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Abstract
Flexible agile and extreme project management methods have become increasingly popular
among practitioners, particularly in the IT and R&D sectors. In contrast to the theoretically
and algorithmicallywell-established and developed trade-off andmultimodemethods applied
in traditional project management methods, flexible project scheduling methods, which are
applied in agile, hybrid, and especially extreme project management, lack a principled foun-
dation and algorithmic handling. The aim of this paper is to fill this gap. We propose a
matrix-based method that provides scores for alternative project plans that host flexible task
dependencies and undecided, supplementary task completion while also handling the new
but unplanned tasks. In addition, traditional multimode resource-constrained project schedul-
ing problems are also covered. The proposed method can bridge the flexible and traditional
approaches.

Keywords Multimode resource-constrained project scheduling problem · Flexible project
management approaches · Matrix-based project planning

1 Introduction

The importance of scheduling and resource allocation problems in project management was
recognized over five decades ago (see excellent reviews in Brucker et al. [2], Habibi et al.
[11]). From the beginning of the 1960s until recently, researchers usually assumed trade-
off functions between both the time and the cost and between the time and the resources
(see, e.g., [20]) (see Fig. 1a) and later, also among the time, the cost and the quality [1,18].
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(a) Continuous trade-offs (b) Discrete trade-offs (c) Multi-modes

Fig. 1 Trade-off methods and multimode problems

Two main versions of trade-off methods are specified. First, from the 1960s to the 1980s,
continuous time–cost relationship problems were addressed extensively in the literature (see,
e.g., [9,17]). Researchers later investigated the discrete version of trade-offmethods (see, e.g.,
[5,7,25]). Despite the ease of use, the main concern of the concept of continuous trade-off
problems (CTP) is that it is usually hard to specify continuous trade-off functions between
the time and the cost, the time and resources, or the cost and the quality. In real projects,
decision makers instead choose from technologies (in addition to completion modes) (see
Fig. 1b, c).

Moreover, this situation is better described by discrete trade-off problems (DTP) (see
Fig. 1b). At the same time, CTP can be solved by fast polynomial algorithms (see, e.g.,
[10,19]), while the discrete version of trade-off problems, with the exception of a few kinds
of project networks [5] is an NP-hard problem [6]; therefore, the discrete version of time–
quality–cost trade-off problems are also NP-hard problems [25]. To solve DTPs, heuristic
and metaheuristic algorithms are usually applied [23,26]. The recent multimode resource-
constrained project scheduling problems (MRCPSP) (see an excellent review in Habibi et
al. [11]), do not assume any trade-off functions between time and resources or between time
and cost (see Fig. 1c). Trade-off methods are successfully used in construction projects [20];
in addition, the discrete version of trade-off methods and MRCPSPs are also successfully
used in new product development projects [29] and investment projects [12], but they are
difficult to use in software development projects and R&D projects where the project plans
are more flexible. The main limitation of these concepts is that they both assume a fixed logic
plan, such as a fixed set of tasks and a fixed sequence of completion. The proposed algorithm
extends trade-off methods and MRCPSPs in order to handle flexible projects.

Previously, Wysocki found that in a [31] study of the practices of software project man-
agers, only 20% of IT projects were managed by a traditional project management (TPM)
methodology. Generally, methods for investment and construction projects cannot be directly
applied to software development or R&Dprojects, as these aremanaged by agile projectman-
agement (APM) approaches. Currently, hybrid (i.e., combinations of traditional and agile and
extreme) approaches are becoming increasingly popular (see, e.g., [16]). However, flexible
approaches are thus far not privileges for software development projects [3].Rapidly changing
environments increasingly enforce flexible approaches. Scheduling algorithms can support
decision makers to manage projects; however, there are very few algorithmic methods that
can support the flexible approaches. Therefore, it is important to study how to extend project
scheduling methods to handle flexible and changing environments. Scheduling methods,
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Table 1 Comparison of the traditional and the flexible approaches

Approaches Features

Project structure New tasks Multimodes Constraints

Traditional (TPM) Fixed Not allowed Handled Fixed

Agile (APM) Flexible Not allowed Not handled Fixed

Application management (AM) Flexible Allowed Not handled Fixed

Extreme (XPM) Flexible Allowed Not handled Flexible

Hybrid (HPM) Flexible Allowed Handled Optional

as agents, can also imitate decision makers; therefore, not only the methods but also the
scheduling and management approaches can be modeled (see Table 1).

