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Abstract
This paper presents a sequential model based optimization framework for optimizing a 
black-box, multi-extremal and expensive objective function, which is also partially defined, 
that is it is undefined outside the feasible region. Furthermore, the constraints defining the 
feasible region within the search space are unknown. The approach proposed in this paper, 
namely SVM-CBO, is organized in two consecutive phases, the first uses a Support Vector 
Machine classifier to approximate the boundary of the unknown feasible region, the second 
uses Bayesian Optimization to find a globally optimal solution within the feasible region. 
In the first phase the next point to evaluate is chosen by dealing with the trade-off between 
improving the current estimate of the feasible region and discovering possible disconnected 
feasible sub-regions. In the second phase, the next point to evaluate is selected as the mini-
mizer of the Lower Confidence Bound acquisition function but constrained to the current 
estimate of the feasible region. The main of the paper is a comparison with a Bayesian 
Optimization process which uses a fixed penalty value for infeasible function evaluations, 
under a limited budget (i.e., maximum number of function evaluations). Results are related 
to five 2D test functions from literature and 80 test functions, with increasing dimension-
ality and complexity, generated through the Emmental-type GKLS software. SVM-CBO 
proved to be significantly more effective as well as computationally efficient.

Keywords Sequential model based optimization · Constrained global optimization · 
Partially defined objective functions

1 Introduction

Sequential model based optimization (SMBO), and more precisely Bayesian Optimiza-
tion (BO) [1], is a global optimization approach which has been shown to be effective and 
sample efficient in the case of black-box expensive objective functions [2–11]. Indeed, it 
is currently the standard approach, in the machine learning community, for solving auto-
matic algorithm configuration [12], hyper-parameter tuning [13–16] and Neural Archi-
tecture Search [13, 17]. Its building blocks are a probabilistic surrogate model—usually 
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a Gaussian Process (GP)—used to approximate the objective function and an acquisition 
function to provide the next promising point to evaluate, balancing between exploitation 
and exploration.

Although BO has been used to solve global optimization problems in bounded-box 
search spaces [1–3, 7, 8, 18], more interesting and realistic cases are related to constrained 
global optimization (CGO) [19–21], where constraints are not defined as simple limits on 
the values of the variables spanning the search space. The traditional way of solving the 
constrained problems consists in solving an unconstrained problem where the original 
objective function is penalized depending on the violation of feasibility. For some classes 
of functions, a finite constant penalty can provide the same solution of using a variable 
penalty function [22, 23]. More recently, a derivative-free extension of [23], based on 
DIRECT, has been proposed in [24] and [25] making the approach suitable for globally 
solving constrained problems where the derivatives are not available. Another derivative-
free approach, based on Differential Search, has been proposed in [26], based on the idea 
of exact penalty function and using a dynamical penalty factor to achieve a better trade-off 
between exploration and exploitation. The main drawback of penalty-based approaches is 
that a suitable choice of the penalty constant is rather difficult. In the case the penalty con-
stant is not large enough the global optimizer can fall out of feasible domain, while if it is 
too large it, the penalized function has worse properties than the initial one, for instance 
Lipschitz constant can increase significantly. However, when some a priori information 
about the slope of the function is known, deterministic approaches have been also applied 
to solve CGO problems, such as in [22], where Lipschitz condition for the objective func-
tion and computable boundaries for the constraints are assumed. Optimization is then per-
formed by reducing the initial multidimensional problem to a family of one-dimensional 
sub-problems, each one solved through univariate Lipschitz optimization.

A specific case in CGO is related to partially defined objective functions, meaning that 
the objective function is undefined outside the feasible region [19, 27–29] and cannot be 
therefore computed. Thus, for each point x belonging to the search domain, a pair (y, f (x)) 
is observed. For sake of homogeneity with the rest of the paper, let denote by y = 1 the 
case that f (x) is defined/computable (i.e., x feasible), y = −1 otherwise. Other notations 
are possible (for instance the one used in [30]) but, in any case, the following assumption is 
considered: it is as costly to check if an evaluation at x fails as to observe the value of f (x) 
when there is no failure. Partially defined functions are known with different names in dif-
ferent scientific communities; for instance, in [30] the terms simulation failures and crash 
constraints are used. In the quoted reference, the optimization of a computer model is con-
sidered, where each run either fails or returns a valid output (i.e., objective function value). 
A joint GP model for classification of the inputs (failure or success) and for regression of 
the objective function is proposed. Another definition is non-computable domains, as intro-
duced in [31], referring to situations occurring when the search space encompasses points 
corresponding to an unphysical configuration, an ill-posed problem, or a non-computable 
problem due to the limitation of numerical solvers. The set of evaluated points is split into 
two subsets corresponding to computable and non-computable points, respectively (aka, 
feasible/infeasible). A surrogate model for the objective function is built using the set of 
computable points, only, whereas a probabilistic classification model is built using all the 
points, where each point belongs to one of the two classes, computable and non-comput-
able, respectively. The aim of the classifier is to avoid proposing new points in the non-
computable domain during the sequential optimization procedure.

Finally, a further challenging issue, for CGO problems, arises when constraints are 
unknown and the—consequently unknown—feasible portion of the search space cannot be 
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analytically expressed. This property of the problem is independent by the nature of the 
objective function: it can or cannot be partially defined.

A useful taxonomy of constraints has been proposed in the simulation–optimization 
community [32], highlighting the significant difference between the types of constraints 
encountered in black-box and simulation-based optimization from those treated in nonlin-
ear programming. The taxonomy is denoted QRAK, where the acronym corresponds to 
four properties of the constraints:

• Q is for Quantifiable. A quantifiable constraint is a constraint for which the violation 
can be quantified (otherwise it is named Nonquantifiable).

• R is for Relaxable. A relaxable constraint is a constraint that does not need to be satis-
fied to compute the objective (otherwise it is Unrelaxable).

• A is for A priori. An a priori constraint is a constraint for which feasibility can be con-
firmed without running a simulation (otherwise it is named Simulation constraint).

• K is for Known. A known constraint is a constraint that is explicitly given in the prob-
lem formulation (otherwise it is named Hidden). A hidden constraint typically (but not 
necessarily) appears when the simulation crashes. For such constraints, one can detect 
only violations, typically when some error flag or exception is raised. This concept is 
clearly another term for partially defined objective functions, simulation failures, crash 
constraints or non-computable domains.

