
Journal of Global Optimization (2020) 77:197–225
https://doi.org/10.1007/s10898-020-00874-3

New bounding schemes and algorithmic options for the
Branch-and-Sandwich algorithm

R. Paulavičius1,2 · C. S. Adjiman1

Received: 27 February 2019 / Accepted: 4 January 2020 / Published online: 31 January 2020
© The Author(s) 2020

Abstract
We consider the global solution of bilevel programs involving nonconvex functions.
Deterministic global optimization algorithms for the solution of this challenging class of opti-
mization problems have started to emerge over the last few years. We present new schemes
to generate valid bounds on the solution of nonconvex inner and outer problems and examine
new strategies for branching and node selection. We integrate these within the Branch-and-
Sandwich algorithm (Kleniati and Adjiman in J Glob Opt 60:425–458, 2014), which is based
on a branch-and-bound framework and enables the solution of a wide range of problems,
including those with nonconvex inequalities and equalities in the inner problem. The impact
of the proposed modifications is demonstrated on an illustrative example and 10 nonconvex
bilevel test problems from the literature. It is found that the performance of the algorithm is
improved for all but one problem (where the CPU time is increased by 2%), with an aver-
age reduction in CPU time of 39%. For the two most challenging problems, the CPU time
required is decreased by factors of over 3 and 10.

Keywords Global optimization · Nonconvex bilevel programming · Branch-and-Sandwich
algorithm

1 Introduction

Bilevel programming problems (BPP) have a long history in operations research [6,20] and
occur in diverse applications, such as chemical and civil engineering, economics, manage-
ment, transportation etc.; see e.g. [4,10,14,16] and references therein. From the mathematical
point of view, bilevel problems are hierarchical mathematical programming problems where
an outer (upper-level) problem is constrained by an embedded inner (lower-level) problem:

B C. S. Adjiman
c.adjiman@imperial.ac.uk

R. Paulavičius
remigijus.paulavicius@mif.vu.lt

1 Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for
Molecular Science and Engineering, Imperial College London, London SW7 2AZ, UK

2 Present Address: Vilnius University Institute of Data Science and Digital Technologies, Akademijos 4,
08663 Vilnius, Lithuania

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-020-00874-3&domain=pdf
http://orcid.org/0000-0003-2057-2922
http://orcid.org/0000-0002-4573-7722

198 Journal of Global Optimization (2020) 77:197–225

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0, H(x, y) = 0,
x ∈ X , y ∈ argmin

y∈Y
{ f (x, y) s.t. g(x, y) ≤ 0, h(x, y) = 0} ,

(BPP)

where the n-dimensional vector x ∈ X � Rn denotes the outer (leader) variables and
the m-dimensional vector y ∈ Y � Rm denotes the inner (follower) variables. Functions
F, f : Rn × Rm → R denote the outer/inner objective functions, G: Rn × Rm → Rp and
g: Rn ×Rm → Rr are vector-valued outer/inner inequality constraint functions andH: Rn ×
Rm → Rq and h: Rn×Rm → Rs are vector-valued outer/inner equality constraint functions.
In this work, all nonconvex bilevel problems that fall within the class (BPP) are considered
without any convexity assumptions on the functions in the problem. Notice that if for a given
x̄ the inner (sub)problem parameterized by upper level variable x ∈ X :

w(x) = min
y∈Y { f (x, y) s.t. g(x, y) ≤ 0, h(x, y) = 0} , (ISP(x))

has multiple globally optimal solutions in Y to which the follower is indifferent, one must
decide whether to adopt an optimistic or pessimistic formulation [14]. Here the optimistic
(co-operative) formulation is assumed, i.e., the leader can choose among globally optimal
lower-level solutions to achieve the best outer objective value.

Special cases of bilevel programming have been studied extensively, and many algorithms
have been proposed, see e.g., [4,7,8,11,12,14–16,19,28,35,36,43] for reviews. However, the
general nonconvex form is very challenging and only recently were the first methods to
tackle this class of problems proposed. The deterministic approach of Mitsos et al. [27] and
the approximation method of Tsoukalas et al. [41] apply to very general nonlinear bilevel
problems, restricted solely by the absence of inner equality constraints. Recently, both these
approaches were extended as a new discretization-based algorithm for bilevel problems with
coupling equality constraints [17].

The Branch-and-Sandwich (B&S) algorithm introduced in [22,23] makes it possible to
solve general nonconvex bilevel problems that include inner equality constraints provided that
a constraint qualification holds for the inner problem. The theoretical advances in [22] were
demonstrated practically in [23] by applying the algorithm to a library of test problems [26],
using a combination of software and manual application. The impact of some algorithmic
options on performancewas briefly investigated in [30]. Recent efforts to develop a fully auto-
mated implementation of the algorithm have led to further insights and developments that
can result in a significant reduction in the computational effort required to solve nonconvex
bilevel problems. New theoretical findings, together with a revision of the B&S algorithm,
an illustration of the impact of the proposed changes on an illustrative example, and a com-
parison of the computational performance of the various algorithmic options on 10 problems
are presented in this paper. It is assumed that the reader has some familiarity with bilevel
programming and deterministic global optimization. Thus, not all concepts are defined but
appropriate references are provided wherever relevant for readers who are new to the field.
Most aspects of the proposed approach are applicable to the case of mixed integer nonlin-
ear bilevel problems and can therefore be incorporated in the MINLP version of B&S [24],
although the specifics of this are beyond the scope of this paper.

The remainder of this paper is organized as follows. Basic concepts of B&S and notations
are introduced in Sect. 2. In Sect. 3 new bounding schemes for B&S are introduced based
on theoretical analysis. In Sect. 4 the B&S search tree management strategy is extended to
include heuristics for branching and node selection. In Sect. 5 the revised and the original
B&S approaches are summarized. In Sect. 6 an illustrative example is used to investigate the

123

Journal of Global Optimization (2020) 77:197–225 199

impact of the proposed changes. In Sect. 7 a computational comparison of the performance
of B&S using the new and original bounding schemes as well is performed, as well as the
proposed heuristics. Finally, Sect. 8 gives conclusions.

2 Basic concepts and notation

We start with concepts and definitions required for the Branch-and-Sandwich algorithm.
Throughout the text, we use Remarks as a way to emphasize key implications of theorems
and corollaries.

Definition 1 (Node) A node V k [equivalently an (n + m)-rectangle] in the Branch-and-
Sandwich tree is uniquely defined by a set of bounds, representing a subdomain of X × Y :

V k =
{
v = (x, y)T ∈ Xk × Y k ⊆ X × Y � Rn+m

}
. (1)

Definition 2 (Node properties) Each node V k in the Branch-and-Sandwich tree has a unique
number (index), denoted by superscript k. The root node (the whole X × Y domain) has
k = 1. A node V k has the following attributes (properties):

– f k : A valid lower bound on the global solution of the inner problem restricted to node

V k ;
– f̄ k : A valid upper bound on the global solution of the inner problem restricted to node

V k ;
– f UB,k : The best inner upper bound over the domain Xk × Y (note this includes all of Y ,

rather than the subset of Y in node V k);
– Fk : A valid lower bound on the global solution of the bilevel problem restricted to node

V k ;
– x̄k : Outer variable vector corresponding to Fk ;
– sk : State of node V k : active, inner-active or inactive.
– lk : level (depth) of node V k in the B&S search tree; for the root node l1 = 0;

Based on the bounding values computed at a node V k , wemay decide to fathom the current
node. Two types of fathoming operations take place in the B&S algorithm (cf. Sect. 4.6 in
[22]). If a node has been shown not to contain a global solution of the inner problem, i.e., for
all x ∈ Xk , the global solution of the inner problem lies outside of Y k , it is “fully-fathomed”.
When a node has been shown not to contain a global solution of the bilevel problem, but it
may nevertheless contain global solutions of the inner problem over the whole Y for x ∈ Xk ,
we need to continue exploring it further via branching. In such a case, it is “outer-fathomed”
rather than fully fathomed. As a result, the state sk of a node V k in the Branch-and-Sandwich
tree may have one of three different values:

– Active or open B&S continues to explore for both the outer and inner problems for such
nodes, because they may contain a global solution of the bilevel problem. These nodes
are stored in list L, also used in standard branch-and-bound algorithms [21].

– Inner-active (outer-fathomed) B&S continues to explore such nodes for the inner problem
only, because they have been shown not to contain a global solution of the bilevel problem
but for some x ∈ Xk still may contain a global solution for the inner problem. Such nodes
are stored in a list LIn.

– Inactive (fully-fathomed) all other nodes. No further exploration of these nodes is per-
formed and they are not stored.

123

200 Journal of Global Optimization (2020) 77:197–225

The sequential-decisionmaking inherent in bilevel problems implies that the entire host set
Y must be considered to bound the solution of the inner problem. Thus, the branching scheme
for bilevel problems differs from that for single level problems. The algorithm proposed by
Mitsos et al. [27] allows branching on the outer variables, but not on the inner variables. The
branching scheme used in the B&S algorithm, on the other hand, allows branching on both
variable sets x and y. This is made possible by the existence of list LIn.

Lists L and LIn are disjoint, i.e.,: L ∩ LIn = ∅ and their union L ∪ LIn contains all the
active nodes. In addition to lists L and LIn, we use two further types of lists that link together
the nodes in an X -partition (Definition 3). We first define an X -partition as follows.

Definition 3 (X -partition) Let P � N be a finite index set and Xp denote a subdomain of X .
Then an X -partition is denoted as {Xp ⊆ X : p ∈ P} where:

X =
⋃
p∈P

Xp and Xp ∩ Xq = ∂Xp ∩ ∂Xq for all p, q ∈ P, p 	= q, (2)

and ∂Xp denotes the relative boundary [5] of Xp .

Remark 1 At any given iteration of the B&S algorithm, a specific X -partition is defined and
this in turn defines the index set P . Whenever branching takes place on an x variable, the
partition is updated.

We can then define the concept of a sublist.

Definition 4 (Sublist) At a given point in the branch-and-bound process, let us consider the
partition of X obtained by using the smallest subdomains generated for element of x ∈ X .
Consider some subdomain in the partition Xp,s, s ∈ S where S � N is a finite index set. The
sublist Lp

s consists of all nodes in L ∪ LIn for which the X domain contains Xp,s .

Then, we define a sublist index setKp
s that contains the indices of all nodes within a sublist

Lp
s .

Definition 5 (Sublist index set) The sublist index set Kp
s is given by

Kp
s =

{
k: V k ∈ Lp

s

}
(3)

By construction of the branch-and-bound tree, the Y subdomains of the nodes in Lp
s are

non-overlapping. However, the X subdomains in two different sublists may overlap because
not all nodes have undergone the same extent of branching.We thus define an independent list
that connects together all sublists that cover overlapping parts of the X domain but different
subdomains of Y . Such a list makes it possible to take into account the hierarchical structure
of the bilevel problem, in which the outer x variables drive the decision-making at the inner
level, during the exploration of the branch-and-bound tree.