While a project manager who follows a traditional project management (TPM) approach
can use trade-off or multimodemethods to reduce task duration, the agile and extreme project
manager tries to restructure the project. If the project structure is flexible (see Table 1), the
project duration can be reduced without increasing the project cost by reducing the number
of flexible dependencies. However, in real project situations, decision makers can choose
from different kinds of technologies; therefore, the TPM and APM approaches should be
integrated. Agile approaches usually split the projects into smaller so-called sprints that are
usually 2–6weeks. The content of sprints is specified by the customer and the developers
together. However, when running a sprint, unplanned new tasks and new requirements can
be involved only until the next sprint.

The extreme project management (XPM) approach must handle the new tasks and new
requirements during the implementation of the project. Application management, which can
be considered as a combination of project management and process management from a
scheduling point of view, also allows management to involve new and unforeseen tasks in
the project plan. However, while extreme project management can confirm the extra costs
and the increased project duration due to the extra tasks, application management instead
emphasizes adhering to a fixed budget and fixed time-frame.1

Flexible approaches require flexible project structures and flexible constraints; however, in
addition to the opportunity of reorganizing the project, different kinds of technology (comple-
tion modes) should also be considered; therefore, traditional and flexible approaches should
be combined into hybrid project management approaches (see, e.g., [16,21,27]). Neverthe-
less, hybrid approaches should be supported by algorithmic methods in order to help decision
makers ensure the project’s success.

There are different combinations of agile and traditional project management approaches
(see, e.g., [16,21,27]). However, to the best of our knowledge, there is no exact algorithm
that can be used to solve hybrid multimode problems that can handle unplanned tasks and
dependencies. Nevertheless, R&D and IT projects, such as introducing and setting up new
information systems, may require reorganizing part of the project, and R&D projects may
require handling unplanned tasks, particularly in the development phase. However, decreas-
ing the time demands of mandatory tasks and those of the new unplanned tasks may also be
an important requirement. Neither the agile nor the extreme approach can handle this situ-
ation properly; nor can the traditional approach. Traditional approaches, or network-based
methods, assume static logic plans, but the reorganization of projects may produce insuf-

1 In application management the term of ‘time-frame’ is used instead of deadline.
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ficient reductions in project duration and/or supplementary tasks, and important tasks may
excluded from the project due to budget constraints and/or project deadlines. A hybrid project
management (HPM) approach can combine the traditional, agile and extreme approaches;
however, these kinds of HPM approaches are not yet supported by project planning meth-
ods. The proposed algorithm combines the agile, extreme and traditional approaches. This
method extends the traditional multimode resource-constrained project scheduling problem
by allowing the restructuring and reorganizing of projects and handling unplanned new tasks.

The proposed hybrid time–cost and hybrid time–quality–cost trade-off models multimode
methods manage flexible project plans and allow us to restructure or reorganize these project
plans in order to satisfy customer and management claims. In contrast to the traditional
project scoring and selection methods, there is no need to specify all project alternatives in
order to select the most desirable project scenario or the one with the shortest duration or
lowest cost.

To handle flexible project plans, matrix-based techniques will be used instead of tradi-
tional network-based project planning techniques. This method has already been successfully
used to model agile projects [15]. The basis of the proposed matrix-based method is a project
domain matrix (PDM) (see [15]) with unplanned tasks. The modified PDM is an n + u
by m + u matrix, where n is the number of planned tasks; u is the number of unplanned
tasks; m = n + t + c + q + r ; t is the number of possible durations; c is the number of
possible (direct) costs; q is the number of possible quality parameters; and r is the number
of possible resource demands of tasks. The PDM has five domains. The first domain is the
logic domain (LD) that is described as an n by n project expert matrix (PEM) (see [14]) or
numerical dependency structure matrix (NDSM) (see [24]).2 Since the PEM has specified
and semispecified versions, the PDM is specified if and only if the LD is specified; other-
wise, the PDM is semispecified. The other domains are the time domain (TD), cost domain
(CD), quality domain (QD) and resource domain (RD). If the demands are deterministic, we
say that the PDM is deterministic; otherwise, the PDM is nondeterministic. In this study,
the hybrid resource-constrained multimode project scheduling problems (HMRCPSP) are
considered: the TD, CD, QD, and RD can contain deterministic values but must have at least
two completion modes. Therefore, this version is a deterministic multimodal PDM. While
the basis of the proposed model is the PDM, the basis of the proposed method is the expert
project ranking (EPR) algorithm (see [15]), which can evaluate specified and semispecified
deterministic PDMs. However, the EPRmethod cannot handle the resource-constrained mul-
timode project scheduling problem, and the unplanned tasks and requirements. Therefore,
while EPR can be used to schedule a flexible project plan and can thus be used in agile
project management approaches, it cannot address multimodes and extra, unplanned tasks,
and therefore cannot be directly used in extreme or hybrid project management.