According to this taxonomy, Simulation constraints (i.e., not A priori) correspond to the 
definition of unknown constraints adopted by many relevant prior works in the BO com-
munity [33–37]. Some of these references propose new acquisition functions, such as Inte-
grated Expected Conditioned Improvement (IECI) [38] and a modification of the Predic-
tive Entropy Search (PES) [39]. Most of them uses independent GPs to model the objective 
function and the constraints, requiring two strong assumptions: a priori knowledge about 
the number of constraints and the independence among objective function and all the con-
straints. The assumption of independence permits to compute a “probability of feasibility” 
simply as the product of individual probability of feasibility for each constraint. The result 
is multiplied to the acquisition function, usually Expected Improvement (EI), in order to 
optimize the objective function while satisfying, with high probability, the constraints. 
Basically, it is a CGO with a penalty function represented by the probability of feasibility.

The main contribution of this paper is the development of a method which does not 
require any of the two previous assumptions.

Finally, although it is not addressed in this paper, it is important to also mention Safe 
BO [40, 41], a closely related topic to CGO, where some the objective function is con-
strained to do not violate a “safety threshold” [40] or a “safety area” [41]. Thus, any new 
function evaluation must be performed at “safe points” only, where the difficulty is to 
ensure that the safety will be satisfied at any point during the optimization process. In this 
case, safe region and feasible region can be considered synonym: the important difference 
with respect to CGO is that Safe BO does not allow—at least with a given probability—
any function evaluations outside the feasible/safe region.

The idea proposed in this this paper is to use Support Vector Machine (SVM) [42, 43] to 
sequentially estimate and model the unknown feasible region ( Ω ) within the search space 
(i.e., “feasibility determination” problem), without any assumption on the number of con-
straints as well as their independence. In [44] a Probabilistic SVM (PSVM) is used to cal-
culate the “probability of feasibility” and the optimization scheme alternates between (i) a 
global search for the optimal solution, depending on both this probability and the estimated 
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value of the objective function—modelled through a GP—and (ii) a local refinement of 
the PSVM through an adaptive local sampling scheme. A similar approach was proposed 
in [31] in which a Least-Square SVM (LS-SVM) is used instead of a PSVM. The output of 
the LS-SVM is used, as for PSVM, to provide a “probability of feasibility”.

The proposed approach, namely SVM-CBO (SVM Constrained BO), instead, is organ-
ized in two phases, consecutive and not alternating: the first is aimed to provide a first esti-
mate of Ω (i.e., solving the feasibility determination problem) and the second is “vanilla” 
BO [1] performed on such an estimate, only. The motivation is that in SVM-CBO feasibil-
ity determination is a goal by itself, aimed to obtain a good approximation of the over-
all feasible region and not only close to the optimal solution. Another relevant difference 
is that SVM-CBO uses more efficiently the available “budget” (i.e., maximum number of 
function evaluations): at every iteration, of both phase 1 and 2, just one function evaluation 
is performed, while in the “boundary refinement” of [44] a given number np of function 
evaluations (namely, auxiliary samples) is performed in the neighborhood of the next point 
to evaluate (namely, update region), with the aim to locally refine the boundary estimate.

The importance of feasibility determination has been specifically highlighted in real-
life problems, such as Pump Scheduling Optimization (PSO) in water distribution systems 
[45, 46]. While [45] presents an adaptive random search approach to approximate feasi-
ble region while optimizing the objective function, [46] proposes a BO framework where 
infeasibility is treated by assigning a fixed penalty as value of the objective function. As 
reported in [47], penalty can be also assigned directly to the acquisition function, with the 
aim to quickly move away from infeasible regions (we refer as “BO with penalty”).

The SVM-CBO approach was initially validated on a set of simple 2D test functions 
[48]; this paper presents a wider set of experiments on test functions generated through the 
Emmental-type GKLS generator [49], with increasing dimensionality and complexity. The 
aim was to analyze the effectiveness and efficiency of SVM-CBO with respect to the com-
plexity of the test problem to solve and compare the proposed method to a BO with penalty 
approach.

The rest of the paper is organized as follows: Sect.  2 provides the background about 
SVM classification and SMBO, Sect.  3 describes SVM-CBO, Sect.  4 summarizes the 
experimental setting and Sect. 5 presents the results.

2  Background

2.1  Support Vector Machine classification

The basic idea of Support Vector Machine (SVM) classification [42, 43] consists in search-
ing for a hyper-plane to optimally separate instances (represented as vectors) belonging to 
two different classes while maximizing the distance of every instance from the hyper-plane 
(i.e., margin maximization). This first formulation is known as hard margin SVM and pro-
vides a separation of instances in the two classes without any classification error only in 
the case that the instances are linearly separable.

Let denote with Di=1∶n =
(
xi, yi

)
 a generic dataset, where xi ∈ ℝ

d is an instance in 
the d-dimensional space and yi ∈ {−1,+1} is the “label” of the class it belongs to. More-
over, denote with w ⋅ x − b = 0 a generic hyper-plane, where ⋅ is the scalar product opera-
tor. To achieve the margin maximization objective two hyper-planes must be considered: 
w ⋅ x − b = 1 and w ⋅ x − b = −1 , where the quantity 2∕‖w‖ is the size of the margin, that is 
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the distance between these two hyper-planes. An important constraint is that no instances must 
lie in the region between the two hyper-planes, that is yi

(
w ⋅ xi − b

)
≥ 1 , with i = 1,… , n . 

Thus, the hard margin SVM formulation consists in solving the following optimization 
problem:

Given the solution of this problem, the estimated class label is given by ỹ = sgn(w ⋅ x − b) , 
namely the hyperplane decision function. The optimization problem is dealt with by intro-
ducing Lagrangian relaxation, where the constraints are incorporated into the new objective 
function:

with �i named Lagrangian coefficients.
If the i-th constraint is violated, then L can be increased by increasing the corresponding 

�i . At the same time, w and b will have to change such that L decreases. On the contrary, if 
the i-th constraint is not met as equality, the relative �i must be 0: this is the value of �i that 
maximizes L (according to Karush–Kuhn–Tucker complementary conditions of optimization 
theory).

The identification of a saddle point of L is the solution of the Lagrangian problem. In a sad-
dle point the derivatives of L with respect to the original decision variables w and b will vanish, 
that is �

�w
L(w, b, �) = 0 and �

�b
L(w, b, �) = 0 , leading to 

∑n

i=1
�iyi = 0 and w =

∑n

i=1
�iyixi . 

Thus, the solution vector w is an expansion in terms of a subset of the training examples, more 
precisely those whose 𝛼i > 0 , which are called support vectors.

