C( f , α).

Lemma 2.9 Let A be a convex set in X such that 0 ∈ A. Let f ∈ SX∗ be such that f (0) =
inf f (A) and let x0 ∈ SX be such that f (x0) = 1 . Let us consider ε : (0, 1) → [0,∞]
defined by

ε(α) := inf{λ > 0; A ⊂ C( f , α) − λx0} (0 < α < 1).

Then ε(α) is o(α) as α → 0+ iff (− f ) strongly exposes A at 0.

Remark 2.10 Observe that if α ∈ (0, 1) is such that ε(α) is finite then, in the definition
of the function ε, the infimum is actually a minimum. Hence, in this case, we have that
A ⊂ C( f , α) − ε(α)x0.

Proof of Lemma 2.9 On the contrary, suppose that ε(α) is not o(α) asα → 0+, then there exist
M > 0 and αn → 0+ such that ε(αn) > Mαn . For n ∈ N, let zn ∈ A \ [C( f , αn) − Mαnx0]
and observe that

f (zn) + Mαn = f (zn + Mαnx0) < αn‖zn + Mαnx0‖.
Hence it holds

0 ≤ f (zn) < αn‖zn + Mαnx0‖ − Mαn = αn(‖zn + Mαnx0‖ − M).

Since αn > 0, from the previous inequality we have ‖zn + Mαnx0‖ > M . Hence, by the
continuity of the norm, eventually it holds ‖zn‖ > M

2 . So, eventually we have

0 ≤ f ( zn‖zn‖ ) < αn
‖zn+Mαn x0‖−M

‖zn‖ ≤ αn
‖zn‖+Mαn−M

‖zn‖ ≤ αn .

In particular, we have f ( Mzn
2‖zn‖ ) → 0+ as n → ∞. Since A is convex, 0 ∈ A, and eventually

M
2‖zn‖ < 1, we have that eventually Mzn

2‖zn‖ ∈ A. Hence, by the definition of strongly exposing
functional, we have that (− f ) does not strongly expose A at 0.

For the other implication, suppose that ε(α) is o(α) as α → 0+. We have that eventually
(for α → 0+) ε(α) is finite and, by Remark 2.10,

A ⊂ C( f , α) − ε(α)x0.

Let x ∈ A ∩ {z ∈ X; f (z) ≤ α2}, then eventually

α‖x + ε(α)x0‖ ≤ f (x + ε(α)x0) = f (x) + ε(α) f (x0) ≤ α2 + ε(α)

and hence

‖x‖ ≤ ‖x + ε(α)x0‖ + ‖ε(α)x0‖ ≤ ‖x + ε(α)x0‖ + ε(α) ≤ α + ε(α)

α
+ ε(α).

This proves that

diam
(
S(− f , α2, A)

) → 0 (α → 0+),

and hence that (− f ) strongly exposes A at 0. �
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In the following two lemmas we analyse some relations between the Attouch-Wets con-
vergence of a sequence of sets and the containment of the sets of the sequence in a cone of
the form V ( f , α) or C( f , α). Roughly speaking, the first lemma says that, if the limit set B
is contained in a half plane given by a functional f ∈ SX∗ , then the sets Bn , Attouch-Wets
converging to B, are eventually contained in a translation of a cone of the form V ( f , α).

Lemma 2.11 Let B, Bn (n ∈ N) be closed convex sets in X such that Bn → B for the
Attouch-Wets convergence, and f ∈ SX∗ . Suppose that x0 ∈ SX is such that f (x0) = 1 and
suppose that 0 ∈ B ⊂ {x ∈ X; f (x) ≤ 0}. Then, for each α ∈ (0, 1) and ε > 0, there exists
n0 ∈ N such that Bn ⊂ V ( f , α) + εx0, whenever n ≥ n0.

Proof On the contrary, suppose that there exists a sequence of integers {nk} such that, for
each k ∈ N, there exists

bnk ∈ Bnk \ [V ( f , α) + εx0].
Since

‖x − b‖ ≥ f (x − b) ≥ ε,

whenever x ∈ C( f , α) + εx0 and b ∈ B, we have

dist(B,C( f , α) + εx0) > 0.

Hence, by Fact 2.4, {bnk } is unbounded and we can suppose without any loss of generality
that ‖bnk‖ ≥ 1 (k ∈ N). Since bnk /∈ V ( f , α) + εx0, we have

f (bnk )= f (bnk −εx0)+ε > α‖bnk − εx0‖ + ε≥α‖bnk‖ − εα‖x0‖ + ε ≥ α‖bnk‖. (2)

Let δ = min{ε, α/2}, since 0 ∈ B and Bn → B for the Attouch-Wets convergence, we can
suppose without any loss of generality that, for each k ∈ N, there exists dk ∈ (δBX ) ∩ Bnk .
For k ∈ N, let us consider the convex combination of bnk and dk

wk := 1
‖bnk ‖bnk + ‖bnk ‖−1

‖bnk ‖ dk ∈ Bnk ,

and observe that ‖wk‖ ≤ 1 + ‖dk‖ ≤ 1 + δ. Moreover, by (2), we have

f (wk) ≥ f (bnk )
1

‖bnk ‖ − ‖dk‖ ≥ α − ‖dk‖ ≥ α − δ ≥ α
2 .

Since {wk} is a bounded sequence, byFact 2.4, dist(wk, B) → 0.Henceweget a contradiction
since {wk} ⊂ {x ∈ X; f (x) ≥ α/2} and

dist(B, {x ∈ X; f (x) ≥ α/2}) > 0.

�


The next lemma is the counterpart of the previous result for cones of the form C( f , α). In
its proof we shall need the following fact.

Fact 2.12 Let 0 < β < α < 1 and let 0 < ε < ε′. Then

dist
(
C( f , α) − εx0, V ( f , β) − ε′x0

)
> 0.
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Proof Let 0 < δ <
(1−α)(ε′−ε)

1+α
. Let us prove that, if x ∈ C( f , α) − εx0 and b ∈ BX , then

z := x + δb /∈ V ( f , β) − ε′x0. To do this, it is sufficient to check that f (z + ε′x0) >

β‖z + ε′x0‖. Since (1 − α)(ε′ − ε) − δ(1 + α) > 0, we have

f (z + ε′x0) = f (x + δb + ε′x0) = f (x + εx0) + f (δb) + f (ε′x0 − εx0)

≥ α‖x + εx0‖ − δ + (ε′ − ε)

≥ α‖x + ε′x0‖ − α‖ε′x0 − εx0‖ − δ + (ε′ − ε)

≥ α‖z + ε′x0‖ − αδ − δ + (1 − α)(ε′ − ε)

> α‖z + ε′x0‖ ≥ β‖z + ε′x0‖,
and the proof is concluded. �

Lemma 2.13 Let A, An (n ∈ N) be closed convex sets in X such that An → A for the
Attouch-Wets convergence, f ∈ SX∗ , α ∈ (0, 1), and ε > 0. Suppose that x0 ∈ SX is such
that f (x0) = 1 and suppose that 0 ∈ A ⊂ C( f , α) − εx0. Then, for each β ∈ (0, α) and
ε′ > ε, there exists n0 ∈ N such that An ⊂ C( f , β) − ε′x0, whenever n ≥ n0.

Proof Suppose on the contrary that there exists a sequence of integers {nk} such that, for
each k ∈ N, there exists

ank ∈ Ank \ [C( f , β) − ε′x0].
Since ank + ε′x0 /∈ C( f , β), we have

f (ank + ε′x0) = f (ank ) + ε′ < β‖ank + ε′x0‖. (3)

Fix any γ ∈ (β, α) and let M ≥ 1 be such that M > 2ε′
α−γ

. Finally, let θ ∈ (0, 1) satisfy

θ < min{M − 2ε′
α−γ

,
M(γ−β)
1+γ

}. Therefore, it follows:
(a) M − θ > 2ε′

α−γ
;

(b) βM+θ
M−θ

≤ γ .