This paper proposes a hybrid resource constrained multimode project scheduling problem
by handling unplanned tasks to bridge APM, XPM and TPM and handle both the challenges
of project and the application managements.

2 Solving hybridmultimode resource-constrained project scheduling
problems

In this section, a resource-constrained hybrid multimode resource-constrained project
scheduling problem (HMRCPSP) is first specified. Then, a matrix-based model represen-

2 The NDSM does not represent supplementary tasks but can represent flexible dependencies; however, the
PEM can represent both flexible dependencies and supplementary tasks.
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tation will be proposed. At the end of this section, an exact algorithm is proposed for a hybrid
multimode resource-constrained project scheduling problem. The decisions for finding the
optimum will be directed by score functions and matrices (P,Q) and time–quality–cost–
resource functions, so we need several definitions and notations before proceeding.

2.1 Definitions and problem statements

Definition 1 We call any finite set A = {a1, . . . , an} the set of possible activities or tasks
in the project. The subset of supplementary tasks is ˜A = {̃a1, . . . , ãσ } ⊆ A, where ˜A is
any fixed subset of A. Then, A = A \ ˜A is the subset of mandatory tasks. Another subset is
Â = {̂a1, . . . , âp} � A , the set of planned tasks, so Ǎ = A \ Â is the subset of unplanned

tasks. Then, Â = Â ∩ A is the set of planned mandatory tasks, Ǎ = Ǎ ∩ A is the set of

unplanned mandatory tasks, ˜Â = Â ∩ ˜A is the set of planned supplementary tasks, and
˜Ǎ = Ǎ ∩ ˜A is the set of unplanned supplementary tasks.

Clearly A = Â ∪ Ǎ ∪ ˜Â ∪ ˜Ǎ is a disjoint union (a partition of A).
The mathematical model in Sect. 2 does not distinguish supplementary and planned tasks,
similarly, not the mandatory and unplanned ones. This distinction will be interesting in the
simulation Sect. 3.

Definition 2 The set of (project) scenarios is Ξ (A) := {

S ⊆ A : A ⊆ S
}

. When we
consider a fixed element S ∈ Ξ (A), we call S a realized (project) scenario.

The traditional project management approach allows only mandatory tasks. There is no
opportunity to remove tasks or exclude dependencies, while agile approaches prioritize tasks
and can handle mandatory and supplementary tasks.While mandatory tasks must be realized,
supplementary tasks can be omitted from the project. Decisions about supplementary task
realization always have two options: include or exclude.When specifying project constraints,
usually only the planned tasks are considered; however, the extreme project management
approach allows new, unplanned tasks to be included in the projects. S � A denotes the set
of tasks that will be fulfilled by the algorithm. The number of possible project scenarios is
2σ , where σ = ∣

∣˜A
∣

∣.

Definition 3 Any function P : A → [0, 1] is called a score function of task completion if
P (ai ) = 1 for ai ∈ A and P (ai ) ∈ [0, 1) for ai ∈ ˜A.
The function Q : A → [0, 1] is called a score function of task exclusion if Q (ai ) = 0 for
ai ∈ A and Q (ai ) ∈ (0, 1] for ai ∈ ˜A.

The task completion and exclusion scores can mean either probabilities or importance
values.

Example 1 If every task completion score is a probability value, then Q = 1 − P .

Definition 4 For any associative andmonotone3 operation ⊗ on R
+, we define the aggrega-

tion function ⊗ : Ξ (A) → R as

⊗ (S) :=
⊗

a∈S
P (a) ⊗

⊗

a∈A\S
Q (a) , (1)

3 ⊗ is monotone if x ≤ y and u ≤ v implies x ⊗ u ≤ y ⊗ v for x, y, u, v ∈ R
+.
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where ⊗ indicates Σ or Π (addition or multiplication, respectively) or ∨ or ∧ (maximum or
minimum, respectively).