By replacing to 
∑n

i=1
�iyi = 0 and w =

∑n

i=1
�iyixi into the Lagrangian function, the origi-

nal decision variables w and b are eliminated, leading to the dual quadratic optimization prob-
lem usually solved in practice:

Using the equation w =
∑n

i=1
�iyixi , the hyperplane decision function can be rewritten as 

follows:

with b computed by using the following equation from KKT conditions:

(1)

min
w,b

‖w‖2
2

s.t.

yi
�
w ⋅ xi − b

�
≥ 1

(2)min
w,b,�

L(w, b, �) =
1

2
‖w‖2 −

n�
i=1

�i
�
yi
�
xi ⋅ w + b

�
− 1

�

(3)

max
�∈ℝn

W(�) =

n∑
i=1

�i −
1

2

n∑
i,j=1

�i�jyiyj
(
xi ⋅ xj

)

s.t.

�i ≥ 0 ∀i = 1,… , n

n∑
i=1

�iyi = 0

(4)ỹ = sgn

(
n∑
i=1

yi𝛼i
(
x ⋅ xi

)
+ b

)
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meaning that all the support vectors lie on the margin while all the other training examples 
are irrelevant for the construction of the separation hyperplane and the relative hyperplane 
decision function.

As already mentioned, the hard margin formulation works only in the case of linearly 
separable data, a quite rare situation in real life. Therefore, the soft margin SVM formula-
tion has been proposed: it relaxes the “perfect” separation constraint by admitting some 
classification errors and limiting them through a penalization term in the objective func-
tion. This formulation of the soft margin SVM classification is also known as C-SVM, 
where C is a regularization parameter to manage the trade-off between minimization of 
classification error and maximization of margin:

Nevertheless, both hard and soft margin work by using a linear hyper-plane to separate 
the two classes of instances, a still strong precondition in real-world classification prob-
lems. Thus, the so-called kernel trick has been proposed to perform—implicitly—a map-
ping of the instances from the original space (Input Space) in a new one (Feature Space) 
where they could be hopefully linearly separated.

Let denote with x ∈ ℝ
d a training example in the Input Space and with Φ(x) ∈ ℝ

p its 
representation in the Feature Space—usually p > d , then k

(
x, x�

)
= Φ(x) ⋅Φ

(
x�
)
—namely 

the kernel—is the dot product between two training points computed in the Feature Space 
induced by Φ( ) . The identification of the Φ( ) allowing for linear separation, in the Feature 
Space, of a set of training examples which are not linearly separable in the Input Space, is 
an NP-hard problem. The kernel allows for computing similarity between two points in the 
induced Feature Space without explicitly computing Φ( ) . Several types of kernel, for SVM 
classification, have been proposed, such as e.g. Polynomial, Radial Basis Functions (RBF), 
Sigmoid, etc.

Independently on the type of kernel, the hyperplane decision function can be rewritten 
as follows:

and the quadratic optimization problem can be reformulated as follows:

(5)�i
[
yi(w ⋅ x + b) − 1

]
= 0 ∀ i = 1,… , n

(6)

min
w,b,�

‖w‖2
2

+ C

n�
i=1

�i

s.t.

yi
�
w ⋅ xi − b

�
≥ 1 − �i

�i ≥ 0

(7)ỹ = sgn

(
n∑
i=1

yi𝛼i
(
Φ(x) ⋅Φ

(
xi
))

+ b

)
= sgn

(
n∑
i=1

yi𝛼ik
(
x, xi

)
+ b

)
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Finally, the Gaussian RBF kernel is used in this paper, which is defined as:

where �2
svm

 sets the similarity of the two points, x and x′ in the Feature Space. The larger 
the value of �2

svm
 the more similar the two points are considered. Since the kernel concept 

also arises in sequential model based optimization, �2
svm

 is here used to denote the hyper-
parameter of the Gaussian RBF kernel for SVM classifier, while � is used to denote the 
hyper-parameters in the Squared Exponential (SE) kernel introduced in the following sec-
tion. As better explained in the following, the mathematical formulation of the two kernel 
is practically the same, but the role of the two kernels is completely different.

2.2  Sequential model based optimization

The goal of sequential model based optimization (SMBO) is to find a global minimizer of 
the black-box, multi-extremal and expensive objective function f (x):

where X ⊂ ℝ
d . In GO, X is usually a bounded box search space.

The SMBO framework consists of 2 main components:

• The first is a (probabilistic) model of the objective function (also known as surrogate 
model), sequentially updated depending on observations of the objective function (i.e., 
function evaluations). When a probabilistic model is used, as in Bayesian Optimization 
(BO), both mean and variance of the surrogate model are updated. A typical choice of 
probabilistic surrogate model is a Gaussian Process (GP) [50].

• The second key component is an acquisition function, defined on the (probabilistic) sur-
rogate model, whose optimization drives the querying process by identifying the next 
most “promising” point where the objective function is to be evaluated.

Some basics on GP and a presentation on a set of widely adopted acquisition functions 
are reported in the following sub-sections.

2.3  The probabilistic model

A GP is an extension of the multivariate Gaussian distribution to an infinite dimensions 
stochastic process. Just as a Gaussian distribution is a distribution over a random variable, 
completely specified by its mean and covariance, a GP is a distribution over functions, 

(8)

max
�∈ℝn

W(�) =

n∑
i=1

�i −
1

2

n∑
i,j=1

�i�jyiyjk
(
xi, xj

)

s.t.

�i ≥ 0 ∀ i = 1,… , n

n∑
i=1

�iyi = 0

(9)k
�
x, x�

�
= exp

�
−
‖x − x�‖2
2�2

svm

�

(10)x∗ = argminx∈X f (x)
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completely specified by its mean function �(x) and covariance function, also known as ker-
nel, k

(
x, x′

)
:

It is often useful to intuitively think of a GP as analogous to a function, but instead of 
returning a single numeric value f (x̄) for an arbitrary x̄ , it returns the mean and variance of 
a normal distribution over the possible values of f (x̄).