Since, by Fact 2.12,

dist
(
A, V ( f , β) − ε′x0

) ≥ dist
(
C( f , α) − εx0, V ( f , β) − ε′x0

)
> 0,

applying Fact 2.4, we have that {ank } is unbounded. Hence we can suppose without any loss
of generality that ‖ank‖ ≥ M (k ∈ N). Moreover, since 0 ∈ A and An → A for the Attouch-
Wets convergence, we can suppose without any loss of generality that, for each k ∈ N, there
exists ck ∈ Ank ∩ θBX . For each k ∈ N, consider the convex combination of ank and ck

bk := M
‖ank ‖ank + ‖ank ‖−M

‖ank ‖ ck ∈ Ank ,

and observe that M − θ ≤ ‖bk‖ ≤ M + θ . Now, by (3), we have

f (ank ) < β‖ank + ε′x0‖ − ε′ ≤ β‖ank‖ + βε′ − ε′ ≤ β‖ank‖,
and hence

f (bk) ≤ M f (ank )

‖ank‖
+ f (ck) ≤ Mβ + θ ≤ ‖bk‖Mβ + θ

‖bk‖ ≤ Mβ + θ

M − θ
‖bk‖ ≤ γ ‖bk‖,

where the last inequality holds by (b). Moreover, since {bk} is bounded and A ⊂ C( f , α) −
εx0, by Fact 2.4, we have that

dist
(
bk,C( f , α) − εx0

) → 0 (k → ∞).
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Since f (w) ≥ α‖w‖−2ε, wheneverw ∈ C( f , α)−εx0, and since ε′ > ε, by the continuity
of f and of the norm, we have that eventually f (bk) ≥ α‖bk‖ − 2ε′. Hence we have that

α‖bk‖ − 2ε′ ≤ f (bk) ≤ γ ‖bk‖.
By (a), we have that eventually ‖bk‖ ≤ 2ε′

α−γ
< M − θ , a contradiction since ‖bk‖ ≥ M − θ .

�

In the sequel, we shall use the following elementary fact.

Fact 2.14 Let n1 ∈ N, 0 < M1 < M2, and ξ ∈ (0, 1). Let {tn} be a sequence of nonnegative
numbers such that, for each n ≥ n1, we have:

(i) if tn, tn+1 > M1 then tn+1 ≤ ξ tn;
(ii) if tn ≤ M1 then tn+1 ≤ M2.

Then eventually we have tn ≤ M2.

Proof Clearly, (i) implies that there exists n0 ≥ n1 such that tn0 ≤ M1. Let us prove that
tn ≤ M2, whenever n ≥ n0. Suppose on the contrary that the set E = {n ∈ N; n > n0, tn >

M2} is nonempty and let n2 = min E . By (ii), we have that M1 < tn2−1 ≤ M2. By (i), we
get a contradiction considering the couple tn2−1, tn2 . �


3 The case where the intersection of limits sets is a singleton

In the sequel of the paper, we restrict our attention to Hilbert spaces, since we need some
additional geometrical structure. From now on, let H be a real Hilbert space. If u, v ∈ H \{0},
we denote as usual

cos(u, v) := 〈u,v〉
‖u‖‖v‖ ,

where 〈u, v〉 denotes the inner product between u and v.
If K is a nonempty closed convex subset of H , let us denote by PK the projection onto

the set K , i.e. the map sending any point in H to its nearest point in K . Several times without
mentioning it, we shall use the variational characterization of best approximation from a
convex set in Hilbert spaces: let K be as above, x ∈ H and y0 ∈ K , then y0 = PK (x) if and
only if

〈x − y0, y − y0〉 ≤ 0 whenever y ∈ K . (4)

It is easy to see that, if x /∈ K , (4) is equivalent to the following condition:

‖y − y0‖ ≤ ‖x − y‖ cos(y0 − y, x − y) whenever y ∈ K \ {y0}. (5)

Moreover, if K is a subspace of H then (4) becomes

〈x − y0, y − y0〉 = 0 whenever y ∈ K . (6)

Let us recall the definition of stability for a couple (A, B) of subsets of H .

Definition 3.1 Let A and B be closed convex subsets of H such that A∩ B is nonempty. We
say that the that the couple (A, B) is stable if for each choice of sequences {An}, {Bn} ⊂ c(H)

converging for the Attouch-Wets convergence to A and B, respectively, and for each choice
of the starting point a0, the corresponding perturbed alternating projections sequences {an}
and {bn} (defined as in Definition 1.2) converge in norm.
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Remark 3.2 We remark that in the above definition we can equivalently require that there
exists c ∈ A ∩ B such that an, bn → c in norm.

To prove the remark we shall need the following lemma, whose proof is probably known but
for which we did not find any reference.

Lemma 3.3 Let X be a Hilbert space. Suppose that a sequence {An} in c(X) Attouch-Wets
converges to A ∈ c(X). Then the corresponding sequence of projections {PAn } uniformly
converges on bounded set to PA.

Proof Without any loss of generality we can suppose that 0 ∈ A. Let us prove that, for each
K , M > 0, there exists n0 ∈ N such that

sup
x∈K BX

‖PAn x − PAx‖ ≤ M,

whenever n ≥ n0. By Lemma 2.5, there exists ε′ ∈ (0, K ) such that, if ρ ∈ [0, K ] and if C
is a convex set such that ρ − ε′ ≤ ‖c‖ ≤ ρ + ε′, whenever c ∈ C , then diam(C) ≤ M . Since
{An} Attouch-Wets converges to A, there exists n0 ∈ N such that, for n ≥ n0, we have

(i) An ∩ 3K BX ⊂ A + ε′BX ;
(ii) A ∩ 3K BX ⊂ An + ε′BX ;

Let x ∈ K BX , y = PAx , n ≥ n0 and yn = PAn x . Put ρ = ‖x − y‖ and observe that ρ ≤ K .
By (ii), ‖x − yn‖ ≤ ρ + ε′ and hence ‖yn‖ ≤ ‖x‖ + ‖x − yn‖ ≤ 3K . Hence, by (i), yn
belongs to the convex set

C := (A + ε′BX ) ∩ [x + (ρ + ε′)BX ].
Moreover, since dist(x, A) = ρ, we have dist(x,C) ≥ ρ − ε′. By Lemma 2.5, diamC ≤ M
and hence ‖yn − y‖ = ‖PAn x − PAx‖ ≤ M . By the arbitrariness of x ∈ K BX , the proof is
concluded. �

Proof of Remark 3.2 It suffices to prove that if the perturbed alternating projections sequences
{an} and {bn} converge in norm then they both converge to the same point belonging to A∩B.
Without any loss of generality, we can suppose that 0 ∈ B. Let us start by proving that if
an → c then c ∈ A ∩ B.

We claim that the sequence
{
PAn PBn

}
uniformly converges on the bounded sets to PAPB .

To see this observe that:

• Since 0 ∈ B, we have ‖PBx‖ ≤ ‖x‖, whenever x ∈ X ;
• Since projections are nonexpansive, we have

‖PAn PBn x − PAn PBx‖ ≤ ‖PBn x − PBx‖,
whenever x ∈ X and n ∈ N;

• For each x ∈ X and n ∈ N, we have

‖PAn PBn x − PAPBx‖ ≤ ‖PAn PBn x − PAn PBx‖ + ‖PAn PBx − PAPBx‖.
The previous observation implies that, for N > 0, , we have

sup
‖x‖≤N

‖PAn PBn x − PAPBx‖ ≤
sup

‖x‖≤N
‖PBn x − PBx‖ + sup

‖x‖≤N
‖PAn PBx − PAPBx‖ ≤

sup
‖x‖≤N

‖PBn x − PBx‖ + sup
‖y‖≤N

‖PAn y − PAy‖.
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Since An → A, Bn → B for theAttouch-Wets convergence, by Lemma 3.3, {PAn } uniformly
converges on bounded set to PA and {PBn } uniformly converges on bounded set to PB . The
claim follows by the previous inequality.