Example 2 If scores are probability values, then we have ⊗ = Π .
If scores indicate the importance of task completion, then ⊗ = Σ .

In phase one, we decide which tasks will be included in the project scenario by maxi-
mizing ⊗ (S), fulfilling certain time, quality and cost requirements.

In phase two, we decide the order in which we will complete these tasks. This order
is a relation of tasks, and our algorithm receives three kind of relations (dependencies) as
inputs: no dependency, required and flexible. We have to resolve (i.e., decide) all flexible
relations.

Definition 5 The relation triplet (≺, ∼, ��) is a relation representation of a hybrid project
plan if for any i, j ≤ n and i �= j , we let
(i) ai ≺ a j represent the strict or required dependencies between tasks ai and a j , i.e., a j

may not be started unless activity ai has been completed;
(ii) ai ∼ a j represent no dependency between tasks ai and a j , i.e., the starting time of a j is
not affected by ai ; and
(iii) ai��a j represents flexible dependencies between tasks ai and a j .

Remark 1 It is important to note that ≺ is naturally a transitive, irreflexive and asymmetric
relation, i.e. a strict partial ordering, which excludes circles like a1 ≺ a2 ≺ · · · ≺ a1.
Therefore, by a standard topological ordering algorithm, we may assume that ai ≺ a j 
⇒
i < j .

While strict dependencies ai ≺ a j between tasks ai and a j must be realized (in a sequen-
tial way), and ai ∼ a j indicates indifference (we may choose either sequential or parallel
realization), flexible dependencies (��) must be resolved. In this case, we can decide whether
these tasks will be completed in a sequential way, i.e., ai ≺ a j will be declared, or in a
parallel way, ai ∼ a j . When we decide that these tasks should be completed in either a
sequential or a parallel way, we say that the flexible dependency is realized (or decided).
Since for any i, j , i �= j exactly one of ai ≺ a j , ai � a j , ai ∼ a j or ai��a j holds, and for
i = j (“in the diagonal”), none of these four is valid; then, we have the following result:

Proposition 1 For any binary relations ≺, ∼, �� on A, the triplet (≺, ∼, ��) is a relation
representation of a hybrid project plan if and only if

{≺,≺−1, ∼, ��
}

is a partition of A×A\ι

( ≺−1 is the reverse of ≺ , i.e., �, and ι is the diagonal) and ≺ is a strict partial ordering.

The easiest way to input and modify all data is by using a special n × n matrix M, which
we call a hybrid logic plan. ([M]i, j denotes the entry in row i and column j .)

Definition 6 Thematrix representation of an input for a hybrid logic plan means any n×n
matrix with entries ∅, X , ?, i.e., M ∈ {X ,∅, ?}n×n , assuming the following requirements:
(i) for any i ≤ n, [M]i,i = “X” for ai ∈ A and [M]i,i = “?” for ai ∈ ˜A; and
(ii) for any i, j ≤ n, i �= j [M]i, j = “X” ⇐⇒ ai ≺ a j , [M]i, j = “∅” ⇐⇒ ai ∼ a j

and [M]i, j = “?” ⇐⇒ ai��a j .

In the diagonal, [M]i,i = “X”, “∅”, “?” represents that the task ai will be executed, will
not be executed, or will be decided later, respectively. Similarly, [M]i, j = “?” for any i �= j
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indicates flexible task dependency, which we have to decide in the algorithm.4 The algorithm
will change each “?′′ to either “X” or “∅” inM step-by-step in the diagonal in phase one, and
in the off-diagonal in phase two. From Remark 1, we know that considering the entries X ,
M is an upper triangular matrix both in the input and in all subsequent steps of the algorithm.
In what follows, M is any such matrix M ∈ {X ,∅, ?}n×n .

Proposition 2 For any realized project scenario S ⊆ A, the diagonal of the matrix represen-
tation does not contain “?”:Mi,i = “X” for ai ∈ S andMi,i = “∅” for ai ∈ A \ S. Further,
M does not contain “?” at all when all flexible dependencies are decided.

Since we plan to omit all tasks a ∈ A \ S, we might also omit the rows and columns of
M not belonging to S. This might be important in computer runs (saving time and memory)
and could be defined axiomatically. We leave these details to the readers.

Similar to Definition 3, we are given score values for each dependency.

