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Abstract
Introduced in 1993, the DIRECT global optimization algorithm provided a fresh approach
to minimizing a black-box function subject to lower and upper bounds on the variables. In
contrast to the plethora of nature-inspired heuristics, DIRECT was deterministic and had
only one hyperparameter (the desired accuracy). Moreover, the algorithm was simple, easy
to implement, and usually performedwell on low-dimensional problems (up to six variables).
Most importantly, DIRECT balanced local and global search (exploitation vs. exploration)
in a unique way: in each iteration, several points were sampled, some for global and some for
local search. This approach eliminated the need for “tuning parameters” that set the balance
between local and global search. However, the very same features that made DIRECT simple
and conceptually attractive also createdweaknesses. For example, it was commonly observed
that, while DIRECT is often fast to find the basin of the global optimum, it can be slow to
fine-tune the solution to high accuracy. In this paper, we identify several such weaknesses
and survey the work of various researchers to extend DIRECT so that it performs better.
All of the extensions show substantial improvement over DIRECT on various test functions.
An outstanding challenge is to improve performance robustly across problems of different
degrees of difficulty, ranging from simple (unimodal, few variables) to very hard (multimodal,
sharply peaked,many variables).Opportunities for further improvementmay lie in combining
the best features of the different extensions.

Keywords DIRECT · Global optimization · Lipschitzian optimization · Black-box ·
Derivative-free · Exploitation versus exploration

1 Introduction

When it was published a little over 25 years ago, the DIRECT global optimization algorithm
offered a new approach to minimizing a black-box objective function subject to lower and
upper bounds on the variables [30]. Unlike genetic algorithms, simulated annealing, and other
global optimization heuristics inspired by nature, DIRECT was motivated by Lipschitzian
global optimization [22,54,55,67]—a rigorous and deterministic optimization method based
on branch-and-bound, where bounds are computed based on knowledge of a Lipschitz con-
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stant for the objective function (an upper bound on the rate of change). DIRECT introduced
modifications to the Lipschitzian approach that made it more tractable in higher dimensions
and eliminated the need to know the Lipschitz constant. The result was an algorithm that
was truly black-box, simple, deterministic, and had only one hyperparameter (the desired
accuracy). On the low-dimensional (2 to 6 variable) test problems used in the original paper,
DIRECT performed extremely well compared to other methods.

DIRECT has also proven effective on low-dimensional, real-world problems from a wide
range of fields, including genetics [42], surgery [76], air transport [8], power generation [2,13,
34], astronomy [4], hydrogen fuel cell management [74], photovoltaic systems [49], hard disk
design [77], aircraft routing [1], andmany others [3,6,20,24,35,44,58,71]. However, DIRECT
has been found to be less competitive on higher-dimensional problems [47]. Moreover, many
authors have noticed the tendency for DIRECT to get close to the global optimum quickly,
but take a long time to refine the solution to high accuracy [38,39,51,63].

To address these weaknesses, several researchers have offered variations to the original
DIRECTalgorithm, someofwhich have been successful. For example, in a recent comparison
of derivative-free algorithms on a large set of test problems with up to 300 variables, a
variation of DIRECT (glcCluster) was among the top performers [57]. Another promising
variation, called eDIRECT-C [36,37], was recently successfully applied to optimizing a
quantum simulator with respect to 15 parameters [31].

In this paper, we review some of the more important variations of DIRECT that have
appeared in the literature. We begin in Sect. 2 with a recap of the original DIRECT algo-
rithm, summarizing its strengths and weaknesses. In Sect. 3, we survey several published
modifications of DIRECT, indicating how each of them addresses the identified weaknesses.
In the conclusion, we categorize the key innovations that have been introduced and discuss
opportunities for further research.

2 The original DIRECT algorithm

2.1 Algorithm description

The original DIRECT algorithm minimized a black-box objective function subject to lower
and upper bounds on the design variables [30]; that is, it solved the problem:

minimize
x1,...,xn

f (x1, . . . , xn)

subject to �k ≤ xk ≤ uk k = 1, . . . , n.

Several years later, the same authors published a revision ofDIRECT that added the capability
to handle nonlinear inequality constraints and integer variables, as well as a few other changes
to speed up convergence [29]. Even though the revised version is arguably better, we will
start by describing the original version since it has been the point of departure for many, if
not most, of the subsequent extensions. We will cover the revision in a later section as part
of our general review of enhancements to DIRECT.

Because DIRECT assumes lower and upper bounds we can, without loss of generality,
normalize the design variables to [0, 1] so that the search space becomes the unit hypercube.
DIRECT works by partitioning the unit hypercube into subrectangles with the property that
the objective function has been evaluated at each rectangle’s center point. In each iteration,
certain “potentially optimal” rectangles are selected for further search; these rectangles are
then subdivided and the function is evaluated at the center points of the newly-formed sub-

123



Journal of Global Optimization (2021) 79:521–566 523

Fig. 1 First three iterations of the DIRECT algorithm for a two-variable test function

Fig. 2 Trisecting the unit square
along the first dimension

rectangles. Figure 1 illustrates this process, showing the first three iterations of DIRECT for
a two-variable test function. At first, there is only one rectangle (the entire unit hypercube),
so we select it. This rectangle is then subdivided into several subrectangles, and the center
points of the newly formed rectangles (red dots) are evaluated. The center point of the original
rectangle becomes the center point of one of the smaller rectangles formed after subdivision.
In iteration 2, just one rectangle is selected, subdivided, and sampled. In iteration 3, we select
two rectangles, and then sample and subdivide them. The process continues until we reach a
prespecified limit on the number of iterations or function evaluations.

Clearly, the key elements of the DIRECT algorithm are the method for selecting “poten-
tially optimal” rectangles and the method for sampling and subdividing these rectangles.

A simple method for sampling and subdividing a rectangle, illustrated in Fig. 2, would be
to select one dimension arbitrarily and split the hypercube into thirds along this dimension.
The original center point becomes the center of the middle third, so we only need to sample
two new points (the centers of the newly created “left” and “right” thirds, shown as red dots).

However, arbitrarily selecting a dimension for trisection is not attractive. To avoid such
arbitrariness, the original DIRECT algorithm uses the approach shown in Fig. 3. We start
by sampling the points c ± δek , k = 1, . . . , n, where c is the center point of the hypercube,
δ is one-third the side length of the hypercube, and ek is the kth unit vector. In Fig. 3,

123



524 Journal of Global Optimization (2021) 79:521–566

(a)

(b)

Fig. 3 Sampling and dividing a square in the DIRECT algorithm

this translates into sampling above, below, to the left, and to the right of the center point;
these newly sampled points are shown as red dots with numbers beside them indicating the
function’s value. By sampling along all dimensions, we have avoided selecting any dimension
arbitrarily. But we must now resolve another issue: How do we divide the hypercube so that
each subrectangle has a sampled point at its center?

Figure 3 shows two possible ways to do this for n = 2. In Fig. 3a, we first divide the
square into thirds along the horizontal dimension and then divide the center rectangle (the
one with c) into thirds along the vertical dimension. In Fig. 3b, the order is reversed. Both
of these division strategies partition the hypercube into subrectangles with sampled points at
their centers. To decide which division order to use, notice that, if we first split on dimension
k, then the two points c±δek will be at the centers of the biggest subrectangles. For example,
in Fig. 3a, we first divide in dimension 1; as a result, the points with function values 4 and
8 become the centers of the largest subrectangles. This observation leads to the following
question: Do we want the biggest rectangles to contain the points with the best or the worst
function values? The strategy used by DIRECT is to make the biggest rectangles contain
the best function values. This strategy increases the attractiveness of searching near points
with good function values (as we explain later, bigger rectangles are preferred for sampling,
everything else equal). In our experience, the increased emphasis on local search speeds up
convergence without sacrificing the global properties of the algorithm, which are ensured by
the method of selecting rectangles discussed later.

More precisely, DIRECT adopts the following rule for subdividing a hypercube. Let

wk = min{ f (c + δek), f (c − δek)} (1)

be the best of the function values sampled along dimension k. We start by splitting along the
dimension with the smallest w value. Once this is done, we split the rectangle containing c
into thirds along the dimension with the next smallest w value. We continue in this way until
we have split on all dimensions. This splitting rule would select Fig. 3a.

Once the initial hypercube has been divided, some of the subregions will be rectangular.
In dividing such rectangles, we only consider the long dimensions. For example, the three-
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Fig. 4 Dividing a hyperrectangle
in the DIRECT algorithm

dimensional rectangle shown in Fig. 4 would be divided along the horizontal and vertical
dimensions, but not the shorter depth dimension. By dividing only along the long dimensions,
we ensure that the rectangles shrink in every dimension. The rectangle division procedure is
summarized in Algorithm 1.

Algorithm 1 Procedure for dividing rectangles
1: Identify the set M of dimensions with the maximum side length. Let δ equal one-third of this maximum

side length.
2: Sample the function at the points c± δek for all k ∈ M , where c is the center of the rectangle and ek is the

kth unit vector.
3: Divide the rectangle containing c is into thirds along the dimensions in M , starting with the dimension

with the lowest value of wk = min{ f (c + δek ), f (c − δek )}, and continuing to the dimension with the
highest wk .

Let us now turn our attention to howDIRECT selects the “potentially optimal” rectangles.
As we mentioned earlier, DIRECT was motivated by Lipschitzian optimization so, just for
the moment, let us assume that we knew a Lipschitz constant for the objective function, that
is, we knew a constant K such that, for any two points x and x′ we have

| f (x) − f (x′)| ≤ K‖x − x′‖. (2)

In Eq. (2), the norm on the right hand side can be the standard Euclidean 2-norm or other
non-Euclidean norms. The original algorithm and most extensions of it use the 2-norm, but
later we will discuss a variation of DIRECT called DIRECT-l that uses the infinity norm.

Now let ci be the center of rectangle i in the partition, and let di be the Euclidean distance
between ci and the vertices of rectangle i (see Fig. 5). Given that the function has a value
f (ci ) at the center of rectangle i and that the maximum distance between ci and any point
in rectangle i is di , it follows that a valid lower bound for f over rectangle i is:

lower bound for f over rectangle i = f (ci ) − Kdi .

In standard Lipschitzian optimization, in each iteration we would compute such a lower
bound for every rectangle in the partition and select the rectangle with the lowest lower
bound for subdivision and further sampling. If K is a valid Lipschitz constant (upper bound
on the rate of change of the objective function), then one can prove that, for any small positive
number ε > 0, the algorithm will find a solution within ε of the optimum in a finite number
of iterations.

If we look at formula for the lower bound, we see that it is a combination of two terms.
The first term, f (ci ), is lower (and therefore better) when the function value at the rectangle
center is low. Thus, this term leads us to select hyperrectangles with good function values,

123



526 Journal of Global Optimization (2021) 79:521–566

Fig. 5 The center-vertex distance
di of rectangle i

that is, it leads us to do local search. The second term is lower algebraically the bigger
the hyperrectangle (larger di ). Thus, this term leads us to select hyperrectangles with large
amount of unexplored territory, that is, it leads us to do global search. The Lipschitz constant
K serves as a relative weight on global versus local search; the larger K , the higher the
relative emphasis put on global search. However, since the Lipschitz constant must be an
upper bound on the rate of change of the objective function, it is generally quite high. In
terms of the above discussion, this means that a standard Lipschitzian approach places a high
emphasis on global search and, as a result, it may exhibit slow convergence.

Once the basin of the optimum is found, the search would proceed more quickly if K
could be reduced, thereby putting more emphasis on local search. In fact, several authors
have proposed heuristic ways to vary the Lipschitz constant across the design space [23],
using a lower Lipschitz constant in regions where the objective function seems “flat” based
on the sampled points in that region. Sergeyev et al. [32,60,61,64] developed a sophisticated
technique for determining the Lipschitz constant to use in a particular region; in particular,
they use a weighted combination of local and global estimates of the Lipschitz constant, auto-
matically reducing the weight on the local estimate in sparsely sampled regions where the
local estimate of the Lipschitz constant may be poor. An important feature of this local tun-
ing approach is that the local (exploitation) and global (exploration) information is balanced
automatically without user intervention. These methods often perform well and ensure the
convergence to the global minimizers only, under rather general conditions (see, for exam-
ple, [64]). However, such methods (see also [70]) require the user to specify a “reliability
parameter” r > 1 with the property that r times the highest observed rate of change between
sampled points is a valid Lipschitz constant. In general, the performance of the methods is
sensitive to the choice of r : a value that is too high makes the algorithm slow to converge,
while a value that is too low may cause the algorithm to not converge to the optimum. Even
so, a correct estimate of r can often be obtained either theoretically (from the convergence
analysis of a global optimization method with local tuning) or from the analysis of properties
of a practical decision making problem to be solved [64,70].

