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Abstract
Deterministic global optimization algorithms like Piyavskii–Shubert, direct, ego and many
more, have a recognized standing, for problems with many local optima. Although many sin-
gle objective optimization algorithms have been extended to multiple objectives, completely
deterministic algorithms for nonlinear problems with guarantees of convergence to global
Pareto optimality are still missing. For instance, deterministic algorithms usually make use
of some form of scalarization, which may lead to incomplete representations of the Pareto
optimal set. Thus, all global Pareto optima may not be obtained, especially in nonconvex
cases. On the other hand, algorithms attempting to produce representations of the globally
Pareto optimal set are usually based on heuristics. We analyze the concept of global conver-
gence for multiobjective optimization algorithms and propose a convergence criterion based
on the Hausdorff distance in the decision space. Under this light, we consider the well-known
global optimization algorithm direct, analyze the available algorithms in the literature that
extend direct to multiple objectives and discuss possible alternatives. In particular, we pro-
pose a novel definition for the notion of potential Pareto optimality extending the notion of
potential optimality defined in direct. We also discuss its advantages and disadvantages
when compared with algorithms existing in the literature.
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1 Introduction

We consider the class of exact (or deterministic) global optimization algorithms and their
possible extensions to the multiobjective optimization case. Among their characteristics,
these algorithms exhibit appreciable convergence speed when the dimension of the decision
space is moderate, but their specific strength is global convergence, the proved ability of
approximating the global optimum of a black-box function with an arbitrary accuracy as e.g.,
in [22,30,32,35,36,40,41].

Since many real-world problems have multiple conflicting objectives to be optimized
simultaneously, we concentrate here on multiobjective optimization. Such problems have
so-called Pareto optima, where none of the objective functions can be improved without
impairing some of the others.

Some exact single objective optimization algorithms have inspired or have been used as
components inmultiobjective optimization algorithms like [9,16,21,24,25]. Nevertheless, the
class of exact, global multiobjective optimization algorithms has not been developed to the
same extent as its single objective counterpart. Indeed, in most cases,

1. a single objective exact global algorithm is employed after themultiobjective optimization
problem has been scalarized (e.g., [3,4,45]) or

2. an exact global algorithm is hybridized at some level with one or more non-deterministic
principles (e.g., [4,21,42]).

As a result, these algorithms can suffer from the following drawbacks:

1. If scalarization is used, a (discrete) subset of the Pareto optimal set will be accurately
approximated and the quality of the approximation depends on the number of scalarized
problems solved.

2. If hybridization with heuristics is used, a wide subset of the set of Pareto optima can
be approximated, but heuristics cannot guarantee optimality. Moreover, in general, the
convergence rate will be slower than in scalarization based algorithms.

In this paper, we are interested in globally convergent deterministic multiobjective opti-
mization algorithms. By saying that a multiobjective optimization algorithm is globally
convergent, we mean that it should be able to produce an arbitrarily accurate representa-
tion of all the connected components of a globally Pareto optimal set, given a sufficiently
large number of function evaluations.

As mentioned above, although global convergence and deterministic characters are desir-
able features, it is not easy to attain them both in algorithm design. Furthermore, the question
of global convergence has not been considered inmany papers in the domain ofmultiobjective
optimization [4,12,19,23–25,31,41].

The first contribution of this paper is clarifying the notion of global convergence in the
case of multiple objectives on the basis of the Hausdorff distance between sets. Indeed,
the use of set-based distances like Hausdorff is not relevant for single objective optimization
algorithms, because the global optimum for single objective optimization is a unique value in
the objective space, corresponding to a set of minimizers in the decision space that in a typical
case consists of a unique point, but can consist of more than one point or even an infinite
number of points in pathological cases. Therefore, the Euclidean distance between the exact
minimizer and an approximated minimizer is the only necessary concept for establishing a
convergence speed.

This is not the case in multiobjective optimization, where in the generic case, the set of
Pareto optima is a (k − 1)-dimensional submanifold of the objective space, if k > 1 is the

123



Journal of Global Optimization (2021) 79:387–412 389

number of objectives. To establish the convergence speed of a multiobjective optimization
algorithm, it is necessary to measure the distance between the exact Pareto optimal set and
the approximated Pareto optimal set. This issue is not addressed univocally in the literature.

The second contribution is an analysis and a discussion of the well-known direct algo-
rithm [20] and its extensions to multiple objectives. We focus on direct because it has been
recognized as an efficient algorithm formedium sized problems in the decision space. Indeed,
direct does not suffermuch of the curse of dimensionality unlike, e.g., the Piyavskii–Shubert
algorithm [33,37]. Furthermore,directdoes not require any global information (e.g., a global
Lipschitz constant) to be globally convergent and, finally, it has been a starting point for many
efficient single objective optimization algorithms.

In the original direct algorithm, the feasible set is the d-dimensional hyperinterval D =
[0, 1]d ⊆ R

d . D is covered by small hyperintervals D1, . . . , DN , where D� = [a(�)
1 , b(�)

1 ] ×
· · · × [a(�)

d , b(�)
d ], with 0 ≤ a(�)

i < b(�)
i ≤ 1, 1 ≤ i ≤ d , such that ∪N

�=1D� = D. direct
contains two fundamental steps: a subdivision step and a selection step. In the division
step, one of the small hyperintervals D� of the covering of D is partitioned into smaller
hyperintervals. In the selection step, the hyperintervals that are likely to contain the minimum
are selected for further subdivision. The selection rule is based on a notion of potential
optimality. This notion cannot be extended to multiple objectives in a straightforward way.
We present, therefore, a review and a discussion of the existing extensions of direct. Next,
we propose a novel formulation for the notion of potential Pareto optimality, which is as
faithful as possible to the original single objective version. We also discuss the strengths and
weaknesses in comparison with the existing alternatives.

As far as the rest of this paper is concerned, we provide background in Sect. 2 by intro-
ducing the main concepts and notations used in the rest of the paper. Furthermore, we give
a literature survey of deterministic, global multiobjective optimization algorithms, in partic-
ular, those based on direct. For the convenience of the reader, we also briefly resume the
single objective direct algorithm. In Sect. 3, we discuss the notion of global convergence in
single objective optimization, as it has been interpreted in the literature. Then we extend the
focus to how it should be formulated to guarantee that an algorithm will accurately represent
every possible connected component of a Pareto optimal set in multiobjective optimization.
In Sect. 4, we discuss how the principles of direct have been extended to multiple objectives
in the literature and analyze possible alternatives. These ideas are collected and presented in
the proposed multidirect algorithm. In Sect. 6, we discuss the behavior of multidirect, the
multiobjective extension of the Piyavskii–Shubert algorithm mPS [25] and another direct
extension developed recently [1] on a simple but paradigmatic example defined in [19].
Finally, we conclude in Sect. 7.

2 Background

2.1 Some concepts of single andmultiobjective optimization

There is a fundamental aspect that distinguishes the global optimization of a single function
and several objective functions. Let us first consider the optimization problem with a single
objective continuous function

f : D → R, D = [0, 1]d ⊆ R
d , minimizex∈D f (x), (1)
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where D is called a feasible set in the decision space Rd and there are no other constraints.
Because of compactness, the set of globally optimal objective function values for problem
(1) is a single value that often corresponds to a unique optimal point in the decision space.

In some cases, even an infinite number of optimal points can correspond to the unique
optimal value. However, this situation can be proved to be nongeneric, i.e., for a dense set in
a suitable set of functions, there exists only one optimal value with a unique corresponding
optimal point in the decision space. This is a consequence of Sard’s theorem and Morse’s
lemma [17]). Therefore, the global convergence of single objective optimization algorithms
is established by requiring that the globally optimal value is approximated as accurately as
desired, given an infinite number of function evaluations. In the generic case, this determines
a unique optimum also in the feasible set D.