Since {an} is bounded and
an+1 = PAn PBnan = PAPBan + (PAn PBn − PAPB)an,

passing to the limit as n → ∞, and using the claim, we obtain c = PAPBc. By [2, Facts 1.1,
(ii)], we have that c ∈ A ∩ B. Similarly, we have

bn+1 = PBnan = PBan + (PBn − PB)an → PBc = c,

and the proof is concluded. �

The main aim of this section is to prove that under the assumption that the sets A and

B are separated by a strongly exposing functional f for the set A (i.e. condition (i) in the
introduction) the couple (A, B) is stable. The following theorem is the main result of this
section.

Theorem 3.4 Let H be a Hilbert space and A, B nonempty closed convex subsets of H.
Suppose that there exist y ∈ A ∩ B and a linear continuous functional f ∈ SH∗ such that
inf f (A) = f (y) = sup f (B) and such that (− f ) strongly exposes A at y. Then the couple
(A, B) is stable, i.e., if we let {An} and {Bn} be two sequences of closed convex sets such
that An → A and Bn → B for the Attouch-Wets convergence, then, for each a0 ∈ H,
the corresponding perturbed alternating projections sequences {an} and {bn} (with starting
point a0), converge to y in norm.

Before starting with the proof of the theorem we need some preliminary work. First of all,
let us observe that without any loss of generality we can suppose that y = 0 and hence that

inf f (A) = f (0) = sup f (B).

Suppose that x0 ∈ SH is such that f (x0) = 1, i.e., f is represented by x0, in the sense that
f (·) = 〈x0, ·〉. Then it is straightforward to give the following representation of the cones
C( f , α) and V ( f , α), introduced at the beginning of Sect. 2: if we define

C(θ) := {x ∈ H \ {0}; cos(x, x0) ≥ sin(θ)} ∪ {0} (θ ∈ (0, π
2 )),

then the set C(θ) coincides with C( f , α), where α = sin θ . Similarly, if we define

V (θ) := {x ∈ H \ {0}; cos(x, x0) ≤ sin(θ)} ∪ {0} (θ ∈ (0, π
2 )),

then the set V (θ) coincides with V ( f , α), where α = sin θ . In the proof of Theorem 3.4,
we shall need the following fact, stating that, if 0 < θ1 < θ2 < π

2 , then the “angle” between
non-null vectors inC(θ2) and V (θ1), respectively, is uniformly bounded away from the origin.

Fact 3.5 Suppose that θ1, θ2 ∈ (0, π
2 ) are such that θ1 < θ2. If x ∈ C(θ2) \ {0} and y ∈

V (θ1) \ {0} then cos(x, y) ≤ cos(θ2 − θ1).

Proof For z ∈ H \ {0} define
θ(z) := π

2
− arccos cos(z, x0) = arcsin cos(z, x0).

Observe that

z ∈ C(θ2) ⇔ cos(z, x0) ≥ sin θ2 ⇔ arcsin cos(z, x0) ≥ θ2 ⇔ θ(z) ≥ θ2. (7)
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Similarly, we have

z ∈ V (θ1) ⇔ θ(z) ≤ θ1. (8)

Let us define x1 := x − f (x)x0 and y1 := y− f (y)x0 (where x and y are as in the statement
above), observe that

‖x1‖‖x‖ =
√ ‖x‖2−〈x,x0〉2

‖x‖2 =
√
1 − 〈x,x0〉2

‖x‖2 = √
1 − [cos(x, x0)]2 = cos[θ(x)].

Similarly, we have ‖y1‖
‖y‖ = cos[θ(y)]. Taking into account the fact that

f (z)

‖z‖ = 〈z, x0〉
‖z‖ = cos(z, x0) = sin[θ(z)] (z ∈ H \ {0}),

we have

cos(x, y) = f (x) f (y)

‖x‖ ‖y‖ + 〈x1, y1〉
‖x‖ ‖y‖ ≤ f (x) f (y)

‖x‖‖y‖ + ‖x1‖‖y1‖
‖x‖‖y‖

= sin[θ(x)] sin[θ(y)] + cos[θ(x)] cos[θ(y)]
= cos[θ(x) − θ(y)] ≤ cos(θ2 − θ1),

where the last inequality holds since, by (7) and (8), we have θ(x) − θ(y) ≥ θ2 − θ1. �

Proof of Theorem 3.4 Fix M > 0, it suffices to prove that the sequences {an} and {bn} are
eventually contained in 2MBH . Let f ∈ SH∗ and x0 ∈ H be as above. Let ε : (0, 1) →
[0,∞] be the function defined by

ε(α) := inf{λ > 0; A ⊂ C( f , α) − λx0}, α ∈ (0, 1).

By Lemma 2.9, ε(α) is o(α) as α → 0+. Observe that
• 1

2 arcsin(2α) = α + o(α) as α → 0+;
• 2ε(3α) = o(α) as α → 0+.

Hence, eventually, as α → 0+, we have
(A) 2ε(3α) ≤ M/2;
(B) sin[ 12 arcsin(2α)] + 8

M 2ε(3α) ≤ sin[ 23 arcsin(2α)];
(C) 2α − 8

M 2ε(3α) ≥ sin[ 56 arcsin(2α)];
(D) cos[ 16 arcsin(2α)] + 2

M [2ε(3α)]2 ≤ cos[ 1
12 arcsin(2α)].

In particular, we can fix β ∈ (0, 1/3) such that if θ := 1
2 arcsin(2β) and ε′ := 2ε(3β) then

ε′ < 1 and

(a) ε′ ≤ M/2;
(b) sin θ + 8

M ε′ ≤ sin( 43θ);
(c) sin(2θ) − 8

M ε′ ≥ sin( 53θ);
(d) cos( 13θ) + 2

M (ε′)2 ≤ cos( 16θ).

Since, by Remark 2.10, 0 ∈ A ⊂ C( f , 3β) − ε(3β)x0, by Lemma 2.13, we have that
eventually

An ⊂ C( f , 2β) − 2ε(3β)x0 = C(2θ) − ε′x0.

Since, 0 ∈ B ⊂ {x ∈ H ; f (x) ≤ 0}, by Lemma 2.11, we have that eventually

Bn ⊂ V (θ) + ε′x0.
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Since 0 ∈ A∩ B, An → A and Bn → B for the Attouch-Wets convergence, eventually there
exist xn ∈ An ∩ (ε′)2BH and yn ∈ Bn ∩ (ε′)2BH . �

Claim Eventually, if an, bn, bn+1 /∈ MBH , the following conditions hold:

(i) an − xn ∈ C( 53θ);
(ii) bn − xn ∈ V ( 43θ);
(iii) an − yn+1 ∈ C( 53θ);
(iv) bn+1 − yn+1 ∈ V ( 43θ).

Proof of the claim Let us prove (i) and (ii), the proof of (iii) and (iv) is similar. To prove (i),
observe that, since ‖xn‖ ≤ (ε′)2 ≤ ε′, we have

f (an − xn) ≥ f (an + ε′x0) − 2ε′,

since an ∈ An ⊂ C(2θ) − ε′x0 and using the triangle inequality, we have

f (an + ε′x0) − 2ε′ ≥ sin(2θ)‖an + ε′x0‖ − 2ε′

≥ sin(2θ)
(‖an − xn‖ − 2ε′) − 2ε′

= ‖an − xn‖
(
sin(2θ) − 2ε′ sin(2θ)+2ε′

‖an−xn‖
)

,

finally, by (c) and since ‖an − xn‖ ≥ ‖an‖ − ‖xn‖ ≥ M
2 , we obtain

‖an − xn‖
(
sin(2θ) − 2ε′ sin(2θ)+2ε′

‖an−xn‖
)

≥ ‖an − xn‖
(
sin(2θ) − 8

M ε′)

≥ ‖an − xn‖ sin( 53θ),

To prove (ii), we proceed similarly: since ‖xn‖ ≤ ε′, we have

f (bn − xn) ≤ f (bn − ε′x0) + 2ε′

since bn ∈ Bn ⊂ V (θ) + ε′x0 and using the triangle inequality, we have

f (bn − ε′x0) + 2ε′ ≤ sin(θ)‖bn − ε′x0‖ + 2ε′

≤ sin(θ)
(‖bn − xn‖ + 2ε′) + 2ε′

= ‖bn − xn‖
(
sin θ + 2ε′ sin θ+2ε′

‖bn−xn‖
)