In SMBO, a GP is used as a probabilistic surrogate model by “training” according to 
the current set of function evaluations. Let consider to be at iteration t , that means t eval-
uations of the objective function have been already performed and stored in the dataset 
D1∶t =

(
xi, f

(
xi
))

 . One of the most important property of GP is that a GP is a collection 
of random variables, any finite number of which have a joint Gaussian distribution, so that 
f
(
xt+1

)
 can be obtained as follows. For the sake of simplicity, we use ft as short notation 

for f
(
xt
)
:

where

It is then easy to derive an expression for the predictive distribution:

where

and �2
t
 is the variance of noise. The function values are drawn according to a multivariate 

normal distribution N(0, K) , where the kernel matrix K is given by:

Many covariance functions have been proposed in literature, such as Squared Exponen-
tial, Exponential, Matérn, Rational Quadratic, etc. [50]. One of the most widely adopted is 
the Squared Exponential (SE) kernel, that is the:

where � is named characteristic lengthscale. The SE kernel approaches to 1 as the distance 
between x and x′ decreases to 0, while approaches to 0 when the two points are distant. 
This means that two points that are close together can be expected to have a very large 
mutual influence, whereas distant points have almost none.

(11)f (x) ∼ GP
(
�(x);k

(
x, x�

))

(12)
[ {

f1,… , ft
}

ft+1

]
∼ N

(
0,

[
K k

kT k
(
xt+1, xt+1

)
])

(13)k =
[
k
(
xt+1, x1

)
k
(
xt+1, x2

)
… k

(
xt+1, xt

)]

(14)P
(
ft+1|D1∶t, xt+1

)
= N

(
ft+1|�t

(
xt+1

)
, �2

t

(
xt+1

))

(15)�t

(
xt+1

)
= kT

[
K + �2

t
I
]−1{

f1,… , ft
}

(16)�2
t
= k

(
xt+1, xt+1

)
− kT

[
K + �2

t
I
]−1

k

(17)K =

⎡⎢⎢⎣

k
�
x1, x1

�
… k

�
x1, xt

�
⋮ ⋱ ⋮

k
�
xt, x1

�
… k

�
xt, xt

�
⎤⎥⎥⎦

(18)k
�
x, x�

�
= exp

�
−

1

2�2
‖x − x‖�2

�
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Although SMBO, especially BO, has become a relevant approach in the case there 
is not any information about derivatives, when gradients of f (x) are available or can be 
inferred they can be incorporated, for instance into the GP, to improve the optimization 
process via local search [51].

2.4  The acquisition function

The acquisition function is the mechanism to implement the trade-off between explo-
ration and exploitation in the SMBO. The basic idea is to improve over the best solu-
tion observed so far (“best seen”), even if an improvement is not guaranteed from one 
iteration to the next, due to the exploration. Any acquisition function aims to guide the 
search of the optimum towards points with potentially low values of objective function 
(in minimization problem) either because the prediction of f (x) , based on the surrogate 
model, is high or the uncertainty is high (or both). While exploiting means to consider 
the area providing more chance to improve the current solution (with respect to the cur-
rent surrogate model), exploring means to move towards less explored regions of the 
search space. Many acquisition functions have been proposed, such as Probability of 
Improvement, Expected Improvement, Confidence Bound (Upper/Lower Confidence 
Bound for maximization/minimization problems, respectively), Entropy Search and Pre-
dictive Entropy Search and Knowledge Gradient, among the most well-known [1, 3, 52].

3  Support Vector Machine constrained bayesian optimization

3.1  Problem formulation

We start with the definition of the problem, that is:

where f (x) has the following properties: it is black-box, multi-extremal, expensive and par-
tially defined. Moreover, we consider the case that constraints defining the feasible region 
are also black-box. This can be a typical setting in optimization problems where the objec-
tive function is computed by a, usually time consuming, simulation process/software for 
each x ∈ X [53]. Following, some useful notation:

• xi is the i-th point evaluated;
• yi = {+1,−1} defines if xi is feasible or infeasible, respectively;
• DΩ

n
=
{(

xi, yi
)}

i=1,…,n
 is the feasibility determination dataset;

• D
f

l
=
{(

xi, f
(
xi
))}

i=1,…,l
 is the function evaluations dataset, with l the number of 

feasible points out of the n evaluated so far:

Thus, it is easy to notice that the feasibility determination dataset, DΩ
n

 , is exactly in 
the form of any generic dataset which SVM classification can be applied on.

(19)minx∈Ω⊂X⊂ℝd f (x)

(20)l =
|||(x, y) ∈ DΩ

n
∶ y = 1

|||
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3.2  Phase 1: feasibility determination

The first phase of SVM-CBO aims at finding an estimate Ω̃ of the actual feasible region 
Ω , in M function evaluations. Feasibility of any point x ∈ X is estimated depending on 
the (non-linear) separation hypersurface induced by an SVM classifier trained on DΩ

n
 . 

The SVM classifier uses an RBF kernel to model a non-linear boundary for the feasible 
region. Let denote with hn(x) the argument of the SVM-based classification function:

where �i and yi are the Lagrangian coefficient and the “feasibility label” of the ith support 
vector respectively, k(., .) is the SVM kernel function (i.e., an RBF kernel, in this study), b 
is the offset and nSV is the number of support vectors.

The boundary of the estimated feasible region Ω̃n is given by hn(x) = 0 . Finally, the 
estimated feasibility for a given point x ∈ X is:

In phase 1 of SVM-CBO, the next promising point is selected according to two dif-
ferent goals:

• Improving the estimate of feasible region
• Discovering possible disconnected feasible regions

To deal with the first goal, the distance from the currently estimated boundary of Ω̃n 
is used:

With respect to the second goal, a measure of “coverage of the search space” is used:

So, cn(x) is a sum of n RBF functions centred on the points evaluated so far, with �c a 
parameter to set the width of the corresponding bell-shaped curve.

Finally, the next point is selected by solving the following optimization problem:

Thus, one wants to select the point associated to minimal coverage (i.e., max uncer-
tainty) and minimal distance from the boundaries of the current estimated feasible 
region. This allows to balance between improving the estimate of the feasible region 
and discovering possible disconnected feasible sub-regions (in less explored areas of the 
search space). It is important to highlight that, in phase 1, the point solving this optimi-
zation problem is searched for on the overall bounded-box search space X.

(21)hn(x) =

nSV∑
i=1

�iyik
(
xi, x

)
+ b

(22)ỹ = sign
(
hn(x)

)
=

{
+1 if x ∈ Ω̃n

−1 if x ∉ Ω̃n

(23)dn
(
hn(x), x

)
= ||hn(x)|| =

|||||

nSV∑
i=1

�iyik
(
xi, x

)
+ b

|||||

(24)cn(x) =

n�
i=1

e
−

‖xi−x‖2
2�2c

(25)xn+1 = argmin
x∈X

{
dn
(
hn(x), x

)
+ cn(x)

}
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At each iteration, the function is evaluated at the new point xn+1 and the collected infor-
mation is used to update datasets and the SVM classification model. The process iterates 
until M function evaluations are reached. The algorithm for SVM-CBO phase 1 (i.e., feasi-
bility determination) is summarized.