In the case of multiple continuous objectives, i.e.,

f : D → R
k, D = [0, 1]d ⊆ R

d , minimize
x∈D f (x), (MOP)

where f (x) = ( f1(x), . . . fk(x)) is called an objective vector in the objective space Rk , in
general, it is not possible to completely order multidimensional vectors. Indeed, one vector
can be better than another one when considering their first components, but the converse may
happen when comparing the second components. Therefore, none of the two vectors can be
said to be better than the other one. Only in special cases, say, pathological ones, there could
exist a point which is the global optimum with respect to all the objective functions at the
same time. In such cases, multiobjective optimization methods are not needed.

To dealmore rigorouslywith optimality, it is necessary to consider the notion of dominance
[18,29]. An objective vector z in R

k dominates another objective vector w ∈ R
k , and we

write z ≺ w, if zi ≤ wi for all i and there exists j such that z j < w j .
We say that a point x is a (global) Pareto optimum if f (x) is nondominated by any other

f (y), for y in the feasible set D. The set of Pareto optima form a Pareto set P . The set of
corresponding objective vectors, i.e., { f (x) : x is a Pareto optimum} is called a Pareto front.
If a point x is nondominated by any other point in one of its neighborhoods, it is called a local
Pareto optimum. If a Pareto optimum is not a minimizer for one of the objective functions
considered individually, we call it a tradeoff point. If objective functions have been evaluated
only for a finite number of points S = {x1, . . . , xN } ⊆ D, we can consider the subset of
S consisting of the Pareto optimal points only with respect to S and not with respect to the
entire D. These points cannot be guaranteed to be Pareto optimal, although they are used
as an approximation of the Pareto set. We call this subset a nondominated subset of S and
denote it by ND(S). We recall also a widely used concept related to Pareto optimality [29,
Definition 2.5.1]. A point x ∈ D and the corresponding objective vector f (x) are weakly
Pareto optimal if there does not exist another point y ∈ D such that f j (y) < f j (x) for all
j = 1, . . . , k.

2.2 Literature survey

In what follows, we discuss multiobjective optimization algorithms currently available in the
literature that are either deterministic or related to the problem of finding the set of global
Pareto optima. Special attention is dedicated to algorithms extending or involving direct.

NormalBoundary Intersection (nbi) [10] is a deterministic algorithm capable of producing
an evenly spaced discretization of the Pareto front by defining a family of scalar subproblems
of the original multiobjective optimization problem. nbi is based on continuation, i.e., it finds
connections among different Pareto optima. nbi starts from a Pareto optimal point, which is
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(b)(a)

Fig. 1 Panel a: application of sicon [23] to L&H2x2 [19]. The algorithm detects correctly all the different
connected components of the Pareto set. Panel b: application of the NBI algorithm to the L&H2x2 problem.
The starting set is a regular grid. The algorithm correctly traces only one of the connected components of the
Pareto optimal set, missing the second component. (Numerical experiment on modeFRONTIER® courtesy
by E. Rigoni at ESTECO s.r.l.).

the solution of one of the scalar subproblems, and identifies the local connected component
of the Pareto set containing the starting point. In recent years NBI has been extended and
generalized in other algorithms, see for instance [3]. As a drawback, in nonconvex cases, nbi
possibly misses multiple isolated components, giving rise to an incomplete representation of
the Pareto set.

This issue is observed in [10] and discussed in [23], where a continuation algorithm
detecting correctly all the separated connected components, called sicon, is introduced. See
Fig. 1a for an illustration of such a phenomenon for a nonlinear and nonconvex problem,
called L&H2x2 [19] (in both decision and objective spaces). In it, the Pareto set consists of
two components, although their images are mapped in a single connected Pareto front.

Another deterministic continuation algorithm is proposed in [34] solving the first order
Karush–Kuhn–Tucker (KKT) conditions for Pareto optimality. Points satisfying the KKT
conditions are called substationary. Substationary points found are approximated by a col-
lection of boxes obtained by an iterative subdivision of the feasible set of the problem. This
algorithm has two main drawbacks: first it approximates only one connected component of
the Pareto set and, second, the set of substationary points is a strict superset of the Pareto set.

In [12], the authors extend the ideas of [34] and propose an algorithm that, by using
the properties of a suitably defined dynamical system, approximates a set of substationary
points (as defined above). The output of the algorithm is a covering of a set composed by a
collection of boxes. The authors discuss convergence towards a global Pareto set in a similar
way as done in this paper by adopting the notion of a Hausdorff distance between sets. The
main difference to our algorithm is that for the global convergence, the connectedness of the
Pareto set is required and, therefore, multiple connected components of the Pareto set cannot
be handled properly.

Singular Continuation (sicon) proposed in [23] is another continuation algorithm based
on both the first and second order optimality conditions proposed by Smale in [38]. It has
some similarities with [12]. To be more specific, sicon aims at approximating the set of
substationary points. In addition, sicon takes into consideration the second derivatives and,
therefore, substationary points can be separated in the multiobjective analogue of minima,
maxima and saddle points. When compared with the previous strategies, sicon can produce
a piecewise linear approximation [2] of the Pareto set in the form of a triangulated surface,
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with a provably Newton-like superlinear accuracy. Furthermore, the algorithm allows for
determining all the connected components of the Pareto set, provided that the starting sam-
pling is dense enough. Indeed, in Fig. 1b, two connected components are detected, but if the
sample of points had been sparser, the algorithm could have missed the smaller component.
The sicon algorithm relies on a Delaunay tessellation of the feasible set and can suffer from
the curse of dimensionality. Because of how it is defined, it is not possible to add new points
and refine the structure automatically, although extensions in this direction are possible.

In [24,25], the question of global convergence is discussed on the basis of the Haus-
dorff distance in the decision space. In [24], an algorithm globally converging towards the
substationary set is proposed, while in [25] an extension of the Piyavskii–Shubert glob-
ally convergent algorithm is introduced and the convergence towards the global Pareto set
is proven assuming that a global Lipschitz constant is known for each objective function.
Lipschitz optimization for univariate problems is considered for the bi-objective case in
[41, Chapter 7], in [46,47], and for the multivariate case in [31]. In [19], the authors dis-
cuss the problem of correctly identifying different components of the Pareto set that may
superimpose when nonconvex objective functions are involved. The aim is to produce glob-
ally correct representations of the Pareto set by means of triangulated surfaces, extending a
previous nonglobal algorithm [18]. A deterministic approach making use of the Hausdorff
distance in the objective space is called the Non Uniform Space Covering Method [14,15].
It provides an ε-approximation of the Pareto front in the sense that the Hausdorff distance
between the Pareto front and its approximation is guaranteed to be smaller than ε > 0,
given some suitable assumptions on the estimation of lower bounds. MultiGLODS [9] is a
hybrid local-global deterministic algorithm combining Direct Multisearch [7], a derivative-
freemultiobjective local optimization algorithm andGLODS [8], a space-filling optimization
method that manages efficiently multiple sequences possibly converging towards the same
Pareto optimal point. Nevertheless, the authors focused on local convergence features and
proved local convergence towards at least one Pareto optimal point.

Let us finally survey some algorithms related to the direct algorithm, although some
of them make partial use of heuristics and are not, thus, fully in our scope of studying
deterministic algorithms. In [1,45], the authors propose three algorithms calledMO-DIRECT,
derived from direct by employing either the ranks of the nondominated sorting [11], the
hypervolume indicator or the nondominance (ND) concept in the objective space augmented
by an extra dimension consisting of the hyperinterval radius. Several numerical performance
tests have been implemented and used for measuring the capabilities of these algorithms. For
the purposes of comparison with the algorithm proposed here, we notice that only ND does
not make use of scalarizations. A proof of global convergence in the sense that the algorithm
will produce an everywhere dense sampling of the feasible set is provided. The code is
available and we provide a theoretical and numerical comparison with MO-DIRECT-ND in
the subsequent sections.