DIRECT avoids the drawback of using a single, large Lipschitz constant in a different
way. In particular, in each iteration it selects for further search any rectangle i that could
have the lowest Lipschitzian lower bound for some Lipschitz constant K > 0, subject to the
constraint that the resulting lower bound be non-trivially better than the current best solution
fmin. We call the rectangles that meet these criteria “potentially optimal” rectangles, defined
formally as follows:

Definition 1 Potentially optimal hyperrectangle
Suppose we have a partition of the unit hypercube into m hyperrectangles. Let ci denote the
center point of the i th hyperrectangle, and let di denote the distance from the center point
to the vertices. Let ε > 0 be a small positive constant. A hyperrectangle j is said to be
potentially optimal if there exists some K > 0 such that

f (c j ) − Kd j ≤ f (ci ) − Kdi , for all i = 1, . . . ,m. (3)

f (c j ) − Kd j ≤ fmin − ε| fmin|. (4)
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Fig. 6 Selecting rectangleswithDIRECT.Each rectangle is represented as a blue dotwith horizontal coordinate
equal to the rectangle’s center-vertex distance and vertical coordinate equal to the function value at the
rectangle’s center. The rectanglesmeeting thefirst condition in the definitionof potentially optimal rectangles—
Eq. (3)—are highlighted in red and correspond to the lower-right convex hull of the points. (Color figure online)

A reasonable value for ε would be the desired relative accuracy in the solution, for example,
ε = 10−4.

Figure 6 shows a diagram that helps visualize the set of rectangles meeting the first
condition in the definition of “potentially optimal,” that is, those rectangles satisfying Eq. (3)
for some K > 0. In this figure, each rectangle in the partition is represented as a dot with
horizontal coordinate equal to the rectangle’s size (d) and vertical coordinate equal to the
function value ( f ) at the rectangle’s center. The gray dashed line in the figure shows the
set of points where the rectangle lower bound, f − Kd , is equal to some constant. The
rectangle with the lowest lower bound can be found by placing this dashed line below all
the dots and then sliding it up until it first touches a dot. We illustrate this sliding motion in
the figure, where rectangle j turns out to be the one with the lowest lower bound. If we now
vary the slope K from zero to infinity, it is clear that the set of dots that can have the lowest
lower bound—and therefore meet the first condition in the definition of potentially optimal
rectangles (Eq. (3))—all lie on the lower-right convex hull of the cloud of dots, shown in the
figure by the solid red line.

However, in the definition of potentially optimal rectangles, we also need to be sure that
the lower bound for a rectangle is significantly better than the current best solution, that is, it
must be less than or equal to fmin − ε| fmin|. This condition is needed to stop DIRECT from
wasting precious function evaluations selecting extremely small rectangles where we can
only expect a negligible improvement. As shown in Fig. 7, the smallest selected rectangle
can be found by anchoring a line on the vertical axis at fmin−ε| fmin| and rotating it up until it
first touches a dot. Mathematically, this smallest selected rectangle is the one that minimizes
( fi − fmin + ε| fmin|)/di . In the example of Fig. 7, if we apply this second condition in the
definition of “potentially optimal” rectangles, then the first dot on the lower-right convex hull
would be skipped. Only the rectangles associated with the three remaining dots are actually
selected (shown by the solid red line).

In short, the computational procedure to select potentially optimal rectangles is to first
find the smallest rectangle that can be selected as in Fig. 7 and then follow the lower-right
convex hull upward. An efficient computational procedure for following the convex hull is
the “Jarvis march” [28].

Putting everything together, we can summarize the DIRECT algorithm as follows:
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Fig. 7 Selecting rectangles with DIRECT, continued. This figure shows how to identify rectangles meeting
the second condition in the definition of “potentially optimal” rectangles—Eq. (4). This is done by rotating
up a line anchored at (0, fmin − ε| fmin|) until it first touches a dot. Any rectangle smaller than this is not
selected. In summary, the computational procedure for selecting potentially optimal rectangles is to first find
this smallest rectangle that can be selected and then follow the lower-right convex hull upward. In this figure,
the selected rectangles correspond to the red dots. (Color figure online)

Algorithm 2 DIRECT
1: Normalize the search space to the unit hypercube. Let c1 be the centerpoint of this hypercube and evaluate

f (c1). Set fmin = f (c1), m = 1 (function evaluation counter), and t = 0 (iteration counter).
2: Identify the set S of potentially optimal rectangles as in Fig. 7.
3: Select any rectangle j ∈ S.
4: Using the procedure described earlier (Algorithm 1), determine where to sample within rectangle j and

how to divide the rectangle into subrectangles. Update fmin and setm = m+�m where�m is the number
of new points added.

5: Set S = S − { j}. If S �= ∅ go to Step 3.
6: Set t = t + 1. If t = T , stop; the iteration limit has been reached. Otherwise go to Step 2.

DIRECT subdivides one of the largest rectangles during each iteration. Therefore, as the
iterations go to infinity, the size of the largest rectangle must approach zero. As a result, the
points sampled by DIRECT will be “everywhere dense”; that is, for any point x in the initial
hypercube and for any small δ > 0, DIRECT is guaranteed to sample a point within a distance
δ of x after some finite (possibly very large) number of iterations. If the objective function
is continuous in the neighborhood of the global optimum x∗, then we are also guaranteed to
eventually get within any given tolerance ε of the global minimum function value f ∗.

This kind of “everywhere dense” convergence is not what one would ideally want; it
would be much more desirable—and more efficient—if the algorithm only converged to the
global minimum instead of converging to every point. Unfortunately, if the only thing one is
willing to assume about the objective function is that it is continuous, then any deterministic
algorithm that guarantees convergence to the global optimum must sample densely.1 To do

1 The proof is by contradiction. Suppose there existed a deterministic algorithm A that converged to the global
minimum of all continuous functions without sampling densely. Now pick any one-dimensional function f (x)
in [0, 1] and let f ∗ be the global minimum found by A. Since A does not sample densely, there would have
to exist a point x̃ and a small number δ > 0 with the property that A never samples a point in [x̃ − δ, x̃ + δ].
Now define a new function f̃ (x) that equals f (x) outside of this interval, equals f ∗ − 1 at x = x̃ and, for any
point x ′ in (x̃ − δ, x̃ + δ), interpolates linearly between the assumed value of f ∗ − 1 at x̃ and the value of
f (x) at the nearest interval end point. If A were applied to this new function f̃ (x), it would behave exactly as
it did with f (x) because A is deterministic and never samples inside the interval [x̃ − δ, x̃ + δ]. However, this
new function f̃ (x) is continuous and has a minimum equal to f ∗ − 1 < f ∗, so A would not find the global
minimum of f̃ (x). The contradiction proves that any deterministic algorithm that converges to the global
minimum of all continuous functions must sample densely.
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better than “everywhere dense” convergence, one must assume more about the objective
function than mere continuity. For example, one could assume knowledge of an upper bound
on the magnitude of the first or second derivatives, or perhaps knowledge of the functional
form thatwould enable computing lower bounds over subregions (e.g., with interval analysis).
However, since we are assuming that the function is a continuous black-box, DIRECT’s
“everywhere dense” convergence is as good as it gets.

2.2 Strengths of the DIRECT algorithm

The DIRECT algorithm has several strengths. First, it is a black-box algorithm, so there is no
need to assume the availability of gradients or other special information about the objective
function. Second, as just mentioned, it is guaranteed to converge to the global minimum if
the function is continuous [30]. Third, the algorithm is deterministic, so there is no need for
multiple runs. Fourth, in each iteration, DIRECT usually selects several rectangles for further
search, and all the associated function evaluations can be done in parallel to speed up the
search. Fifth, and most importantly, DIRECT has no hyperparameters that set the balance
between local and global search. As discussed above, this is accomplished by selecting all
those rectangles that would have the lowest lower bound for some Lipschitz constant, where
small constants select rectangles good for local search, and large constants select those
good for global search. In contrast, other algorithms have explicit parameters that set this
balance (e.g., the population size, selection bias, and mutation rate for genetic algorithms),
and additional effort is required to tune the parameters for the problem at hand. By avoiding
such parameters, DIRECT is able to be more robust, in the sense that it can be expected to
work well across problems of varying difficulty.

While DIRECT does have one hyperparameter, the desired accuracy ε, this parameter’s
purpose is not so much to set the overall local-global balance as it is to make sure that
DIRECT does not get too local in its search, wasting function evaluations in pursuit of very
small improvements. Given that ε can be interpeted as the desired accuracy, the parameter has
intuitive meaning and can be easily specified. However, as we will see later, DIRECT’s use of
the ε parameter can have negative effects on performance and leaves room for improvement.

Another strength of DIRECT is that the search points tend to cluster around the global
minima—a property that can be used to identify good places from which to launch a local
optimizer to fine-tune the solution. Two good examples are shown in Fig. 8. On the left,
we show the contours of the Branin test function, which has three global minima; after 247
evaluations, the points sampled by DIRECT clearly cluster around these locations. On the
right, we show the contours of the six-hump camel test function, which has two globalminima
and, once again, the points sampled by DIRECT cluster around the two global minima.

In a recent application of DIRECT to genetics (looking for chromosome positions that
correlatewith observed traits), Ljungberg et al. [42] comparedDIRECT to a genetic algorithm
in terms of howwell the sampled points clustered around the four largest peaks in the objective
function. The results after 6000 evaluations for the two-variable version of their problem are
shown in Fig. 9. The left side shows the points sampled by DIRECT, which clearly cluster
around the four largest peaks (numbered 1–4 in the figure); the right shows the points sampled
by the genetic algorithm,which are not as sharply clustered. Of course, the performance of the
genetic algorithm strongly depends on the specific implementation (e.g., genetic algorithms
using the “niching” technique are designed to identify multiple local optima and might
perform better). As we discuss later, this clustering property has been exploited in one of the
more successful extensions of DIRECT [26].
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(a) (b)

Fig. 8 Sampled points for DIRECT cluster around the global minima for the Branin test problem (left) and
the six-hump camel test problem (right)

Fig. 9 Comparison of points sampled by DIRECT and a genetic algorithm in a genetics study. The points from
DIRECT cluster more clearly around the four peaks of the objective function. Reproduced from Ljungberg et
al. [42]

2.3 Weaknesses of the DIRECT algorithm

2.3.1 Low convergence rate in solution refinement

Recall that DIRECT usually selects several rectangles per iteration, some good for local
search, some for global search, as well as others in between. This has the advantage that, as
soon as the global part of the search finds the basin of the global minimum, the local part of
the search immediately fine tunes it. The problem is that, while this local refinement is going
on, DIRECT is still doing a lot of global search, and this global search puts a “drag” on the
speed of the local refinement. As a result, DIRECT can be fast to find the basin of the global
optimum, but be slow to refine the solution to high accuracy.

To illustrate this weakness, consider the problem of minimizing the function f (x1, x2) =
1 + x1 + x2 on the unit hypercube. Clearly, the global minimum occurs at the point (0, 0)
where f = 1. DIRECT (using ε = 10−4) gets to within 1% accuracy of this solution in 90
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Fig. 10 Centerpoint function value versus center-vertex distance for the linear function 1+ x1 + x2 after 497
function evaluations

function evaluations.2 But it takes fully 616 evaluations to get to a solution within 0.01%
accuracy (i.e., f ≤ 1.0001). Why does this happen? Well, there are two reasons.

The first reason is illustrated in Fig. 10 which shows our usual selection diagram after
16 iterations and 497 function evaluations. As we can see, the dots for the rectangles group
themselves into vertical columns or “levels” corresponding to rectangles of the same size
(same center-vertex distance). In each column, only the lowest dot (corresponding to the
rectangle with the best function value) can possibly be selected—and even then, it is only
selected if it is on the lower-right convex hull. In this case, there are 10 levels with selected
rectangles, shown as filled red dots in the figure (some of the markers for very small center-
vertex distances overlap in the main figure, but are expanded in the inset). This means that,
in addition to sampling the rectangle with the global optimum, nine others are sampled for
global search, creating a drag on the refinement of the solution. As the search continues and
more rectangles are divided, the range of rectangle sizes—the number of levels in Fig. 10—
increases, so this global drag will potentially become even stronger as the search proceeds.