Definition 7 Any two matrices P,Q ∈ [0, 1]n×n are called score functions of the input
matrix M if
(i) for every i ≤ n, we have [P]i,i = P(ai ) and [Q]i,i = Q(ai );5

(ii) for every i, j ≤ n, i �= j we have:
[M]i, j = “X” ⇐⇒ [P]i, j = 1 and [Q]i, j = 0,
[M]i, j = “∅” ⇐⇒ [P]i, j = 0 and [Q]i, j = 1, and
[M]i, j = “?” ⇐⇒ 0 < [P]i, j , [Q]i, j < 1.
Let us emphasize that (i) and (ii) above are requirements for the input matrix M. While the
“?” entries inM are changing during the algorithm run, P and Q remain unchanged.

The off-diagonal values of [P]i, j represent the score of realizing the task dependency
between ai and a j , while [Q]i, j represents the score of resolving the task dependency between
ai and a j .

From the diagonal of M, we can provide sharp bounds to ⊗ (S) (see (1)) in each step of
the algorithm.

Definition 8 For any M,N ∈ {X ,∅, ?}n×n , we say that
(i) N is an in-/out-diagonal extension of M if all the symbols “X” and “∅” in M remain
unchanged in N, and some (possibly none) of the “?” inside/outside of the diagonal ofM are
changed to “X” or “∅”. In this case,M is a restriction of N.
(ii) For i, j ≤ n and [M]i, j = “?”, we denote byM [i, j = X ] andM [i, j = ∅] the matrices
if onlyMi, j has been changed to either “X” or “∅”.
(iii) N is an in-/out- diagonal closure ofM if N contains no “?s” in/out of the diagonal and
N in/out extendsM.

When replacing a “?”, the algorithm makes newer extensions of the recent (or input)
matrix, and our goals in phase one and phase two are suitable in- and out-closures of
the input matrix, respectively. In-closures represent scenarios, while out-closures decide all
flexible dependencies.

4 The reader is allowed to replace the symbols “∅”, “X” and “?” with any numbers. In Table 2, we use 0 for
∅, 1 for X and numbers from (0, 1) for ?.
5 P and Q were introduced in Definition 3.
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Definition 9

⊗diag (M) : =
⊗

[M]i,i=X

P (ai ) ⊗
⊗

[M]i,i=∅
Q (ai ) , (2)

⊗min
diag (M) : = ⊗diag (M) ⊗

⊗

[M]i,i=?

min {P (ai ) , Q (ai )} , (3)

⊗max
diag (M) : = ⊗diag (M) ⊗

⊗

[M]i,i=?

max {P (ai ) , Q (ai )} . (4)

For some ⊗ (e.g., multiplying probabilities), ⊗max
diag (M) may be smaller than ⊗diag (M)

(see also Definition 7). However, we have the following inequalities.

Theorem 1 For any M,

⊗min
diag (M) ≤ ⊗max

diag (M) . (5)

For any in-extension N ofM,

⊗min
diag (M) ≤ ⊗min

diag (N) ≤ ⊗max
diag (N) ≤ ⊗max

diag (M) , (6)

and for any i ≤ n,

⊗min
diag (M) = min

{

⊗min
diag (M [i, i = X ]) , ⊗min

diag (M [i, i = ∅])
}

, (7)

⊗max
diag (M) = max

{

⊗max
diag (M [i, i = X ]) , ⊗max

diag (M [i, i = ∅])
}

. (8)

For any in-closure N ofM,

⊗min
diag (N) = ⊗diag (N) = ⊗max

diag (N) (9)

and

⊗min
diag (M) ≤ ⊗diag (N) ≤ ⊗max

diag (M) . (10)

For anyM, there are N1 and N2 in-closures such that

⊗min
diag (M) = ⊗diag (N1) and ⊗diag (N2) = ⊗max

diag (M) . � (11)

Corollary 1 If M contains no “?” in the diagonal, then for the represented scenario S ⊆ A,
we have

⊗ (S) = ⊗diag (M) . (12)

In phase three, we will have to decide how to handle the elements of A by choosing
elements from the sets of modes called protocols.