A series of papers [5,6] discusses applications of an extension of direct to damage iden-
tification problems with a numerical comparison with MO-DIRECT [1,45]. The algorithm
proposed uses a scalarization of the multiobjective optimization problem by assigning to a
vector v in the objective space the rank R(v) given by the nondominated sorting. The papers
are application-oriented and the problem of global convergence is not considered.

A multiobjective extension of direct (called modir) is proposed in [4] exhibiting an
engineering application. The algorithmuses a non-explicit scalarization of objectives because
it selects as potentially optimal those hyperintervals that are potentially optimal according
to at least one of the objectives. This definition excludes the selection of tradeoff points.
Nevertheless, the authors provide a proof of global convergence in the sense of everywhere
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dense sampling in an infinite time. As an alternative formulation, the authors also propose
a selection rule based on the nondominated set in the augmented feasible set using the
hyperinterval radius as in MO-DIRECT-ND. The authors also propose a hybridization with
a stochastic local search strategy called DFMA.

An evolutionary hybrid algorithm called NSDIRECT-GA is proposed in [42]. There,
direct is combined with MOGA and compared with NSGA (both evolutionary algorithms,
see [11]).

2.3 The DIRECT algorithm

direct [20] is quite a natural generalization of the Piyavskii–Shubert algorithm [33,37] and
outperforms its ancestor in several senses. First, direct does not require the existence of a
global Lipschitz constant, which usually is not known, and second, direct exhibits a faster
convergence.

In the following subsections, we outline the working principles of direct. This will make
more comprehensible the ideas behind the multidirect algorithm to be proposed. First, we
consider a problem with a Lipschtiz continuous single objective function f for which the
Lipschitz constant is unknown.

2.3.1 Selection rule

In direct, the feasible set D is the d-dimensional hyperinterval D = [0, 1]d ⊆ R
d , covered

by a collection of hyperintervals D1, D2, . . . , where Dj = [a( j)
1 , b( j)

1 ] × · · · × [a( j)
d , b( j)

d ],
with 0 ≤ a( j)

i < b( j)
i ≤ 1, 1 ≤ i ≤ d . The hyperintervals D1, D2 . . . can overlap only along

the faces. The radius σ j of the j th hyperinterval Dj is defined as σ j = maxi=1,...,d
b( j)
i −a( j)

i
2 .

Some of these hyperintervals are selected for subdividivision on the basis of a Lipschitz-like
criterion. Assuming that the function f has been evaluated at the point in the center of the j th
hyperinterval, it is possible to estimate a lower bound for f by fixing a rate of change K > 0
(which has a role similar to a Lipschitz constant) by setting � j = f (x j ) − Kσ j , where x j is
the point at the center of the j th hyperinterval and σ j is the radius of the hyperinterval. By
ordering the sequence of � j we obtain a ranking of the hyperintervals that are most likely to
contain the global optimum of the function f . This ranking can vary when different rates of
change K are chosen. If K is small, hyperintervals with low values of f (x j ) will be highly
ranked, even if they have small σ j . On the other hand, when K is large, hyperintervals with
a large radius σ j will be highly ranked.

We call potentially optimal a hyperinterval j whose lower bound is optimal for a certain
fixed rate of change K , i.e.,

f (x j ) − Kσ j ≤ f (xi ) − Kσi for all i . (2)

We can show that all potentially optimal hyperintervals correspond to points in the lower
face of the convex hull of the following set of points as the rate of change K varies from 0
to ∞, as depicted in Fig. 2:

{(
σ j , f (x j )

) ∣∣∣ j = 1, 2, . . .
}

⊆ R
2. (3)

We call the plane {(σ, f ) : σ, f ∈ R} as an augmented plane of values. At each iteration,
direct picks these potentially optimal hyperintervals on the convex hull and promotes them
for further subdivision in smaller hyperintervals. It is typical that several hyperintervals are
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(a) (b)

Fig. 2 direct selection rule. a Function values evaluated at the center of a hyperinterval versus hyperinterval
radius σ = maxi=1,...,d (bi − ai )/2. The lower bound corresponding to a fixed rate of change K is the
intersection of the line y = f (c j ) + K (σ − σ j ) with the y axis. b Hyperintervals corresponding to points
lying on the lower, right-hand side of the convex hull are potentially optimal

to be subdivided, because as K varies, the lower bounds of each hyperinterval vary and,
therefore, the ranking changes.

This selection rule indeed selects a subset of the Pareto set of a biobjective optimization
problem, where the objective functions are the hyperinterval radius, to be maximized, and
the function value, to be minimized. The subset in fact corresponds to the convex hull of the
Pareto front for this problem.

For practical reasons, a further rule of selection is adopted: the lower bound computed
should improve the current lowest value computed by at least a fixed quantity ε, i.e.,

f (x j ) − Kσ j ≤ fmin − ε | fmin| . (4)

This extra rule prevents oversubdivision of the smallest hyperintervals which could easily
lead to the depletion of the available computational resources without significantly improving
the algorithm performance.

2.3.2 Division rule

A crucial aspect of the algorithm is the way hyperintervals are divided in smaller ones. The
original algorithm proposes first to compute two extra test points along each coordinate
direction of the feasible set, and then on the basis of the values computed, the hyperinterval
is divided in thirds of equal size by first considering the directions where function values are
more promising. So, if we call xi1 and xi2 the new points considered along the i th direction
and fi1 and fi2 the corresponding function values, directions are ranked from the lowest to
the highest min { fi1, fi2}. Then, the most promising directions according to this criterion are
divided in thirds at first, such that the best values are contained in the subintervals with the
largest diameter. This feature improves the convergence speed, because best rated directions
are more likely to be subdivided earlier which increases the density in the neighborhoods of
test points with highest ranking. The division rule is exemplified in Fig. 3.

A further detail is that actually not all the directions are divided but only the ones corre-
sponding to sides with the largest length. We notice that because of the division in thirds at
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(a) (b) (c)

Fig. 3 direct division rule. a Two new points are computed along each direction. b-c Directions are ranked
according to the values computed at the test points. More promising directions are divided first such that the
resulting hyperintervals remain larger

every iteration, the possible radius sizes form a discrete set, although in an infinite time they
will accumulate around zero. This mechanism reduces the computational complexity of the
algorithm and at the same time guarantees that the hyperintervals will not become too small
or skinny.

The ancestor hyperinterval is removed from the list of the radii and function values,
while the new hyperintervals are incorporated. Therefore, a new diagram with radii σi and
corresponding function values fi as in Fig. 2a can be produced and the subsequent steps
performed.

From these rules it can be proved that the direct algorithm is convergent in a global
sense. In other words, in an infinite time, the sequence of points becomes infinitely dense
everywhere.

3 Point-wise and set-wise convergence

In a general nonconvex case, the Pareto front is an infinite set and may be composed
of a number of separate connected components corresponding to different local Pareto
optima (see Fig. 1a). We also refer to this kind of a problem as multimodal. The smooth-
ness of the shapes usually observed for Pareto sets and fronts is not casual, but it can be
proved that under reasonable regularity conditions, the set of Pareto optima in the fea-
sible set is composed of a number of separate connected components. It can be proved
that the connected components of the Pareto set are (k − 1)-dimensional submanifolds
with a boundary and corners, called also stratified sets [27,28]. These connected com-
ponents can superimpose and intersect each other when they are mapped on the Pareto
front as in the example in Fig. 1 (for the explicit definition of the L&H2x2 function, see
[19]).