In this example, the global drag is especially high because, for each level with a selected
rectangle (filled red dot in Fig. 10), there are actually several rectangles that are tied for the
best function value and hence selected. These ties are illustrated in Fig. 11 which shows the
rectangles in the partition, highlighting the selected rectangles in blue. As we can see, there
are sets of selected rectangles of the same size that line up on diagonals. Within each set, all
the rectangles have the same value of the objective 1 + x1 + x2 and hence are tied. The net
result is that not just 10 rectangles are selected, corresponding to the 10 red dots in Fig. 10,
but 38 rectangles are selected when all ties are considered (not all are visible in the figure,
because the small ones in the lower left corner are hard to see). In this case, we do select and
subdivide the rectangle with the global minimum, but we also select and sample 37 others,
thereby creating a huge “global drag” on local refinement. This is why DIRECT requires 616
function evaluations to refine the solution to 0.01% accuracy.

Of course, a linear function such as f (x1, x2) = 1+x1+x2 is trivial to optimize andwould
not be the kind of problem for which one would select DIRECT as the optimizer. We have

2 All the results reported here use Eq. (5) in the definition of “potentially optimal” rectangle. We report the
number of evaluations when the accuracy is first achieved assuming that, within each iteration, the potentially
optimal rectangles are sampled from the smallest to the largest. This approach differs from the original
Footnote 2 continued
DIRECT article [30] which always reported the evaluation count at the end of the iteration in which the
accuracy was first achieved.
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Fig. 11 Selected rectangles
(shaded) after 497 function
evaluations when minimizing
1 + x1 + x2

Fig. 12 Shubert test function

used it here to drive home the point that one does not need a complicated and exceptionally
unusual problem to cause DIRECT to perform poorly due to the weakness of global drag.
As we will see, some of the later modifications to DIRECT specifically address this issue of
global drag on local refinement.

2.3.2 Search around local minima delays finding global minimum

When DIRECT converges slowly, a common reason is that it stumbles upon a suboptimal
local minimum early in the search, before the basin of the global minimum is found. In such
cases, DIRECT can sometimes spend an excessive number of function evaluations refining
this suboptimal local solution to high accuracy, slowing down the discovery of the true global
minimum. An extreme case of this problem happens when solving the two-variable Shubert
test function using ε = 0. The Shubert function is a strange test function with many peaks
and valleys, 18 of which are global minima (see Fig. 12).
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Fig. 13 DIRECT with ε = 0 after 415 function evaluations on the Shubert test function

WhenDIRECT is applied to the Shubert problemusing ε = 0, it quickly finds a suboptimal
local minimum at (−0.2, 6.6). As the search proceeds, the sampled points tend to cluster
around this first optimum; Fig. 13 shows the sampled points after 25 iterations and 415
function evaluations. The problem is that this first local minimum is not a global minimum
and DIRECT is over-refining the solution, creating super-small rectangles with center-vertex
distances as small as 10−7. In fact, of the 415 evaluations shown in Fig. 13, DIRECT has
sampled 255 points in the neighborhood of the suboptimal local and only 160 elsewhere. As
we can see in figure, one of the global minima is nearby, but unfortunately it lies in a bigger
rectangle whose centerpoint function value happens to be poor. As a result, it may take many
iterations before the rectangle containing the global minimum is selected and subdivided.

In Fig. 14 we take a closer look at what is happening with the selection of rectangles after
415 evaluations. All together, 13 rectangles are selected, but 11 of them have center-vertex
distances that are so small – all less than 0.0002 – that they overlap in the plot of center-point
function value versus rectangle size. All these small rectangles are clustered around the local
minimum. Only two big rectangles are selected (in the figure we can only see one red dot
with a big center-vertex distances, but actually this dot represents two tied rectangles, that
is, two rectangles with the same size and center function value).

In Fig. 14, we have also used a green dot to identify the rectangle with the global minimum
at (−1.4, 5.5). As shown in the figure, the center of this rectangle happens to have a poor
function value; as a result, the dot with the global minimum is not near the bottom of its
column, and so it may take quite a few iterations (in which the rectangles below it in the
column are processed) before this rectangle is selected and explored further.

In this case, we can also see that DIRECT’s global search can be insufficiently thorough.
For example, it might also make sense to select the rectangles labeled in the figure as “not
selected but nondominated.” These rectangles are not strictly on the lower-right convex hull
of the dots, and so are not selected, but they represent efficient tradeoffs between rectangle
size and function value in the sense that they are Pareto optimal.

Summing up, there are two reasons why DIRECT can have a long delay in finding the
globalmin: first, itmaywaste function evaluations over-refining a suboptimal localminimum;
second, the global search that it does do in each iteration may be insufficient. As we will see
later, some of the suggested modifications to DIRECT address each of these reasons for the
potential delay in finding the global minimum.
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Fig. 14 The status of rectangle selection on the Shubert test function after 415 function evaluations when
using DIRECT with ε = 0

The problem of over-refining a suboptimal local minimum was partially addressed in
the original DIRECT algorithm by introducing the parameter ε > 0 in the definition of
potentially optimal rectangles—see Eq. (4). In Fig. 7, we already saw how this can prevent
some of the smaller rectangles on the lower-right convex hull from being selected. Intuitively,
when we set (say) ε = 10−4, we discourage DIRECT from exploring regions of the search
space where it seems unlikely to improve upon the solution by at least a fraction ε = 10−4.

For example, on the two-variable Shubert test function DIRECT, if we set ε = 0 then
DIRECT takes over 10,000 evaluations to refine the solution to 0.01% accuracy. If we set
ε = 10−7, the number of evaluations shrinks to 5713. And if set ε = 10−4, the required
evaluations shrink further to 2933. Thus, using a small, positive ε can help accelerate the
refinement of the solution.

Unfortunately, introducing the ε parameter, while preventing excessive refinement of a
suboptimal local minima, also has a negative side effect: once the basin of global minimum
has been found, the use of ε > 0 slows the refinement of the global minimum to very
high accuracy. So while the use of ε > 0 does help avoid excessive local search, it only
partly addresses the problem, and some of the enhancements we discuss later introduce other
mechanisms to address this weakness of DIRECT.

2.3.3 Failure to exploit local trends

In DIRECT, each rectangle is evaluated for further search based only on its centerpoint
function value and its size; any trends that exist between rectangles are ignored. Thus, in the
case of the function 1 + x1 + x2 discussed above, DIRECT does not detect or exploit the
linearity or monotonicity of the function.

Another example is the Branin function shown on the left in Fig. 9. This is a two-variable
problem, and DIRECT finds the solution to within 1% accuracy in only 51 evaluations. But
if we add a third variable x3 that has no effect on the function value, then DIRECT takes 839
evaluations to find the solution to within 1% accuracy. Even though the third variable has
no effect, DIRECT isn’t able to sense this fact and explores the third dimension with equal
vigor.
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Fig. 15 Function evaluations to be within 1% accuracy when minimizing 1 + x1 + x2 + · · · + xn plotted
against the number of variables n for three ways to do rectangle selection and subdivision

2.3.4 Performance degradation in higher dimensions

Likemany other optimization algorithms, the DIRECTmethod is not immune to the “curse of
dimensionality.” As the number of dimensions increase, the number of function evaluations
required by DIRECT to converge to a solution tends to increase dramatically. Intuitively, in
n dimensions, in order to isolate the global optimum in a small box of side length 3−8 =
0.00015, we would have to trisect the box containing the global minimum at least 8 times on
each dimension for a total of 8n times. The problem is that, in each iteration, we do not just
select and trisect the rectangle containing the global optimum; instead, we also select other
rectangles for global search—and there can be many others, especially if, as in the linear
example, there are ties for the best rectangle at each level.

The impact of problem dimension on convergence speed can be seen dramatically in
Fig. 15 which shows the number of function evaluations to converge within 1% accuracy for
the function 1+ x1 + x2 + · · · + xn plotted versus the number of variables n. Three different
curves are shown, each using a different method for rectangle selection and subdivision. The
red curve shows the original algorithm that samples along all long sides and accepts ties for
potentially optimal rectangles. With this method of selection and sampling, the problem with
just five variables already takes 14,492 function evaluations. This is clearly excessive for
such a simple function.

In his revision of DIRECT, Jones [29] suggested two modifications to reduce the global
drag. The first modification is the obvious one: just select one rectangle from each level
and ignore any ties for being “potentially optimal.” The impact of this change is shown by
the blue curve, where the function evaluations to solve the five variable problem drop from
14,492 to just 470. The second modification was to trisect a selected rectangle on only one
long side, picking the long side corresponding to a variable that has been split the least over
the entire search.3 By trisecting only on one long side, we increase the number of levels

3 The goal here is to break ties for the longest side in a way that doesn’t favor one dimension over another, so
as not to be “arbitrary.” Of course, one could break the tie randomly, but that would cause DIRECT to lose the
desirable property of being deterministic. What we do, instead, is keep track of howmany times we trisect any
rectangle on each dimension and then, when presented with a tie for longest side, we choose the dimension
that has been trisected the least during the search to this point (if there is still a tie, we then favor the lower
indexed variable).
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(distinct rectangle sizes) by at most one; in contrast, when we subdivide on all long sides as
in the original algorithm, we can increase the number of levels by up to n and, the more levels
there are, the greater the global drag can be. The green curve shows what happens if we do
not pick ties and we also trisect the rectangle on only one long side. This further reduces the
function evaluations to solve the five-variable problem to 192 evaluations.

2.3.5 Inflexibility of the partitioning scheme

DIRECT itself, without the use of local optimizers or other enhancements, can only sample
points that are centers of hyperrectangles in the partition. As a result, some points cannot
be sampled. An often-mentioned example are points on the boundary of the feasible space,
which can only be approached arbitrarily closely, but never sampled exactly. In fact, several
authors have mentioned that DIRECT can be especially slow to converge to an optimum on
the boundary [27,36].

This inflexibility alsomakes it difficult for DIRECT to accept a user-defined starting point,
even if a good one was known (though this can be done via problem reformulations, as we
discuss in Sect. 3.10). In any case, it is certainly not possible to accept a set of several initial
points, such as a Latin hypercube. Similarly, even if some analysis suggested that a certain
point was likely to be the optimum (e.g., the origin in Fig. 11), there is no easy way to add
that point to the search and still maintain the property that every sampled point is the center
of a rectangle in the partition. As we will see, other partitioning schemes, such as that used
by Liu et al. [36], provide more flexibility.

3 Modifications to the DIRECT algorithm

In this section we survey a number of articles that have modified or extended DIRECT. For
each article, we identify the weaknesses that are addressed.

3.1 Making DIRECT insensitive to additive andmultiplicative scaling

Recall that, for rectangle j to be “potentially optimal” and selected for further search, we
required two things. First, there had to exist a Lipschitz constant K > 0 such that the lower
bound for the rectangle was the same or lower than that of any other rectangle:

f (c j ) − Kd j ≤ f (ci ) − Kdi , for all i = 1, . . . ,m. (3)

Second, the lower bound had to be non-trivially better than our current best solution fmin.
We made this second requirement precise by requiring

f (c j ) − Kd j ≤ fmin − ε| fmin|. (4)

One weakness of this approach, discovered by Sergeyev and Kvasov [63], occurs when there
is a suboptimal local minimum with a function value close to zero. In this case, if DIRECT
gets close to this local minimum, the term ε| fmin| will be very small, which again allows
excessive local search.

Another issue with Eq. (4), pointed out by Finkel and Kelley [14], was that this equation
makes DIRECT sensitive to additive scaling of the objective function; that is, adding a
constant a to the objective function can change the points sampled by DIRECT, even though
adding a constant to the objective function does not change the problem in any fundamental
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way. To see why this is so, suppose one adds a very big number a to the objective function.
If a is large enough, then the value of | fmin| in Eq. (4) would increase and, hence, we would
be requiring the rectangle lower bound to be below the current best solution fmin by a greater
amount. As a result, the set of selected rectangles might change (we might skip selecting
some of the smaller rectangles). To make DIRECT insensitive to additive scaling, Finkel and
Kelly suggest replacing Eq. (4) with

f (c j ) − Kd j ≤ fmin − ε( fmedian − fmin), (5)

where fmedian is the median of all the function values sampled so far during the search.
With this change, adding a to the objective function has no effect, as both fmedian and fmin

would increase by a and so the difference fmedian− fmin would remain unchanged. Note that,
while the original version of DIRECT was sensitive to additive scaling, it was insensitive to
multiplicative scaling. That is, it produces the same set of iterates if we multiply the objective
function by some positive constant b. To understand why this is the case, suppose rectangle j
were potentially optimal, that is, assume it satisfies Eqs. (3) and (4) for some K > 0. If
we then multiply the objective function by b > 0, rectangle j would still satisfy Eqs. (3)
and (4) if we use the Lipschitz constant bK , and hence it would still be potentially optimal.
In summary, with the change suggested by Finkel and Kelly, DIRECT produces the same
sequence of iterates when applied to f (x) as it does when applied to a+b f (x) for any a and
any b > 0. This is an obviously desirable property called “strong homogeneity” [12,66,78].