Definition 6 (Independent list) An independent list Lp, p ∈ P is given by:

Lp = {Lp
1 , . . . ,Lp

sp }, (4)

where sp is the number of sublists in Lp and, when sp > 1, for each s = 1, . . . , sp ,
there exists s′ = 1, . . . , sp , s′ 	= s and a pair of nodes (V k ∈ Lp

s , V k′ ∈ Lp
s′) such that

int(Xk) ∪ int(Xk′
) 	= ∅, where int(X) denotes the interior of X .

For simplicity, we sometimes use the shorthand V k ∈ Lp to indicate that node V k is such
that there exists at least one s ∈ {1, . . . , sp} for which V k ∈ Lp

s .

123

Journal of Global Optimization (2020) 77:197–225 201

Finally, we define the concept of the independence condition.

Definition 7 (Independence condition (IC) [22]) If after partitioning of some nodes from
Lp, p ∈ P , there exist index sets I and J such that:

I ∩ J = ∅, I ∪ J = {1, . . . , sp},
{Lp

i : i ∈ I } ∩ {Lp
j : j ∈ J } = ∅,

(IC)

replace Lp with two new independent lists Lp1 and Lp2 :

Lp1 = {Lp
i }, i ∈ I � {1, . . . , sp},

Lp2 = {Lp
j }, j ∈ J � {1, . . . , sp},

where p1 = p and p2 = |P| + 1.

In the revised B&S algorithm, we use the same list management scheme as in original
B&S, therefore we refer to Sect. 4.1 in [22] for details. To provide some context to the
concepts presented in the following sections, a brief statement of the main steps of the
Branch-and-Sandwich algorithm is given in Algorithm 1.

Algorithm 1 Branch-and-Sandwich
1: Initialize
2: Compute inner and outer bounds at the root node. Apply fathoming-rules. � Sect. 4.6 in [22]
3: while list of active nodes is not empty do
4: Select node(s) for branching. � Section 4.2
5: Branch selected node(s). Update lists. � Section 4.1 and Sect. 4.1 in [22]
6: for each new node do
7: Compute inner lower bound. Apply full-fathoming. � Sect. 3.1 in [22]
8: Compute inner upper bound if needed. � Section 3.1
9: Update best inner upper bound. Apply full-fathoming. � Section 3.2
10: Compute outer lower bound. Apply outer-fathoming. � Section 3.3
11: Compute inner subproblems. � Section 3.4
12: Compute outer upper bound if needed. Apply outer-fathoming. � Section 3.4
13: end for
14: end while
15: if problem is feasible then
16: return the best found solution and the objective(s) value(s).
17: else
18: return problem is infeasible.
19: end if

3 New bounding schemes

As in all branch-and-bound algorithms, upper and lower bounds on the solution are obtained
at each node. Given the bilevel nature of the problem, such bounds are derived for both the
outer and inner problems, i.e., four bounds are obtained for each node. In this section, we
present new bounding schemes based on theoretical analysis and practical observations and
refer the reader to [22] for the bounding schemes that remain unchanged.

123

202 Journal of Global Optimization (2020) 77:197–225

3.1 Inner upper bounding scheme at a node

To generate the inner upper bound at a node V k ∈ (L ∪ LIn), the original bounding scheme
involves the solution of a challenging optimization problem. Here, we show that this can be
avoided at somenodes and that this can result in a guaranteed improvement in the performance
of the algorithm.

Two formulations of the inner upper bounding problem have been previously proposed
(cf. Sect. 4.4 in [22]): a max–min problem, which yields an exact value of the inner upper
bound:

f k,U = max
x∈Xk

min
y∈Y k

{ f (x, y) s.t. g(x, y) ≤ 0, h(x, y) = 0}, (IUB(V k))

or a computationally less expensive relaxed inner upper bound f̄ k , which is based on a
semi-infinite reformulation of (IUB(V k)) and a KKT relaxation [37,38]:

f̄ k = max
x0,x,y,μ

x0

s.t. x0 − f (x, y) ≤ 0
g(x, y) ≤ 0, h(x, y) = 0
∇y f (x, y) + μT∇yg̃(x, y) + λT∇yh(x, y) = 0
μT g̃(x, y) = 0
0 ≤ μ ≤ μU

(x, y) ∈ Xk × Y k,

(RIUB(V k))

where g̃ is the concatenation of the inner inequalities g and the bound constraints yL ≤ y ≤
yU, i.e.:

g̃ j (x, y) =

⎧
⎪⎨
⎪⎩

g̃ j (x, y) j = 1, . . . , r

yLj−r − y j−r j = r + 1, . . . , r + m

yj−r−m − yUj−r−m j = r + m + 1, . . . , r + 2m.

We consider each formulation in turn.

3.1.1 Bound inheritance for the inner upper bound

We first prove a useful property of the inner upper bound f k,U.

Theorem 1 The inner upper bound f k,U is not improving when branching on an inner (y)
variable takes place, i.e.,

f k,U = min{ f k1,U, f k2,U} (5)

where {Y k1 , Y k2} is a partition of Y k and Xk = Xk1 = Xk2 . Equivalently, replacing each
inner upper bound in Eq. (5) by the corresponding (IUB) problem:

max
x∈Xk

min
y∈Y k

{ f (x, y) s.t. g(x, y) ≤ 0,h(x, y) = 0}

= min
j∈{k1,k2}

{
max
x∈Xk

min
y∈Y j

{ f (x, y) s.t. g(x, y) ≤ 0,h(x, y) = 0}
}

. (6)

123

Journal of Global Optimization (2020) 77:197–225 203

Proof After branching on an inner variable (y) at a node V k = Xk × Y k we obtain two new
child nodes Xk × Y k1 and Xk × Y k2 such that Y k = Y k1 ∪ Y k2 . Then, for each fixed x̄ ∈ Xk

we have

min
y∈Y k

{ f (x̄, y) s.t. g(x̄, y) ≤ 0, h(x̄, y) = 0}
≤ min

y∈Y j
{ f (x̄, y) s.t. g(x̄, y) ≤ 0, h(x̄, y) = 0} , ∀ j ∈ {k1, k2}, (7)

where the equality must hold for at least one of k1 and k2 since the solution(s) of the left hand
side is (are) in Y k = Y k1 ∪ Y k2 . Next, from Eq. (7) it follows that over all x ∈ Xk we have

max
x∈Xk

min
y∈Y k

{ f (x, y) s.t. g(x, y) ≤ 0, h(x, y) = 0}
≤ max

x∈Xk
min
y∈Y j

{ f (x, y) s.t. g(x, y) ≤ 0, h(x, y) = 0} , ∀ j ∈ {k1, k2}, (8)

where the equality must again hold for at least one of k1 and k2. Finally, from Eq. (8) it
follows that

max
x∈Xk

min
y∈Y k

{ f (x, y) s.t. g(x, y) ≤ 0,h(x, y) = 0}

= min
j∈{k1,k2}

{
max
x∈Xk

min
y∈Y j

{ f (x, y) s.t. g(x, y) ≤ 0,h(x, y) = 0}
}

, (9)

and this concludes the proof. ��

A graphical illustration of Theorem 1 can be seen in Fig. 1, where the bisection takes
place at point y = 0. After branching, the newly obtained child nodes are: X2 × Y 2 =
[−1, 1] × [−1, 0] and X3 × Y 3 = [−1, 1] × [0, 1]. Selecting a fixed value of x̄ = 0.5, we
find that f 1,U = −0.08, f 2,U = 0.02 and f 3,U = −0.08 so that f 1,U = min

{
f 2,U, f 3,U

}
in agreement with Theorem 1.

Corollary 1 After branching at node V k on a y-variable and creating two child nodes V k1

and V k2 , computation of the inner upper bound f k,U for the child nodes is unnecessary.

To describe the proposed inner upper bounding scheme when branching on a y variable,
we first note that all sublists Lp

s , s ∈ {1, 2, . . . , sp} containing node V k are modified in Step
5 of Algorithm 1, such that:

Lp
s ← (Lp

s \{V k}) ∪ {V k1 , V k2},
and that no new sublists are created. Then, we can use Theorem 1 to set

f k1,U = f k2,U = f k,U.

Thus computation of the inner upper bound or relaxed inner upper bound only takes place at
the root node and following branching on an x variable. This is a useful property because the
computational complexity of solving the inner upper bounding problem is similar to solving
the original bilevel problem [18]. Theorem 1 shows that there is no impact on the bounds
when avoiding these calculations.

123

204 Journal of Global Optimization (2020) 77:197–225

Fig. 1 Graphical illustration of the inner problem from the bilevel instance mb_1_1_08 [26] together with
its minima (thick (blue) lines) and suboptimal KKT points (dashed (red) lines). Numbers within rectangles
denote node indices and V 1 = V 2 ∪ V 3. The graphical illustration shows that the inner upper bound f k,U is
not improving when branching on an inner (y) variable takes place. (Color figure online)

3.1.2 Bound inheritance for the relaxed inner upper bound

Next, we consider the case of the relaxed inner upper bound f̄ k . In contrast to (IUB(V k)),
the relaxed inner upper bounding scheme (RIUB(V k)) does not perform a minimization over
Y , but rather a maximization over a subset of Y , therefore an analog to Theorem 1 does
not hold. This situation can easily be observed in Fig. 1. The relaxed inner upper bound
over the root node V 1 gives f̄ 1 = 0.17 at the suboptimal KKT point (1, 1); solution over
node V 2 yields f̄ 2 = 0.0 (the former suboptimal KKT point (1, 1) does not belong to this
node) and solution over node V 3 gives f̄ 3 = 0.17; thus, f̄ 1 = 0.17 > min{ f̄ 2, f̄ 3} =
0.0.

We note, however, that f̄ 1 remains a valid upper bound on the solution of the inner problem
at both child nodes and can therefore be inherited by the child nodes. Heuristics could be
developed to trade-off the cost of computing f̄ k against the benefit of tighter relaxed inner
upper bounds, but this is not explored here. Instead, we update the relaxed inner upper bound
for each new node when appropriate (see Remarks 3, 5).

3.2 Inner upper bounding scheme over Xk × Y

Having computed the inner upper bound f k,U or relaxed inner upper bound f̄ k for a specific
node V k , we need to generate an upper bound that is valid for the inner problem over Xk on
the entire Y domain. In this section, we show how the cost of obtaining such a bound can be
reduced and how the value of the bound can sometimes be improved (decreased).

123

Journal of Global Optimization (2020) 77:197–225 205

3.2.1 Best inner upper bound for Xk × Y based on listLp

Within each sublist of Lp an entire Y partition is present for a given subdomain of Xp .
Therefore the minimum value of the inner upper bound within a sublist expresses the lowest
inner upper bound with respect to Y . Furthermore, different sublists contain overlapping X .
Taking this into consideration, we obtain the following definition of the best inner upper
bound over Lp .