We also observe that the intersection of the mapped components cannot be eliminated by
a small perturbation of the functions. Therefore, unlike in the single objective case, there
are nonpathological cases when more than one Pareto optimal point is mapped on the same
Pareto optimal objective value. In other words, the correspondence between optimal points
and optimal objective function values is not a bijection. Only in very special situations, i.e.,
pathological cases, the set of Pareto optima is a unique point in the feasible set, or a finite
number of points [18,19,23,27].
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Because the sets of global optima for single objective and multiobjective optimization
problems are very different even from the point of view of geometry and topology, the
corresponding concepts and criteria for global convergence of algorithms must take these
differences into account. In the literature, the global convergence of multiobjective optimiza-
tion algorithms is sometimes discussed in the same terms as single objective cases, i.e., by
showing that an algorithm converges towards a (single) global Pareto optimum.

Definition 1 A deterministic algorithm A is a sequence of instructions that given a function
f : D → R

k , produces a sequence of points x1, . . . , xn, . . . .

Definition 2 If an algorithm A, applied to a function f produces a sequence {x1, x2, . . . },
and x� ∈ cl {x1, x2, . . . }, where cl(S) is the closure of the set S and x� is a global Pareto
optimum for f , we say that A is point-wise convergent.

We refer to this property as point-wise convergence. Clearly, this property completely
misses the global features of the set of Pareto optima discussed above. Indeed, we can give
the following example.

Example 1 Let f : D → R
k , f (x) = ( f1(x), . . . , fk(x)), and let A be a single objective

globally convergent optimization algorithm. If we applyA to, e.g., f1, we obtain a sequence
x1, . . . , xn, . . . having as a limit point one of the global optima x� of the scalar-valued
function f1. Trivially, x� is Pareto optimum, and the algorithm is also globally convergent
in a point-wise sense. This example is illustrated in Fig. 4a, where the red dot is the limit
point, which is also the global minimum for the first objective function, corresponding to the
x axis.

The algorithm in Example 1 confuses the optimum of a single objective function with the
set of Pareto optima of a multiobjective optimization problem. What is worse, this approach,
which is completely unsatisfactory from the point of view of multiobjective optimization, is
satisfactory in terms of point-wise convergence. Let us consider another example.

Example 2 With the same hypotheses of Example 1, we consider a finite family of scalar-
izations g� : D → R, � = 1, . . . ,m, defined by suitable linear convex combinations
g�(x) := λ�

1 f1(x) + · · · + λ�
k fk(x), with λ�

1 ≥ 0,…,λ�
k ≥ 0 and λ�

1 + · · · + λ�
k = 1. If

we apply A to each g�, we obtain a sequence x1, . . . , xn, . . . having as a limit point one of
the global optima x�

� of the scalar function g�, which is a global Pareto optimum for the
vector-valued function f . Because all of the x�

� are global Pareto optima, this approach is
also globally convergent in a point-wise sense. This example is illustrated in Fig. 4b, where
the optimization of five different scalar subproblems is represented by dots of five different
colors. An almost equally spaced sequence of five points on the Pareto front is obtained.

A well-known issue of the scalarization in Example 2 is that optima located in concave
parts of the Pareto front cannot be approximated, but there are scalarizations like [10,44],
that can overcome this problem. In particular, with the method in [10], the Pareto front can be
covered as finely as desired by setting accordingly the number of subproblems. Nevertheless,
as the number of scalar subproblems is fixed at the beginning, the density of points on the
Pareto front does not change. Because the Pareto set is not a discrete and finite set, it is
desirable that, at least in infinite time, the whole Pareto set becomes densely sampled. This
feature is exemplified in Fig. 4c. An optimization algorithm should produce at every new
iteration (each iteration is marked with a different colour) a new set of points approximating
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Fig. 4 Globally failing point-wise convergence: a optimization is carried on considering only one function,
converging towards a (possibly global) optimum of the selected function. bA priori subdivision of the original
problem in a fixed number of subproblems. Standard optimization carried on separate scalar subproblems
leads to point-wise convergence towards a discrete subset of the Pareto set. Global set-wise convergence: c
The approximated Pareto set becomes progressively denser and closer to the exact Pareto set with respect to
the Hausdorff distance between sets. Notice that the Hausdorff distance is measured in the feasible set while
the objective space is shown here

the Pareto set. The points of this set should be closer to the Pareto set at every iteration, but
also the number of points should increase and become more dense.

Based on the observations discussed, it seems more appropriate to consider a set-wise
approach, i.e., the set of Pareto optima should not be approximated in a-point-at-a-time
fashion, as in multi-start algorithms, but it should be approximated as a whole by means of
a sequence of approximating sets of points. Moreover, because it can happen that the same
value in the Pareto front is the image of two or more different points in the feasible set (see
the example in Fig. 1b), it is important to study the approximating sequences of sets in the
feasible set. This is preferable also because the Pareto set in the feasible set usually has a
regular manifold structure that is not guaranteed to be maintained in the objective space. A
suitable concept of distance between sets is needed, and a natural choice is the Hausdorff
distance.

A set-wise global convergence is realized if a multiobjective optimization algorithm pro-
duces at every iteration n a candidate set Sn approximating the whole set of Pareto optima. In
fact, the algorithmcan produce one or a fewpoints at every iteration.Nevertheless, a candidate
set can be defined or updated at every iteration by selecting the nondominated points among
the whole sequence of new and old points evaluated since the algorithm started. Consistently,
a definition for global convergence can be given as follows:

Definition 3 Let P ⊆ D be the set of Pareto optima of problem (MOP). Consider an opti-
mization algorithm producing the sequence of approximating sets S1, S2, . . . . We say that
the algorithm converges globally for the function f if

lim
n→∞ dH (Sn, P) = 0, (5)

where dH stands for the Hausdorff distance.

4 multiDIRECT: an extension of DIRECT tomultiple objectives

Earlier, a multiobjective extension of the Piyavskii–Shubert algorithm [33,37] called multiPS

has been proposed in [25]. Its global convergence in the sense discussed in Sect. 3 can be
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proven. However, as mentioned in the introduction, the Piyavskii–Shubert algorithm has
shortcomings that the direct algorithm does not share.

In this section, we address the problem of extending the strengths of direct to multiple
objectives, focusing on the selection rule (2), (4) and on the division rule defined in Sect. 2.3.2.
We propose the extension to multiple objectives in an as straightforward manner as possible
for both selection and division rules. Before we can introduce the actual new algorithm, we
must present some theoretical considerations.

4.1 Potential Pareto optimality

In what follows, we consider a feasible set D covered by a set of non-overlapping hyperinter-
vals H1, . . . , HN . To each hyperinterval Hi = [ai1, bi1]×· · ·×[aid , bid ], we associate the coor-
dinates of its center c := (c1, . . . , cd), the vector of radii

(
σ1 = bi1−ai1

2 , . . . , σd = bid−aid
2

)
,

and a vector of objective functions values f (c) := ( f1(c), . . . , fk(c)), computed at the center
point c of the hyperinterval. In other words, we refer to a hyperinterval by implicitly con-
sidering the triplet (c, f (c), σ ). When referring to the radius σ of a hyperinterval, we refer
to max {σ1, . . . , σd}. More details will be given in Sect. 4.5 related to the division rule. By
recalling the definition of potential optimality (2), we notice that we first need an extension
of the notion of lower bound:

Definition 4 Let H be a hyperinterval with (c, f (c), σ ). We denote F = f (c). Given a
sequence A = (α1, . . . , αk) of rates of change, one for each objective function, the corre-
sponding vector lower bound is given by

F A := F − Aσ = ( f1(c) − α1σ, . . . , fk(c) − αkσ). (6)

Therefore, a multiobjective version of the notion of potential optimality can be obtained
from (2) by replacing “lower bound”with “vector lower bound” and “optimality”with “Pareto
optimality”. In analogy with the single objective direct, we augment the space of the objec-
tives {( f1, . . . , fk)} with an extra dimension representing the radius σ of a hyperinterval H .
We refer to a vector in this augmented objective space as an augmented objective vector
(F, σ ) = ( f1, . . . , fk, σ ) ∈ R

k+1 of a hyperinterval H = (c, F, σ ).