3.2 Locally-biased DIRECT (DIRECT-l)

Gablonsky [17] andGablonsky andKelly [18] suggested two changes to rectangle selection to
reduce global drag on refining local solutions. The first was one we have already discussed:
selecting only one of several rectangles tied for being “potentially optimal.” The second
was to redefine a rectangle’s size to be half the length of the longest side, as opposed to
the Euclidean distance between the center point and the vertices. This corresponds to using
the infinity norm in the definition of the Lipschitz constant in Eq. (2). If we use half the
longest side as a measure of the rectangle size, two rectangles with different center-vertex
distances—and hence different size in the original DIRECT algorithm—can have the same
size if their longest sides have the same length. An example is shown in Fig. 16, where
the two shaded rectangles have different center-vertex distances but have the same longest
side, and so would be considered to be the same size with Gablonsky’s approach. Overall,
in Fig. 16, there are rectangles with five different center-vertex distances, but there are only
three different long-side lengths.

With Gablonsky’s modification, in our usual selection diagram, there will be fewer levels
(distinct rectangle sizes) and hence less “global drag” on local refinement. This is illustrated
in Fig. 17, which compares the selection diagrams for the linear function 1+x1+x2 after 500
function evaluations for the original DIRECT algorithm (left) and for DIRECT with Gablon-
sky’s modification (right). As expected, there are fewer distinct rectangle sizes when using
Gablonsky’s modification, and so there is less global drag on local refinement. Gablonsky
calls the method “locally biased DIRECT” or DIRECT-l.

The reduced global drag translates to faster convergence to the global minimum and
a reduced “curse of dimensionality” on problems (such as the linear example), in which
the basin of the global optimum is found fairly easily. This is illustrated in Fig. 18, which
shows how the addition of Gablonsky’s modification further speeds up convergence on the
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Fig. 16 The two shaded
rectangles have the same size if
we use the approach by
Gablonsky and Kelly [18], in
which the size of a rectangle is
equal to half its longest side

Fig. 17 Selection diagrams for the linear function 1 + x1 + x2 after 500 function evaluations for the original
DIRECT algorithm (left) and the version with Gablonsky’s modification (right)

linear function beyond what we already achieved by ignoring ties for the potentially optimal
rectangles and only trisecting on one long side.

In summary, Gablonsky introduced two modifications to the original DIRECT algorithm:
first, he ignores ties for potentially optimal rectangles, just picking one arbitrarily. Second, he
redefines the size of a rectangle using the infinity norm instead of the Euclidean two-norm.
On the test problems used in the original DIRECT paper (2 to 6 dimensions), he finds that his
DIRECT-l modification generally outperforms the original DIRECT, though in some cases
only marginally. But as we can see from Fig. 18, the approach can greatly reduce the curse
of dimensionality on higher-dimensional problems.

There is, however, a drawback to Gablonksy’s modification for how to measure rectangle
size. This modification creates less “global drag” by doing less global search, and so one
can expect worse performance on very difficult problems where global search is critical.
Sergeyev and Kvasov [63] discovered several such examples when they compared DIRECT
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Fig. 18 Function evaluations to be within 1% accuracy whenminimizing 1+x1+x2+· · ·+xn plotted against
the number of variables n for four ways to do rectangle selection and subdivision. Best results are achieved by
ignoring ties for potentially optimal rectangles, only trisecting on one side, and using Gablonsky’s modified
definition of rectangle size

and DIRECT-l on their “GLKS” test suite of low-dimensional (2 ≤ n ≤ 5), extremely hard,
multimodal test problems [19,63]. However, on problem classes of known low difficulty,
using Gablonsky’s rectangle-size modification seems to be a reasonable hedge against the
curse of dimensionality.

3.3 Adaptive setting of the� parameter (DIRECT-restart)

In Sect. 2.3.2, we showed that setting ε = 0 could lead to excessive local search that delayed
the discovery of the global minimum. In the original DIRECT algorithm, we addressed this
problem by setting ε to a small positive value (e.g., 10−4), which discourages the selection of
very small rectangles and makes the search more global. However, as we mentioned before,
this was an incomplete solution, because using a positive value of ε also slows down the
refinement of the global solution once it has been discovered.

Finkel andKelly [15] attempt to resolve this issue bymaking the setting of ε adaptive. They
start with ε = 0 and begin the iterations. As long as the search is finding improved solutions,
they maintain ε = 0. However, if five consecutive iterations pass with no improvement in the
best function value, they conclude that the search may be stagnated around a local optimum.
To prevent excessive local search, they then set ε = 0.01, which makes the search more
global. They maintain ε = 0.01 until the search finds an improved solution, in which case
they again set ε = 0 to promote the local refinement of this new local minimum. They also
stop using ε = 0.01 (and switch to ε = 0) if 50 iterations pass without improvement, as this
may indicate that the global minimum has been found and one should work on refining it to
higher accuracy. Finkel and Kelly call this method DIRECT-restart because it “restarts” the
iterations with different values of epsilon.

We have implemented DIRECT-restart where we define “improvement” of the solution to
mean that we find a rectangle with function value f for which we have

fmin − f ≥ 10−4| fmedian − fmin|. (6)
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Fig. 19 Iteration history of three versions of DIRECT on the Shubert test function: DIRECT with ε = 0,
DIRECT with ε = 10−4, and DIRECT with the adaptive control of ε as in Finkel and Kelly [15]

Fig. 20 Iteration history of three versions of DIRECT on the Powell test function with 48 variables on
[−4, 5]48: DIRECT with ε = 0, DIRECT with ε = 10−4, and DIRECT with the adaptive control of ε

proposed by Finkel and Kelly [15]. In this case, the adaptive control of epsilon yields poorer convergence

This equation states that the improvement over the previous best solutionmust be at least 10−4

times the spread between the current median andmin function values. Figure 19 compares the
performance of three variations of DIRECT on the Shubert test function. All three versions
trisect rectangles on only one long side, ignore ties for potentially optimal rectangles, and
use Eq. (5) in the definition of potentially optimal rectangles. The versions differ only in how
the parameter ε is set: the first uses ε = 0, the second uses ε = 10−4, and the third uses the
adaptive approach just discussed.

As we can see in Fig. 19, with ε = 0 DIRECT spends so many evaluations refining local
minima that it ends up far from the optimum after 3000 evaluations. Setting ε = 10−4 allows
DIRECT to find the global minimum within 3000 evaluations. DIRECT-restart also finds the
global minimum, but it does so with fewer function evaluations because it wastes less time
exploring suboptimal local minima.

Given this encouraging result, we decided to try DIRECT-restart on seven test functions
identified by Liu et al. [39], which were stated to have the property that setting ε = 0 led to
poor convergence.We found that DIRECT-restart performed better than DIRECTwith ε = 0
on one problem (Shubert), performed about the same on five problems, but performed worse
on the Powell test function in 48 dimensions on [−4, 5]48. The results for the Powell problem
are shown in Fig. 20. For this problem, the results were exactly the opposite: DIRECT-restart
performed worse than the other two variants.

The poor performance of DIRECT-restart on the Powell problem is due to the adaptive
method’s going back to global search (due to five iterations with no improvement) when
it would have been better to continue local refinement using ε = 0. This result shows
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just how difficult it is to develop a method that works well across problems with different
characteristics. In this case, the different characteristic was how many iterations of local
search are typically needed to improve the objective. Because the Powell problem has higher
dimensionality than the Shubert problem (48 variables vs. 2), it is understandable that local
search (i.e., using ε = 0) might need more iterations to improve the objective. This insight
suggests a simplemodification:make the number of “no improvement iterations” that triggers
a switch to global search increase with the number of variables according to some formula.
This may be worth a try, but there is almost certainly no formula that will work well with all
problems. The goal here, as with all modifications to DIRECT, is to improve performance
across awide rangeof problemsof the sort one expects to encounter in real-world applications.

3.4 Pareto-Lipschitzian optimization (PLO and PLOR)

As mentioned previously, one of the weaknesses of DIRECT is that the global search can
sometimes be insufficiently thorough, thereby delaying the discovery of the global minimum.
We saw this in Fig. 14, where some rectangles were not dominated on function value and
size, but nevertheless were not selected because they were not on the lower-right convex hull
of points in our selection diagram. The Pareto-Lipschitzian optimization algorithm (PLO)
introduced by Mockus [45] addresses this weakness in a straightforward manner: it simply
selects all the rectangles that are non-dominated (Pareto optimal) with respect to center-point
function value and rectangle size. Fig. 21a, b contrast the usual DIRECT selection method
with the Pareto method. In Fig. 21a, we show the rectangles that would be selected by
DIRECT (those on the lower-right convex hull); in this case, three rectangles are selected. In
Fig. 21b, we show the rectangles selected by the Pareto method; in this case five rectangles
are selected. Because the points on the convex hull are always nondominated, the points
selected by DIRECT are always a subset of those selected by the Pareto method. Hence, in
general, the Pareto method selects more rectangles and does a more global search.

The Pareto approach has several attractive features. First, it takes better advantage of
parallel computing because it selects more rectangles than DIRECT. Second, the Pareto
approach only depends on relative function values; as a result, one would get the same search
if one used any transformation of the objective function that preserves the relative ordering of
the function values (e.g., log, square root, exponential). This is desirable because sometimes
the scale of the objective is arbitrary (e.g., noise could be measured in sound pressure or
decibels). Finally, the Pareto approach does not have any hyperparameters, such as the ε in
DIRECT.

However, the Pareto approach is not without weaknesses. First, by eliminating the ε

parameter, the method loses any mechanism to prevent the selection of very small rectangles
and this, in turn, can lead to excessive local search around suboptimal local minima. Mockus
et al. [46]mention that excessive local search is occasionally a problem for the PLOalgorithm.
A second potential weakness of the PLO selection method is that it has more “global drag”
on fine-tuning local minima because it does more global search than DIRECT. Therefore,
we can expect it to be slow when refining solutions to high accuracy.

Mockus et al. [46] propose to reduce this global drag by only selecting the first and
last rectangle on the Pareto front, as shown in Fig. 21c. They call this variation “reduced-
set Pareto-Lipschitzian optimization” or PLOR. The first rectangle is the one with the best
function value at the center (breaking any ties in favor of larger rectangles), and the sec-
ond rectangle is the largest rectangle with the best function value. This clearly reduces
global search and we can expect the search to converge faster when more global search is
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(a) (b) (c)

Fig. 21 Comparison of selection methods: DIRECT, Pareto-Lipschitzian (PLO), and reduced-set Pareto-
Lipschitzian (PLOR)

not required. In numerical work on the low dimensional test problems used in the original
DIRECT paper (2 to 6 dimensions) [30] and on some small truss structural optimization
problems, the authors do indeed find that PLOR often converges faster than DIRECT.

However, the reduced amount of global search can occasionally cause PLOR to require an
excessive number of evaluations to find the basin of the global minimum. Mockus et al. [46]
only found this to happen for one of their test problems (Shekel 5), but when we replicated
the method in our own code, we saw it happen for at least two others (Branin and Six-Hump
Camel). Conceptually, insufficient global search is a clear risk with PLOR: If the global
minimum is in a medium-sized rectangle (not smallest, not largest), then the reduced amount
of global exploration in PLOR may delay finding the global minimum for many iterations.

3.5 Revision of DIRECT

Jones [29] published a revision of DIRECT with enhancements to reduce the global drag,
two of which we already mentioned in Sect. 2.1: (1) trisect a rectangle on only one long
side and, (2) only select one of several tied potentially optimal rectangles. As illustrated in
Fig. 18, this further reduced global drag on our simple linear test function.

In addition to these two enhancements, Jones [29] introduced a modification to help
DIRECT speed up the refinement of solutions to high accuracy. The idea was simple: to
combine DIRECT with a good local search algorithm. We start by running DIRECT for
some predetermined number of function evaluations (say 100) and then fine tune the current
best solution with the local optimizer. Having updated the value of fmin based on the local
search, we then return to the regular DIRECT iterations, looking for a solution that is even
better than the local minimum just found. However, DIRECT does not proceed the same as it
would have without the local optimizer. Instead, the search is more global because the local
optimizer reduces the value of fmin, which makes the search more global by ignoring very
small rectangles (see Fig. 7). DIRECT will now be looking for a point that improves upon
the local solution—in effect, it will be looking for the basin of convergence of a better local
minimum. If DIRECT finds such an improving point, then we run a local search from this
point and again return to DIRECT. This process continues, alternating between DIRECT and
the local optimizer, until we reach a pre-determined limit on the total number of function
evaluations (for both DIRECT and the local optimizer). Used in this way, DIRECT becomes
an intelligent routine for selecting starting points for the local optimizer.
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Fig. 22 Convergence of the DIRECT with local optimizer on the Shubert test function

There is one other benefit of this approach: When using DIRECT with a local optimizer,
we can also afford to use a higher value for ε, say 10−2. The larger value of ε further prevents
excessive local search around a suboptimal local minimum, and we can do this because we
rely on the local optimizer (not DIRECT) to refine solutions to high accuracy.