Definition 10 (i) Any finite set of quadruplets W = {(ti , qi , ci , ri ) : i = 1, . . . , k} , of
positive real numbers and the vector ri = {ri,1, .., ri,ρ} is called a discrete multimode
protocol (DMMp).Wewrite tmin , tmax,qmin,qmax, cmin, cmax, rmin and rmax instead ofmini ti ,
maxi ti , mini qi ,maxi qi , mini ci ,maxi ci , mini min j ri, j and maxi max j ri, j respectively.
If for each a ∈ A we are given a protocol Wa , then we call the set W = {Wa : a ∈ A} a
discrete multimode problem (DMMP) on A.
(ii) Anypositive, continuous, strictly decreasing function w : [tmin, tmax] → [qmin, qmax]×
[cmin, cmax] × [rmin, rmax] is called a continuous multimode protocol (CMMp) with
resource demands, where 0 < tmin, tmax, qmin, qmax, cmin, cmax, rmin, and rmax are
also assumed. If for each a ∈ A, we are given a protocol wa . Then, we call the set
W = {wa : a ∈ A} a continuous multimode problem (CMMP).

123



Journal of Global Optimization (2020) 76:211–241 219

We interpret (t, q, c, r) ∈ Wa or wa (t) = (q, c, r) as paying cost c with quality q and
with resource r to solve the element a ∈ A in time t using themode assigned to (t, q, c, r).
For a parallel explanation of discrete and continuous problems, we write (t, q, c, r) ∈ wa

in both cases. If ( ti > t j ⇒ ci ≤ c j , ri1 ≤ r j1 , .., riρ ≤ r jρ ) and (ck > cl ⇒ qk ≤ ql )
are satisfied for all i, j, k, l = 1, .., n, then a special case of multimode problems, namely,
time–quality–resource–cost trade off problems are considered. The elements tamin, t

a
max,

qamin, q
a
max, c

a
min, c

a
max, r

a
min and r

a
max may be different in different protocols wa (Wa) for each

a ∈ A in general. The cases tmin = tmax, qmin = qmax, cmin = cmax or rmin = rmax are also
allowed.
The final goal of our algorithm is an optimal project schedule.

Definition 11 Let S ∈ Ξ (A) be any realized project scenario; W is either a CMMP or a
DMMP. A project schedule is a set

−→w = {(

ta, qa, ca, ra
) : a ∈ S

}

, (13)

where (ta, qa, ca, ra) ∈ wa for a ∈ S.

We are now ready to provide upper and lower bounds for time and cost in each stage (in
any phase) of the algorithm, that is, for any matrixM ∈ {X ,∅, ?}n×n .

Definition 12 (i) For anyM and W DMMP or CMMP, the minimal cost bound is

Cmin (M,W) :=
∑

[M]i,i=“X”

camin. (14)

(ii) For any project schedule −→w the total project cost of −→w is

c
(−→w ) :=

∑

(ta ,qa ,ca ,ra)∈wa , a∈S
ca . (15)

To quantify project quality, both quality parameters and the task completion scores ([P]i,i )
are considered.

Definition 13 (i) For anyM andW DMMPor CMMP, themaximal (relative) quality bound
is

Qmax (M,W) := 1. (16)

(ii) For any project schedule −→w , the total project quality of −→w is

q
(−→w ) :=

∑

(ta ,qa ,ca ,ra)∈wa , a∈S qa
∑

a∈A q
a
max

. (17)

For time bounds, we must not forget the ≺ dependencies.

Definition 14 (i) For any real path

−→
P = “ai1 ≺ ai2 ≺ · · · ≺ aik ” (18)

(Mi j ,i j+1 = “X” for 1 ≤ j < k), the minimal time bound of the path is

Tmin

(−→
P ,W

)

:=
∑

a∈−→
P

tamin. (19)
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(ii)
−→
P is the longest minimum path of M if Tmin

(−→
P ,W

)

is maximal, assuming that
−→
P

contains mandatory tasks only (i.e., assumingMi,i = “X” whenever ai ∈ −→
P ).

We denote this maximum by

Tmin (M,W) := max
P

Tmin

(−→
P ,W

)

. (20)

Thus,
−→
P is called a critical path, and

{

ai1 , ai2 , . . . , aik
}

is the set of critical activities.
(iii) For any project schedule −→w , the total project time of −→w is

t
(−→w ) :=

∑

(ta ,qa ,ca ,ra)∈wa , a∈−→
P

ta, (21)

where
−→
P is any longest minimum path.

The length and definition of the longest minimum path do not depend on the project
schedule −→w since tamin are summed in Eq. 21. Critical paths are in fact longest minimum
paths. Clearly, t(−→w ) ≥ Tmin(M,W) for any W and −→w . A longest minimum path in any M

can be found by a standard algorithm within O(n + d), where n is the number of tasks, and
d is the number of dependencies.