3.3  Phase 2: BO constrained to the estimated feasible region

Phase 2 of SVM-CBO consists of a “vanilla” BO process but modified as follows:

• the search space (related to this phase) is not the overall box-bounded domain X but 
constrained to the estimated feasible region Ω̃n identified in phase 1

• a GP is fitted to provide a probabilistic surrogate model of the objective function, but it 
is fitted by only using the feasible observations stored so far into Df

l
• Lower Confidence Bound (LCB) is used as acquisition function in this phase, but it is 

defined on Ω̃n , only. Thus, the next point to evaluate is given by:

where �n(x) and �n(x) are the mean and the standard deviation of the current GP and �n is 
the inflate parameter to deal with the trade-off between exploration and exploitation for this 
phase. Theoretically motivated guidelines for setting and scheduling �n to achieve optimal 

(26)xn+1 = argmin
x∈Ω̃n

{
LCBn(x) = 𝜇n(x) − 𝛽n𝜎n(x)

}
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regret are reported in [54]. It is important to highlight that, contrary to phase 1, the acqui-
sition function is here minimized on Ω̃n , only, instead of the entire bounded-box search 
domain X.

The point xn+1 is just expected to be feasible, according to Ω̃n , but the information on its 
actual feasibility is known only after evaluating f

(
xn+1

)
 . The collected information is used 

to update datasets, GP and—if needed—the SVM classification model. The process iter-
ates until an overall number of N function evaluations, including the M already performed 
in phase 1, is reached. The algorithm for SVM-CBO phase 2 (i.e., BO constrained to the 
estimated feasible region) is summarized.

The following figure shows three different iterations of SVM-CBO: grey area is the 
infeasible region X�Ω , light-blue area is its estimate X�Ω̃n , the blue dashed line is the 
estimated boundary, crosses and blue points are, respectively, infeasible and feasible evalu-
ations and the red star is the unique feasible global minimizer (Fig. 1). At the end of initial 
LHS sampling (left) the approximation of the feasible region is quite poor, while at the end 
of phase 1 (middle) it is good, with both the two disconnected feasible subregions mod-
elled. Although points in phase 1 are selected with the only aim to improve the estimate of 
the feasible region, there are also 2 points which have been sampled closely to the global 
minimizer. This is due to the proximity of the global minimizer to the feasible region’s 
boundary (middle). All the points selected in phase 2 are significantly close to the global 
minimizer (right), without requiring any further refinement of the feasible region estimate. 
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It is possible to notice some errors in the SVM classification: one blue (feasible) point is 
outside the estimated feasible region, while two crosses (infeasible points) are inside. How-
ever, it is not important to have a perfect estimate of the feasible region, a good approxima-
tion, just like the one in figure, is enough.

4  Experiments

4.1  Simple 2D test functions

The SVM-CBO approach has been validated on three well-known 2D test functions for 
CGO, that are: Rosenbrock constrained to a disk [55], Rosenbrock constrained to a line 
and a cubic [55, 56], and Mishra’s Bird constrained [57]. Since these test functions are all 
constrained to just one connected feasible region, two more supplementary test functions 
have been defined: Branin (rescaled) [58] constrained to an ellipse and Branin (rescaled) 
constrained on two disconnected ellipses. These two further tests allowed us to validate 
SVM-CBO with respect to a connected or disconnected feasible region, on the same objec-
tive function. Analytical expressions of these test functions are in [48].

4.2  Test functions generator: Emmental‑type GKLS

Emmental-type GKLS [49] is a software for generating multidimensional continuously dif-
ferentiable multiextremal objective functions and non-linear constraints. The global mini-
mizer of these constrained test functions is always located on the boundary of the feasible 
region. Dimensionality and complexity of the generated test functions can be easily con-
trolled by setting few generator’s parameters.

The experimental setting defined for the experiments with Emmental-type GKLS was 
inspired by the one used in [5]: test functions of growing dimensionality, from 2D to 5D, 
have been considered, for 2 different classes of complexity each. In this paper, 10 different 
functions for each dimensionality and class of complexity have been generated, leading 
to 4 × 2 × 10 = 80 test functions. The number of local minima is 30, the number of con-
straints is 20, 2 and 10, respectively for the possible three types considered by Emmental-
type GKLS, with 5 active constraints at the global optimum.

Fig. 1  Estimates of the feasible region for the “Brainin constrained to two disconnected ellipses” test func-
tion (presented in Sect. 4.1). Estimate at the end of: (left) initialization, (middle) phase 1 and (right) phase 
2. Blue dashed line is the boundary of Ω̃

n
 . Crosses and blue points are infeasible and feasible points, respec-

tively; in red the unique feasible global minimizer. (Color figure online)
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4.3  Experimental setting

SVM-CBO was validated on a budget of 100 function evaluations, divided in:

• 10 for initialization, through uniform random sampling;
• 60 for phase 1 (i.e., feasibility determination)
• and 30 for phase 2 (i.e., BO constrained to the estimated feasible region)

This budget is clearly insufficient to solve the CGO test functions, thus SVM-CBO, and 
BO in general, cannot guarantee an optimal solution differing less than a given small � from 
the optimum value function [5]. On the other hand, it is important to highlight that the aim 
of the proposed approach is to obtain a good solution under very limited budget, and that 
this solution is better than the one provided by BO assigning a fixed penalty to infeasible 
evaluations. Thus, the goal of the experiments was to validate whether SVM-CBO is more 
effective, and efficient, than “BO with penalty” in the case of a partially defined f (x) (a.k.a. 
incomputable domains, crush constraints, etc.).

In the case of BO with penalty, the overall budget was the same but divided as follows:

• 10 evaluations for initialization through uniform random sampling;
• and 90 for the BO process (the sum of phase 1 and phase 2 budgets in SVM-CBO).

It is important to highlight that, for each independent run, the initial set of solutions 
identified through uniform random sampling was the same for both SVM-CBO and BO 
with penalty, avoiding differences in the results due to different initializations.

SVM-CBO was analyzed with respect to different aspects:

• does the SVM-CBO offer a better solution than BO with penalty? Or, at least, the same 
solution but with less function evaluations?

• is the number of test problems solved by SVM-CBO higher than BO with penalty?