Figure 22 shows how this hybrid global-local approach works on the Shubert test function
using ε = 10−2. The local optimizer used was the derivative-free algorithm BOBYQA [56]
using the available Python implementation.4 We alternate between global and local search
six times, getting to the global minimum within 0.01% accuracy in 995 function evaluations,
less than the 2967 required by the original DIRECT algorithm.

As we will see later in Sects. 3.10, 3.11, and 3.12, the simple and almost obvious idea of
hybridizing DIRECT with a local optimizer has appeared in other DIRECT variants. One of
the key differences distinguishing these variants is the criterion for when the local optimizer
is invoked.

3.6 Multilevel DIRECT (MrDIRECT andMrDIRECT075)

Liu et al. [38,39] address the weakness of global drag and slow refinement of local optima
with an idea that, in spirit, is the same as the revised DIRECT by Jones discussed in the
previous section. Namely, they use a local optimizer to fine tune solutions. The innovation is
that, instead of using some other algorithm as the local optimizer, they use DIRECT itself,
with some modifications, to do the local search.

More specifically, in their MrDIRECT075 algorithm, DIRECT is run at three levels called
2, 1, and 0:

– At level 2, DIRECT is run as usual, with ε = 10−5.
– At level 1, the rectangles from level 2 are sorted first by size and then function value and

rectangle selection is limited to the first 90% of the rectangles; that is, the biggest 10%
of the rectangles are ignored. A value of ε = 10−7 is used.

– At level 0, the rectangles from level 1 are sorted in the same way and only the first 10%
are considered for selection. A value of ε = 0 is used. Thus, this level focuses on local
refinement.

4 https://pypi.org/project/Py-BOBYQA/.
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Fig. 23 Left: hypothetical set of rectangles in the partition at level 2; rectangles B and D are selected. Right: at
level 1, the biggest 10% of the rectangles are ignored, so rectangle D is not considered, and hence rectangles
B and C are selected. Thus, using level 1, we can select some rectangles (C in this case) that would have
otherwise been dominated by the biggest rectangles. (Reproduced from Liu et al. [39])

The algorithm cycles through the levels according to the following pattern, called the “W-
cycle”: 21011012 (this pattern emerges from a recursive calling structure). By ignoring most
of the bigger hyperrectangles at level 0, and by using ε = 0, the algorithm can refine the
solution to high accuracy with little global drag. Due to the positive values of ε at the other
levels, using ε = 0 at level 0 does not lead to an excessive amount of local search.

Another advantage of the approach stems from ignoring the biggest 10% of the rectangles
at level 1. This can lead to the selection of some intermediate-sized rectangles that would
otherwise have been dominated by the (now ignored) biggest rectangles, thereby making
the global search more thorough (recall that insufficient global search is one of the potential
weaknesses of DIRECT). How this works is detailed in Fig. 23. On the left of the figure,
we show the selection diagram for a hypothetical set of rectangles at level 2, where all the
rectangles are considered but only rectangles B and D are selected. On the right, we assume
we are at level 1 and have ignored the biggest 10% of the rectangles, so that rectangle D is
ignored. In this case, rectangles B and C are selected. This shows how ignoring some of the
bigger rectangles at level 1 can lead to selecting some rectangles (C, in this case) that would
otherwise have been dominated by the biggest rectangles.

Finally, by returning to level 2 every so often and considering all the rectangles, they insure
that full global search is still carried out. Their original MrDIRECT algorithm is the same
as MrDIRECT075 except that they use ε = 10−4 at all levels. Numerical results showed that
varying the value of ε at the different levels improved performance, especially when using
ε = 0 in level 0.

Liu et al. [38] compare MrDIRECT and DIRECT using the GKLS [19] software, which
can generate global optimization test problems with different dimensions and difficulty. On
problems varying from 2 to 20 variables, using a computational budget of 1000(n + 1)
evaluations, they find that MrDIRECT is more efficient, solving 72% of the problems com-
pared to 36% for DIRECT. Most interestingly, they find that MrDIRECT reduces the curse
of dimensionality, being able to solve 61% of the 20-variable problems, compared to only
11% for DIRECT.

In a later paper, Liu et al. [39] do a thorough comparison on the Hedar test set [25]
between MrDIRECT075, DIRECT, and the original MrDIRECT. The Hedar test set consists
of 68 problems with up to 48 design variables. They find that MrDIRECT075 can solve 65%
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of the problems with the fewest function evaluations, compared to only 20% for DIRECT.
With a computational budget of up to 5000(n + 1) function evaluations, MrDIRECT075 is
able to solve 85% of the problems with a relative accuracy of 10−6, whereas DIRECT can
only solve 63% of the problems with that accuracy.

Overall, the MrDIRECT075 algorithm addresses many of the weaknesses of DIRECT we
identified earlier. Global drag is reduced by ignoring the bigger rectangles in levels 1 and 0
of the algorithm, and global search is also made more thorough by the use of level 1 which,
as explained in Fig. 23, can lead to some intermediate sized rectangles being selected that
might otherwise be overlooked. On the other hand, MrDIRECT075 does nothing to address
the weakness of ignoring obvious trends in the data, such as monotonicity; the authors
deliberately chose to avoid using a separate local optimizer (which could exploit trends), since
they wanted to improve performance while staying within the DIRECT’s space-partitioning
paradigm.

3.7 Adaptive diagonal curves (ADC)

Sergeyev and Kvasov [63] introduced a version of DIRECTwith two keymodifications: (1) a
change to the partitioning scheme that uses the concept of “adaptive diagonal curves” [33,62]
and, (2), a change to the rectangle selection that avoids excessive search around suboptimal
local minima and promotes a sufficient level of global search.

Let us start with their modification of the partitioning scheme. Recall that, in DIRECT,
each rectangle is evaluated based on just one sampled point—the center point. As a result,
a problem can be deceptive if the global minimum lies in a rectangle whose centerpoint has
a bad function value (as is the case with the Shubert function; see Fig. 13). To reduce this
possible deception, Sergeyev and Kvasov sample two points in each rectangle, where the two
points are opposite vertices. i.e., located on a main diagonal. For example, the left panel of
Fig. 24a shows the unit hypercube sampled at opposite points a = (0, 0) and b = (1, 1). This
diagonal sampling makes the evaluation of each rectangle not dependent on a single point, so
we could expect its performance to be less susceptible to deceptive problems. On the other
hand, one might think that this sampling procedure would double the number of required
function evaluations, since each rectangle is sampled at two points. Surprisingly, this turns
out not to be the case: The new scheme reduces the number of function evaluations required
to sample a given number of rectangles. To see, why, let us again consider in Fig. 24, where
we show three iterations of Sergeyev–Kvasov algorithm.

At the start of the search, as shown in Fig. 24a, there is just one rectangle—the unit
hypercube—sampled at the diagonal points a = (0, 0) and b = (1, 1). So at this stage, the
ratio of sampled points to rectangles is indeed 2 : 1. Since this is the only rectangle, it is the
one that is selected.

Sergeyev and Kvasov [63] trisect selected rectangles along just one of the long sides. In
Fig. 24a, we trisect along the horizontal dimension, sampling at the new points u = ( 23 , 0)
and v = ( 13 , 1). This splits the rectangle into thirds and replicates the property that each
resulting child rectangle is sampled at two opposite vertices.

In Fig. 24b, the shaded rectangle is selected and then subdivided in the same way. Finally
two rectangles are selected and subdivided (Fig. 24c). We now have nine rectangles and
nine sampled points, so the ratio of points to rectangles becomes 1 : 1. The reason why
this is possible is that many rectangles share vertices. As the search continues, the number
of sampled points can tend to be many fewer than the number of rectangles; Sergeyev and
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Fig. 24 Three iterations using the
trisection and diagonal sampling
method of Sergeyev and Kvasov
[63]

(a)

(b)

(c)

Kvasov [63] cite one case inwhich there are 106,359 hyperrectangles but only 15,343 sampled
points.

The second innovation is on rectangle selection. The authors were primarily concerned
about DIRECT’s potential to spend too many function evaluations in local search around
a suboptimal local, with insufficient global search, thereby delaying the discovery of the
global minimum for a long time. This weakness is most apparent with very hard multimodal
problems, and the authors were primarily concerned with improving DIRECT’s performance
for such hard problems. To address this weakness, they introduce distinct “local” and “global”
phases to rectangle selection, making sure not to spend too many iterations in the local phase
and, likewise, making sure to spend enough iterations searching globally.

Without going into too much detail, we can explain the gist of their approach as follows.
Rectangle selection is done with the aid of a diagram similar to that used by DIRECT (see
Fig. 7), except that on the vertical axis they replace the centerpoint function value with the
average function value at the two opposite vertices. The difference between the local and
global phases of selection lies in the range of rectangle sizes that are considered.

In the local phase, rectangles of all sizes are considered, and n+1 iterations are performed.
Thus the local phase ismore or less like the usual DIRECT selection approach (we are leaving
out some minor details). If the current best solution improves by at least 1%, local search is
deemed to “be working” and so another n + 1 local iterations are performed. Local search is
also continued if the current best point does not lie in one of the smallest rectangles (since
we might find an even better local solution by further subdividing this rectangle). However,
if we do not get the desired 1% improvement, and if the rectangle with the current best point
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is one of the smallest rectangles, then we consider local search to be complete and we switch
to the global phase.

In the global phase, we limit selection to the “bigger” rectangles to make the search
more global and hopefully find the basin of a better local optimizer. To make the notion
of “bigger” more precise, let q denote the number of divisions of the biggest rectangle in
the partition and p denote the number of divisions of the rectangle with the current best
point (we have p ≥ q). To limit selection to the “bigger” rectangles, we only consider
rectangles that have been divided no more than r ′ times, where r ′ = 
(q + p)/2�. For
example, suppose that the biggest rectangle has been trisected q = 10 times, and that the
rectangle with the best sampled point is smaller, having been trisected p = 15 times. In the
global phase, we would only consider for selection rectangles that had been trisected nomore
than r ′ = 
(q + p)/2� = 13 times. In this way, we ignore the smaller rectangles that have
been divided 14 or 15 times. These global iterations that focus on the bigger rectangles are
continued until we either improve upon the solution from the previous local phase by 1% or
until 2n+1 global iterations have been performed.

Comparing the ADC algorithm to MrDIRECT, we see it is almost the opposite. Whereas
MrDIRECT had one phase that was like the usual DIRECT and two other phases in which
the search focused on smaller rectangles, the ADC approach has a local phase that is more
or less like the usual DIRECT and a global phase that focuses on bigger rectangles.

Unfortunately, the papers for the two algorithms do not report results on the same test
problems in a way that would enable us to discern which approach works best. What is clear
is that on the easy Dixon–Szego test problems used in the original DIRECT paper [30],
MrDIRECT does better than DIRECT, while the Sergeyev–Kvasov approach does worse.
However, on the most difficult 4 and 5 dimensional problems from the GKLS test suite, ADC
is able to find solutions where DIRECT fails. On these harder problems, the emphasis on
global search in the ADC algorithm pays off.

In a later study, Sergeyev et al. [65] performed a thorough comparison of ADC, DIRECT,
and DIRECT-L on easy and hard problems of 2 to 5 dimensions from their GKLS test suite.
They find that for easy problems, the original DIRECT algorithm was able to solve more
problems than ADC or DIRECT-l when limited to a computational budget of no more than
14,000 runs. However, for hard problems, or for easy problems with a high computational
budget, they find that ADC solves more of the problems. Interestingly, in all their examples,
DIRECT does better than DIRECT-l, suggesting that DIRECT-l only performs best on very
easy problems, such as the Dixon–Szego test problems used in the original DIRECT arti-
cle [30]. The bottom line is that the extra emphasis on global search in ADC has the expected
effects: it improves performance on hard problems where more global search is needed, and
it degrades performance on easier problems.

One thing is definitely clear: The diagonal sampling approach in ADC is delivering a great
deal of value regardless of the problem difficulty. For example, on their hardest problem, they
finish with 685,173 rectangles but sample only 77,981 points.