Definition 5 A hyperinterval Hi = (ci , Fi , σi ) is potentially Pareto optimal if there exists
a sequence A = (α1, . . . , αk) of rates of change such that the vector lower bound F A

i :=
Fi − Aσi = ( f1(ci ) − α1σi , . . . , fk(ci ) − αkσi ) is nondominated in the set of vector lower
bounds corresponding to the same sequence of rates of change:

{
F A
j = Fj − Aσ j

∣∣∣ j = 1, . . . , N , i 
= j
}

.

Example 3 Consider only two hyperintervals H1, H2, with objective vectors F1, F2 ∈ R
2,

with F1 dominating F2, and different radii σ1 < σ2 as in Fig. 5a. A set of rates of changes
A := (α1, α2), α1,2 ≥ 0 produces vector lower bounds F A

1 = F1−Aσ1 and F A
2 = F2−Aσ2.

It is clear that if α1, α2 are sufficiently small, or even zero, F A
1 still dominates F A

2 , while for
large values of α1 and (or) α2 with σ2 > σ1, F A

2 dominates (or at least will not be dominated
by) F A

1 (see Fig. 5b). Therefore, both H1 and H2 are potentially Pareto optimal.
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Fig. 5 Potential Pareto optimality for two hyperintervals H1 dominating H2, but with σ2 > σ1. a For small
values of A = (α1, α2) we have F

A
2 ≺ F A

1 . bOn the other hand, for sufficiently large A, the lower bound F A
2

is no more dominated by F A
1 . Therefore, both the hyperintervals H1 and H2 are potentially Pareto optimal. c

A corresponding situation in the augmented objective space. Orange and yellow planes are the σ -levels of H1
and H2, respectively. The red line is the virtual Pareto front, while the green cone is the dominance cone. The
blue lines are the dominance rays. Dominance rays trivially do not intersect higher σ -levels, because there are
no higher σ -levels at all

Remark 1 Let us extend Example 3 to an arbitrary set of hyperintervals
{
Hj

∣∣∣ j = 1, . . . , N
}
.

We partition the hyperintervals in classes corresponding to the same radius σ , called σ -levels.
Obviously, all nondominated objective vectors correspond to potentially Pareto optimal
hyperintervals. Indeed, they remain nondominated for small values of the rates of change
(α1, . . . , αk). At the same time, let us consider hyperintervals in the σM -level, with σM being
the maximal radius of the hyperintervals. Then, also the nondominated hyperintervals in the
σM -level are potentially Pareto optimal, because for sufficiently large values of (α1, . . . , αk)

they surpass all the vector lower bounds of hyperintervals with a smaller radius.
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Example 4 Consider three hyperintervals H1, H2, H3 with objective vectors F1, F2, F3 ∈ R
2,

with F1 ≺ F2, and F2 ≺ F3 and different diameters σ1 < σ2 < σ3 as in Fig. 6. Because of the
above observations, it is clear that H1 and H3 are potentially Pareto optimal, corresponding
to very small and very large values of the rates of change α1 and α3, respectively. Let us
then consider H2 to determine if some (α1, α2) exist such that the vector lower bound is not
dominated by lower bounds corresponding to other points.

As can be observed in Fig. 6a, for values of α1, α2 being large enough, the vector lower
bound of H2 surpasses the vector lower bound of H1. The problem is that at the same
time, the corresponding vector lower bound of H3 can surpass F A

2 , vanishing its attempt to
become nondominated. This happens for A = (α1, α2) close to the line connecting F1 to
F2. Nevertheless, we observe in Fig. 6b, that there are directions, close to the vertical and
horizontal lines, where there is still a possibility for F A

2 to become nondominated.
All of these possibilities are more understandable by examining the animation available

at http://www.mit.jyu.fi/optgroup/extramaterial.html.

The definition of potential Pareto optimality requires to check for infinite values of the rates
of change (α1, . . . , αk). In the standard direct, it is possible to characterize geometrically
the condition of potential optimality, as illustrated in Fig. 2, with the convex hull of the set
{(σi , fi )} in the augmented plane and reduce the problem to a finite number of checks.

Question 1 Is it possible to characterize geometrically the set of potentially Pareto optimal
hyperintervals?

In the literature, there have been some attempts to extend the notion of potential optimality.
In [4], a hyperinterval is called potentially optimal if it is potentially optimal for at least one
of the objectives. In [1], the set of potentially Pareto optimal hyperintervals is approximated
by a set of nondominated vectors in the augmented objective space. In a previous paper [26],
we have considered the convex hull of the set of nondominated vectors in the augmented
objective space. As we will see in the following, the notions of [4] and [26] are too restrictive,
while the one in [1] is too conservative.

4.2 Selection rule

Considering Example 3, we visualize hyperintervals in the augmented objective space by
adding σ as extra dimension. In this framework, the set of vector lower bounds F A

i :=
F A(ci ) = ( f1(ci ) − α1σi , f2(ci ) − α2σi ), i = 1, 2, corresponds to the intersections of
the lines σ �→ ( f1(ci ) − α1(σi − σ), f2(ci ) − α2(σi − σ), σ ) ∈ R

3 with the hyperplane
{σ = 0} ⊂ R

3. If the values (α1, α2) are small, the lines are steep and the intersections are
close to the original values, and F A

1 dominates F A
2 . On the other hand, if the values (α1, α2)

are sufficiently large, i.e., the lines are closer to the horizontal plane and F A
2 will be no more

dominated by F A
1 .

Definition 6 Let Ĥ = (ĉ, F̂, σ̂ ) and A = (α1, . . . , αk). We denote by F̃(A, σ ) ∈ R
k the line

given by σ �→ F̃(A, σ ) := F̂ + A(σ − σ̂ ). With this notation, the vector lower bound F̂ A is
given by σ = 0, i.e., F̃(A, 0) = F̂ − Aσ̂ . If F̂ is dominated by an Fi with σi < σ̂ , we call a
dominance ray the line in R

k+1 connecting (F̂, σ̂ ) to (Fi , σi ). With the notation above, the

dominance ray is defined by setting A = Fi−F̂
σi−σ̂

:
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Fig. 6 Potential Pareto optimality for three hyperintervals on different σ -levels. aVector lower bounds for H1
and H3 both dominate the vector lower bound for H2 for rates of changes α1 and α2 with the same magnitude.
b If α1  α2, the vector lower bound for H2 is no more dominated. c Correspondingly, in the augmented
space we see that some of the dominance rays intersect the higher σ -levels in points that are nondominated
in the σ -level. d If there are two objective vectors F3 and F4 in the upper level dominating the intersection of
the dominance cone of H2 with their σ -level, then H2 is not potentially Pareto optimal. Notice that the most
important rays (in blue) are at the extrema of the virtual Pareto front (i.e., the red line). Colors are available in
the online version of the paper

σ �→ (
F̃ (A, σ ) , σ

) = (
F̃i (σ ), σ

) :=
(
F̂ + Fi − F̂

σi − σ̂
(σ − σ̂ ), σ

)
. (7)

Note that F̃i (σ̂ ) = F̂ and F̃i (σi ) = Fi , as claimed. Moreover F̃i (0) is the vector lower bound
both for F̂ and Fi when A as above is used.