≤ ‖bn − xn‖
(
sin θ + 8

M ε′)

≤ ‖bn − xn‖ sin( 43θ),

where the last two inequalities hold by (b) and since ‖bn − xn‖ ≥ ‖bn‖ − ‖xn‖ ≥ M
2 . The

claim is proved. �

Now, since an = PAnbn and xn ∈ An , by (5), it holds

‖an − xn‖ ≤ ‖bn − xn‖ cos(an − xn, bn − xn). (9)

Then we can observe that, by (i) and (ii) in our claim and by Fact 3.5, we have that eventually,
if an, bn /∈ MBH , it holds ‖an − xn‖ ≤ ‖bn − xn‖ cos( 13θ). Since ‖xn‖ ≤ (ε′)2, we have

‖an‖ ≤ ‖an − xn‖ + (ε′)2 ≤ [‖bn‖ + (ε′)2] cos( 13θ) + (ε′)2

≤ ‖bn‖[cos( 13θ) + 2
M (ε′)2] ≤ ‖bn‖ cos( 16θ),
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where the last inequality holds by (d). Similarly, since bn+1 = PBnan and yn+1 ∈ Bn , it holds
‖bn+1 − yn+1‖ ≤ ‖an − yn+1‖ cos(bn+1 − yn+1, an − yn+1). By (iii) and (iv) in our claim
and by Fact 3.5, we have that eventually, if an, bn+1 /∈ MBH , it holds ‖bn+1 − yn+1‖ ≤
‖an − yn+1‖ cos( 13θ). Since ‖yn+1‖ ≤ (ε′)2, we have

‖bn+1‖ ≤ [‖an‖ + (ε′)2] cos( 13θ) + (ε′)2 ≤ ‖an‖[cos( 13θ) + 2
M (ε′)2] ≤ ‖an‖ cos( 16θ),

where the last inequality holds by (d).
By (9) and by the observations above, there exists n1 ∈ N such that if n ≥ n1 then the

following conditions hold:

(α) if an, bn /∈ MBH then ‖an‖ ≤ ‖bn‖ cos( 16θ), and if an, bn+1 /∈ MBH then ‖bn+1‖ ≤
‖an‖ cos( 16θ);

(β) if bn ∈ MBH then ‖an‖ ≤ ‖bn‖ + 2ε′ ≤ 2M , and if an ∈ MBH then ‖bn+1‖ ≤
‖an‖ + 2ε′ ≤ 2M .

By (α), (β), and applying Fact 2.14, with ξ = cos( 16θ) < 1, to the sequence {tn} given by
{‖b1‖, ‖a1‖, ‖b2‖, ‖a2‖, . . .

}
,

it follows that eventually an, bn ∈ 2MBH . �

Corollary 3.6 Let H be a Hilbert space, B a nonempty closed convex subset of H, A a body
in H and y ∈ ∂A an LUR point of A such that A∩ B = {y}. Then the couple (A, B) is stable.

Proof Since (int A)∩ B = ∅, by the Hahn-Banach separation theorem, there exists f ∈ SH∗
such that

inf f (A) = f (y) = sup f (B).

Since y is an LUR point of A, by Lemma 2.8, (− f ) strongly exposes A at y. The thesis
follows by Theorem 3.4. �

Remark 3.7 It is worth noting the following facts about the results presented above.

(i) In the recent paper [18], a result concerning the convergence of iterates of nonexpansive
mapping has been obtained under a geometrical condition involving LUR points.

(ii) In Theorem 3.4, the assumption that (− f ) strongly exposes A at y cannot be removed.
Indeed, the celebrated example of Hundal (see [19]) provides a couple of sets (A, B)

such that: (a) A∩B = {0}; (b) there exists f ∈ SH∗ such that inf f (A) = 0 = sup f (B);
(c) there exists a starting point whose corresponding alternating projections sequences
do not norm converge (and hence the couple (A, B) is not stable).

(iii) The additional assumption that “(− f ) strongly exposes A at y” contained in The-
orem 3.4, geometrically represents the fact that, not only the sets A and B have to
“touch” at the point y and are separated by using the functional f , but also that the
diameter of the slice of A at level α given by the functional (− f ) goes to 0 as α goes
to 0.

4 The case where the interior of the intersection of limits sets is
nonempty

The main aim of this section is to prove that, under the assumption that the interior of A∩ B
is nonempty, the couple (A, B) is stable.

We start by the following two dimensional fact. Even if the argument used is elementary,
we include a sketch of a proof for the sake of completeness.
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Fact 4.1 Let H be a Hilbert space and K ≥ ε > 0. Then there exists a constant μ > 0 such
that, whenever C is a closed convex subset of H containing εBH and x ∈ K BH , we have

‖x − PCx‖ ≤ μ(‖x‖ − ‖PCx‖). (10)

Proof We claim that μ = K/ε works. Let us denote y = PCx . We can (and do) assume that
y and x are not proportional, if else (10) trivially holds, since ‖x − PCx‖ = ‖x‖−‖PCx‖ ≤
μ(‖x‖−‖PCx‖). Hence, since εBH ⊂ C , we have that ε < ‖y‖ < ‖x‖ (the strict inequality
ε < ‖y‖ holds since x and y are not proportional). In the sequel of the proof we work in the
2-dimensional subspace Y := span{x, y}. Let w ∈ εSY be such that:

(i) The line containing {y, w} is tangent to εBY ;
(ii) The segment [y, w] intersects the segment [0, x].
The existence of such an element w is guaranteed by the fact that

‖x − y‖ = ‖x − PCx‖ ≤ ‖x − ε x
‖x‖‖ = ‖x‖ − ε, (11)

where the inequality holds since ε x
‖x‖ ∈ C . Indeed, since ‖y‖ > ε, there are two points

w1, w2 ∈ εSX satisfying (i).Moreover, at least one of the segments [y, w1], [y, w2] intersects
the segment [0, x] iff y is contained in the closed half plane T containing x and determined by
the tangent line to εBX at the point ε x

‖x‖ . Finally, observe that {y ∈ Y ; ‖x− y‖ ≤ ‖x‖−ε} ⊂
T . Hence, (11) implies that one of the two points w1, w2 satisfies (ii).

Let us denote by θ(u, v) the angle between two not null vectors u and v. Since the vectors
w and w − y are orthogonal, we clearly have

sin θ(−y, w − y) = ‖w‖
‖y‖ ≥ ‖w‖

‖x‖ ≥ ε/K . (12)

Let us denote z = ‖y‖
‖x‖ x , by the variational characterization of best approximations from

convex sets in Hilbert spaces and by the fact that ‖z‖ = ‖y‖, respectively, we have:
(i) θ(x − y, w − y) ≥ π/2;
(ii) θ(−y, z − y) ≤ π/2.

It follows that θ(x − y, z − y) ≥ θ(−y, w − y) and hence that

‖x − y‖ ≤ 1
sin θ(x−y,z−y)‖x − z‖ ≤ 1

sin θ(−y,w−y)‖x − z‖ ≤ K
ε
‖x − z‖ = K

ε
(‖x‖ − ‖y‖),

where the last inequality holds by (12). �

The following theorem is the main result of this section and it is an application of the

previous argument.

Theorem 4.2 Let H be a Hilbert space and A, B nonempty closed convex subsets of H.
Suppose that int (A ∩ B) �= ∅, then the couple (A, B) is stable.

Proof Without any loss of generality, we can suppose that 0 ∈ int (A∩B). Let {An} and {Bn}
be two sequences of closed convex sets such that An → A and Bn → B for the Attouch-
Wets convergence. Suppose that {an} and {bn} are the corresponding perturbed alternating
projections sequences with respect to a given starting point a0.