Definition 8 (Best inner upper bound for a list Lp , cf. Definition 7 in [22]) The best inner
upper bound (f UB,p) for the list Lp is the lowest value of the inner upper bound over the y
variables but the largest over the x variables:

f UB,p = max

{
min
j∈Kp

1

{
f̄ j

}
, . . . , min

j∈Kp
sp

{
f̄ j

}}
. (BIUB(Lp))

Remark 2 f UB,p is a valid inner upper bound for all nodes belonging to listLp (corresponding
to the X -partition,Xp). It is used to check whether a full-fathoming of some nodes is possible
(see Sec. 4.6 in [22]).

Theorem 2 If after branching at a node V k on an x-variable, the independence condition
(see Definition 7) is not satisfied, then the best inner upper bound f UB,p cannot improve.

Proof For clarity, all lists, sublists, index sets and the best inner upper bound before branching
are indicated by the superscript 0 and those after branching are indicated by the superscript
n for “new”. Before branching, the best inner upper bound (f UB,p,0) for a list Lp,0 is

f UB,p,0 = max

⎧⎨
⎩ min

j∈Kp,0
1

{
f̄ j

}
, . . . , min

j∈Kp,0
sp

{
f̄ j

}
⎫⎬
⎭ . (10)

After bisecting on an x-variable, two child nodes V k1 and V k2 are created such that Xk =
Xk1 ∪ Xk2 , Y k = Y k1 = Y k2 . We then replace all sublists of Lp,0 containing node V k (i.e.,
sublists Lp,0

s , s ∈ {1, . . . , s0p: V k ∈ Lp,0
s }) by one or two new sublists that contain V k1 or

V k2 instead of V k (cf Definition 6 in [22]). If the independence condition (IC) is not satisfied,
no new independent list is created. Moreover, from the properties of f̄ k , it follows in such a
case that

max{ f̄ k1 , f̄ k2} = f̄ k . (11)

One can thus see that a value f̄ k will only be removed from the maximization in (10) when
(IC) is satisfied. More formally, three cases are possible:

Case 1:

{
f̄ k1 = f̄ k

f̄ k2 < f̄ k
(12)

Case 2:

{
f̄ k1 < f̄ k

f̄ k2 = f̄ k
(13)

Case 3:

{
f̄ k1 = f̄ k

f̄ k2 = f̄ k
(14)

123

206 Journal of Global Optimization (2020) 77:197–225

There is no possible improvement to f UB,p,0 when (14) holds; without loss of generality,
consider the case when (12) holds, noting that equivalent arguments can be made when (13)
is satisfied. From (11) and (12) it follows that

min
j∈Kp,n

si

{
f̄ j

}
= min

j∈Kp,0
s

{
f̄ j

}
, ∀si ∈

{
s′ = 1, . . . , snp: V k1 ∈ Lp,n

s′
}

, ∀s ∈
{
s′ = 1, . . . , s0p: V k

∈ Lp,0
s′ }, (15)

min
j∈Kp,n

si

{
f̄ j

}
≤ min

j∈Kp,0
s

{
f̄ j

}
,∀si ∈ {s′ = 1, . . . , snp: V k2 ∈ Lp,n

s′ }, ∀s ∈
{
s′ = 1, . . . , s0p: V k

∈ Lp,0
s′

}
, (16)

and

f UB,p,n = max

⎧
⎨
⎩ min

j∈Kp,n
1

{
f̄ j

}
, . . . , min

j∈Kp,n
snp

{
f̄ j

}
⎫
⎬
⎭ . (17)

Therefore, from (15) to (17) it follows that f UB,p,n = f UB,p,0. ��
This situation is illustrated in Example 1.

Example 1 Assume that the current Branch-and-Sandwich tree consists of one independent
list containing one sublist: L1 = {L1

1} = {{V 2, V 3}} with the inner upper bound values
shown in Fig. 2a. Thus, from (BIUB(Lp))

f UB,p=1 = max{min{0.5, 1.0}} = max{0.5} = 0.5.

Next, assume that node V 2 is selected and bisection on variable x takes place. We have one
independent list containing two sublists: L1 = {L1

1,L1
2} defined as L1

1 = {V 3, V 4},L1
2 =

{V 3, V 5} (see Fig. 2b). While a better (lower) inner upper bound is achieved for node
V 4, (f̄ 4 = 0.0), this does not improve the best inner upper bound using (BIUB(Lp)):

f UB,p=1 = max{min{0.5, 0.0},min{0.5, 1.0}} = max{0.0, 0.5} = 0.5.

Finally, assume that node V 3 is selected and bisected again on variable x . We obtain two
new child nodes, V 6 and V 7. This time, the independence condition is satisfied, i.e., two
independent lists containing one sublist each are created: L1 = {L1

1} = {{V 4, V 6}} and
L2 = {L2

1} = {{V 5, V 7}} (see Fig. 2c). As a result a tighter best inner upper bound over list
L1 is obtained:

f UB,p=1 = max{min{0.0, 0.5}} = 0.0,

f UB,p=2 = max{min{1.0, 0.5}} = 0.5.

Remark 3 From Theorem 2 and Remark 2, it follows that for the newly created nodes after
branching on an x-variable, the computation of the relaxed inner upper bound f̄ k (as well as
the best inner upper bound f UB,p) can be postponed until the list satisfies the independence
condition (IC).

Remark 4 It further follows that in cases where all nodes within an independent list are
outer-fathomed before the independence condition is met, the computation of the relaxed
inner upper bound f̄ k can be avoided altogether.

123

Journal of Global Optimization (2020) 77:197–225 207

(a) (b) (c)

Fig. 2 Illustration of a case where branching on a variable x takes place twice, starting from the partitioning
in (a). Numbers within rectangles denote node indices. In (b), while a better inner upper bound (f̄ 4 = 0.0) is
obtained, the best inner upper bound (BIUB(Lp)) does not improve. In (c), it improves as it is possible to the
independence condition [see Eq. (IC) in [22]] is satisfied (c)

3.2.2 Best inner upper bound for Xk × Y based on a subset of listLp

Although Theorem 2 indicates that the best inner upper bound cannot improve with the
original inner upper bound scheme when the independence condition does not hold, this can
be circumvented by modifying the bounding scheme. We take advantage of the fact that a
given node V k which belongs to at least one sublist in Lp may not belong to all sublists
Lp
s ∈ Lp: s ∈ {1, . . . , sp}. Then, a best inner upper bound that is valid for node V k can

be obtained by taking into account only those sublists that contain V k , i.e., by considering
smaller subsets of subdomain Xp where possible.

Definition 9 (Best inner upper bound over the set of sublists of Lp containing node V k)

f UB,k = max

{
min
j∈Kp

s

{
f̄ j

}
, s ∈ {s′ = 1, . . . , sp: V k ∈ Lp

s′ }
}

. (BIUB(Lp
s))

Note that this best inner upper bound is differentiated from the best inner upper bound defined
over all of Lp by the use of the superscript k rather than p.

Next, this new bound is shown to have the useful property that it is at least as tight as the
original best inner upper bound (BIUB(Lp)).

Theorem 3 The best inner upper bound (f UB,k) for the set of sublists in Lp that contain
node V k is at least as tight as the best inner upper bound (f UB,p) for the list Lp containing
node V k, i.e.,

f UB,k ≤ f UB,p. (18)

Proof The set Lp,k of sublists to which node V k belongs is a subset of all sublists in inde-
pendent list Lp = {Lp

1 , . . . ,Lp
sp } containing node V k :

Lp,k =
{
Lp
s : s = 1, . . . , sp: V k ∈ Lp

s

}
⊆ Lp. (19)

123

208 Journal of Global Optimization (2020) 77:197–225

Fig. 3 Illustration of a case in
which the best inner upper bound
for node V k based on a set of
sublists (BIUB(Lp

s)) yields a
tighter bound compared to the
original approach in which the
best inner upper
bound (BIUB(Lp)) is derived
based on Lp . As before, the
numbers within rectangles denote
node indices

From (19) it follows that the set of minimal inner upper bound values for all the sublists
containing node V k is also a subset of the set of minimal values for all sublists in Lp:

{
min
j∈Kp

s

{
f̄ j

}
, s ∈ {s′ = 1, . . . , sp: V k ∈ Lp

s′ }
}

⊆
{
min
j∈Kp

s

{
f̄ j

}
, s = 1, . . . , sp

}
. (20)

Thus, from (19) and (20) it follows that

max

{
min
j∈Kp

s

{
f̄ j

}
, s ∈ {s′ = 1, . . . , sp: V k ∈ Lp

s′ }
}

≤ max

{
min
j∈Kp

s

{
f̄ j

}
, s = 1, . . . , sp

}
,

and this concludes the proof. ��
Example 2 This approach is illustrated in Fig. 3 to show the advantage of deriving a best
inner upper bound based on only those sublists in Lp that contain node V k . In the case
shown in Fig. 3, there is one independent list containing two sublists: L1 = {L1

1,L1
2} with

L1
1 = {V 3, V 4} and L1

2 = {V 3, V 5}. Using the original (BIUB(Lp)) approach, the best inner
upper bound, for list Lp is

f UB,p=1 = max{min{0.5, 0.0},min{0.5, 1.0}} = max{0.0, 0.5} = 0.5,

and this is valid for all nodes. Using the alternative approach (BIUB(Lp
s)), the best inner upper

bound for nodes V 3 and V 5 is the same as f UB,p=1: f UB,k=3 = f UB,k=5 = min{0.5, 1.0} =
0.5, but for node V 4, a lower (tighter) value is obtained: f UB,k=4 = min{0.5, 0.0} = 0.0.

The impact of generating a potentially tighter best inner upper bound f UB,k for the domain
Xk × Y is investigated in Sect. 7. We note that the computational cost of computing f UB,k

is similar to that of computing f UB,p .

Remark 5 From Theorem 3, it follows that to take full advantage of the fact f UB,k is a
tighter bound than f UB,p , the computation of f UB,k should take place whenever branching
on an x-variable, because f UB,k can improve after branching on an x-variable even when the
independence condition is not satisfied, in contrast to f UB,p (cf., Theorem 2 and Remark 3).

Remark 6 The use of the potentially tighter f UB,k instead of f UB,p to check for full-
fathoming (Sec. 4.6 in [22]) can lead to the faster removal of nodes from all lists.

123

Journal of Global Optimization (2020) 77:197–225 209

Remark 7 Finally, recall that it was proven in Lemma 2 in [22] that the original fathoming
scheme guarantees that a subregionwhere a global optimal solutions lies remains inner-active
(i.e., in at least one list Lp, p ∈ P) until that global solution is identified. It can be shown
trivially that this property is preserved by construction with the revised scheme.