Proposition 1 A hyperinterval Ĥ is potentially Pareto optimal if and only if there exists a set
of rates of change A = (α1, . . . , αk) such that the intersection of the ray σ �→ (F A(σ ), σ ) :=
(F̂ + A(σ − σ̂ ), σ ) with every σ -level is nondominated by the objective vectors Fi corre-
sponding to that σ -level, i.e., such that σi = σ .

Proof We observe that Ĥ is potentially Pareto optimal if and only if there exists A
such that F̂ A is nondominated in the set of lower bounds associated with A, i.e.,{
F A
i = Fi − Aσi | i = 1, 2, . . .

}
. Moreover,

F̂ A ≺ F A
i ⇐⇒ F̂ − Aσ̂ ≺ Fi − Aσi ⇐⇒ F̂ + A(σi − σ̂ ) ≺ Fi . (8)
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But F̂ + A(σi − σ̂ ) is exactly the intersection with the σi -level of the line σ �→ (
F̃(A, σ ), σ

)
passing through (F̂, σ̂ ). The claim follows immediately. ��

We introduce a subset of the objective space very important for the geometric characteri-
zation of potential Pareto optimality.

Definition 7 Let E =
{
v ∈ R

k
∣∣∣ F̃j (0) � v � F̂ for some j ∈ {1, . . . , t}

}
. We refer to the

following set as a virtual Pareto front:

V P[F̂] :=
{
(v, 0) ∈ R

k+1
∣∣∣ v ∈ E, v is weakly Pareto optimal in E

}
. (9)

The cone of lines connecting (F̂, σ̂ ) with the virtual Pareto front is called dominance cone
of Ĥ .

In Figs. 5c, 6c, d, and 7b, the virtual Pareto front is highlighted in red, while the dominance
cone is the green surface (colors available in the online version of the paper).

Proposition 1 requires that a high-dimensional infinite set of possible rates of change
A = (α1, . . . , αk), αi ≥ 0, is checked in order to determine whether Ĥ is potentially Pareto
optimal. Nevertheless, it suffices to check only for A in a lower-dimensional subset.

Proposition 2 A hyperinterval Ĥ is potentially Pareto optimal if and only if there exists
A = (α1, . . . , αk) such that (A, σ̂ ) is in the dominance cone of Ĥ , and the intersection of the
ray F̃ A(σ ) := F̂ + A(σ − σ̂ ) with every σ -level is nondominated in the σ -level, for every
level σ > σ̂ .

Proof If such a ray A ∈ R
k existed, it would be possible to find one Ã in the dominance

cone by picking the ray passing by the intersection of the virtual Pareto front and the line
connecting F̂ A and F̂ . Indeed, consider λA in place of A, with 0 < λ < 1. By continuity,
there exists a neighborhood of 1 such that F̃λA is still nondominated, as well as for the
intersections of the dominance ray with the σ -levels with σ > σ̂ . The infimum of such
values of λ, by definition, corresponds to a point in the virtual Pareto front. ��

Proposition 1 is the multiobjective extension of the geometric criterion in (2). As equation
(2) requires an infinite number of checks, i.e., all values α, 0 < α < ∞, also Propositions 1
and 2 would require to test an infinite number of A’s, at least to say that Ĥ is not potentially
Pareto optimal. In the single objective case, it is possible to limit oneself to the slopes of
the lines connecting points in the convex hull of the augmented function values, therefore to
reduce to a finite number of tests. This is possible also in the multiobjective case.

Definition 8 Tipping vectors T ip are elements in the virtual Pareto front which are non-
dominated if the dominance relation is reversed by using � in place of ≺, i.e., T ip =
−ND(−V P[F̂]).
Remark 2 In the biobjective case, tipping vectors are the concave vertices of the virtual
Pareto front, plus the two extrema. In Figs. 5, 6, 7, the tipping vectors and the corresponding
dominance rays are highlighted in blue (colors are available in the online version of this
paper). Solid blue lines correspond to intersections that are nondominated in all the higher
σ -levels, while dashed lines correspond to dominated intersections in some of the higher
σ -levels.

Theorem 1 An hyperinterval Ĥ is potentially Pareto optimal if and only if there exists a
tipping vector T such that the ray connecting (F̂, σ̂ ) with T is not intersecting the regions
dominated by the remaining vectors Fi for each of the σ -levels with σ > σ̂ .
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Fig. 7 Geometric characterization of potential Pareto optimality for six hyperintervals. Here, F1 and F2 belong
to the same σ -level, as well as F4, F5 and F6, i.e., σ1 = σ2 < σ3 < σ4 = σ5 = σ6. Since F1 and F2 are
nondominated, they are potentially Pareto optimal. While F4, F5 and F6 are nondominated in the higher
σ -level, they are also potentially Pareto optimal, according to Remark 1. The problematic hyperinterval is H3.
By inspecting the tipping vectors (blue dots) and the respective dominance rays we see that the central ray
intersects the higher σ -level in a nondominated point. Hence, also H3 is potentially Pareto optimal

Proof For every vector F̂ − Aσ̂ in the virtual Pareto front, there is (at least) a tipping vector
T such that F̂ − Aσ̂ ≺ T . Concerning the intersections of the corresponding dominance
cones with higher σ -levels, they are F A

σ = F̂ + A(σ − σ̂ ) and Tσ = F̂ + (T − F̂) σ−σ̂
0−σ̂

.

Explicit calculation with σ > σ̂ and F̂ − Aσ̂ ≺ T shows that Tσ ≺ F A
σ and, therefore, if

F A
σ is nondominated in the σ -level, also Tσ is nondominated. ��

Example 5 In Example 4, all hyperintervals are potentially Pareto optimal. This appears also
in Fig. 6c, where we observe that the dominance rays corresponding to two tipping vectors are
nondominated in the higher σ -level (solid blue lines; colors available online). Consider four
hyperintervals H1, H2, H3, H4, with objective values F1, F2, F3, F4 ∈ R

2, with F1 ≺ F2,
F2 ≺ F3 and F2 ≺ F4 as in Fig. 6d. In this case, H2 is not potentially Pareto optimal. Indeed,
all the dominance rays passing by vectors in the virtual Pareto front are dominated in the
higher σ -level (dashed blue lines; colors available online).

Example 6 Consider six hyperintervals H1, H2, H3, H4, H5, H6, with F1, F2 ≺ F3, F3 ≺ F5
as in Fig. 7, with σ1 = σ2 < σ3 < σ4 = σ5 = σ6. In this case, H3 is potentially Pareto
optimal, because the dominance ray (solid blue line) corresponding to the central tipping
vector does not intersect the dominated region in the higher σ -level. The dominance rays of
the remaining tipping vectors are dominated in the higher σ -level (dashed blue lines).

4.3 Supplementary condition for potential Pareto optimality

An important condition in the definition of potential Pareto optimality is (4), which depends
on a small parameter ε. However, according to the authors of direct ([20]), the algorithm
seems quite insensitive on themagnitude of the parameter, provided it is smallwhen compared
to the magnitudes of the ranges of the objective function values. This parameter dependent
condition is critical for avoiding that the algorithmwastes excessive computational resources
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on exploring regions with very small potential improvement. This condition, therefore, is
important for efficiency.