By [25, Proposition 27] we have that An∩Bn → A∩B for theAttouch-Wets convergence.
Hence, by [3, Theorem 7.4.2], we can suppose without any loss of generality that there exists
ε > 0 such that εBH ⊂ An ∩ Bn , whenever n ∈ N. Since 0 ∈ An ∩ Bn , we have that
‖an‖ ≤ ‖bn‖, ‖bn‖ ≤ ‖an−1‖ and hence there exists K > ε such that {an}, {bn} ⊂ K BH .
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By Fact 4.1, we have that there exists μ > 0 such that ‖an − bn‖ ≤ μ(‖bn‖ − ‖an‖) and
‖bn − an−1‖ ≤ μ(‖an−1‖ − ‖bn‖). Hence

∑N
n=1(‖an − an−1‖) ≤ ∑N

n=1(‖an − bn‖ + ‖bn − an−1‖)
≤ ∑N

n=1 μ(‖an−1‖ − ‖an‖) = μ(‖a0‖ − ‖aN‖) ≤ μK .

This proves that the series
∑

n∈N(an −an−1) is absolutely convergent and hence convergent.
Hence, the sequence {an} is convergent. Similarly, we have that also the sequence {bn} is
convergent and the proof is complete. �


By combining the results contained in Sect. 3 and the previous theorem we have the
following corollary, describing the stability property for the couple (A, B) where A and B
are bodies.

Corollary 4.3 Let H be a Hilbert space, suppose that at least one of the following conditions
holds.

(i) A is a closed convex set with nonempty interior, f ∈ H∗ \ {0} is such that f strongly
exposes A at the origin, and B = {x ∈ H ; f (x) ≥ α}, where α ≤ 0.

(ii) A, B are bodies in H such that A is LUR and A ∩ B �= ∅.
(iii) A is a closed ball in H and B is a body such that A ∩ B �= ∅.
Then the couple (A, B) is stable.

Proof (i) If α < 0 then int (A ∩ B) �= ∅ and we can apply Theorem 4.2. If α = 0 apply
Theorem 3.4.

(ii) If int (A ∩ B) �= ∅ we can apply Theorem 4.2. If int (A ∩ B) = ∅, since A and B are
bodies, we have that int (A) ∩ B = ∅. Since A is an LUR body, there exists y ∈ ∂A
such that A ∩ B = {y}. Apply Corollary 3.6.

(iii) follows by (ii), since H is uniformly rotund and hence each closed ball in H is in
particular an LUR body.

�

The following simple 2-dimensional example shows that it is not possible to avoid the

assumptions in Corollary 4.3.

Example 4.4 Let H = R
2 and let us consider, for each h ∈ N, the following subsets of H :

A = conv {(1, 1), (−1, 1), (1, 0), (−1, 0)};
C2h = conv {(1, 1), (−1, 1), (1, 1

h ), (−1, 0)};
C2h−1 = conv {(1, 1), (−1, 1), (1, 0), (−1, 1

h )};
B = conv {(1,−1), (−1,−1), (1, 0), (−1, 0)};

D2h = conv {(1,−1), (−1,−1), (1,− 1
h ), (−1, 0)};

D2h−1 = conv {(1,−1), (−1,−1), (1, 0), (−1,− 1
h )}.

It is easy to see that Ch → A and Dh → B for the Attouch-Wets convergence. We claim that
the couple (A, B) is not stable. To prove this, let us consider the starting point z0 = (0, 0)
and observe that, if we consider the points a1k = (PC1 PD1)

k z0, then a1k → (1, 0) and hence
there exists N1 ∈ N such that

‖a1N1
− (1, 0)‖ < 1

4 .
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Define An = C1 and Bn = D1 whenever 1 ≤ n ≤ N1. Similarly, if we consider the points
a2k = (PC2 PD2)

ka1N1
, then a2k → (−1, 0) and hence there exists N2 ∈ N such that

‖a2N2
− (−1, 0)‖ < 1

4 .

Define An = C2 and Bn = D2 whenever N1 + 1 ≤ n ≤ N1 + N2. Then, proceeding
inductively, it is easy to construct sequences {An} and {Bn} converging respectively to A
and B for the Attouch-Wets convergence and such that the perturbed alternating projections
sequences {an} and {bn}, w.r.t. {An} and {Bn} and with starting point z0, do not converge.

Inequality constraints

Inequality constraints are a typical example of problem that can be solved by projections
and reflections methods (see, e.g., [5, Remark 3.17]). This problem appears very in often in
mathematical programming theory and reveals to be a stable problemundermild assumptions.
Indeed, in the rest of this section, we will show that under suitable additional hypotheses also
the method of perturbed alternating projections sequences can be applied to deal with such
a problem.

Given a closed convex cone K in a Hilbert space H (recall that a subset K of H is called
cone if λk ∈ K , whenever λ ∈ [0,∞) and k ∈ K ), we denote by K− its negative polar cone,
i.e., the closed convex cone defined by

K− := {x ∈ H ; 〈x, k〉 ≤ 0, whenever k ∈ K }.
Let us suppose that a ∈ H \ {0}, b ∈ R, and define A := {x ∈ H ; 〈a, x〉 ≥ b}. Then the
following assertions hold true.

• If int K �= ∅, a1, . . . , an ∈ H , b1, . . . , bn > 0 and

B := {x ∈ H ; 〈ai , x〉 ≤ bi , i = 1, . . . , n}
then int (B ∩ K ) �= ∅. (It follows since B contains a neighbourhood of the origin.)

• If int K �= ∅ and a /∈ K− then int (A∩ K ) �= ∅. (Since there exists k ∈ int (K ) such that
〈a, k〉 > 0, there exists λ > 0 such that 〈a, λk〉 > b. This implies that λk ∈ int (A∩ K ).)

• If a ∈ int (K−) and b = 0 then A and K are separated by a strongly exposing functional
for the set K . (It follows by [8, Theorem 3.4].)

Hence, by combining the previous observation, Theorem 4.2, and Theorem 3.4, we obtain the
following result about the convergence of perturbed projections for the inequality constraints
problem.

Theorem 4.5 Let K be a closed convex cone in a Hilbert space H. Suppose that at least one
of the following conditions holds true.

(i) int K �= ∅, a1, . . . , an ∈ H, b1, . . . , bn > 0, and

B := {x ∈ H ; 〈ai , x〉 ≤ bi , i = 1, . . . , n}.
(ii) int K �= ∅, a /∈ K−, b ∈ R, and

B := {x ∈ H ; 〈a, x〉 ≥ b}.
(iii) a ∈ int (K−) and

B := {x ∈ H ; 〈a, x〉 ≥ 0}.
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Then the couple (K , B) is stable.

As a corollary, we obtain the following finite-dimensional result, where the cone K is the
standard nonnegative lattice cone in RN , a very common assumption in many application.

Corollary 4.6 Let H = R
N and K = {(x1, . . . , xN ) ∈ R

N ; xk ≥ 0, k = 1, . . . , N }. Suppose
that at least one of the following conditions holds true.

(i) a1, . . . , an ∈ H, b1, . . . , bn > 0, and

B := {x ∈ H ; 〈ai , x〉 ≤ bi , i = 1, . . . , n}.
(ii) a /∈ K−, b ∈ R, and

B := {x ∈ H ; 〈a, x〉 ≥ b}.
(iii) a ∈ int (K−) and

B := {x ∈ H ; 〈a, x〉 ≥ 0}.
Then the couple (K , B) is stable.

5 Perturbed alternating projections sequences for subspaces

In this section, we study the convergence of the perturbed alternating projections sequences
in the case where the limit sets are subspaces. The following elementary example shows that
if the intersection of the subspaces is non-trivial, in general, convergence does not hold.

Example 5.1 Let H = R
2 and let us consider An = A = B = {(x, y) ∈ R

2; y = 0} (n ∈ N).
For each h ∈ N, let us consider the line Ch := {(x, y) ∈ R

2; y = 1
h − 1

h2
x} passing through

the points (0, 1
h ) and (h, 0). Let us consider the starting point z0 = (0, 0) and observe that, if

we consider the points a1k := (PAPC1)
k z0, then a1k → (1, 0). Hence, there exists N1 ∈ N such

that ‖aN1‖ > 1
2 . Define Bn := C1 whenever 1 ≤ n ≤ N1. Similarly, if we consider the points

a2k := (PAPC2)
ka1N1

then a2k → (2, 0). Hence, there exists N2 ∈ N such that ‖a2N2
‖ > 1.