3.3 Outer lower bounding scheme

The formulation of the outer lower bounding problem at a node V k ∈ L ∩ Lp is based on
the single-level reformulation of the bilevel problem [14] and makes use of the best inner
upper bound for the corresponding Xk × Y domain (cf. Sect. 3.2 of [22]) as a constraint on
the value of the inner objective function:

f (x, y) ≤ f UB,p. (21)

We therefore update the formulation to use f UB,k rather than f UB,p:

f (x, y) ≤ f UB,k, (22)

thereby obtaining a lower bound Fk on the bilevel objective function that is as least as tight
as that proposed in [22].

3.4 Outer upper bounding scheme

In the revised B&S, we propose using an outer upper bounding scheme based on [27]. To
motivate this choice, we undertake an analysis of the behaviour of the outer upper bounding
scheme in [22], discussing observed drawbacks and suggesting possible ways to overcome
them.

3.4.1 Analysis of existing outer upper bounding scheme

We begin by summarizing the outer bounding scheme in [22], given a node V k ∈ L∩Lp and
(x̄k, ȳk), the solution of the corresponding outer lower bounding problem. We set x̄ equal to
x̄k , and seek a node V k′ ∈ (L∪LIn)∩Lp based on (MinRISP(x̄, V k′

)) to formulate the outer
upper bounding problem. We first introduce relevant definitions.

Definition 10 (Node index set based on x̄) Given a domain Xk , the corresponding list Lp in
which all nodes that cover Xk are stored, and a point x̄ ∈ Xk , the index set Kp,x̄ is defined
as the set of the indices of those nodes V j that belong to a sublist Lp

s ∈ Lp and for which
x̄ ∈ X j :

Kp,x̄ = { j : ∃s ∈ {1, . . . , sp}: V j ∈ Lp
s and x̄ ∈ X j }.

Next, recall the definition of w j (x̄) at some node V j for which x̄ ∈ X j , given by [22]:

w j (x̄) = min
y∈Y j

{ f̆ (x̄, y) s.t. ğ(x̄, y) ≤ 0, h̆(x̄, y) ≤ 0, h̆−(x̄, y) ≤ 0}, (RISP(x̄, V j))

where f̆ , ğ, h̆ and h̆− represent convex underestimators (e.g., [2,39]) of functions f , g, h and
− h. We are interested in the node(s) that yield the smallest value of w j (x̄) over all sublists
Lp
s ∈ Lp , s = 1, . . . , sp and among those, we choose the node with the lowest value of the

outer lower bound. Then, the index k′ of node V k′
is given by:

123

210 Journal of Global Optimization (2020) 77:197–225

k′ = min
{
argmin

k̄∈Kp,x̄
w

{
Fk̄

}}
, (MinRISP(x̄, V k′

))

where

Kp,x̄
w =

{
k̄: k̄ = argmin j∈Kp,x̄

{
w j (x̄)

}}
, (23)

i.e., Kp,x̄
w denotes the set of the indices of all nodes k̄ in the sublists of Lp for which wk̄(x̄)

is at the minimum value.

Remark 8 The use of convex underestimators means that problem (RISP(x̄, V j)) is convex
and hence relatively inexpensive to solve, while maintaining the convergent property of the
bounding scheme (cf. [22]). This may however come at a cost in terms of the quality of the
upper bounds generated and this issue is discussed further in this section.

Remark 9 The choice of the node with the lowest value of the outer lower bound is consistent
with the requirement in optimistic bilevel programming that the leader consider the best
candidate among indifferent solutions for the follower.Under this assumption, the algorithmic
behavior is not affected by which global minimum is obtained during the solution of the inner
problem.

For a given x̄, problem (RISP(x̄, V j)) may be infeasible over some or even over all nodes
whose indices belong toKp,x̄. In the latter case, no solution to the bilevel problem exists and
no upper bound can be obtained for the point x̄. If, however, a node V k ∈ L ∪ LIn such that
the corresponding (RISP(x̄, V k)) problem is feasible, the following outer upper bounding
problem is solved for x = x̄:

F̄k′
(x̄) = min

y∈Y k′
F(x̄, y),

s.t. G(x̄, y) ≤ 0, H(x̄, y) = 0
g(x̄, y) ≤ 0, h(x̄, y) = 0
f (x̄, y) ≤ wk′

(x̄) + ε f .

(UB(x̄, V k′
))

where ε f is the optimality tolerance for the inner problem. If problem (UB(x̄, V k′
)) is infea-

sible, then no solution exists for x̄; otherwise, an upper bound is obtained in the sense of an
ε f -feasible point [27]. The implications of seeking an ε-optimal bilevel solution have been
discussed in the literature and been shown in [3,9] that there is no clear pattern in the way
suboptimality in the inner problem affects the outer objective function, i.e, two close inner
solutions may cause very different outer objective function values.

Alternatively, a valid upper bound can be found through any feasible point of problem
(UB(x̄, V k′

)), e.g., a point obtained from a local solution.
In the following set of remarks, we explore the behavior of this scheme for generating

outer upper bounds.

Remark 10 When node V k′
is inner-active, i.e., it has been outer-fathomed, we already know

that the global solution of the bilevel problem cannot lie in this subdomain Xk′ ×Y k′
and we

can skip the solution of (UB(x̄, V k′
)).

Remark 11 While we would like to avoid repeating unnecessary calculations, the solution of
(RISP(x̄, V k)) can only be avoided if another (RISP(x̄′, V j)) has already been solved with
x̄′ = x̄ and Y j = Y k . These conditions are restrictive as illustrated in the following example.

123

Journal of Global Optimization (2020) 77:197–225 211

(a) (b)

(c) (d)

Fig. 4 Graphical illustration of the outer and inner problems together with found solution points from the
lower bounding problems (blue dots) and Y subdomains over which (RISP(x̄, V j)) is solved (green and red
lines). As before, numbers within rectangles indicate node indices. (Color figure online)

Example 3 For the case shown in Fig. 4a, b, we have one list containing one sublist at the
root node: L1 = {L1

1} = {V 1}. Solving the outer lower bounding problem at the root node
gives solution point (x̄1, ȳ1) = (−1.0,−1.0). Next, we set x̄ = x̄1 = −1.0 and obtain
w1(−1.0) = −1.50, taking into consideration the whole of Y (over the green line in Fig. 4b).
The value found is used in (UB(x̄, V k′

)).
Next, after branching on variable y, the case shown in Figs. 4c, d is obtained, i.e., there

is one independent list containing one sublist: L1 = {L1
1} = {{V 2, V 3}}. After solving both

outer lower bounding problems the resulting solution points are: (x̄2, ȳ2) = (−1.0,−1.0) and
(x̄3, ȳ3) = (−1.0, 0.0). Next, we set x̄ = x̄2 = −1.0. Despite the fact that x̄ = x̄2 = −1.0
is the same point as in the previous iteration it must explored again in the new (RISP(x̄, V j))
(RISP(x̄, V 2)) subproblem as different domains of Y are considered. Different values are
obtained: w2(−1.0) = −0.23 and w3(−1.0) = −0.83 and two (UB(x̄, V k′

)) subproblems
must then be solved. Finally, since x̄ = x̄3 = −1.0, note that we have already computed
w2(−1.0) and w3(−1.0); hence, no further computation is necessary.

Finally use of convex relaxations in problem (RISP(x̄, V j)) can cause slow convergence,
described in Remark 12.

123

212 Journal of Global Optimization (2020) 77:197–225

Remark 12 The value obtained from the solution of problem (RISP(x̄, V j)) plays a significant
role in the (UB(x̄, V k′

)) procedure, specifically due to the presence of the inner objective
constraint f (x̄, y) ≤ wk′

(x̄)+ε f . The lower the value ofwk′
(x̄)obtained from (RISP(x̄, V j)),

the more likely it is that the identification of a bilevel feasible point is delayed. This situation
can cause slow outer-fathoming, and thus cause the Branch-and-Sandwich tree to expand.
This is especially a concern in the early stages of the algorithm, when the convex relaxations
in (RISP(x̄, V j)) can be very loose due to the size of the domain. A natural way to overcome
this is to replace subproblem (RISP(x̄, V j)) with the computationally more expensive but
tighter approach:

w j (x̄) = min
y∈Y j

{ f (x̄, y) s.t. g(x̄, y) ≤ 0, h(x̄, y) = 0}, (ISP(x̄, V j))

and to select the node V k′
for problem (UB(x̄, V k′

)) using

k′ = min
{
argmin

k̄∈Kp,x̄
w

{
Fk̄

}}
, (MinISP(x̄, V k′

))

where

Kp,x̄
w =

{
k̄: k̄ = argmin j∈Kp,x̄

{
w j (x̄)

}}
. (24)

Using tighterw j (x̄) values, the B&S algorithm is likely to locate bilevel feasible points faster.
This can help to improve the best known upper bound value (FUB). This can, in turn, lead to
earlier fathoming of nodes and thus help to keep the Branch-and-Sandwich tree smaller and
to reduce the total number of subproblems solved.

3.4.2 Upper bounding problem based on [27]

Let us observe that the original upper bounding procedure can be computationally demand-
ing, especially during the formulation of (MinRISP(x̄, V k′

)) which requires the solution of
(RISP(x̄, V j)) over several nodes V j ∈ Lp . Therefore the original upper bounding proce-
dure becomes more and more expensive as the size of the independent lists increases. Thus
motivated by the performance of the upper bounding scheme in [27], we adopt this alternative
approach to obtain a valid upper bound that avoids this overhead. Using the notation in our
current work, this requires solving (ISP(x)) defined over the whole of Y :

w(x̄) = min
y∈Y { f (x̄, y) s.t. g(x̄, y) ≤ 0, h(x̄, y) = 0}. (ISP(x̄, Y))

This is followed by the solution of the upper bounding problem using w(x̄) and considering
the whole of Y :

F̄(x̄) = min
y∈Y F(x̄, y),

s.t. G(x̄, y) ≤ 0, H(x̄, y) = 0
g(x̄, y) ≤ 0, h(x̄, y) = 0
f (x̄, y) ≤ w(x̄) + ε f .

(UB(x̄, Y))

This alternative approach of solving only one (ISP(x̄, Y)) and one (UB(x̄, Y)) for each unique
x̄, can have at least three significant benefits, highlighted in the following remarks.

Remark 13 This bounding scheme significantly reduces the total number of optimal value
functions (w(x̄)) that must be calculated during the course of the algorithm.

123

Journal of Global Optimization (2020) 77:197–225 213

Remark 14 When solving (UB(x̄, Y)) globally over the whole of Y , the behavior of the B&S
algorithm is not affected by which global minimum is obtained in (ISP(x̄, Y)).While equality
holds for the bounds obtained using (ISP(x̄, Y)) and ISP(x̄, V k′

), i.e.,

w(x̄) = wk′
(x̄), (25)

the upper bound obtained with (UB(x̄, Y)) is at least as tight as (UB(x̄, V k′
)), i.e.,

F̄(x̄) ≤ F̄k′
(x̄). (26)

This is due to the fact that for (UB(x̄, Y)) is solved over the whole of Y while (UB(x̄, V k′
))

is solved over a subset of Y .