To address the first analysis, Gap metric [59, 60] was considered, which measures the 
improvement obtained along a sequential optimization process with respect to global opti-
mum f (x∗) and the initial best value f

(
x0
)
 observed during initialization:

where f
(
x+
)
 is the “best seen” up to iteration n . Gap metrics varies in the range [0, 1].

For statistical significance, the Gap metric was computed on 30 different runs, for every 
test function and for both SVM-CBO and BO with penalty.

To address the second analysis, the Operating Zones methodology was considered [5], 
an extension of the Operational Characteristics [61] to the performance analysis of sto-
chastic global optimization methods. The Operating Zones ranges in 0 and the number of 
problems to solve or can be reported in percentage terms.

Gn =

|||f
(
x+
)
− f

(
x0
)|||

|||f (x∗) − f
(
x0
)|||
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5  Results

5.1  Results on simple 2D test functions

As already reported in [48], SVM-CBO outperforms BO with penalty on all the five 2D 
test functions considered. At the end of the optimization process, BO with penalty pro-
vided solutions with a gap metric—averaged on 30 runs for every function—ranging in 
0.55–0.70, while SVM-CBO provided solutions with gap metric not lower than 0.80. Fur-
thermore, gap metric variance was always lower in the case of SVM-CBO, at the end of 
the optimization process. For all the 2D test functions the behavior was similar: SVM-
CBO’s gap metric drastically improves when the phase 2 starts. The following figure shows 
two exemplary cases: Rosenbrock constrained to a cubic and a line (left) and Branin con-
strained to two disconnected ellipse (right).

Although the acquisition function in phase 1 is aimed at sampling points to improve 
the estimate of feasible region, in some cases—just like in Fig. 2 (right)—it can also offer 
a better gap metric with respect to BO with penalty, also in phase 1. Finally, results on 
Rosenbrock constrained to a disk are like those in Fig. 2 (left), while for Branin constrained 
on an ellipse and Mishra’s function results are like those in Fig. 2 (right).

5.2  Results on Emmetal‑type GKLS test functions

Due to the large number of generated test functions (i.e., 80), and 30 different runs each, 
for both SVM-CBO and BO with penalty, all the results have been summarized in the fol-
lowing 4 tables, where each table refers to a dimensionality, from 2D to 5D (Tables 1, 2, 3, 
4).

The definition of “simple” and “hard” classes follows from [5]; the column “seed” spec-
ifies the value used to generate the specific test function for any dimensionality-class pair. 
Tables report the best seen at end of the optimization process (mean and standard deviation 
on 30 independent runs), separately for SVM-CBO and BO with penalty. The value of the 
Mann–Withney’s U test is reported along with the associated p value. Numbers in bold 
indicate significantly better results: symbols *, ** and *** indicate a p value less or equal 
than 0.05, 0.01 and 0.001, respectively.

BO with penalty never outperforms SVM-CBO. Moreover, the higher the dimensional-
ity—and harder is the class—of the problem, the higher the significance of the difference 
between the best seen obtained by SVM-CBO and BO with penalty.

Fig. 2  Comparison of Gap metrics for SVM-CBO (namely, Constrained BO in the legend) and BO with 
penalty on two out the five simple 2D test functions
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With increasing dimensionality, both SVM-CBO and BO with penalty have less chances 
to reach the attraction basin of the global minimizer. This is due to the very narrow basin 
of attraction, the complicated location of the optimizer (on the boundary of the feasible 
region) and to the limited budget (only 100 function evaluations, overall). However, BO 
is usually adopted in practical problems just to find a solution with a good function value, 
under a limited budget, rather than the global minimizer. Experiments were devoted to 
validating if the information about feasibility/infeasibility can be effectively exploited to 
improve effectiveness and efficiency with respect to BO approaches using a simple fixed 
penalty. Extended results presented in this paper prove that, in the case of a partially 
defined objective function and black-box constraint, the simple adoption of a penalty value 
is completely misleading.

To compute the Operating Zones the following process has been used: for every test 
function the value of the best seen at the end of the optimization, separately for SVM-CBO 
and BO with penalty, was averaged on the 30 different runs, namely f +(i)

SVMCBO
 and f +(i)

BO
 , 

where the apex (i) refers to the i th test function (dimensionality, class and seed). Then, the 
minimum between these two values was selected for each test function, that is 
f̄ (i) = min

{
f
+(i)

SVMCBO
, f

+(i)

BO

}
 . The value f̄ (i) was used as threshold, for both SVM-CBO and 

BO with penalty, to consider the i th test function as solved, in each one of the 30 inde-
pendent runs. In this way, every test problem is considered as solved at least once. The 
main motivation for this selection of the thresholds f̄ (i) is that neither SVM-CBO nor BO 
with penalty can guarantee an optimal solution differing less than a given small � from the 
optimum value function.

Table 1  2D Emmental-type GKLS functions: best seen for SVM-CBO and BO with penalty

Class Seed SVM-CBO BO penalty –Withney p value Sign. level

Simple 1 − 0.50 ± 0.14 − 0.25 ± 0.18 52.50 < 0.001 ***
2 − 0.07 ± 0.09 0.07 ± 0.08 52.00 < 0.001 ***
3 0.09 ± 0.03 0.12 ± 0.08 194.50 0.892
4 0.18 ± 0.01 0.17 ± 0.09 149.00 0.174
5 − 0.08 ± 0.17 − 0.11 ± 0.21 160.00 0.285
6 − 0.13 ± 0.09 − 0.05 ± 0.07 98.00 0.005 **
7 0.03 ± 0.06 0.03 ± 0.03 189.00 0.776
8 − 0.18 ± 0.15 − 0.22 ± 0.16 189.50 0.787
9 0.01 ± 0.00 0.02 ± 0.02 103.00 0.009 **
10 − 0.02 ± 0.06 − 0.05 ± 0.16 155.50 0.234

Hard 1 − 0.50 ± 0.15 − 0.29 ± 0.2 64.00 < 0.001 ***
2 0.08 ± 0.02 0.08 ± 0.04 209.50 0.808
3 0.07 ± 0.01 0.10 ± 0.05 75.50 0.001 ***
4 0.18 ± 0.01 0.17 ± 0.06 159.50 0.279
5 − 0.31 ± 0.07 − 0.24 ± 0.05 20.00 < 0.001 ***
6 0.02 ± 0.02 0.06 ± 0.06 112.50 0.019 *
7 − 0.04 ± 0.07 − 0.01 ± 0.07 114.50 0.021 *
8 0.05 ± 0.01 0.05 ± 0.07 149.00 0.174
9 0.01 ± 0.01 0.02 ± 0.03 127.50 0.051
10 0.01 ± 0.01 0.03 ± 0.03 57.50 < 0.001 ***
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Figure 3 reports the Operating Zones of SVM-CBO and BO with penalty when (left) 
test functions are solved in at least 30% of the independent runs and (right) in at least 50% 
of the independent runs.