Definition 15 Denote A(−→w , t) ⊆ A the set of running activities in time t for the schedule−→w . The maximal resource demands for resource k are:

rk(
−→w ) := max

t

∑

ai∈A(−→w ,t)

ri,k, (k := 1, .., ρ) (22)

and the total resource vector is

r
(−→w ) := (

r1
(−→w )

, . . . , rρ
(−→w ))

. (23)

Theorem 2 For any M and for any in- or out-closure N ofM,

Cmin (M,W) ≤ Cmin (N,W) , (24)

Qmax (M,W) ≥ Qmax (N,W) (25)

and

Tmin (M,W) ≤ Tmin (N,W) . (26)

Further, for any project schedule −→w (for the scenario S , determined by the diagonal of N)

Cmin (N,W) ≤ c
(−→w )

, (27)

Qmax (N,W) ≥ q
(−→w )

(28)

and

Tmin (N,W) ≤ t
(−→w )

. (29)

ForM ∈ {X ,∅}n×n and−→w , we also use the following notations for total project quality,
cost, time and resource demand:

T PC
(

M,−→w ) := c
(−→w )

, (30)

T PQ
(

M,−→w ) := q
(−→w )

(31)
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and

T PT
(

M,−→w ) := t
(−→w )

(32)

and

TPR
(

M,−→w ) := [r1(−→w ) , .., rρ(−→w )]T . (33)

Definition 16 Aproject structure or netmeans a deterministic logic plan, i.e., every flexible
relation is realized. The triplet X = (S,≺, ∼) represents the project structure of a given
scenario S ⊆ A.

The matrix representation of a project structure contains no “?” symbols at all.
In phase two, we have to address the score values of the dependencies on A using the

off-diagonal elements of P and Q (see Definition 7).

Definition 17 For any associative operation⊗ on R, we define the aggregation function for
project structures as

⊗nd (M) :=
⊗

Mi, j=“X” , i �= j

Pi, j ⊗
⊗

Mi, j=“∅” , i �= j

Qi, j (34)

and its extreme values

⊗min
nd (M) : = ⊗nd (M) ⊗

⊗

Mi, j=?,i �= j

min
{

Pi, j ,Qi, j
}

, (35)

⊗max
nd (M) : = ⊗nd (M) ⊗

⊗

Mi, j=?,i �= j

max
{

Pi, j ,Qi, j
}

. (36)

If M is the matrix representation of a realized project structure, ⊗nd (M) gives the score
value of this project structure.6

2.1.1 Calculating constraints

In all versions of the multimode functions, the maximal/minimal time, quality and cost
demands can be determined for all activities. In this way, the maximal/minimal total project
time (TPT), total project quality and maximal/minimal total project cost (TPC) can be deter-
mined. This feature will be used when calculating the maximal and minimal demands for
a project scenario and the maximal/minimal duration of a project structure. In the case of
resource-constrained HMRCPSP problems, activities can be supplementary, and the depen-
dencies can be flexible. Unplanned tasks and dependencies can modify the project plan. If we
exclude a task from the project, we also exclude the time/quality and cost/resource demands
of this activity.

TPCmin: Minimal value of total project cost (TPCmin) occurs if only mandatory
tasks are included in the project with the minimal possible cost.

TPCmax: Maximal value of total project cost (TPCmax) occurs if all themandatory
and supplementary tasks are included in the project with the maximal
possible cost.

6 The abbreviation nd in the index means “no diagonal”.
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TPQmin: Minimal value of total project quality (TPQmin) occurs if only manda-
tory tasks are included in the project with the minimal possible quality
parameter.

TPQmax: Maximal value of total project quality (TPQmax) occurs if all themanda-
tory and supplementary tasks are included in the project with the
maximal possible quality parameter.

TPRmin: Minimal value of total project resources (TPRmin) occurs if onlymanda-
tory tasks are included in the project with minimal possible resource
demands.

TPRmax: Maximal value of total project resources (TPRmax) occurs if all the
mandatory and supplementary tasks are included in the project with
maximal resource demands.

TPTmin: Minimal value of total project time (TPTmin) occurs, if only mandatory
tasks and fixed dependencies are included to the project, with minimal
possible duration.

TPTmax: Maximal value of total project cost (TPTmax) occurs if all themandatory
and supplementary tasks and all the flexible and fixed dependencies are
included in the project with the maximal possible duration.