Remark 15 Following the identification of a value x̄ as the solution of the lower bounding
problem, it is trivial to determine whether (ISP(x̄, Y)) has been solved at a previous iteration.
Since every (ISP(x̄, Y)) problem is solved over the whole of Y, it suffices to check whether
the same value x̄ has been generated previously. For this, we maintain the set

X = {x̄i ∈ X : ∀i 	= j ∈ {1, . . . , |X|}, x̄i 	= x̄ j }, (27)

corresponding to unique solutionpoints of outer-variables (x̄). This procedure ismuch simpler
than identifying duplicate problems in the original bounding scheme (see Remark 11).

4 New branching and node selection rules

In this section, new strategies for branching and the management of nodes are introduced.

4.1 Branching variable and branching point selection

The branching scheme of B&S is specified by two rules: a branching variable selection rule
and a node selection rule. The choice of branching variable (coordinate axis) influences the
structure of the tree generated and can significantly affect the computational performance
of the algorithm. Let the variable vector v = (x, y)T = (v1, . . . , vn, vn+1, . . . , vn+m)T

be formed first from the n outer variables and then from the m inner variables. In the
original B&S approach [22], the branching variable is selected by giving the highest pri-
ority to the variable with the largest range (longest edge). If several edges satisfy the
longest edge requirement, then the one with the smallest index is selected to be subdi-
vided.

It is easy to notice that, if some variable bounds differ significantly in magnitude,
branching on the variables with the shortest edge is not performed until the ranges for
all variables are sufficiently reduced. In the revised version we select the branching vari-
able with the largest normalized range as has long been practised in branch-and-bound
algorithms (e.g., see [1,33]). Also, when an ambiguous situation arises, i.e., when sev-
eral variables satisfy the longest (normalized) edge requirement, we employ two different
strategies, where the priority is given either to the variable with the lowest variable index
[strategy (XY)], as this gives priority to outer variables x) or the variable with the highest
index [strategy (YX)]. The rules for branching variable selection are stated in Algo-
rithm 2.

123

214 Journal of Global Optimization (2020) 77:197–225

Algorithm 2 Branching variable selection

Consider a node V k ∈ (L ∪ LIn).
1: Select the branching variable vbr with the largest normalized range (edge).
2: If several variables satisfy the largest (normalized) range (edge) requirement, there are two options:

Option (XY): Find the branching variable vbr with the lowest-index:

br = min
{
argmaxi=1,...,n+m

{(
v
k,U
i − v

k,L
i

)/(
v
1,U
i − v

1,L
i

)}}
; (XY)

Option (YX): Find the branching variable vbr with the highest-index:

br = max
{
argmaxi=1,...,n+m

{(
v
k,U
i − v

k,L
i

)/(
v
1,U
i − v

1,L
i

)}}
; (YX)

where superscripts k,L and k,U indicate the lower and upper variable bounds for node V k , respectively.

Having identified a branching variable, a standard bisection strategy is adopted to select
a branching point, although other approaches could be adopted [2].

Property 1 (Branching point selection rule) For the selected branching variable vbr , the
branching point is found using exact bisection [42].

An illustration of the subdivision process, i.e., the selection of the branching variable and
branching point as well as the list management, is presented in Example 4.

Example 4 Consider the six partitioning examples of the three-dimensional space X × Y =
[0, 1]2 ×[0, 1] presented in Fig. 5. In these pictures, the grey color highlights a node that has
been selected for branching. Numbers inside the cuboids are the unique node indices k. At
the first iteration (Fig. 5a, d), the selected branching variable vbr depends on the branching
variable selection rule, as all three variables satisfy the normalized longest range requirement
(see Algorithm 2, Step 1). Therefore, when the (XY) strategy is used, i.e., when priority is
given to the variable with the lowest index, the selected branching variable is vbr = x1 (as
noted in Fig. 5a); however when the (YX) strategy is used, the selected branching variable is
vbr = y1 (see Fig. 5d). After branching (bisection) on the selected variable in each case, we
obtain two completely different partitions illustrated in Fig. 5b, e, respectively.After bisection
on variable x1, there are two independent lists with one sublist each: L1 = {L1

1} = {{V 2}}
and L2 = {L2

1} = {{V 3}}, but there is only one independent list after bisection on variable
y1: L1 = {L1

1} = {{V 2, V 3}}.
If we assume that node V 2 is selected at the next iteration, the same variable, x2, is

chosen using both branching variable selection rules. However, after branching we obtain
two completely different Branch-and-Sandwich trees. In the (XY) case, which is shown in
Fig. 5c, we have three independent lists: L1 = {L1

1} = {{V 4}}, L2 = {L2
1} = {{V 3}} and

L3 = {L3
1} = {{V 5}}, while in the (YX) case, we continue to have one independent list but

now with two sublists: L1 = {L1
1,L1

2} = {{V 3, V 4}, {V 3, V 5}}. Thus, the (XY) branching
variable strategy speeds up the refinement of the X partition and produces a higher number of
independent lists, which can be examined completely independently, while the (YX) strategy
results in a smaller number of independent lists and faster refinement of the Y space. While
performance of the two approaches may be problem-dependent in a serial implementation,
strategy (XY) thus appears to be better suited to a parallel implementation.

123

Journal of Global Optimization (2020) 77:197–225 215

(a) (b) (c)

(d) (e) (f)

Fig. 5 An illustration of the partitions in Example 4 is shown on the left-hand side. Numbers within cuboids
refer to node indices. Cuboids in a–c depict the (XY) strategy for three consecutive nodes. Cuboids in d–f
depict the (YX) strategy for three consecutive nodes. The selected branching variable is shown in bold (red).
The independent lists and the sublists appearing in each partitioning are shown in the tables on the right-hand
side. (Color figure online)

4.2 Node selection rules

The selection of nodes for branching influences the structure of the branch-and-bound tree and
can have a significant impact on the number of iterations needed for convergence [25,31,32].
However, well-known heuristics for node selection from single-level global optimization
cannot be applied directly to the bilevel case, as they consider only the “outer” level infor-
mation. To select the “most promising” nodes in L ∪ LIn based on the information from
both levels, B&S first identifies the most promising independent list (X -partition) taking into
account outer-level information. When a list is found, B&S continues to look for the best
candidate only among nodes belonging to this list and selects an appropriate node by taking
into account inner-level information. In the revised version presented here, we employ four
variants of the node selection operation. In the same vein as in the original selection proce-
dure, B&S selects one node from the list of active nodes L at each iteration and one from
the list of inner-active nodes LIn, if non-empty. The node selection procedure is described
in Algorithm 3. For each of the two steps in the node selection procedure, two options are
given and the four variants are obtained by taking all combinations of these options.

The original B&S algorithm node selection procedure [22] is very similar to the (Fl)–(l f)
heuristic described here. It implies that preference is given in Step 1 to the independent list
containing the node(s) with the best (lowest) outer lower bounding value and in Step 2, to the
nodes with the smallest level, i.e, covering the largest subdomain of X × Y . When several
nodes in the selected list are at the same smallest level in the Branch-and-Sandwich tree, the
node corresponding to the lowest inner lower bound f is chosen (the best candidate from
the perspective of the inner problem). An ambiguity can arise in Step 1 when there are nodes
with the same smallest outer lower bound value in different independent lists. We address
this in (Fl)–(l f) so that B&S selects the list containing the comparatively less reduced node,
i.e., the one with the smallest l value.

The (l f̄) heuristic is an alternative strategy to (l f) where in Step 2, if there are several
nodes at the same level of the tree in the selected independent list, the node with the lowest
inner upper bound value is chosen. In this way, we choose the best candidate in the selected
list from the perspective of the outer problem, as tighter inner upper bound values lead to
larger values of the outer lower bound and are thus likely to result in faster outer-fathoming.

123

216 Journal of Global Optimization (2020) 77:197–225

Algorithm 3 Extended node selection
1: Select an independent list. There are two options for this step:

Option (Fl): Find the independent list Lp, p ∈ P , containing a node V k ∈ Lp ∩ L with the lowest
lower bound (Fk). If several such nodes exist, select a node with the smallest level (lk), and if several
such nodes exist, take the node with the smallest index:

Lp : V k ∈ Lp,where k = min
k′∈Il

{
k′}with Il =

{
k′ : k′ = argmink′′∈IF

{
lk

′′}}

and IF =
{
k′ : k′ = argmink′′∈L

{
Fk′′}}

;
(Fl)

Option (l F): FindLp containing a node V k with the smallest level (lk). If several nodes with the smallest
level exist, select a node with the lowest lower bound (Fk), and if several such nodes exist, choose the
node with the smallest index:

Lp : V k ∈ Lp,where k = min
k′∈IF

{
k′}with IF =

{
k′ : k′ = argmink′′∈Il

{
Fk′′}}

and

Il =
{
k′ : k′ = argmink′′∈L

{
lk

′′}}
;

(l F)

2: Select nodes for branching. Having found Lp , there are two options here:

Option (l f): Select a node V k∗ ∈ L ∩ Lp and a node V k∗
In ∈ LIn ∩ Lp , if LIn 	= ∅, with the smallest

levels lk
∗
and lk

∗
In , respectively. If several nodes with the smallest level exist, select nodes with the lowest

inner lower bounds, f k
∗
and f k

∗
In , respectively, and if several such nodes exist, choose the node with the

smallest index:

k∗ = min
k′∈I f

{
k′}with I f =

{
k′ : k′ = argmink′′∈Il

{
f i

}}
and Il =

{
k′ : k′ = argmink′′∈L∩Lp

{
lk

′′}}

k∗
In = min

k′∈I f

{
k′}with I f =

{
k′ : k′ = argmink′′∈Il

{
f i

}}
and Il =

{
k′ : k′ = argmink′′∈LIn∩Lp

{
lk

′′}}
;

(l f)

Option (l f̄): Select nodes V k∗ ∈ L ∩ Lp and V k∗
In ∈ LIn ∩ Lp with the smallest levels lk

∗
and lk

∗
In ,

respectively. If several nodes with the lowest level exist, select the nodes with the smallest relaxed inner

upper bounds, f̄ k
∗
and f̄ k

∗
In , respectively:

k∗ = min
k′∈I f̄

{
k′}with I f̄ =

{
k′ : k′ = argmink′′∈Il

{
f̄ i

}}
and Il =

{
k′ : k′ = argmink′′∈L∩Lp

{
lk

′′}}

k∗
In = min

k′∈I f̄

{
k′}with I f̄ =

{
k′ : k′ = argmink′′∈Il

{
f̄ i

}}
and Il =

{
k′ : k′ = argmink′′∈LIn∩Lp

{
lk

′′}}
.