It would be interesting to know the separate impact of diagonal sampling; that is, how
would the original DIRECT algorithm (or variants like MrDIRECT) perform if we kept
everything the same but replaced centerpoint sampling with diagonal sampling? One hint as
to what might be gained comes from the work of Paulavičius and Žilinskas [50] on simplex-
based DIRECT. They implement a version of DIRECT, called DISIMPL-V, in which the
search space is divided into simplices, each of which is sampled at its n + 1 vertices. The
selection step is in spirit exactly the same as DIRECT, making some fairly straightforward
changes to account for themove from rectangles to simplices. Because neighboring simplices
can share vertices, it turns out that the number of sampled points can be far less than the
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Fig. 25 Rectangle bisection and sampling as implemented in the BIRECT algorithm

number of simplices—similar to how the number of sampled points can be far less than the
number of rectangles in diagonal sampling. In their numerical work, they find that DISIMPL-
V is sometimes better and sometimes worse than DIRECT, with a slight edge overall for
DISMPL-V. If this is any indication, we could expect some overall improvement if diagonal
sampling were used in rectangle-based DIRECT, MrDIRECT, or DIRECT-GL.

In a later paper, Paulavičius et al. [51] extend these simplex-based DIRECT variants to use
the same two-phase, globally-biased selection introduced in the rectangle-based ADC algo-
rithm. The results were very much the same (namely, the globally-based selection improves
performance on hard problems).

3.8 DIRECT using bisection of rectangles (BIRECT, BIRECT-l, Gb-BIRECT-l)

Paulavičius et al. [52] have developed an innovative variant of DIRECT called BIRECT that
samples two points per rectangle and, furthermore, employs rectangle bisection instead of
trisection. The key idea is shown in Fig. 25. On the left, the initial rectangle is sampled at two
points located 1/3 and 2/3 of the way along the main diagonal. On the right, the rectangle
has been bisected along the horizontal (x1) axis. Each child rectangle inherits one sampled
point from the parent (shown in black) and a new point is also sampled (shown as red) in such
a way that we maintain the property that every rectangle has two sampled points located 1/3
and 2/3 along a diagonal. The diagonal along which the two points are located may change,
as in does in Fig. 25, but Paulavičius et al. [52] show that this scheme works not only in this
simple example but also more generally, for any number of dimensions. Bisection is always
applied to one of the long sides of a rectangle and, if there is a tie for longest, they select the
side with the lower index (as we did in Fig. 25).

Rectangles are selected in essentially the same way as DIRECT, using our usual “function
value vs rectangle size” diagram (see Fig. 7), with the change that the vertical axis has the
minimum of the function values at the two sampled points, and the horizontal axis is 2/3 the
length of the diagonal (as opposed to 1/2 as in DIRECT).

What is gained by this innovation?Well, recall that one reason that DIRECTmay converge
slowly is that the rectangle containing the optimumhas a center point with a very bad function
value. This bad function value delays the selection of the rectangle for further search because
other rectangles of the same size or larger that have better function values need to be selected
first. By sampling two points in each rectangle, BIRECT reduces the likelihood that the
rectangle with the global minimum has a bad function value in the selection diagram since,
for this to happen, we would require not just one, but two points to “unluckily” align with
areas where the function value is bad.
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Fig. 26 The maximum distance between the sampled points (solid blue circles) and an unsampled point (open
red circle) is higher in the ADC method than in the BIRECT method. (Color figure online)

Now in the previous section we described the adaptive diagonal curve (ADC) method that
also samples two points per rectangle, and so ADC also has the advantage just mentioned.
But with ADC the two points are corner points of a diagonal, not interior points. The method
used in BIRECT can be argued to be superior, for two reasons.

First, as shown inFig. 26, themaximumdistance between anunsampledpoint in a rectangle
and the closest of the two sampled points is lower in BIRECT than in ADC. As a result, for
any given Lipschitz constant, and assuming the function values at the two points are the
same, the Lipschitzian lower bound will be tighter when using BIRECT. Put another way, the
sampled points in BIRECT give a better indication of what other function values are likely
to be found in the rectangle than do the corner points in ADC.

The second advantage ofBIRECT is its use of bisection instead of trisection,which implies
that the aspect ratio of rectangles is never more than 2:1 as opposed compared to 3:1 for ADC
and DIRECT. Given two rectangles with the same volume, but different aspect ratios, the
rectangle with the lower aspect ratio has the smaller center-to-vertex distance, and so the
tighter Lipschitzian lower bound. Intuitively, the lower the aspect ratio, the easier it is for
one or two sampled points to be “representative” of what the objective function might be at
other points in the rectangle.

All the above arguments suggest that BIRECT would be more effective than ADC. On the
other hand, BIRECT samples exactly two points per rectangle whereas, as we discussed in
the last section, with the ADC method the ratio of sampled points to rectangles can be much
less than two due to the shared vertices. One might think that this lower ratio of sampled
points to rectangles would give an advantage to ADC. The net effect of these advantages and
disadvantages is, as of this writing, unclear.

In a later paper, Paulavičius et al. [53] extend the BIRECT algorithm to use the same
“globally biased,” two-phase selection process as in their ADC algorithm, creating an algo-
rithm they call Gb-BIRECT. Paulavičius et al. [53] also develop a version of BIRECT called
BIRECT-l which differs from BIRECT in that, if several rectangles are tied for being poten-
tially optimal, only one of them is selected. As we sawwith the original DIRECT, this change
generally improves convergence. The same change was made to Gb-BIRECT creating a ver-
sion called Gb-BIRECT-l.
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Fig. 27 Example of rectangle
selection with “local
enhancement” in the
DIRECT-GL algorithm

3.9 Two-step, global-local selection (DIRECT-GL)

As we commented in the discussion of Fig. 14, there are two reasons why DIRECTmay take
a long time to find the global minimum. First, it may spend an excessive number of function
evaluations exploring a suboptimal local minimum, that is, the search is too local. Second,
the global search may be insufficiently thorough.

Stripinis et al. [68] make the global search more thorough via the same technique men-
tioned in Sect. 3.4 when discussing the PLO and PLOR algorithms: select all rectangles that
are nondominated (Pareto optimal) with respect to rectangle size and centerpoint function
value (see Fig. 21b). The authors call this the “global selection step.” However, as mentioned
earlier, the increased amount of global search causes more “global drag” and slows down the
refinement of solutions to high accuracy. To counteract this effect, the authors again want to
do local search but, as in MrDIRECT, they want to stay within DIRECT’s space-partitioning
paradigm.What they do, therefore, is to add a second, “local selection step.” This local selec-
tion step uses our usual selection diagram, except that the vertical axis now has the distance
from each rectangle’s center to the current best point instead of the centerpoint function
value (see Fig. 27). The horizontal axis has rectangle size as before. They then select the
rectangles on the lower-right efficient frontier, those that are nondominated with respect to
distance from the current best point (lower is better) and rectangle size (higher is better).
Intuitively, they want to focus on rectangles that are close to the current best point (so as to
do local search), and among those that are close, they prefer bigger rectangles because there
is more unexplored space.

Putting it all together they now do a two-step selection process in each iteration. First, in
the “global step,” they select rectangles that are nondominated with respect to centerpoint
function value versus rectangle size, as in Fig. 21b. These rectangles are then fully processed
(subdivided and sampled). Second, in the “local” step, they select rectangles that are non-
dominated with respect to distance to the current best point and rectangle size, as in Fig. 27.
These rectangles are then fully processed.

The authors do extensive numerical comparisons of DIRECT and DIRECT-GL on the
Hedar test set. They find that the original DIRECT is faster for unimodal test functions.
Intuitively, for a unimodal function, there is no need to worry about getting stuck on a
suboptimal local or doing insufficient global search because there is only one local minimum.
However, on multimodal problems, DIRECT-GL converged in significantly fewer function
evaluations on average; moreover, relative to DIRECT, asking for higher accuracy incurs a
lower cost in additional function evaluations (this is probably due to the special local selection
step).
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Overall, the DIRECT-GL algorithm addresses most of the key weaknesses of DIRECT,
with the exception of not recognizing or exploiting any obvious trends in the objective func-
tion. Another seeming advantage is the elimination of the ε parameter, yielding an algorithm
with absolutely no hyperparameters. However, with the elimination of ε, the algorithm loses
any mechanism that stops it from selecting very small rectangles, so we might think that
this would lead to poor performance on the Shubert problem, just as it did for the original
DIRECT algorithm. In fact, if they only use global selection step (what they call DIRECT-G),
they do take longer to converge to 10−2 accuracy when compared to regular DIRECT (4089
evaluations vs. 2967). However, when they use both local and global enhancements, they
converge to 10−2 accuracy on the Shubert problem in only 425 evaluations. For the Shubert
problem, the global minimum is close to the local, so the fact that the local step of selection
focuses on rectangles close to the current best point probably explains why DIRECT-GL
is able to find the global so quickly in this case. However, DIRECT-GL does not always
perform so well; on the Hartman 6 problem, it takes 8793 function evaluations, versus 571
for DIRECT.

Now let us compare the DIRECT-GL method with the globally-biased, two-phase
approaches used in ADC and Gb-BIRECT. In both cases there are two phases to rectan-
gle selection. Moreover, in both cases, the first phase emphasizes global search and the
second phase emphasizes local search. The difference between the methods lies in how the
global or local emphasis is achieved. TheADCandGb-BIRECTalgorithms emphasize global
search by focusing on bigger rectangles, whereas DIRECT-GL emphasizes global search by
selecting rectangles that are Pareto optimal (which is a potentially larger set of rectangles
than those on the convex hull in the selection diagram). Likewise, ADC and Gb-BIRECT
algorithm emphasize local search by simply removing the emphasis on larger rectangles and
running selection as “usual,” whereas DIRECT-GL puts a more specific emphasis on local
search by favoring rectangles whose center points are close to the current best point.

3.10 DIRMIN

In Sect. 3.5, we discussed how Jones [29] suggested hybridizing DIRECT with a separate
local optimizer, initially running the local optimizer from the current best point after a fixed
number of function evaluations (e.g., 100) and then running it again whenever the global
search finds a point that improves upon the last local solution. Liuzzi et al. [40] take this idea
one step further and suggest running a local search starting from the centerpoint of every
potentially optimal rectangle. They call this variant DIRMIN. The local search method they
use is a truncated Newton method.

This is a simple idea that solves all the problems in the Hedar test set except for three chal-
lenging problems of dimensionality 10, 25, and 50. However, it is likely that their approach
generates more local searches than are really necessary, as many of the starting points proba-
bly converge redundantly to the same local optimum. For example, on the Shubert problem,
where the Jones’ approach in Sect. 3.5 required 6 local searches, Liuzzi et al. [40] require 27
searches.

Liuzzi et al. [40] also introduce another variant, called DIRMIN-TL, to address the three
problems that DIRMIN failed to solve. In particular, suppose that DIRMIN reaches its iter-
ation limit (or memory limit) and has to stop with the current best point being x̃ . They then
suggest transforming the problem so that x̃ maps to centroid of the unit hypercube. This is
achieved using the piecewise linear transformation y = Tx̃ (x) shown in Fig. 28 for the i th
variable, which maps x̃i to 0.5. The search is then done over the transformed y variables with

123



552 Journal of Global Optimization (2021) 79:521–566

Fig. 28 Transformation of
variables used in DIRMIN

the objective being fx̃ (y) = f (T−1
x̃ (y)). With this transformation, the first point in the new

DIRECT search, the centroid in the y space, corresponds to x̃ in the original space. In this
way the new search focuses around the previous best point, and the hope is that this fresh
start finds the global minimum before it gets stuck in a suboptimal local minimum or slowed
down by “global drag” stemming from a partition with many rectangles.

This whole process—solving with DIRMIN and then restarting centering on the new
solution—is then repeated a number of times. With DIRMIN-TL, using up to 26 restarts, the
authors are able to solve the three problems that could not be solved with DIRMIN itself. In a
later paper, Liuzzi et al. [41] extend the approach, hybridizing DIRECTwith a derivative-free
local optimizer and obtaining similar results.

Overall, this method has the advantage that, by using a local search algorithm, it follows
the obvious trends in the objective function. However, the number of local searches is likely
excessive. Moreover, there is no strong theoretical reason to believe that restarting the entire
search with a space transformation should yield improvement. The main motivation for the
restarts seems to be that, in high dimensions, DIRECTmay run out of memory before finding
the optimum. In this case there is no way to continue DIRECT, so they restart.