Define Bn := C2 whenever N1 + 1 ≤ n ≤ N1 + N2. Then, proceeding inductively, it is easy
to construct a sequence {Bn} such that the perturbed alternating projections sequences {an}
and {bn}, w.r.t. {An} and {Bn} and with starting point z0, are unbounded.

In order to avoid such a situation we consider the case in which the intersection of the
subspaces reduces to the origin. We have the following theorem.

Theorem 5.2 Let H be a Hilbert space and suppose that U , V ⊂ H are closed subspaces
such that U ∩ V = {0} and U + V is closed. Then, the couple (U , V ) is stable.

In the proof of the theorem above we shall use the following notation: if W is a subspace of
H and ε ∈ (0, 1), let W (ε) ⊂ H be the set defined by

W (ε) := (εBH ) ∪ {w ∈ H \ {0}; ∃u ∈ W \ {0} such that cos(u, w) ≥ 1 − ε}.
Hence,W (ε) is the union of the ball of radius ε centred at the origin and an “approximation”
of the subspaceW by a non-convex cone, more precisely, the cone containing all the vectors
whose angle with W is less that arccos(1 − ε). We have the following fact.
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Fact 5.3 Let W be a subspace of H and ε ∈ (0, 1). We have

W (ε) = (εBH ) ∪ {w ∈ H \ {0}; ∃u ∈ W ∩ ‖w‖SH such that ‖u − w‖2 ≤ 2ε‖w‖2}.
(13)

Moreover, it holds

dist(H \ W (ε),W ) > 0.

Proof Observe that the set

{w ∈ H \ {0}; ∃u ∈ W \ {0} such that cos(u, w) ≥ 1 − ε}
coincides with

{w ∈ H \ {0}; ∃u ∈ W ∩ ‖w‖SH such that cos(u, w) ≥ 1 − ε}.
Now, if ‖u‖ = ‖w‖ �= 0, the law of cosines, implies that

‖u − v‖2 = 2‖w‖2 (1 − cos(u, w)) ,

and hence (13) holds.
Let us prove that dist(H \ W (ε),W ) > 0. Suppose on the contrary that there exist

sequences {xn} ⊂ W and {yn} ⊂ H \ W (ε) such that ‖xn − yn‖ → 0. Since εBX ⊂ W (ε),
we have that ‖yn‖ > ε. Since ‖xn‖ ≥ ‖yn‖ − ‖xn − yn‖, eventually we have ‖xn‖ ≥ ε

2 .

Moreover, we have ‖xn‖
‖yn‖ → 1 and ‖yn−xn‖

‖yn‖ → 0, as n → ∞. Then, we can observe that
eventually

cos(xn, yn) = 〈xn ,xn〉
‖xn‖ ‖yn‖ + 〈yn−xn ,xn〉

‖xn‖ ‖yn‖ ≥ ‖xn‖
‖yn‖ − ‖yn−xn‖

‖yn‖ .

Hence, cos(xn, yn) → 1, as n → ∞. A contradiction with the fact that {yn} ⊂ H \ W (ε). �

In the proof of the theorem above we shall need the following two lemmas.

Lemma 5.4 Let H be a Hilbert space and U a subspace of H. Let {An} be a sequence of
closed convex sets such that An → U for the Attouch-Wets convergence. Then, for each
ε ∈ (0, 1), it eventually holds that An ⊂ U (ε).

Proof On the contrary, suppose that there exist ε ∈ (0, 1) and a sequence {nk} of integers such
that, for each k ∈ N, there exists xnk ∈ Ank \U (ε). By Fact 5.3, we have dist

(
U , H \U (ε)

)
>

0. By Fact 2.4 and since An → U for the Attouch-Wets convergence, the sequence {xnk }
is unbounded, and hence we can suppose, without any loss of generality, that ‖xnk‖ > 1,

whenever k ∈ N. Let γ ∈ (0, 1) be such that
(1−ε)(1+ γ

1−ε
)

(1− ε
2 )(1−γ )

≤ 1 and let k ∈ N be such that

there exists zk ∈ Ank ∩ γ BH . Consider the convex combination

wk := λxnk + (1 − λ)zk ∈ Ank ,

whereλ = 1
‖xnk ‖ , and observe that by the triangular inequalitywe have 1−γ ≤ ‖wk‖ ≤ 1+γ .

For each u ∈ U , taking into account that xnk /∈ U (ε) (k ∈ N), we have

〈wk, u〉 = λ〈xnk , u〉 + (1 − λ)〈zk, u〉 ≤ ‖u‖(1 − ε)‖λxnk‖ + ‖zk‖‖u‖
≤ ‖u‖(1 − ε)‖λxnk‖ + γ ‖u‖ = ‖u‖(1 − ε)(1 + γ

1−ε
)

= (1 − ε
2 )‖u‖‖wk‖ (1−ε)(1+ γ

1−ε
)

(1− ε
2 )‖wk‖

≤ (1 − ε
2 )‖u‖‖wk‖ (1−ε)(1+ γ

1−ε
)

(1− ε
2 )(1−γ )

≤ (1 − ε
2 )‖u‖‖wk‖.
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The previous chain of inequalities implies that cos(wk, u) ≤ 1− ε
2 ; hence,wk ∈ Ank \U ( ε

2 ),
whenever k ∈ N. Since {wk} is a bounded sequence, by Fact 2.4, dist(wk,U ) → 0. We get
a contradiction since, by Fact 5.3,

dist
(
U , H \U ( ε

2 )
)

> 0.

�

Lemma 5.5 Let U , V be closed subspace of a Hilbert space H such that U ∩ V = {0} and
U + V is closed. Let M ∈ (0, 1), then there exist ε ∈ (0, M) and η ∈ (0, 1) such that, for
each x ∈ U (ε) \ MBH , y ∈ V (ε) \ MBH and z ∈ εBH , we have cos(x − z, y − z) ≤ η.

Proof By [16, Lemma 3.5], we have that

� := sup{< a, b >; a ∈ V ∩ SH , b ∈ U ∩ SH } < 1.

That is, the angle between two nonnull vectors inU and V , respectively, is uniformly bounded
away from the origin. Fix any η ∈ (�, 1) and take ε ∈ (0, M) such that

( M
M−ε

)2(
� + 15

√
ε

M2

) ≤ η.

Suppose that x ∈ U (ε) \ MBH , y ∈ V (ε) \ MBH and z ∈ εBH . By (13), there exist
u ∈ U ∩‖x‖SH and v ∈ V ∩‖y‖SH such that ‖x − u‖ ≤ √

2ε‖x‖ and ‖y − v‖ ≤ √
2ε‖y‖.

Hence, x ′ := x − u − z ∈ 3
√

εBH and y′ := y − v − z ∈ 3
√

εBH . Then we have:

〈x − z, y − z〉 = 〈u + x ′, v + y′〉
= 〈u, v〉 + 〈u, y′〉 + 〈x ′, v〉 + 〈x ′, y′〉
≤ �‖x‖‖y‖ + 3

√
ε‖x‖ + 3

√
ε‖y‖ + 9ε

≤ ‖x‖‖y‖(� + 3
√

ε

‖x‖ + 3
√

ε

‖y‖ + 9ε
‖x‖‖y‖ )

≤ ‖x‖‖y‖(� + 6
√

ε

M + 9ε
M2 )

≤ ‖x‖‖y‖(� + 15
√

ε

M2 )

≤ ‖x − z‖‖y − z‖ ‖x‖
‖x‖−ε

‖y‖
‖y‖−ε

(� + 15
√

ε

M2 ).

Since the function t �→ t
t−ε

is decreasing on the interval (ε,∞) and since ‖x‖, ‖y‖ ∈
[M,∞) ⊂ (ε,∞), we have

〈x − z, y − z〉 ≤ ‖x − z‖‖y − z‖ ‖x‖
‖x‖−ε

‖y‖
‖y‖−ε

(� + 15
√

ε

M2 )

≤ ‖x − z‖‖y − z‖( M
M−ε

)2
(� + 15

√
ε

M2 )

≤ η‖x − z‖‖y − z‖.
�


We are now ready to prove our theorem.