(l f̄)

In the remaining two node selection variants, the independent list corresponding to (l F)
is selected, i.e., we focus on the list containing the largest node (that is, the smallest level l).

The four variants are illustrated in Example 5.

Example 5 (Illustration of Algorithm 3) Consider the partitioning of a two-dimensional space
X × Y = [−1, 1] × [−1, 1], shown in Fig. 6a with the corresponding tree shown in Fig. 6b.
All leaf nodes belong to the active list, i.e., L = {V 3, V 4, V 5} and LIn = ∅. There are two
independent lists corresponding to each member set Xp of the X partition with one sublist
each: for X1 = [−1, 0], L1 = {L1

1} = {{V 4, V 5}} and for X2 = [0,−1], L2 = {L2
1} =

{{V 3}}. In Step 1, using the (l F) heuristic, B&S selects independent list L2 as it contains
node V 3, the only active node at level 1. As node V 3 is the sole candidate in L2, B&S selects
this node in Step 2. However, when the (Fl) selection heuristic is used in Step 1, B&S selects

123

Journal of Global Optimization (2020) 77:197–225 217

(a) (b)

Fig. 6 Illustration of the nodes selected for branching in Example 5 when using different node selection
heuristics from Algorithm 3. As before, numbers within rectangles and circles indicate node indices. Refer to
the text for an interpretation of the figure

list L1 as it contains node V 4 which has the smallest lower bound value F4 = 0.00. But
in Step 2, the two heuristics based on inner-level information return different candidates, as
l4 = l5 = 2 but f 4 < f 5 and f̄ 4 > f̄ 5. As a result, variant (Fl)–(l f) leads to the selection

of node V 4 and (Fl)–(l f̄) to that of node V 5.

5 Summary of the revised and the original B&S

In this section, in Table 1, we provide a comparative summary of the options available in the
two versions of the B&S algorithm (1): the revised B&S version presented in this paper, and
the original B&S [22]. We note that it is not possible to reproduce exactly the configuration
in [22] as some small ambiguities were present (as was explained in Sects. 4.1 and 4.2)
in the algorithm described. We thus use the (YX) branching and (Fl)–(l f) node selection
strategies, as they are closest to those used in the original paper [22]. In the revised algorithm,
changes have been made to the node selection and branching rules used in Steps 4 and 5 of
the algorithm, while the bounding schemes in Steps 9, 11, 12 have been revised, either by
making changes to the bounding problems or by making changes to the timing of the solution
of the bounding problems.

6 Algorithmic comparison of the revised B&S versus the original B&S

In this section the main emphasis is on illustrating the influence of the different bounding
procedures on the B&S algorithm by using the default options shown in Table 1. We con-
centrate on the bilevel instance used in Example 1 in [23], where the behavior of the B&S
algorithm at each step was described and explained in detail:

min
x,y

x + y

s.t. y ∈ argminy
xy2

2
− y3

3
x ∈ [−1, 1], y ∈ [−1, 1].

123

218 Journal of Global Optimization (2020) 77:197–225

Table 1 Comparison of the available options for the mains steps in the revised and original B&S

Algorithmic step References Revised B&S Original B&S

All options Default All options Default

Step 4: Node
Selection

Sect. 4.2 (Fl)–(l f), (Fl)–(l f̄),

(l F)–(l f), (l F)–(l f̄)

(Fl)–(l f) (Fl)–(l f) (Fl)–(l f)

Step 5: Branching rule Sect. 4.1 (XY), (YX) (YX) (YX) (YX)

Step 7: Inner lower
bound

[22] f k,L, f̆ k,L f k,L f k,L, f̆ k,L f̆ k,L

Step 8: Inner upper
bound

Sect. 3.1 f k,U, f̄ k f̄ k f k,U, f̄ k f̄ k

Step 9: Best inner
upper bound

Sect. 3.2 f UB,p , f UB,k f UB,k f UB,p f UB,p

Step 10: Outer lower
bounda

Sect. 3.3 Fk Fk Fk Fk

Step 11: ISP scheme Sects. 3.4.1
and 3.4.2

w j (x̄), w j (x̄), w(x̄) w(x̄) w j (x̄) w j (x̄)

Step 12: Outer upper
bound

[27] & Sect. 3.4.2 F̄k′
(x̄), F̄(x̄) F̄(x̄) F̄k′

(x̄) F̄k′
(x̄)

All steps are with reference to Algorithm 1
a Uses best inner upper bound from Step 9

The inner problem satisfies the linear independence constraint qualification LICQ and
the problem has a unique global optimal solution at (x∗, y∗) = (−1, 1) yielding F∗ = 0
and f ∗ = −0.83 (see the visualization of the outer and the inner problems in Fig. 7a, b).
All bound values obtained using the B&S algorithm with the revised and original bounding
schemes are summarized in Table 2a, b, respectively.

From the values obtained at the root node (k = 1), we observe that the inner lower bound
f k,L gives a tighter value than the relaxed inner lower bound f̆ k,L, i.e., f 1,L = −0.83 >

f̆ 1,L = −2.50. The same applies for values obtained using the (ISP(x̄, Y)) bounding scheme
(introduced in Sect. 3.4.2), and the (RISP(x̄, V j)) scheme used in the original approach,
i.e., w(−1.0) = −0.83 > w(−1.0) = −1.50. A further significant difference is how the
uniqueness of the solution points (x̄) obtained from the solution (x̄ k, ȳk) of the outer lower
bounding problem is identified. Using the revised approach, we maintain a set X [defined
in (27)] consisting of unique points x̄ . In the revised B&S we thus add x̄1 = −1.0 to the
set X = {−1.0}. Finally, observe that using the revised approach with the upper bounding
problem from Sect. 3.4.2, the exactw(−1.0) = −0.83 value makes it possible to find the first
bilevel-feasible solution (x̄1, ȳ1) = (−1.0,−1.0) with FUB = 0.0. When using the original
B&S and solving the outer upper bounding problem with w(−1.0) = −1.50, no feasible
solution is found at this step.

Next, at the first iteration, both B&S versions select node V 1 (based on Algorithm 3) and
bisect on the selected branching variable y (based onAlgorithm 2), generating two new nodes
(V 2 and V 3), as shown in Fig. 7c. After branching, both Branch-and-Sandwich trees consist
of one list with one sublist: L1 = {L1

1} = {{V 2, V 3}}. At this iteration, the two inner lower
bounding approaches generate different lower bounds oncemore. None of the bounds derived
allow the fathoming of a subregion.A significant difference in the algorithmic behavior occurs
in setting up the outer upper bounding problems with the solutions of the two corresponding
outer lower bounding problems, (x̄2, ȳ2) = (− 1.0,− 1.0) and (x̄3, ȳ3) = (− 1.0, 0.0).

123

Journal of Global Optimization (2020) 77:197–225 219

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Graphical illustration of the outer (over the root node (k = 1)) an inner problems (over all nodes)
together with bilevel feasible points (thick (blue) lines) and suboptimal KKT points (dashed (red) lines).
Numbers within rectangles indicate node indices. The light-gray nodes denote nodes that are first outer-
fathomed, i.e., moved to the list LIn, while dark-gray nodes denote those that are fully-fathomed due to
full-fathoming rules. (Color figure online)

Using the revised upper bounding scheme, we can safely skip the upper bounding procedure
for both nodes, as x̄ = x̄2 = x̄3 = −1.0 ∈ X. Using the original upper bounding scheme,
B&S first solves two (RISP(x̄, V j)) problems and then one (UB(x̄, V k′

)) problem, which
yields the first bilevel-feasible solution F̄3(−1.0) = 0.0; this solution was located at the root
node using the revised approach.

123

220 Journal of Global Optimization (2020) 77:197–225

Table 2 Detailed comparison of the B&S algorithm on mb_1_1_08 bilevel problem

k f k,L f̄ k f UB,k Fk (x̄, ȳ) w(x̄) F̄(x̄)

(a) Using revised bounding schemes

1 − 0.83 0.17 0.17 − 2.0 (− 1.0,− 1.0) − 0.83 0.0

2 − 0.17 0.0 0.0 − 2.0 (− 1.0,− 1.0) – –

3 − 0.83 0.17 0.0 − 1.0 (− 1.0, 0.0) – –

4 − 0.83 0.0 0.0 − 1.0 (− 1.0, 0.0) – –

5 − 0.33 0.17 0.0 0.0 (0.0, 0.0) − 0.33 1.0

6 − 0.17 0.0 0.0 − 2.0 (− 1.0,− 1.0) – –

7 0.0 0.0 0.0 0.0 (0.0, 0.0) – –

8 − 0.17 0.0 – – – – –

9 − 0.83 − 0.33 − 0.33 0.0 (− 1.0, 0.5) – –

#Total 9 9 – 8 – 2 2

k f̆ k,L f̄ k f UB,p Fk (x̄, ȳ) w j (x̄) F̄k′
(x̄)

(b) Using original bounding schemes

1 −2.50 0.17 0.17 −2.0 (−1.0, −1.0) −1.50 ∞
2 − 0.6 0.0 0.0 −2.0 (−1.0, −1.0) − 0.24;−0.83 0.0

3 − 0.96 0.17 0.0 −1.0 (−1.0, 0.0) – –

4 − 0.83 0.0 0.0 −1.0 (−1.0, 0.0) − 0.83 0.0

5 − 0.49 0.17 0.0 0.0 (0.0, 0.0) – –

6 − 0.41 0.0 0.0 −2.0 (−1.0, −1.0) − 0.24 0.0

7 − 0.20 0.0 0.0 0.0 (0.0, 0.0) – –

8 − 0.17 0.0 – – – – –

9 − 0.83 − 0.33 − 0.33 0.0 (−1.0, 0.5) – –

10 − 0.20 – – – – – –

11 − 0.11 – – – – – –

12 − 0.83 – – – – – –

13 − 0.58 – – – – – –

#Total 13 9 – 8 – 5 4

At the second iteration, in both versions of B&S node V 3 is selected and bisected
on variable x , resulting in two new nodes (V 4 and V 5), as shown in Fig. 7d. The two
Branch-and-Sandwich trees then consist of one list with two sublists: L1 = {L1

1,L1
2} =

{{V 2, V 4}, {V 2, V 5}}. Note that using results from Theorem 2 and Remark 3, the original
B&S approach can be improved by postponing the redundant computation of the relaxed
inner upper bound f̄ k and of the best inner upper bound f UB,p until the independence con-
dition is satisfied. However this strategy is not followed for the revised B&S scheme, as
stated in Remark 5. The biggest difference in algorithmic behavior is observed when the
solution points from the lower bounding procedure are obtained: (x̄4, ȳ4) = (−1.0, 0.0) and
(x̄5, ȳ5) = (0.0, 0.0). First, the original B&S approach fails to recognize that w4(x̄4) is the
same as w3(x̄3) as both these RISP problems are solved over the same Y = [0, 1] and with
the same x̄ = x̄3 = x̄4.