3.11 glcCluster

glcCluster is a DIRECT-inspired search procedure that was one of the most successful in the
comparison of derivative-free search algorithms carried out by Rios and Sahinidis [57]. It
did especially well with respect to nonconvex, smooth problems. The algorithm is available
as part of the TOMLAB suite of optimization tools for MATLAB, and a description of the
method is available on the TOMLAB website.5 According to this description, glcCluster is
a hybrid algorithm, combining DIRECT, a clustering algorithm, and local search. It takes
advantage of the previously mentioned tendency for the sampled points from DIRECT to
cluster (be more dense) in high-performing regions of the space, as shown in Fig. 9.
The algorithm has five steps:

1. Run DIRECT (the updated version [29]) for a suitable number of function evaluations
(default is 100n + 1 where n is number of variables).

2. Run an adaptive clustering algorithm on the sampled points to find a suitable number of
clusters.

5 http://tomwiki.com/GlcCluster#Description/.
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3. Run a local search from the best point in each cluster. The local solver is either SNOPT
or NPSOL, using analytical gradients if provided, or finite-differences otherwise.

4. RunDIRECT again, warm starting fromwherewe stopped in Step 1 and using the updated
value of fmin from the local searches. The goal is to improve upon the previous solutions
from local optimization.

5. If the run of DIRECT in Step 4 improves the best point, a local search is finally made
from this best point.

Intuitively, glcCluster acts much like Jones’ hybrid of DIRECT and local search, with the
difference that, instead of running local search just from the current best point, glcCluster uses
a clustering algorithm to find several good starting points. Local search is then done from
these points. The excellent performance of glcCluster in the Rios–Sahinidis comparison
of derivative-free algorithms is probably due the ability of the clustering step to identify
promising regions for local search, and to do this much more economically than DIRMIN
(which launches local searches from the center of every potentially optimal rectangle).

3.12 DIRECT with bisection, globally-biased selection, and local search (Gb-BIRMIN)

In Sect. 3.8 we discussed the Gb-BIRECT version of DIRECT introduced by Paulavičius
et al. [53] that used bisection instead of trisection and a special “globally-biased” variant
of rectangle selection. In general, this method excels on the hard test problems where more
global search was needed. However, for simple problems, what is needed is a way to quickly
refine a solution to high accuracy, and both DIRECT and Gb-BIRECT are weak in this
regard. The convergence speed was somewhat improved by making Gb-BIRECT only select
one of any set of rectangles that were tied for being potentially optimal, a version they
called Gb-BIRECT-l. To improve local refinement further, Paulavičius et al. [53] enhance
Gb-BIRECT-l by hybridizing it with a local optimizer (MATLAB’s “fmincon”). Similar to
Jones’ revision of DIRECT discussed in Sect. 3.5, the local optimizer is first launched from
the current best point after the feasible region is “at least slightly explored.” After the local
optimizer is complete, global search is resumed as in Gb-BIRECT-l, but the search now
evolves differently because the current best solution fmin has (most likely) been improved.
Local search is restarted whenever the current best solution from Gb-BIRECT-l improves
upon the previous best solution. In this way, the algorithm alternates between global and
local search until it reaches a limit on total function evaluations. The authors call this hybrid
algorithm Gb-BIRMIN.

A unique aspect of Gb-BIRMIN is its way of deciding when to invoke the local optimizer.
Paulavičius et al. [53] consider several possibilities. Like Jones [29], one option they consider
is obvious: to launch the local optimizer as soon as global search finds a point that is better
than the last local solution by some non-trivial amount (they use 0.01| fmin|). Interestingly,
they find it best not to start the local optimizer immediately after global search improves
upon the last local solution, but rather let the global search keep going as long as it continues
to make improvements, and only launch the local optimizer when one iteration of global
search results in no further improvement. The option that worked the best, however, was to
start the local optimizer whenever the global search with Gb-BIRECT-l found a rectangle
center point with a function value that was non-trivially better than the last best point found
by Gb-BIRECT-l, that is, the best point not counting those found in local search. This third
option launches the local optimizer more often, since it not only launches the local optimizer
when global search finds a point that is better than the last local solution, but also launches
it when global search finds a point non-trivially better than what was previously found by
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Fig. 29 Sampled points and
corresponding Voronoi cells. The
size of the cell i is captured by
the distance di between the cell
center xi and the furthest vertex
of the Voronoi cell. Reproduced
from Liu et al. [36]

global search alone. These different versions ofGb-BIRMINwere compared to the previously
discussed DIRMIN using the same test problems used in Liuzzi et al. [41]. They found that
Gb-BIRMIN—using the third option for launching the local—performed significantly better
than DIRMIN, requiring an average of 86,494 evaluations over the test problems, versus
183,567 for DIRMIN.

In our view, Gb-BIRMIN is one of the most promising and sophisticated enhancements
yet made to DIRECT. The only weakness of DIRECT that it does not explicitly address
is DIRECT’s inability to recognize clear trends between the sampled points—that is, both
DIRECT and Gb-BIRMIN do not extrapolate and interpolate obvious trends in the data in the
way that could be done using, for example, a fitted kriging surface or radial-basis functions.
We consider an algorithm that does interpolate and extrapolate trends in the next section.

3.13 Voronoi-based partitioning withmetasurface (eDIRECT)

The eDIRECT algorithm of Liu et al. [36] is an extension of DIRECT that allows for a very
flexible partitioning scheme. The algorithm can start with any set ofm points, such as a Latin
hypercube. It then uses these points to divide the space intom regions called “Voronoi cells.”
For sampled point i , the associated Voronoi cell is the set of all points that are closer to point i
than they are to any other point j �= i . An example is shown in Fig. 29. The size of a Voronoi
cell can be taken to be the greatest distance between the sampled point and a vertex of the
cell. In Fig. 29, we label one sampled point xi and show the associated cell size di .

Given that we have the function value f (xi ) at the center of cell i and the cell size di ,
we can make our usual selection diagram and select “potentially optimal Voronoi cells” by
finding the lower-right convex hull of the points in plot of cell function value versus cell size.

To complete the algorithm, all that remains is to decide where to sample within each
selected Voronoi cell. One possibility is to sample the point that is furthest from the center,
and the authors do this for the biggest selected Voronoi cell, to assure that all Voronoi cells get
smaller over the search. For the other selected cells, however, eDIRECT does somethingmore
involved. In particular, it fits a response surface, usually a kriging surface, to the observed
data. Having fit the response surface, it might seem natural to sample the point in the Voronoi
cell that minimizes the surface. But trusting the surface in this way only makes sense if the
surface is accurate; if the surface were inaccurate, it would be better to sample at a point most
distant from the Voronoi cell center, so as to better fill the space and improve the surface fit.
To balance these two concerns, the authors find a point in the cell that optimizes a weighted
sum of distance from the cell center (higher is better) and predicted function value (lower
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Fig. 30 Two iterations of eDIRECT. The contours in the figure are for the objective function (which, of course,
would not be known in a real problem); the global minimum is in the lower center of the plot. Reproduced
from Liu et al. [36]

is better). The weight used in this criterion takes into account the accuracy of the surface as
indicated by cross-validation; themore accurate the surface in a region is (low cross-validated
error), the more weight is given to sampling where the predicted function value is low.

After sampling within the selected Voronoi cells, eDIRECT adds a final step: it finds the
global minimum of the response surface and samples that point as well. This step is similar
to running a local optimizer in DIRMIN or BIRMIN, except that local optimization is done
on the response surface, not the function itself. Unlike DIRMIN and BIRMIN, however,
the resulting local solution can be added to the partition due to the flexibility of the Voronoi
approach. Figure 30 illustrates the steps of the algorithm, showing two iterations of eDIRECT
on a hypothetical two-variable problem.

Recall that there are two steps in eDIRECT that involve optimization over a Voronoi cell:

1. Calculate the size of a Voronoi cells. This involves maximizing the distance from the
Voronoi center, subject to being within the Voronoi cell.

2. Decide where to sample within the cell. This involves optimizing a weighted sum of
distance from the cell center (higher better) and predicted function value (lower better).

These optimizations are solved approximately as follows. A large set of 50×m × n random
points is generated in the feasible region, where m is the number of points sampled so far
in the search, and n is the number of input variables. For each point i , the subset of random
points that lie in Voronoi cell i is identified (i.e., the random points that are closest to point i).
The two optimizations are then solved by enumeration over these candidate points. Thus,
the explicit boundaries of the Voronoi cells are not computed—a good thing, since this is
computationally intensive in more than six dimensions.

In their numerical results, Liu et al. [36] compare the performance of eDIRECT on test
functions with 2 to 10 dimensions against DIRECT and two other metamodel-based opti-
mization algorithms. On all these problems, they significantly outperform the competitors.
For example, on the six-dimensional Hartman 6 function, they converge on average in 120
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xLastCycle
*

Solution from last cycle New bounds without shrinkage New bounds with shrinkage for ! !

Fig. 31 Redefining variable lower and upper bounds between cycles of DIRECT

evaluations, whereas DIRECT takes 571. They also study a version of the Hartman 6 problem
in which the bounds are perturbed so that the minimum is on the boundary. As expected,
DIRECT takes longer when the solution is on the boundary, requiring 2449 evaluations; in
contrast, eDIRECT requires only 125.

Compared to all the other modifications of DIRECT, eDIRECT goes the furthest in
addressing the inflexibility of DIRECT’s partitioning scheme. In fact, eDIRECT’s parti-
tioning scheme is almost infinitely flexible, since the Voronoi approach can accept any set of
points. By fitting a response surface to the sampled points and then sampling the point that
minimizes this surface, eDIRECT is able to exploit clear trends in the sampled points and
refine solutions quickly.

Onemight think that the algorithmwould be sensitive to the number of random points used
to approximate the Voronoi regions, but a sensitivity study indicates that using 50 × m × n
points is sufficient; usingmore (e.g., 100×m×n) does not helpmuch and sometimes actually
degrades performance a little on their test problems.

3.14 Zoom-in strategy for high-dimensional problems (HD-DIRECT)

Tavassoli et al. [73] explore a “zoom-in” strategy to help DIRECT perform better on high-
dimensional problems. Instead of a single run of DIRECT, the algorithm is run for several
“cycles.” In the first cycle, DIRECT is run with the original lower and upper bounds on the
variables, stopping when there is little change in the best function value over the last several
iterations, indicating that progress has slowed. Another cycle of DIRECT is then started, but
this time the lower and upper bounds are redefined so that the best point from the last cycle is
at the center of the design space. This re-centering is illustrated in Fig. 31, where we can see
that the solution from the last iteration (x∗

LastCycle) is closer to the lower bound for x1 than it
is to the upper bound. The upper bound is then adjusted so that x∗

LastCycle is in the middle of
the bounds. The upper bound for x2 is similarly adjusted so that x∗

LastCycle is in the middle
of the bounds. The figure also shows how a further shrinkage of the range is made when a
variable (x2 in this example) has changed little over the final 10 iterations of DIRECT in the
last cycle.

When restarting a new cycle of DIRECT, all previous function evaluations are ignored.
What changes are the lower and upper bounds on each variable. BecauseDIRECT is restarted,
there is less global drag slowing down local refinement of the incumbent solution, so local
refinement can be expected to proceed faster.
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Of course, any zoom-in strategy runs the risk of zooming in on a local minimum and
excluding the region that contains the global minimum. To prevent this, the authors add a
“diversification subroutine” that randomly runs with a small probability (they use 0.1) during
each cycle. The diversification subroutine evaluates random points in regions that have been
excluded due to the zooming in (they use 10n points), picks the one with the minimum
objective value, and starts a new cycle of DIRECT centered about this point. If a better
answer is found, the zoom-in strategy jumps to this solution in the next iteration.

The algorithm stops when either: (1) the optimum function value changes very little
between two cycles of DIRECT, (2) all n variables show a little change in the last n iterations
of DIRECT, or (3) the maximum allowed number of cycles is reached.

The authors call this high-dimensional version of DIRECT by the name HD-DIRECT
and compare its performance to the original DIRECT for nine test functions with 15 to 30
variables, as well as one 30-variable industrial application. In these numerical experiments,
HD-DIRECT converges in many fewer function evaluations than DIRECT. For example,
for the sphere problem f (x) = ∑n

1 x
2
k , with bounds [−3, 7]n and n = 15 variables, the

original DIRECT requires over 1,000,000 evaluations to get to a solution within 0.01 of
the optimum (zero), whereas HD-DIRECT requires 22,562 evaluations. The savings are
even more dramatic when higher solution accuracy is desired. Even so, 22,562 function
evaluations is excessive for such a simple convex problem! Any extension of DIRECT that
incorporates some trajectory-following local optimization algorithm would do much better.
For example, the eDIRECT algorithm, which fits a metamodel and optimizes it, is able to
solve a 10-dimensional sphere problem in only 293 evaluations [36]. As another example,
HD-DIRECT takes 29,660 evaluations to optimize the linear objective f (x) = ∑n

1 xk , on[0, 5]n with n = 30; for such a linear function, any method hybridizing DIRECT with a
gradient-based local optimizer would find the solution on the first local search.