As far as we know, in the literature, condition (4) of direct has never been adapted and
implemented for multiobjective cases. If we denote by |F | the vector of absolute values of
the components of F , i.e., |F | := (| f1(c)| , . . . , | fk(c)|), we require the vector lower bound
F̂ A being nondominated by the objective vectors Fi diminished by a quantity proportional
to ε and |Fi |:

F̂ A is nondominated by the set
{
Fi − ε |Fi |

∣∣∣ i = 1, . . . , N
}

:=
{
( f1(ci ) − ε | f1(ci )| , . . . , fk(ci ) − ε | fk(ci )| , )

∣∣∣ i = 1, . . . , N
}

. (10)

Operatively, this has no effect on the vectors belonging to the σ -level with maximal σ .
For the vectors belonging to the intermediate σ -levels, it is necessary to substitute the tipping
vectors T in Theorem 1 with

T −→ T + ε |T | . (11)

This does not implement exactly condition (10), but it appears as a valid approximation.
Notably, condition (10) implies that also nondominated vectors belonging to the lowest σ -
level, whichwere automatically selected as potentially Pareto optimal, should also be filtered.
For these points, however, there is no tipping vector defined, because there are no dominating
vectors from which to compute a virtual Pareto front. Therefore, we use the objective vector
F̂ as a tipping vector, then we proceed as above by subtracting a vector proportional to |F |
and ε, as for the previous case. The dominance ray is the line passing through (F̂, σ̂ ) and
(F̂ − ε |F | , 0). If the dominance ray intersects all the higher σ -levels in a vector that is
nondominated for all possible σ , then the hyperinterval Ĥ is potentially Pareto optimal.

Aswewill see in Sect. 6, this condition becomesmore andmore influential in the later iter-
ations. There, a large part of the points on the Pareto front, which becomes denser and denser,
is excluded from selection because the points do not bring a relevant potential improvement.

4.4 Discussion and comparison with the selection rules of other algorithms

Alternative extensions of the concept of potential Pareto optimality are considered in [1,4,26].
In [4], a hyperinterval H is deemed potentially Pareto optimal if it is potentially optimal in
the scalar sense (2) for at least one of the objective functions.

In [26], an exact extension of the geometrical interpretation of potential optimality is
considered as a convex hull of the set of augmented objective vectors. In [1], the nondominated
set of the set of the augmented objective vectors is used as the set of potential Pareto optima.
The same definition is considered also in [4] as a possible alternative.

By considering Example 6, we notice that for the algorithm of [4], the potential Pareto
optima are only H1, H2, H4 and H6. Here, although H5 is a nondominated point in the σ -
level, it is not deemed potentially Pareto optimal because it is not optimal for at least one of
the objectives. In the generic case, the subset of the Pareto set composed by tradeoff points
is a (k − 1)-dimensional submanifold of the decision space, while points that are optimal for
at least one objective considered individually, form a discrete and finite set. Therefore, the
definition in [4] excludes a large part of potentially relevant hyperintervals.

Also according to [26], H1, H2, H4 and H6 are deemed potentially Pareto optimal. In this
case, H5 is excluded because it belongs to a nonconvex part of the nondominated set of the
σ -level. Nevertheless, the notion in [26] is less restrictive because it does not exclude at least
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(a) (b)

Fig. 8 In direct, a ranking among directions is provided by objective function values (a). In themultiobjective
case, a total ordering is not available a priori (b)

the convex parts of the nondominated sets, while [4] can pick as potentially Pareto optimal
only the extrema of the subfronts.

On the other hand, if we consider the nondominated subset of the augmented objective
vectors as in [1], we can say that all hyperintervals H1, . . . , H6 are potentially Pareto optimal,
which is in agreement with Definition 5. However, Definition 5 excludes H2 in Example 4,
while for [1] all H1, . . . , H4 are potentially Pareto optimal. We can conclude that, when
comparing the new definition 5 with the definitions used in the previous algorithms, there is a
possibility that [4] and [26] result in slower in convergence, because they exclude promising
hyperintervals in early iterations. The algorithm of [1] can be slower in convergence, because
it could waste some computational resources for hyperintervals that are less likely to contain
Pareto optimal points thanother hyperintervals. The effectiveness of these different definitions
of potential Pareto optimality are compared in Sect. 6.

4.5 Division rule

The challenges of extending the division rule to multiple objectives are related to the fact that
in the original division rule for the single objective case, a total ordering criterion among the
directions in the decision space is necessary. This total ordering is obtained by testing values
computed at both sides of the central point, as illustrated in Figs. 3 and 8a.

Structurally, this is a feature impossible to be reproduced in multiobjective optimization,
because test values computed along different directions are vector-valued. Thus, they cannot
be compared univocally. This is exhibited in Fig. 8b, where it is clear that comparisons are
not always possible. The central point, for instance, can be compared with points in the first
and third quadrant of the plane, but not with points in the second and fourth quadrant.

In the literature, some criteria have been proposed to extend the division rule using, for
instance, the Euclidean distance of the test point values from the objective functions value
of the center point of the ancestor hyperinterval [1,45]. Other choices are possible, e.g.,
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using an achievement scalarizing function [43] with the central point value as a reference
point. Alternatively, the hypervolume [13] corresponding to each new test point can be
used, producing a scalar value useful for ranking. These algorithms, however, make use
of a more or less explicit reference to the individual scales at which the objective functions
are represented. The Euclidean distance and the hypervolume depend on the function scaling
and the achievement scalarizing function explicitly requires that some weights are provided
to combine the functions. Instead, a lexicographic ordering could be used, but also in this
case an explicit, and arbitrary, ranking among objectives is introduced, which shares the same
drawback observed above.

Of course, in a general case, an a priori ranking among the objective functions, function
ranges or respective global Lipschitz constants is not provided and does not exist in a universal
sense. This means that each of the above-mentioned rankings is somehow arbitrary, i.e., they
introduce a bias that in some cases may be negligible, but in principle it can impair the
functioning and the convergence features of the algorithm.

A possible neutral approach could be an iterative estimation of the Lipschitz constants
(or a reciprocal scaling) on the basis of the values computed so far, and an attractive choice
could be that the directions showing the largest estimated Lipschitz constant could be divided
earlier than the remaining directions to followpossible emerging anisotropy in the feasible set.
Nevertheless, it is preferable, and conceptually cleaner, that the sequence of newly computed
points is completely independent of any ranking or scaling of objective functions. This is
in agreement with the issues discussed in the introduction regarding the existing algorithms
extending or making use of direct and other exact global optimization algorithms.

A possible approach avoiding a total ordering between objectives is to use nondominated
sorting [39], which is a partial ordering. In nondominated sorting, we extract from a finite
discrete set of vector test values the nondominated ones, to form a so-called first subfront.
After removing the first subfront from the starting set we select again the nondominated
vectors from the remaining vectors to form a second subfront, and so on until the original set
is completely emptied. Test values belonging to the same subfront are given the same rank.
The computation of each subfront relies only on Pareto dominance and, therefore, it does
not depend on the function scalings or on any other arbitrary ranking between the objective
functions. Nondominated sorting is illustrated in Fig. 9a, where the first subfront is the blue
one, the second is the orange, etc.

By adopting such a partial ordering among the directions in the feasible space to be
subdivided, we modify the original division rule by splitting at the same time directions
belonging to the same subfront, i.e., having the same rank. This requires that some extra test
point is computed at the center of the extra hyperintervals generated in this way, as can be
seen in Fig. 9c.

In addition to avoiding the use of any ranking between directions or scaling between
objectives, this partial ordering avoids introducing complicated or arbitrary adaptive rules.
On the other hand, it involves some computational burden, that has to be taken into account.
The computational cost of extra points may be acceptable because of the following reasons.
First of all, in typical applications, the dimension of the feasible space, which corresponds
to the number of directions to be divided, cannot be very large, because an exhaustive search
requiring global convergence, i.e., an everywhere dense sampling in an infinite time, cannot
be efficiently performed in high-dimensional decision spaces. Rarely we are considering
decision spaces with dimensions larger than five.