This leads to the redundant evaluation of w4(x̄) = −0.83. A further issue arises with
the second solution point x̄5 = 0.0. First, we observe that this is a new solution point

123

Journal of Global Optimization (2020) 77:197–225 221

from the perspective of the outer problem. However, before starting the upper bound-
ing procedure, the original B&S checks the outer-fathoming rule (Sect. 4.6 in [22]) for
node V 5, leading to it being moved from the list of open nodes to LIn. As a result,
the upper bounding procedure is bypassed completely and this can delay the identifica-
tion of an improved upper bound, therefore slowing down convergence. Using the revised
upper bounding scheme, such a situation cannot arise, as the whole of Y is considered
for each unique solution of the outer upper bounding problem. Therefore, we add the new
solution point x̄ = 0.0 to the set of unique solutions of the lower bounding problem:
X = X∪{0.0} = {0.0, 1.0} and perform the revised outer upper bounding procedure for this
solution point.

At the third iteration, both versions of B&S select node V 2 and bisect on variable x ,
generating two new nodes (V 6 and V 7), as shown in Fig. 7e. After branching, the indepen-
dence condition is satisfied so that the inner upper and the best inner upper bound need to be
evaluated (Remark 3) and the two Branch-and-Sandwich trees therefore consist of two lists
with one sublist each: L1 = {L1

1} = {{V 4, V 6}},L2 = {L2
1} = {{V 5, V 7}}.

The most obvious difference between the two approaches at this iteration is that the
original approach performs an unnecessary evaluation of w6(−1.0) = −0.24. Observe that
w6(−1.0) = w2(−1.0), but node V 2 is no longer in the Branch-and-Sandwich tree; therefore
the original approach fails to recognize this unnecessary evaluation. In both approaches, we
first perform outer-fathoming of node V 7; this is followed by the deletion of list L2 and the
full-fathoming of nodes V 5 and V 7.

At the fourth iteration, both versions of B&S select node V 4 and bisect on y = 0.5,
generating two new nodes (V 8 and V 9) shown in Fig. 7f. After this branching step, the
two Branch-and-Sandwich trees consist of L1 = {L1

1} = {{V 6, V 8, V 9}}. At this itera-
tion, the best inner upper bound using both schemes, i.e., f UB,p=1 = f UB,k = −0.33
for each k ∈ {6, 8, 9}. This leads to the full-fathoming of node V 8, followed by outer-
fathoming of node V 9. Finally, using the revised scheme we can fully-fathom node V 6 as
f 6,L = −0.17, delete list L1, and terminate the B&S algorithm successfully. However,
using the original approach we cannot fully-fathom node V 6 as f̆ 6,L = −0.41 is lower
than the current best inner upper bound. This leads to an additional B&S iteration and the
exploration of new nodes, V 10, V 11, V 12, V 13. A further aspect worthy of note is that the
timing of fathoming and list deletion tests can help to reduce the number of relaxed inner
lower bounding problems that need to be solved from 13 to 11. Specifically inner open nodes
should only be explored after it has been ascertained that the corresponding list Lp con-
tains at least one active node. To conclude, the revised approach reduces the total number
of solved subproblems and provides a clearer framework to avoid unnecessary calculations
or issues with the management of the solution points obtained from lower bounding prob-
lem.

7 Computational comparison of the revised B&S versus the original
B&S

In this section, we perform an analysis of the computational impact of the proposed exten-
sions, modifications and improvements. We have extended the BASBL solver [30], an initial
implementation of the original B&S approach. The revised bounding schemes and the pro-
posed heuristics for the node selection and branching have been implemented within BASBL
and compared against the initial version, which is based on the original algorithm. To test

123

222 Journal of Global Optimization (2020) 77:197–225

Table 3 The number of iterations (I ter), total number of solved subproblems (#P) and total CPU time (t(s))
using revised and original B&S bounding schemes

Label Revised B&S Original B&S

I ter #P t(s) I ter #P t(s)

mb_1_1_05 5 41 2.41 5 47 2.35

mb_1_1_06 60 577 60.43 130 3627 655.05

mb_1_1_06v 5 47 2.98 7 99 5.20

mb_1_1_07 6 45 2.28 7 69 3.27

mb_1_1_08 4 30 1.48 4 37 1.79

mb_1_1_09 6 51 2.68 7 82 3.84

mb_1_1_10 5 41 2.32 5 48 2.46

mb_1_1_11 28 231 13.19 36 567 43.70

mb_1_1_13 7 53 2.74 7 65 3.33

mb_1_1_14 3 27 1.55 3 31 1.88

Average 12.90 114.30 9.21 21.10 467.20 72.32

the revised implementation, we use the same ten challenging bilevel instances from [30],
originally introduced in [26], with some modifications introduced in [23]. All test instances
are solved using the BASBL solver with the revised and original bounding schemes. BASBL
subproblems are solved globally with BARON version 17.4.1 [34,40], and accessed using
GAMS version 24.8.4 [13] through system calls. Absolute and relative termination tolerances
for BARON are set to 10−5 for all problems. The same outer and inner objective tolerances
as in [30] were used, i.e., εF = 10−3 and ε f = 10−5 are set for all problem instances
except for mb_1_1_06 and mb_1_1_11 where εF = 0.1 is used. All experiments are
performed on the same computer as in [30], i.e., a 64-bit Intel(R) Xeon(R) CPU E5-2667 v2
@ 3.30GHz processor running Linux OS. The closest combination of branching and node
selection rules to the original B&S [23] was used, i.e., (XY) for branching and (Fl)–(l f) for
node selection.

We begin by investigating the impact of the new bounding schemes on the performance
of the revised B&S algorithm. The number of iterations (I ter), total number of inner and
outer (sub)problems (#P) and wall-clock CPU time (t(s)) obtained are reported in Table 3.
On average, using the new bounding schemes, the total number of iterations is 39% smaller,
the number of solved subproblems decreases by 75% and the execution time is reduced by
87%. This shows the significant benefits that can be achieved through better bounding.

Next, we test the impact of different branching and node selection rules on the performance
of the revised B&S algorithm.We report results in Table 4 using three different combinations
of branching and node selection rules. Note that we do not include node selection strategies
with the (l F) rule, as we find that the choice of (Fl) or (l F) does not have a significant effect
on the performance of revised B&S for the test problems used. The combination (YX)-(Fl)–
(l f) is closest to the original B&S [23]. The other combinations are based on changing one
of the options at a time.

Comparing the different branching variable selection rules ((XY) vs. (YX)), we can
observe that branching preferentially on x variables ((XY) strategy) reduces the total number
of solved (sub)problems (#P) by around 11%on average. This is especially evident on the two
most challenging problems, mb_1_1_06 and mb_1_1_11, where the (XY) strategy reduces

123

Journal of Global Optimization (2020) 77:197–225 223

Table 4 Revised B&S performance based on different variants of the branching and node selection rules

Label (YX)–(Fl)–(l f) (YX)–(Fl)–(l f̄) (XY)–(Fl)–(l f)

I ter #P t(s) I ter #P t(s) I ter #P t(s)

mb_1_1_05 5 41 2.41 5 41 2.52 8 61 3.41

mb_1_1_06 60 577 60.43 62 597 62.10 49 452 54.15

mb_1_1_06v 5 47 2.98 5 47 3.22 4 37 2.11

mb_1_1_07 6 45 2.28 7 49 2.57 10 66 3.54

mb_1_1_08 4 30 1.48 4 30 1.62 6 41 2.02

mb_1_1_09 6 51 2.68 5 45 2.31 4 31 1.48

mb_1_1_10 5 41 2.32 5 41 2.50 8 57 3.36

mb_1_1_11 28 231 13.19 27 217 11.74 22 177 9.42

mb_1_1_13 7 53 2.74 7 53 3.04 11 83 4.48

mb_1_1_14 3 27 1.55 3 27 1.59 2 17 1.19

Average 12.90 114.30 9.21 13.00 114.70 9.32 12.40 102.20 8.52

the total number of solved (sub)problems by 22% on average. While the (XY) strategy gives
the best average performance, it is not optimal for all tested problems.

Finally, only a small difference (of up to around 5%) is observed when choosing one
node selection strategy over the other ((l f) vs. (l f̄)). We only show the results obtained with
(XY)–(Fl)–(l f), as similar results are found with the (XY) branching strategy.

8 Conclusions

We have presented algorithmic improvements and extensions to the recently proposed bilevel
deterministic global optimization algorithm, Branch-and-Sandwich based on a combination
of new theoretical results and heuristic rules. Our algorithmic extensions include changes to
the bounding schemes, including an alternative way to obtain tighter the best inner upper
bounds, a simpler and significantly faster outer upper bounding scheme as well as alternative
choices for branching and node selection. Detailed algorithmic and computational compar-
isons have been used to demonstrate the beneficial impact of the proposed extensions and
modifications on the number of iterations and solution performance for a set of challenging
problems. In particular, the number of nonconvex subproblems to be solved and the total
execution time were found to be greatly reduced. Numerical comparisons revealed that a
notable performance improvement may be achieved by selecting specific node selection and
branching rules.

Finally, the detailed description of the fully-fledged BASBL implementation and the appli-
cation to the larger problems is considered in a recent submission [29].

Acknowledgements We gratefully acknowledge funding from the Leverhulme Trust through the Philip Lev-
erhulme Prize and from the EPSRC through a Leadership Fellowship (EP/J003840/1).

Data access statement Data underlying this article can be accessed on Zenodo at https://doi.org/10.5281/
zenodo.3266835, and used under the Creative Commons Attribution license.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123

https://doi.org/10.5281/zenodo.3266835
https://doi.org/10.5281/zenodo.3266835

224 Journal of Global Optimization (2020) 77:197–225

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice-
differentiable constrained NLPs—II. Implementation and computational results. Comput. Chem. Eng.
22(9), 1159–1179 (1998). https://doi.org/10.1016/S0098-1354(98)00218-X

2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimizationmethod, αBB, for general
twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158
(1998). https://doi.org/10.1016/S0098-1354(98)00027-1

3. Angelo, J.S., Barbosa, H.J.: A study on the use of heuristics to solve a bilevel programming problem. Int.
Trans. Oper. Res. 22(5), 861–882 (2015). https://doi.org/10.1111/itor.12153

4. Bard, J.F.: Practical bilevel optimization. In: Nonconvex Optimization and Its Applications, vol. 30.
Springer, New York (1998). https://doi.org/10.1007/978-1-4757-2836-1

5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
6. Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper.

Res. 21(1), 37–44 (1973). https://doi.org/10.1287/opre.21.1.37
7. Calvete, H.I., Galé, C.: The bilevel linear/linear fractional programming problem. Eur. J. Oper. Res.