Proof of Theorem 5.2 Let {An} and {Bn} be two sequences of closed convex sets such that
An → U and Bn → V , for the Attouch-Wets convergence, and let a0 ∈ H . Let us consider
the corresponding perturbed alternating projections sequences {an} and {bn}, with starting
point a0.

Fix an arbitrary M ∈ (0, 1), then it suffices to prove that eventually an, bn ∈ 3MBH .
Let ε ∈ (0, M) and η ∈ (0, 1) be given by Lemma 5.5. Let us consider the sets U (ε), V (ε)
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and observe that, by Lemma 5.4, there exists n0 ∈ N such that if n ≥ n0 then An ⊂ U (ε)

and Bn ⊂ V (ε). Let us fix ε′ ∈ (0, ε) such that η + 2ε′
M ≤ η+1

2 , then there exists an integer
n1 ≥ n0 such that, for each n ≥ n1, there exist xn ∈ An ∩ ε′BH and yn ∈ Bn ∩ ε′BH .

Suppose that n ≥ n1, we can observe that:

• by the equivalent formulation of the variational characterization of best approximation
from a convex set in Hilbert spaces (5), and by Lemma 5.5, if an, bn /∈ MBH , it holds
‖an − xn‖ ≤ ‖bn − xn‖η (remember that an = PAnbn) and hence

‖an‖ ≤ ‖an − xn‖ + ε′ ≤ η(‖bn‖ + ε′) + ε′ ≤ ‖bn‖(η + 2ε′
M ) ≤ η+1

2 ‖bn‖;
• similarly, if an, bn+1 /∈ MBH , it holds

‖bn+1‖ ≤ η+1
2 ‖an‖;

• by (5), if bn ∈ MBH then

‖an‖ ≤ ‖an − xn‖ + ε′ ≤ ‖bn − xn‖ + ε′ ≤ ‖bn‖ + 2ε′ ≤ 3M

and, similarly, if an ∈ MBH then ‖bn+1‖ ≤ 3M .

By the items above and applying Fact 2.14, with ξ = η+1
2 < 1, to the sequence {tn} given

by
{‖b1‖, ‖a1‖, ‖b2‖, ‖a2‖, . . .

}
,

it follows that eventually an, bn ∈ 3MBH . �

The remaining part of this section is devoted to proving that the assumption on the closed-

ness of the sum of the subspaces, in Theorem 5.2, cannot be removed. This result is contained
inTheorem5.9 belowand is inspired by the construction contained in [16, Section 4], inwhich
the authors considered two closed subspacesU , V of a Hilbert space such thatU ∩ V = {0}
and U + V is not closed.

Notation 5.6 In the sequel of the present section, we adopt the following notation.

• H := �2.
• If, for each h ∈ N, xh is an element of H , we denote by {xh} the corresponding sequence

in H . Moreover, if h ∈ N is fixed, we can consider xh as a sequence of real numbers and
we write xh = {xhn }n .

• Suppose that {θn} ⊂ R is a bounded sequence and let us consider the linear continuous
operator D : H → H given by Dx = D{xn} := {θnxn} (x = {xn} ∈ H ).

• Z := H ⊕ H is endowed with the inner product 〈·, ·〉Z (denoted in the sequel simply by
〈·, ·〉) defined by

〈z1, z2〉Z = 〈(x1, y1), (x2, y2)〉Z = 〈x1, x2〉H + 〈y1, y2〉H ,

where zi = (xi , yi ) ∈ Z (i = 1, 2).
• Suppose that b = {bn} ∈ H and consider the closed convex subsets of Z defined as

follows:

A := {(x, y) ∈ Z; y = 0} and V := {(x, y) ∈ Z; y = b + Dx}.
Observe that A is a subspace of Z and V is an affine set in Z .

The following remark concerns the computation of projections onto sets A and V , defined
as above.
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Remark 5.7 If (α, β) ∈ Z then we obtain immediately that PA(α, β) = (α, 0). Now, let us
suppose that (α, 0) ∈ A and let us compute PV (α, 0). If we denote PV (α, 0) = ({xn}, {bn +
θnxn}), by the characterization of best approximation in Hilbert space, we have, for each
{yn} ∈ H ,

〈
({xn − αn}, {bn + θnxn}), ({yn}, {θn yn})

〉 = 0.

Hence, we must have xn − αn + bnθn + xnθ2n = 0, whenever n ∈ N. That is, for each n ∈ N,
it holds xn = αn−θnbn

1+θ2n
. Hence,

PAPV ({αn}, 0) = ({αn−θnbn
1+θ2n

}, 0).
Repeating N times the same argument yields:

(PAPV )N ({αn}, 0) = ({αn−θnbn
∑N−1

l=0 (1+θ2n )l

(1+θ2n )N
}, 0). (14)

In the sequel we shall need the following result concerning Attouch-Wets convergence of
certain sequences of sets.

Lemma 5.8 Let Z be defined as above. Let {bn} ⊂ H be a norm null sequence (i.e., ‖bn‖ →
0). Let D, Dn : H → H (n ∈ N) be linear bounded operators such that Dn → D in the
operator norm. Then, if we define

W := {(x, Dx) ∈ Z; x ∈ H} and Wn := {(x, bn + Dnx) ∈ Z; x ∈ H} (n ∈ N),

we have that Wn → W for the Attouch-Wets convergence.

Proof Let us fix N ∈ N. If z = (x, Dx) ∈ W ∩ NBZ then we can consider z′ = (x, bn +
Dnx) ∈ Wn and observe that

‖z − z′‖Z = ‖Dx − Dnx − bn‖H ≤ N‖D − Dn‖ + ‖bn‖H .

Similarly, if w = (y, bn + Dn y) ∈ Wn ∩ NBZ then we can consider w′ = (y, Dy) ∈ W and
observe that

‖w − w′‖Z = ‖Dy − Dn y − bn‖H ≤ N‖D − Dn‖ + ‖bn‖H .

Hence, hN (W ,Wn) ≤ N‖D − Dn‖ + ‖bn‖ → 0 (n → ∞), and the proof is concluded. �

Theorem 5.9 Let Z be defined as above and A := {(x, y) ∈ Z; y = 0}, then there exist

(a) B a closed subspace of Z,
(b) z0 ∈ Z,
(c) {An}, {Bn} two sequences of nonempty closed convex sets Attouch-Wets converging to

A and B, respectively,

such that the perturbed alternating projections sequences (w.r.t. {An} and {Bn} and with
starting point z0), are unbounded.

Proof Let us consider the sequence {ξn} ⊂ R, given by ξn = 4−n , and let us consider the
operator D : H → H , given by D{xn} = {ξnxn}. Then define B = {(x, y) ∈ Z; y = Dx}
and, for each n ∈ N, put An = A. Now, consider any z0 = ({αn}, 0) ∈ A such that αn > 0
(n ∈ N) and ‖z0‖ < 1.
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Let us put, N0 = 1 and, for each n ∈ N, α
0,1
n = αn . We shall define inductively (with

respect to h ∈ N) positive integers Nh , sequences of elements of H

{αh,1
n }n, {αh,2

n }n, {αh,3
n }n . . . ,

positive real numbers Mh , and sets Ch ⊂ Z such that:

(i) 2h + h > (1 + Mh)
2 ∑∞

n=h+1(α
h−1,Nh−1
n )2 > 2h

(ii) Ch = {(x, bh+Dhx) ∈ Z; x ∈ H},where Dh : H → H is givenby Dh{xn} := {θhn xn}
and where bh = {bhn }n ∈ H and θhn ∈ R are given by

bhn :=
{
0 if n ≤ h

α
h−1,Nh−1
n ξn

1+Mh
Mh

if n > h
and θhn :=

{
ξn if n ≤ h

− 1
Mh

ξn if n > h
;

(iii) ({αh,1
n }n, 0) = PAPCh ({αh−1,Nh−1

n }n, 0);
(iv) ({αh,t+1

n }n, 0) = PAPCh ({αh,t
n }n, 0), t ∈ N;

(v) 2h + h >
∑∞

n=1(α
h,Nh
n )2 ≥ ∑∞

n=h+1(α
h,Nh
n )2 > 2h ;

(vi) α
h,t
n > 0, whenever n, t ∈ N.