Secondly, not all directions in the decision space are candidates for division but only the
subset corresponding to the longest edges of the hyperinterval, as in the original direct
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(a) (b) (c)

Fig. 9 Division rule. a Test values are grouped in subfronts according to nondominance. b Sometimes the
partial ordering is sufficient for establishing a total ranking among input directions and the classical division
rule can be applied. Numbers represent objective function values. Test points corresponding to the same
direction belong to the same subfront and obtain the same rank. c When a total ranking is not available, a
complete division rule is adopted. Test points corresponding to different directions belong to the same subfront

division rule. Finally, nondominated sorting produces a total ordering among directions in a
considerable number of cases, as can be seen in Fig. 9b.

5 multiDIRECT algorithm

Now we can collect and summarize the ideas discussed in the previous sections about the
possible issues of extending the direct algorithm for multiobjective optimization problems.
Based on the discussion we can design an algorithm to be called multidirect, which is
presented in Algorithm 1.

Algorithm 1 multidirect

Input:Let f be a vector-valued function as in (MOP). Let nIter be the number of iterations to be performed.
Let ε > 0 be a small parameter.

1: Initialize the set of hyperintervals covering the domain D = [0, 1]d by S := {H} with H := (c, F, σ ) =
((0.5, . . . , 0.5), F(0.5, . . . , 0.5), (1, . . . , 1)).

2: for i ter = 1, i ter ≤ nIter, i ter + +, do
3: Group the hyperintervals according to their radius in σ -levels σ L :=

{
H = (c, F, s)

∣∣∣ s = σ
}
.

4: For each σ -level, extract the nondominated set ND(σ L).
5: Initialize the set of candidate hyperintervals Cand with the nondominated set of the σ -level with σ =

σmax , i.e., Cand := ND(σmax L).
6: In the nondominated set of σ -levels with a nonmaximal σ , add the potentially Pareto optimal hyperin-

tervals according to Theorem 1 and condition (11) to Cand.
7: For every hyperinterval inCand, select the input directions with a maximal radius, divide in thirds along

each of these directions and define new test points at the center of each third.
8: Evaluate objective functions on the test points.
9: Determine the partial ordering among directions according to the nondominated sorting.
10: Apply the division rule described in Section 4.5 evaluating new test points where necessary.
11: Update the list S by removing the candidate hyperintervals and adding the newly computed subintervals.
12: end for
13: Extract the nondominated set of the hyperintervals S as the approximation of the Pareto optimal set.

return ND(S).
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We notice that the algorithm is globally convergent.

Theorem 2 The sequence of points generated by multidirect for any function f : D → R
k

becomes infinitely dense everywhere in D in an infinite time.

Proof By recalling Remark 1, we note that for every iteration, the nondominated vectors in
the σ -level with a maximal σ are regarded potentially Pareto optimal. Therefore, in a finite
number of iterations, the maximal σ -level will be emptied, i.e., σmax → 0 in a infinite time.
Then, also the radius of a ball contained in the feasible set and not containing any of the
sampled points, i.e., the centers of the hyperintervals, is tending to zero, because this radius
is smaller than the diameter of the largest hyperinterval multiplied by

√
d . Therefore, the

sampling consisting in the centers of the hyperintervals is deemed to become everywhere
dense. ��

6 Some numerical comparisons

In this section, we demonstrate the numerical behaviour of the proposed multidirect algo-
rithm and compare its performance to other deterministic algorithms. In the sequence of
visualizations in Fig. 10, we present the application of the multidirect algorithm on a biob-
jective problem with two variables named L&H2×2. The problem is defined in [25] and its
Pareto set and front are illustrated in Fig. 1a. We have used the output of the sicon algorithm
as a surrogate for the exact representation of the Pareto set, because sicon produces a set-wise
approximation with a quadratic precision. Furthermore, it was possible to produce a grid of
points of desired density in the Pareto set. On the other hand, we did not compare sicon

with the remaining methods because it is not of the same class as multidirect. Indeed sicon

makes use of first and second derivatives and it is not designed for being globally convergent.
We have decided to compare multidirect with two other algorithms because they were

the only globally convergent and completely fully deterministic ones available. In addition,
we have also tested a version of multidirect with a division rule borrowed from one of the
other algorithms. More precisely, we consider:

1. MO-DIRECT-ND with total ordering in the division rule as in the original paper [1]
(green line),

2. multiPS with the Lipschitz constants computed from the analytical definition of the func-
tions (orange line),

3. multidirectwith the same total ordering for the division rule inMO-DIRECT-ND (yellow
line),

4. multidirect with partial ordering as in Algorithm 1 and ε = 0 (blue line).

To compare the performance of the four algorithms, we have measured at each iteration the
Hausdorff distance between the Pareto set approximation produced by the algorithm under
examination and the surrogate exact Pareto set produced by sicon. In Fig. 11, we plot the
Hausdorff distances versus the number of function evaluations used to produce the current
approximation. In Fig. 11, we also report the mesh size used in sicon, the red horizontal line,
to represent the best approximation level reachable using this surrogate for the Pareto set.

As can be observed, the algorithms using the partial ordering require initially a larger
number of function evaluations but demonstrate better performance in the last iterations.
By observing the two versions of multidirect, i.e., the yellow and blue lines in the online
paper, there are no differences in performance for the first iterations. Actually the blue line
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Fig. 10 Application of themultidirect algorithm to L&H2x2 [19]. For every subpicture, the left panel depicts
the decision space while the right panel represents the objective space. The last subpicture is a representation
of the local Pareto set obtained by sicon [23]

is hidden behind the yellow line. When the selection rule based on the potential Pareto
optimality starts to filter some of the hyperintervals accepted by the ND rule, the number of
function evaluations for every iteration gets smaller while the performances do not deteriorate
sensibly. This results in with an overall better efficiency.

Although the partial ordering division rule used by multidirect appears more costly in the
first iterations, it leads to smaller distances from the global Pareto set in later iterations.

ThemultiPS algorithm appears overallmore efficient than the other algorithms, at least with
103 to 3×104 function evaluations, but it must be taken into account that global information
of the analytical Lipschitz constant has been used and it is usually not available. Using larger
constants implies wasting computational resources in unpromising regions, while smaller
Lipschitz constants may miss to detect some non-negligible portion of the Pareto set.
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Fig. 11 Global convergence rates for the extensions of the direct algorithm. Green line: MO-DIRECT-
ND. Orange line: multiPS algorithm with analytical estimate of the global Lipschitz constant. Yellow line:
multidirect with total ordering as in MO-DIRECT-ND. Blue line: multidirect as in Algorithm 1 and ε = 0.
The red horizontal line represents the mesh size with which the exact Pareto set has been approximated,
therefore the Hausdorff distance cannot go under this value

We can eventually conclude that the overall best performance has been obtained by the
multidirect method, although it required a considerable number of function evaluations.
In particular, it seems that the selection rule based on the new notion of potential Pareto
optimality is a crucial aspect in the efficiency of the algorithm proposed.

7 Conclusions

We have provided a conceptual and theoretical investigation on the notion of global conver-
gence in multiobjective optimization, with a particular emphasis on the notion of potential
Pareto optimality. It is a crucial notion involved in extending the global single objective
optimization algorithm direct to multiple objectives. We have discussed advantages and
disadvantages of the extensions available in the literature and proposed a new extension
called multidirect.

Compared to Lipschitz optimization algorithms, multidirect guarantees global conver-
gence even if Lipschitz constants are not known or do not exist. The introduced notion of
potential Pareto optimality reduces the number of hyperintervals selected for subdivision and
speeds up the convergence when compared to algorithms using more elementary selection
rules. A preliminary numerical investigation confirms the effectiveness of this algorithm.
The combination of potential Pareto optimality with different single objective optimization
algorithms and further numerical investigations will be subjects of future research.
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