114(1), 188–197 (1999). https://doi.org/10.1016/S0377-2217(98)00078-2
8. Calvete, H.I., Galé, C., Mateo, P.M.: A new approach for solving linear bilevel problems using genetic

algorithms. Eur. J. Oper. Res. 188(1), 14–28 (2008). https://doi.org/10.1016/j.ejor.2007.03.034
9. Casas-Ramírez,M.S., Camacho-Vallejo, J.F.,Martínez-Salazar, I.A.: Approximating solutions to a bilevel

capacitated facility location problem with customer’s patronization toward a list of preferences. Appl.
Math. Comput. 319, 369–386 (2018). https://doi.org/10.1016/j.amc.2017.03.051

10. Cecchini, M., Ecker, J., Kupferschmid, M., Leitch, R.: Solving nonlinear principal-agent problems using
bilevel programming. Eur. J. Oper. Res. 230(2), 364–373 (2013). https://doi.org/10.1016/j.ejor.2013.04.
014

11. Chen, Q., Paulavičius, R., Adjiman, C.S., García-Muñoz, S.: An optimization framework to combine
operable space maximization with design of experiments. AIChE J. 64(11), 3944–3957 (2018). https://
doi.org/10.1002/aic.16214

12. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–
256 (2007). https://doi.org/10.1007/s10479-007-0176-2

13. Corporation, G.D.: General AlgebraicModeling System (GAMS) Release 24.8.4. http://www.gams.com/
(2017). Accessed 20 Sept 2017

14. Dempe, S.: Foundations of bilevel programming. In: Nonconvex Optimization and Its Applications,
vol. 61. Kluwer, Boston (2002). https://doi.org/10.1007/b101970

15. Dempe, S.: Annotated bibliography on bilevel programming andmathematical programswith equilibrium
constraints. Optimization 52(3), 333–359 (2003). https://doi.org/10.1080/0233193031000149894

16. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel programming problems. In:
Energy Systems. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-45827-3

17. Djelassi, H., Glass, M., Mitsos, A.: Discretization-based algorithms for generalized semi-infinite and
bilevel programs with coupling equality constraints. J. Glob. Optim. (2019). https://doi.org/10.1007/
s10898-019-00764-3

18. Falk, J.E., Hoffman, K.: A nonconvex max–min problem. Nav. Res. Logist. Q. 24(3), 441–450 (1977).
https://doi.org/10.1002/nav.3800240307

19. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer
bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017). https://doi.org/10.1287/opre.2017.1650

20. Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level programming
problem. J. Oper. Res. Soc. (1981). https://doi.org/10.1057/jors.1981.156

21. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996).
https://doi.org/10.1007/978-3-662-03199-5

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0098-1354(98)00218-X
https://doi.org/10.1016/S0098-1354(98)00027-1
https://doi.org/10.1111/itor.12153
https://doi.org/10.1007/978-1-4757-2836-1
https://doi.org/10.1287/opre.21.1.37
https://doi.org/10.1016/S0377-2217(98)00078-2
https://doi.org/10.1016/j.ejor.2007.03.034
https://doi.org/10.1016/j.amc.2017.03.051
https://doi.org/10.1016/j.ejor.2013.04.014
https://doi.org/10.1016/j.ejor.2013.04.014
https://doi.org/10.1002/aic.16214
https://doi.org/10.1002/aic.16214
https://doi.org/10.1007/s10479-007-0176-2
http://www.gams.com/
https://doi.org/10.1007/b101970
https://doi.org/10.1080/0233193031000149894
https://doi.org/10.1007/978-3-662-45827-3
https://doi.org/10.1007/s10898-019-00764-3
https://doi.org/10.1007/s10898-019-00764-3
https://doi.org/10.1002/nav.3800240307
https://doi.org/10.1287/opre.2017.1650
https://doi.org/10.1057/jors.1981.156
https://doi.org/10.1007/978-3-662-03199-5

Journal of Global Optimization (2020) 77:197–225 225

22. Kleniati, P.M., Adjiman, C.S.: Branch-and-Sandwich: a deterministic global optimization algorithm for
optimistic bilevel programming problems. Part I: theoretical development. J. Glob. Optim. 60(3), 425–458
(2014). https://doi.org/10.1007/s10898-013-0121-7

23. Kleniati, P.M., Adjiman, C.S.: Branch-and-Sandwich: a deterministic global optimization algorithm for
optimistic bilevel programming problems. Part II: convergence analysis and numerical results. J. Glob.
Optim. 60(3), 459–481 (2014). https://doi.org/10.1007/s10898-013-0120-8

24. Kleniati, P.M., Adjiman, C.S.: A generalization of the Branch-and-Sandwich algorithm: from continuous
to mixed-integer nonlinear bilevel problems. Comput. Chem. Eng. 72, 373–386 (2014). https://doi.org/
10.1016/j.compchemeng.2014.06.004

25. Linderoth, J.T., Savelsbergh, M.W.: A computational study of search strategies for mixed integer pro-
gramming. INFORMS J. Comput. 11(2), 173–187 (1999). https://doi.org/10.1287/ijoc.11.2.173

26. Mitsos, A., Barton, P.I.: A Test Set for Bilevel Programs. http://www.researchgate.net/publication/
228455291 (2007). (Last updated 19 Sept. 2007)

27. Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner
program. J. Glob. Optim. 42(4), 475–513 (2008). https://doi.org/10.1007/s10898-007-9260-z

28. Moore, J.T., Bard, J.F.: Themixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921
(1990). https://doi.org/10.1287/opre.38.5.911

29. Paulavičius, R., Gao, J., Kleniati, P.M., Adjiman, C.S.: BASBL: Branch-And-Sandwich BiLevel solver:
implementation and computational study with the BASBLib test set. Comput. Chem. Eng. (2020). https://
doi.org/10.1016/j.compchemeng.2019.106609

30. Paulavičius, R., Kleniati, P.M., Adjiman, C.S.: Global optimization of nonconvex bilevel problems: imple-
mentation and computational study of the Branch-and-Sandwich algorithm. In: Kravanja, Z., Bogataj, M.
(eds.) 26th European Symposium on Computer Aided Process Engineering, Computer Aided Chemical
Engineering, vol. 38, pp. 1977–1982. Elsevier, Amsterdam (2016). https://doi.org/10.1016/B978-0-444-
63428-3.50334-9

31. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer Briefs in Optimization. Springer,
New York (2014). https://doi.org/10.1007/978-1-4614-9093-7

32. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound
algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183
(2010). https://doi.org/10.1007/s11590-009-0156-3

33. Sahinidis, N.V.: BARON 14.4.0: Global Optimization of Mixed-Integer Nonlinear Programs, User’s
Manual (2014)

34. Sahinidis, N.V.: BARON17.4.1: global optimization ofmixed-integer nonlinear programs, User’sManual
(2017)

35. Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming, vol.
102. Kluwer, Boston (1997). https://doi.org/10.1016/S0377-2217(97)00228-2

36. Sinha, A., Malo, P., Deb, K.: Evolutionary algorithm for bilevel optimization using approximations of
the lower level optimal solution mapping. Eur. J. Oper. Res. 257(2), 395–411 (2017). https://doi.org/10.
1016/j.ejor.2016.08.027

37. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization. Eur. J. Oper. Res.
142(3), 444–462 (2002). https://doi.org/10.1016/S0377-2217(01)00307-1

38. Still, G.: Solving generalized semi-infinite programs by reduction to simpler problems. Optimization
53(1), 19–38 (2004). https://doi.org/10.1080/02331930410001661190

39. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: theory, algorithms, software, and applications. In: NonconvexOptimiza-
tion and Its Applications. Kluwer, Boston (2002). https://doi.org/10.1007/978-1-4757-3532-1

40. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8

41. Tsoukalas, A., Rustem, B., Pistikopoulos, E.N.: A global optimization algorithm for generalized semi-
infinite, continuous minimax with coupled constraints and bi-level problems. J. Glob. Optim. 44(2),
235–250 (2008). https://doi.org/10.1007/s10898-008-9321-y

42. Tuy, H.: Convex Analysis and Global Optimization, vol. 22. Springer, Berlin (2013). https://doi.org/10.
1007/978-1-4757-2809-5

43. Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: a bibliography review. J. Glob. Optim.
5(3), 291–306 (1994). https://doi.org/10.1007/BF01096458

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10898-013-0121-7
https://doi.org/10.1007/s10898-013-0120-8
https://doi.org/10.1016/j.compchemeng.2014.06.004
https://doi.org/10.1016/j.compchemeng.2014.06.004
https://doi.org/10.1287/ijoc.11.2.173
http://www.researchgate.net/publication/228455291
http://www.researchgate.net/publication/228455291
https://doi.org/10.1007/s10898-007-9260-z
https://doi.org/10.1287/opre.38.5.911
https://doi.org/10.1016/j.compchemeng.2019.106609
https://doi.org/10.1016/j.compchemeng.2019.106609
https://doi.org/10.1016/B978-0-444-63428-3.50334-9
https://doi.org/10.1016/B978-0-444-63428-3.50334-9
https://doi.org/10.1007/978-1-4614-9093-7
https://doi.org/10.1007/s11590-009-0156-3
https://doi.org/10.1016/S0377-2217(97)00228-2
https://doi.org/10.1016/j.ejor.2016.08.027
https://doi.org/10.1016/j.ejor.2016.08.027
https://doi.org/10.1016/S0377-2217(01)00307-1
https://doi.org/10.1080/02331930410001661190
https://doi.org/10.1007/978-1-4757-3532-1
https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10898-008-9321-y
https://doi.org/10.1007/978-1-4757-2809-5
https://doi.org/10.1007/978-1-4757-2809-5
https://doi.org/10.1007/BF01096458

	New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm
	Abstract
	1 Introduction
	2 Basic concepts and notation
	3 New bounding schemes
	3.1 Inner upper bounding scheme at a node
	3.1.1 Bound inheritance for the inner upper bound
	3.1.2 Bound inheritance for the relaxed inner upper bound

	3.2 Inner upper bounding scheme over Xk timesY
	3.2.1 Best inner upper bound for Xk timesY based on list mathcalLp
	3.2.2 Best inner upper bound for Xk timesY based on a subset of list mathcalLp

	3.3 Outer lower bounding scheme
	3.4 Outer upper bounding scheme
	3.4.1 Analysis of existing outer upper bounding scheme
	3.4.2 Upper bounding problem based on Mitsos2008

	4 New branching and node selection rules
	4.1 Branching variable and branching point selection
	4.2 Node selection rules

	5 Summary of the revised and the original B&S
	6 Algorithmic comparison of the revised B&S versus the original B&S
	7 Computational comparison of the revised B&S versus the original B&S
	8 Conclusions
	Acknowledgements
	References