Let us show that this is possible. Let h ∈ N and suppose we already have Nh−1 ∈ N and
elements

{αh−1,1
n }n, . . . , {αh−1,Nh−1

n }n ∈ H

such that the following conditions hold:

• 2h−1 + h − 1 >
∑∞

n=1(α
h−1,Nh−1
n )2;

• α
h−1,Nh−1
n > 0, whenever n ∈ N.

(Observe that for h = 1 the two conditions above are trivially satisfied since α
0,N0
n =

αn > 0 and
∑∞

n=1(α
0,N0
n )2 = ‖z0‖2 < 1.)

By combining these two relations, we obtain that

2h + h > 2h−1 + h − 1 >

∞∑

n=1

(α
h−1,Nh−1
n )2 >

∞∑

n=h+1

(α
h−1,Nh−1
n )2 > 0.

Hence there exists a positive real number Mh such that (i) holds true. Now, let us consider
Ch defined as in (ii). Then, by the relations in (iii) and (iv), we define {αh,t

n }n (t ∈ N). We
just have to prove that there exists Nh ∈ N such that (v) is satisfied and that (vi) holds true.
Let N ∈ N. By (14) in Remark 5.7, since ({αh,N

n }n, 0) = (PAPCh )
N ({αh−1,Nh−1

n }n, 0), and
taking into account the definitions of bh ∈ H and {θhn }n ⊂ R contained in (ii), we have that,
for each n > h,

α
h,N
n = α

h−1,Nh−1
n

1+ 1+Mh
M2
h

ξ2n
∑N−1

l=0 (1+ 1
M2
h

ξ2n )l

(1+ 1
M2
h

ξ2n )N
.

Similarly, for each n ≤ h, we have

α
h,N
n = α

h−1,Nh−1
n

1
(1+ξ2n )N

.

Since

0 <
1+ 1+Mh

M2
h

ξ2n
∑N−1

l=0 (1+ 1
M2
h

ξ2n )l

(1+ 1
M2
h

ξ2n )N
=

−Mh+(1+Mh)(1+ 1
M2
h

ξ2n )N

(1+ 1
M2
h

ξ2n )N
↗ 1 + Mh (N → ∞)
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and

1
(1+ξ2n )N

→ 0 (N → ∞),

we have that, for n > h,

0 < αh,N
n ↗ (1 + Mh)α

h−1,Nh−1
n (N → ∞),

and that, for n ≤ h,

0 < αh,N
n → 0 (N → ∞).

As an application of Lebesgue monotone convergence theorem, we have that

lim
N→∞

∞∑

n=1

(αh,N
n )2 = lim

N→∞

∞∑

n=h+1

(αh,N
n )2 = (1 + Mh)

2
∞∑

n=h+1

(α
h−1,Nh−1
n )2.

Hence, by (i), there exists Nh ∈ N such that

2h + h >
∑∞

n=1(α
h,Nh
n )2 ≥ ∑∞

n=h+1(α
h,Nh
n )2 > 2h,

and (v) is satisfied. Moreover, it follows immediately by our construction that condition (vi)
is satisfied.

Now, if
∑h−1

k=0 Nk ≤ n <
∑h

k=0 Nk , put Bn = Ch . By our construction, it holds that

aN = ({αh,Nh
n }, 0) where N = ∑h

k=1 Nk . In particular,

‖bN‖2 ≥ ‖PAbN‖2 = ‖PAN bN‖2 = ‖aN‖2 ≥
∞∑

n=h+1

(αh,Nh
n )2 > 2h

and hence the the sequences {an} and {bn} are unbounded.
It remains to prove that Bn → B for the Attouch-Wets convergence or, equivalently, that

Ch → B for the Attouch-Wets convergence. In view of Lemma 5.8, it suffices to prove that
the sequence {bh} is norm null (i.e., ‖bh‖ → 0) and that Dh → D in the operator norm.

By the inequalities in (i) and (v), we have

(1 + Mh)
2(2h−1 + h − 1) ≥ (1 + Mh)

2 ∑∞
n=h+1(α

h−1,Nh−1
n )2 > 2h,

and hence

(1 + Mh)
2 > 2h

2h−1+h−1
.

Therefore the sequence {Mh} is bounded away from 0. Hence, the sequences { 1
Mh

} and

{ 1+Mh
Mh

} are bounded above by a positive constant K . Then, by the definition of bh in (ii), we
have

‖bh‖ ≤ K ξh‖{αh−1,Nh−1
n }‖H ≤ K

4h
‖{αh−1,Nh−1

n }‖H ≤ K
4h

√
2h−1 + h − 1,

where the last inequality holds by (v). Moreover, by the definition of θhn in (ii), we have that

‖(D − Dh)x‖2 ≤ ∑∞
n=h+1(ξn − 1

Mh
ξn)

2x2n ≤ (1 + K )2ξ2h+1‖x‖2 (x = {xn} ∈ H).

Therefore, finally we obtain that

‖D − Dh‖ ≤ (1 + K )ξh+1 → 0.

�
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6 Conclusion and final remarks

In this paper, we introduced a notion of stability for the alternating projection method related
to a couple (A, B) of closed convex subsets of a Hilbert space H . Namely, we consider two
sequences of closed convex sets {An} and {Bn}, each of them converging, with respect to
the Attouch-Wets variational convergence, respectively, to A and B. Given a starting point
a0 ∈ H , we consider the sequences of points obtained by projecting on the “perturbed” sets,
i.e., the sequences {an} and {bn} given by bn = PBn (an−1) and an = PAn (bn). The main
results of the paper, summarized in the next theorem, show that some classical assumptions
implying norm convergence of the standard alternating projections method also guarantee
its stability, i.e., norm convergence of {an} and {bn}. Moreover, we provided some examples
showing that we cannot omit the assumptions contained in our results.

Theorem 6.1 Let H be a Hilbert space and A, B nonempty closed convex subsets of H. Then
the couple (A, B) is stable if at least one of the following conditions is satisfied.

(a) There exist y ∈ A∩ B and a linear continuous functional f ∈ SH∗ such that inf f (B) =
f (y) = sup f (A) and such that f strongly exposes A at y.

(b) A is a body and y ∈ ∂A is an LUR point of A such that A ∩ B = {y}.
(c) int (A ∩ B) �= ∅.
(d) A, B are bodies in H such that A is LUR and A ∩ B �= ∅.
(e) H is finite-dimensional and A, B are bodies in H such that A is strictly convex and

A ∩ B �= ∅.
(f) A, B are closed subspace of H such that A ∩ B = {0} and A + B is closed.
(g) H is finite-dimensional and A, B are closed subspace of H such that A ∩ B = {0}.

In the next remark, we collect some interesting problems and some possible subjects of
further studies.

Remark 6.2 (i) In the present paper, we focused on the stability of the alternating projec-
tions method. It is clear that a similar study can be considered also for other projection
and reflection method, such as the Douglas-Rachford method.

(ii) A natural question is to what extent our results can be generalized to Banach spaces
in which a notion of projection is defined (see [17] for some results in this setting
concerning the alternating projectionmethod). Even if some of the arguments contained
in our paper work in general Banach spaces (for example, those contained in Sect. 2),
the proofs of the main results presented above rely on the geometrical structure of
Hilbert spaces and on the peculiar properties of projections in such spaces.

(iii) Another natural question is whether it is possible to extend our approach to the much
more general setting of fixed point algorithms. For some result in this direction, but
under different assumptions, see e.g., [7,10,18].

(iv) A subject of further study will be the application of the perturbed alternating projection
method to concrete examples (such as the so called noiseless phase retrieval problem).
Indeed, we think that the notion of stability, introduced in our work, may be a useful
property also in the study of concrete applications.
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