Again, the most relevant result is the significant increase obtained by SVM-CBO after 
the end of phase 1. The Operating Zones confirm that exploiting the information repre-
sented by a good approximation of the unknown feasible region can significantly improve 
the effectiveness of BO, compared to assigning a fixed penalty to infeasible evaluations.

6  Discussion

Finally, this section provides some further discussion, regarding computational costs and 
convergence results. Starting from computational costs, SVM-CBO results to be more 
efficient than BO with penalty. In Fig. 4 the value of the best seen over time is reported 
for both SVM-CBO and BO with penalty for the same test problem (i.e., a 5D hard test 
function). To exclude any other computational load and make uniform the comparison, the 
computational time is not the wall-clock time but, at a given iteration n̄ , it is computed 
as 

∑n̄

n=1
O
�
n3
�
 . For visualization purposes it is assumed O

(
13
)
= 1 unit of time. From 

one function evaluation to the next, the computational time of BO with penalty always 
increases. The reason is that BO with penalty uses all the points evaluated so far to fit the 
probabilistic surrogate model. On the contrary, SVM-CBO—in phase 2—uses only fea-
sible points to fit the probabilistic surrogate model of the objective function, and they are 

Table 2  3D Emmental-type GKLS functions: best seen for SVM-CBO and BO with penalty

Class Seed SVM-CBO BO penalty –Withney p value Sign. level

Simple 1 0.04 ± 0.02 0.13 ± 0.21 44.00 < 0.001 ***
2 − 0.35 ± 0.16 − 0.04 ± 0.13 25.00 < 0.001 ***
3 0.09 ± 0.07 0.20 ± 0.18 89.00 0.003 **
4 0.03 ± 0.04 0.12 ± 0.06 42.00 < 0.001 ***
5 0.05 ± 0.04 0.12 ± 0.08 82.00 0.001 **
6 0.07 ± 0.06 0.16 ± 0.01 88.50 0.003 **
7 0.13 ± 0.04 0.19 ± 0.13 118.00 0.027 *
8 0.06 ± 0.01 0.12 ± 0.05 29.00 < 0.001 ***
9 − 0.01 ± 0.06 0.07 ± 0.05 48.00 < 0.001 ***
10 0.14 ± 0.02 0.19 ± 0.07 99.00 0.006 **

Hard 1 − 0.03 ± 0.15 0.14 ± 0.12 39.50 < 0.001 ***
2 − 0.36 ± 0.11 − 0.03 ± 0.08 8.00 < 0.001 ***
3 0.13 ± 0.04 0.18 ± 0.08 105.00 0.009 **
4 0.02 ± 0.04 0.13 ± 0.11 26.00 < 0.001 ***
5 0.03 ± 0.02 0.14 ± 0.09 31.00 < 0.001 ***
6 0.06 ± 0.05 0.17 ± 0.08 36.00 < 0.001 ***
7 0.11 ± 0.03 0.18 ± 0.08 61.00 < 0.001 ***
8 0.06 ± 0.02 0.13 ± 0.07 39.00 < 0.001 ***
9 0.02 ± 0.04 0.11 ± 0.11 61.00 < 0.001 ***
10 0.13 ± 0.03 0.19 ± 0.06 69.50 < 0.001 ***
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usually significantly less than the overall points evaluated so far. In any case the time from 
one function evaluation to the next, for SVM-CBO, is not monotone because the selec-
tion of an infeasible point requires to update both the estimate of the feasible region—that 
is retraining the SVM classifier with complexity O

(
n̄3
)
—and the probabilistic surrogate 

model of the objective function—that is fitting the GP, also with complexity O
(
l3
)
 , where l 

is the number of feasible evaluations, only.
As far as the convergence is concerned, some theoretical results have been already 

provided in [54] for BO with GP as probabilistic surrogate model and Lower/Upper Con-
fidence Bound as acquisition function, even if in the case of bounded-box search space. 
In [30], instead, convergence proofs for EI in the CGO are provided. This study does not 
extend the theoretical results provided in the two quoted papers, rather provides extended 
empirical results to evaluate the practical advantages offered by the proposed SVM-CBO 
approach.

A further experiment was devoted to investigating the impact of the budget: a 5D hard 
test function was selected and 3 different runs were performed, where for each run SVM-
CBO and BO with penalty shared the same set of initial points uniformly sampled at ran-
dom. The available budget for each run was of 1000 function evaluations divided into: 100 
for initialization, 600 for SVM-CBO phase 1 and 300 for SVM-CBO phase 2 (i.e., 900 for 
BO with penalty, after initialization). The proportion between initialization, phase 1 and 
phase 2 is the same used for previous experiments (i.e., 10–60–30%). There is not any 
specific reason for this schema: the main motivation is that, according to the preliminary 
experiments on simple 2D test functions, few function evaluations are sufficient to obtain a 

Table 3  4D Emmental-type GKLS functions: best seen for SVM-CBO and BO with penalty

Class Seed SVM-CBO BO penalty –Withney p value Sign. level

Simple 1 0.16 ± 0.04 0.41 ± 0.15 9.00 < 0.001 ***
2 0.18 ± 0.06 0.42 ± 0.15 5.00 < 0.001 ***
3 0.25 ± 0.02 0.35 ± 0.08 23.00 < 0.001 ***
4 0.16 ± 0.02 0.28 ± 0.12 55.00 < 0.001 ***
5 0.30 ± 0.04 0.48 ± 0.26 57.50 < 0.001 ***
6 0.20 ± 0.05 0.23 ± 0.06 135.00 0.081
7 − 0.26 ± 0.36 0.22 ± 0.23 52.50 < 0.001 ***
8 0.04 ± 0.12 0.29 ± 0.17 28.50 < 0.001 ***
9 0.24 ± 0.04 0.46 ± 0.31 44.50 < 0.001 ***

10 0.20 ± 0.03 0.47 ± 0.21 22.00 < 0.001 ***
Hard 1 0.15 ± 0.05 0.30 ± 0.09 18.50 < 0.001 ***

2 0.21 ± 0.06 0.40 ± 0.14 30.50 < 0.001 ***
3 0.22 ± 0.03 0.35 ± 0.13 57.50 < 0.001 ***
4 0.15 ± 0.03 0.27 ± 0.18 74.50 0.001 ***
5 0.33 ± 0.02 0.44 ± 0.15 56.00 < 0.001 ***
6 0.19 ± 0.03 0.25 ± 0.06 53.00 < 0.001 ***
7 − 0.25 ± 0.38 0.25 ± 0.24 52.00 < 0.001 ***
8 0.10 ± 0.11 0.33 ± 0.18 35.00 < 0.001 ***
9 0.23 ± 0.03 0.41 ± 0.17 36.00 < 0.001 ***

10 0.21 ± 0.02 0.41 ± 0.21 18.00 < 0.001 ***
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good solution if the feasible region is well approximated, so most of the budget is allocated 
to phase 1.