3.15 Other extensions of DIRECT

Up to this point, we have discussed extensions of the original DIRECT algorithm with
only bound constraints on the variables. In fact, our focus here has been to obtain a deeper
understanding of theweaknesses of this original version ofDIRECTand to survey approaches
in the literature to overcome them. However, several authors have explored extensions of
DIRECT that enable it to handle nonlinear constraints, multi-objective problems, problems
with noisy objective functions, and problems with integer variables. For completeness, we
briefly mention some of these extensions in this section.

Jones [29] extended DIRECT to handle nonlinear inequality constraints by forming a
special auxiliary function that heuristically captures the likelihood that a rectangle contains
the global (feasible) optimum with function value f ∗. Of course, we do not know f ∗, so
the algorithm selects any rectangle that can have the best value of the auxiliary function for
some f ∗ ≤ fmin −ε| fmin|. Values of f ∗ close to fmin select rectangles good for local search,
while values of f ∗ approaching−∞ select rectangles good for global search.When there are
no constraints, this approach reduces to the original method for rectangle selection and can
hence be considered a natural generalization. To constrain some variables to take on integer
values, the rectangle subdivision procedure was modified so that the centerpoint always has
an integer value for any integer variable.

In their eDIRECT algorithm, Liu et al. [37] add nonlinear constraints by modifying how
the regions (Voronoi cells) are selected for sampling and subdivision. If no feasible point has
been found, they select regions using the lower-right convex hull in a diagram of normalized
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constraint violations versus region size. Once a feasible point has been found, they then
do the selection in two steps. First, they do the selection considering only the infeasible
regions (based on constraint violation vs. region size); they call these selected regions the
“potentially feasible” regions. Second, they combine these potentially feasible regions with
the regions that are strictly feasible (no constraint violation) and apply the normal selection
process (based on region function value vs. region size). They call the resulting constrained
algorithm eDIRECT-C. Similarly to eDIRECT, meta-models are fit to the objective and
constraints, and the optimum on the surfaces is computed and sampled.

Costa et al. [7] introduce a constrained version of DIRECT that also handles constraints
via a modification of rectangle selection. Motivated by the filter methodology of Fletcher and
Leyffer [16], they identify infeasible rectangles that are non-dominated with respect to the
sum of constraint violations and centerpoint function value. Rectangle selection is then done
separately for the rectangles that are feasible, those that are infeasible and nondominated, and
those that are infeasible and dominated. For feasible rectangles, the selection is done as usual
by finding the lower-right convex hull in a plot of centerpoint function value versus rectangle
size; for infeasible rectangles, it is done based on a plot of the sum constraint violations
versus rectangle size. The key contribution is showing that considering the nondominated
and dominated infeasible rectangles separately gives better results than combining them.

Di Pillo et al. [11] present a two-level selection process to solve constrained problems.
First, they identify rectangles that are potentially optimal with respect to total constraint
violation and rectangle size. Second, of the rectangles selected in the first step, they select
those that are potentially optimal with respect to function value and rectangle size. This
procedure is very similar to that used in eDIRECT-C. Similarly to DIRMIN, they also explore
launching a derivative-free constrained local optimizer from the center of each potentially
optimal rectangle.

Stripinis et al. [69] extended their DIRECT-GL method described earlier to handle non-
linear constraints, creating what they call DIRECT-GLc. If a feasible point has not yet been
found, they do iterations of DIRECT-GL to minimize the sum of constraint violations. Once
a feasible point has been found, they apply DIRECT-GL to minimize the objective function
plus a special penalty. For feasible points, this penalty is zero. For infeasible points, the
penalty is the sum of constraint violations plus | f (x) − fmin|, where fmin is the objective
value of the best feasible point found so far. This penalty does not allow rectangles that
achieve f (x) < fmin by violating the constraints to “get credit” for having a value of the
objective function below fmin. The advantage of this special penalty is that it works without
the need to compute/adjust penalty weights on the constraint violations. The disadvantage of
the penalty function is that it is discontinuous at the boundary of the feasible region (where
optima often are located), and DIRECT is not guaranteed to converge where the function is
discontinuous. To manage this potential problem, the authors introduce a modified version
called DIRECT-GLce that does not impose the penalty if the constraint violations are below
some tolerance εcons that is adaptively updated over the course of the search. The authors
have also hybridized this method with a local optimizer to get a method they call DIRECT-
GLce-min, and find that doing so drastically speeds up convergence on the test problems
they consider, often by an order of magnitude.

Di Pillo et al. [10] introduce DF-EPGO, a constrained version of DIRECT based on using
an exact penalty function. In each iteration, the penalized objective function is optimizedwith
DIRECT and then the penalty parameters are updated. After a finite number of iterations, the
procedure is guaranteed to converge.

In addition to the above extensions to handle nonlinear constraints, DIRECT has been
extended in other ways. Multi-objective versions of DIRECT have been proposed, with a
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review byWong et al. [75] and a recent idea by Lovison and Miettinen [43] that is still under
development. Problems with noise in the objective function present a special challenge (e.g.,
the value of fmin is only known approximately due to noise) and have been considered by
Deng and Ferris [9]. Extensions to handle the case when the objective function is evaluated
by a simulation that can fail (and thus no value is provided) have been proposed by Carter et
al. [5] as well as Na et al. [48]. Adaptations of DIRECT for symmetric problems—problems
in which the objective is the same for any permutation of the inputs—have been proposed
by Grbić et al. [21] and by Paulavičius and Žilinskas [50]. Tao et al. [72] explore addressing
higher-dimensional problems by using DIRECT to optimize over randomly-chosen subsets
of one or two variables at a time (block coordinate descent). Finally, Scitovski and Sabo [59]
use DIRECT to help solve partitioning problems: they run DIRECT for few iterations to get
a good initial partition, and then fine-tune with the k-means clustering algorithm.

4 Conclusion

In this paper we reviewed the original DIRECT algorithm, highlighted its strengths and
weaknesses, and surveyed the efforts by various authors to modify and extend DIRECT to
address these weaknesses. Each modification has unique features, but we can roughly divide
them into five groups, based on their key innovation, as shown in Table 1.

The first group keeps DIRECT’s rectangular partitioning strategy, but modifies how rect-
angles are selected for further search. This group includes the locally biased DIRECT
(DIRECT-l) [18]; multi-level DIRECT (MrDIRECT) [38,39]; DIRECT-GL [68]; and
ADC [63]. All these methods focus on addressing the first two weaknesses of DIRECT:
low convergence rate in solution refinement and delay in finding the global optimum due to
excessive local search around a local minimum or insufficient global search. These meth-
ods have the advantage that they stay within the DIRECT framework of a rectangular space
partition and avoid hybridizing DIRECT with a separate local optimizer.

The second group includes methods that explore modifications to DIRECT’s partitioning
scheme. The papers by Paulavičius et al. [50,51] explore the possible advantages of parti-
tioning the space into simplexes as opposed to rectangles. The conclusion was that sampling
the vertices of the simplexes was better than sampling their centroids, and that this approach
may have a small advantage over rectangular partitions. Intuitively, the advantage of simplex
partitioning is that each region is represented by n + 1 sampled points as opposed to just
one and, hence, the true value of sampling in the region may be better captured. On the
other hand, because this approach starts by sampling all 2n corners of the search space, it
is limited in practice to low-dimensional problems. The papers by Paulavičius et al. [52,53]
consider rectangular partitions, but subdivide rectangles using bisection instead of trisection
and sample two points within each rectangle instead of one.

The third group only contains HD-DIRECT. This method addresses the fact that DIRECT
performs poorly in high dimensions by running successive cycles of DIRECT using ever
more restrictive lower and upper bounds. As we have seen, this definitely speeds up con-
vergence relative to DIRECT on high-dimensional problems, especially when high accuracy
is desired. But the algorithm is still extremely slow on simple convex problems such as the
sphere problem (minimize

∑15
1 x2k on [−3, 7]15). Like DIRECT itself, HD-DIRECT has no

mechanism to extrapolate/interpolate clear trends in the data.
The fourth group hybridizes DIRECT with a separate local optimization algorithm. In our

view, this is a key innovation: the local optimizer can rapidly fine tune a local solution found
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by DIRECT to higher accuracy, exploit any obvious local trends such as monotonicity, and
improve performance in higher dimensions. Of the algorithms in this group, DIRMIN [40]
is the most brute-force, running a local search from the center of every selected rectangle.
Jones’ revision of DIRECT [29] is more economical, running a local after the first 100 or so
evaluations, and then again whenever continued global search with DIRECT improves upon
the best local solution. The glcCluster method [26] runs DIRECT for quite a few function
evaluations (the default is 100n+1), clusters the sampled points to identify promising regions,
and finally launches a local optimizer from the best point in each cluster. The last method
in this group, Gb-BIRMIN [53], uses the globally-biased selection method to help find the
location of the global minimum and hybridizes this with a local optimizer to refine solutions
to high accuracy.

The fifth group uses a flexible partition strategy together with metasurfaces (e.g., kriging)
to help interpolate and extrapolate trends in the data. The eDIRECT algorithm [36] has the
most flexible partitioning strategy because it is based on Voronoi cells and can accept any
set of initial points, such as a Latin hypercube. A kriging metamodel is fit to the observed
function values at the sampled points and is used to help decide where to sample inside the
potentially optimal Voronoi cells. The kriging model is also optimized over the entire space
(thereby exploiting any clear trends in the data), and the solution is added to the Voronoi
partition.

Which of these extensions is best? This question is hard to answer because there are
few common problems for which results are compared. Moreover, which algorithm works
best depends on the difficulty and dimensionality of the problem. However, there are some
features that we conclude to be generally beneficial:

– Hybridizing DIRECT with a local optimizer can be a key enabler for speeding up con-
vergence.

– Splitting a selected rectangle on one long side, instead of all long sides, generally speeds
up convergence.

– When several rectangles are tied for being potentially optimal, selecting just one (instead
of all of them) speeds up convergence.

– Detecting and exploiting trends by fitting global or local response surface models to the
sampled points makes more thorough use the data and can improve performance. Clus-
tering the sampled points to identify promising areas for local search (as in glcCluster)
is another way to exploit trends in the sampled data.

– Adding a mechanism, such as DIRECT’s ε parameter, to stop the selection and subdivi-
sion of extremely small rectangles is generally beneficial, as it avoids wasting precious
function evaluations on very small improvements.

– Samplingmore than one point per partition region, such as in BIRECT [52] or DISIMPL-
V [51], makes it less likely that DIRECT converges slowly because the region with the
global minimum has been “unluckily” sampled at a nearby point with a bad function
value.

A special challenge for all thesemethods isworking effectively across problems of varying
levels of difficulty. Most of the methods have a fixed strategy for how they balance local and
global search and do not adapt based on the results of the evaluations. For example, the
DIRECT-GL method does a global and local selection step each iteration, regardless of
whether or not more local search is actually needed (e.g., if the current best solution has
remained unchanged for several iterations, one might conclude that there is no need for
another local step). The ADC and Gb-BIRECT methods are exceptions in that they continue
the local search phase until no improvement is made, and only then switch to the global
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search phase. Similarly, the global phase is continued until it improves upon the last local
solution, at which point the local phase is started.

Additional research opportunities exist in mixing andmatching features from the different
algorithms surveyed, trying to combine multiple good features in one package. For example,
the efficient diagonal sampling strategy of the ADC method, or the bisection method of
BIRECT, could be substituted for centerpoint sampling in the original DIRECT, DIRECT-
GL, orMrDIRECT algorithms. Borrowing an idea from eDIRECT, a kriging response surface
could be periodically fit to the points sampled by the other DIRECT variants and the surface
then optimized to suggest a good point for sampling or for starting a local search. The
adaptive diagonal curves (ADC) method could be hybridized with a local optimizer to enable
it to be competitive not only on hard problems when we have a large computational budget,
but also on smaller problems with a lower computational budget. The zoom-in strategy of
HD-DIRECT could be combined with the other DIRECT variants to help those variants
stretch to higher dimensions. The DIRECT-GL and PLO methods could keep their special
selection method (selecting rectangles nondominated on function value and size), but borrow
DIRECT’s method using the ε parameter to put a limit on how small a selected rectangle
can be. These are just some of many possibilities. If the past is any precedent, we can expect
more DIRECT variants to appear in the next 25 years.
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