Figure 5 reports the obtained results: SVM-CBO outperformed BO with penalty on all 
the three runs, and with a relevant difference in terms of best seen on two of them. The 
main important consideration is that, although starting from the same initial set of points, 
the strategy used, in phase 1, to select the next point to evaluate is more effective than LCB 
in BO with penalty. SVM-CBO provides not only an improvement after the start of phase 

Table 4  5D Emmental-type GKLS functions: best seen for SVM-CBO and BO with penalty

Class Seed SVM-CBO BO penalty –Withney p value Sign. level

Simple 1 0.18 ± 0.04 0.53 ± 0.25 21.00 < 0.001 ***
2 0.11 ± 0.07 0.50 ± 0.25 17.00 < 0.001 ***
3 0.15 ± 0.03 0.47 ± 0.26 12.00 < 0.001 ***
4 0.24 ± 0.02 0.49 ± 0.21 28.00 < 0.001 ***
5 0.07 ± 0.11 0.51 ± 0.28 3.00 < 0.001 ***
6 0.26 ± 0.05 0.46 ± 0.17 30.00 < 0.001 ***
7 0.11 ± 0.05 0.49 ± 0.22 11.00 < 0.001 ***
8 0.22 ± 0.03 0.50 ± 0.21 26.00 < 0.001 ***
9 0.25 ± 0.04 0.51 ± 0.22 41.50 < 0.001 ***

10 0.21 ± 0.03 0.63 ± 0.25 4.00 < 0.001 ***
Hard 1 0.19 ± 0.07 0.59 ± 0.27 13.00 < 0.001 ***

2 0.10 ± 0.06 0.50 ± 0.19 2.00 < 0.001 ***
3 0.14 ± 0.02 0.51 ± 0.27 3.00 < 0.001 ***
4 0.31 ± 0.05 0.48 ± 0.17 39.00 < 0.001 ***
5 0.05 ± 0.13 0.45 ± 0.24 18.00 < 0.001 ***
6 0.30 ± 0.07 0.58 ± 0.29 59.50 < 0.001 ***
7 0.11 ± 0.05 0.34 ± 0.14 21.00 < 0.001 ***
8 0.21 ± 0.04 0.60 ± 0.31 3.00 < 0.001 ***
9 0.25 ± 0.02 0.53 ± 0.22 17.00 < 0.001 ***

10 0.23 ± 0.06 0.51 ± 0.21 24.00 < 0.001 ***

Fig. 3  Operating Zones for SVM-CBO and BO with penalty: percentage of solved problems (mean and 
standard deviation) in at least 30% (left) and 50% (right) of the 30 independent runs
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2, but it can also “optimize” in phase 1—even it is not the aim of that phase—better than 
BO with penalty. This confirms that using a penalty can dramatically affect both the effi-
ciency (fitting the GP using all the evaluations performed so far) and the effectiveness (best 
seen at the end of the optimization process) of BO in the case of partially defined objective 
functions under unknown constraints.

7  Conclusions

The SVM-CBO approach proposed proved to be more effective and computationally 
efficient than a traditional BO solution which uses a fixed penalty for infeasible function 
evaluations.

With respect to other constrained BO approaches, SVM-CBO does not require strong 
assumptions on a priori knowledge about the number of constraints and their independ-
ence, even on the objective function. The presented approach considers the computability 
(aka feasibility) of the objective function as black-box and aims at modelling the boundary 
of the feasible region overall, instead of “per-constraint”.

With respect to other two recent works which use a classifier to model the entire feasible 
region, SVM-CBO proposes the following contributions. First, it requires a smaller budget 
than in [44]: in the quoted reference many function evaluations are required in the neigh-
bourhood of the estimated boundary to improve its approximation. Moreover, this type of 

Fig. 4  Best seen with respect to 
computational time. To exclude 
any other computational load and 
make uniform the comparison, 
the computational time is not the 
wall-clock time but, at a given 
iteration n̄ , it is computed as ∑n̄

n=1
O
�
3
�
 . For visualization it is 

assumed O
(
1
3
)
= 1

Fig. 5  Gap metrics for SVM-CBO and BO with penalty on three experiments with a larger budget (i.e., 
1000 function evaluations, including 100 for initialization)
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“focusing” offers few chances to discover possible disconnected feasible sub-regions (as 
in Example 1, Fig. 11 of [44]). Second, the organization of SVM-CBO in two consecu-
tive phases allows to preliminary solve the so-called feasibility determination problem—
providing useful information about the behaviour of the simulation software or real-life 
system to be optimized—and then exploit this information for improving effectiveness 
and efficiency of the optimization process (i.e., phase 2). Moreover, instead of using the 
“probability of feasibility”, which is basically a penalization factor in [44] and [31], SVM-
CBO works by constraining the acquisition function, namely LCB, to the current estimate 
of the feasibility region. This results in a more effective sampling of the new point, as 
also reported in [44] when probability of feasibility is used to constrain—in probabilistic 
terms—the acquisition function (i.e., EI) instead of penalize it. Finally, SVM-CBO pro-
poses to use LCB as acquisition function (in phase 2) instead of EI, since LCB is known to 
offer a more balanced trade-off between exploration and exploitation.

Limitations of SVM-CBO are related to the impossibility to perform any sensitivity 
analysis with respect to a specific constraint. Since the entire feasible region is modelled 
by only one SVM classifier, only an analysis of the optimal solution about its robustness 
with respect “overall feasibility” can be performed. Finally, an important remark is that 
SVM-CBO assumes that both computable and incomputable (i.e., feasible and infeasible) 
evaluations can be performed, since computability is a relevant information by itself for the 
approach. This means that it can be successfully applied to simulation–optimization but 
not in safe-optimization, where “infeasibility” means destruction of the system to be opti-
mized, a more compelling restriction implying the termination of the optimization process.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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