TPSmin = ⊗min
diag: Minimal value of total project score (TPSmin) occurs if all themandatory

and supplementary tasks are included, where the score of exclusion is
higher than the score of inclusion.

TPSmax = ⊗max
diag: Maximal value of total project score (TPSmin) occurs if all the manda-

tory and supplementary tasks are included, where the score of inclusion
is higher than the score of exclusion.

⊗min
nd : Minimal value of dependency scores occurs if all the fixed and flexible

dependencies are included, where the score of exclusion is higher than
the score of inclusion.

⊗max
nd : Maximal value of dependency scores occurs if all the fixed and flexible

dependencies are included, where the score of inclusion is higher than
the score of exclusion.

Instead, phases 1 through 3 are directed by (37)–(56), where the constants Cc,
Ct , Cq , Cr, Cdiag and Cnd might be varied upon request; however, we assume that
Ct ∈ [TPTmin,TPTmax], Cc ∈ [TPCmin,TPCmax], Cq ∈ [TPQmin,TPQmax], Cr ∈
[TPRmin,TPRmax], Cdiag ∈ [⊗min

diag,⊗max
diag], Cnd ∈ [⊗min

nd ,⊗max
nd ].

2.1.2 Possible target function

If all constraints are specified, we are ready to specify target functions in all phases of the
algorithm. These targets can be different in all phases. We specified several possible target
functions, but other target functions can be specified for other applications

⊗ → max: Maximize score values in order to select the most desired project plan.
TPT→ min: Minimize project duration.
TPC→ min: Minimize project cost.
TPQ→ max: Minimize project quality.

We are now ready to define the problems we will solve in phases one, two and three.
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2.1.3 Hybrid multimode resource-constrained project scheduling problem

In this problem, we try to select the most desired project plans with minimal project duration,
while keeping all the time/cost/resource/quality constraints.

Problem 1 phase one: Let A be a finite set of activities and M be a matrix representation
of A. Let Cc,Ct ,Cdiag ∈ R

+ be given such that Cmin (M,W) ≤ Cc, Tmin (M,W) ≤ Ct

and Cdiag ≤ ⊗max
diag (M). Now, find a scenario S ⊆ A, i.e., an in-closureM′ ofM such that

⊗diag
(

M′) → max (37)

assuming

Cmin
(

M′,W) ≤ Cc, (38)

Tmin
(

M′,W) ≤ Ct , (39)

⊗diag
(

M′) ≥ Cdiag , (40)

Qmax
(

M′,W) ≥ Cq . (41)

The role of (40) is to stop the algorithm from searching for the maximum in (37) when
(40), together with (38), (39) and (41), cannot be achieved.

Problem 2 phase two: LetM′ be a solution to Problem1 phase one, i.e., amatrix represen-
tation of a project scenario S ⊆ A. Let Ct ,Cnd ∈ R

+ be given such that Tmin
(

M′,W) ≤ Ct

and Cnd ≤ ⊗max
nd

(

M′). Now, find a structure, i.e., an off-closure M′′ ofM′ such that

⊗nd (M′′) → max (42)

assuming

Tmin
(

M′′,W) ≤ Ct , (43)

⊗nd
(

M′′) ≥ Cnd . (44)

The role of (44) is to stop the algorithm from searching for the maximum in (42) when
(44), together with (43), cannot be achieved.

After phase two, we are faced with a traditional time–cost trade-off problem; therefore,
in phase three, we can specify different kinds of objective functions in Problem 3: phase
three/1 and /2.

Problem 3 phase three: Let M be a solution to Problem 1 phase two, i.e., a matrix
representation of a given project structure X = (S,≺, ∼). Let Cc,Ct ∈ R

+ be given such
that Cmin

(

M′′,W) ≤ Cc and Tmin
(

M′′,W) ≤ Ct . Further, let Cr be any nonnegative7

vector of dimension ρ such that Cr ∈ [TPRmin,TPRmax].
Problem 3 phase three/1) Find a project schedule −→w such that

t
(−→w ) → min (45)

assuming

c
(−→w ) ≤ Cc, (46)

q
(−→w ) ≥ Cq , (47)

r
(−→w ) ≤ Cr. (48)

7 For vectors x and y , x ≤ y and x < y, we mean componentwise relations, i.e., xi ≤ yi and xi < yi for
i = 1, . . . , ρ.
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Problem 3 phase three/2) Find a project schedule −→w such that

c
(−→w ) → min (49)

assuming

t
(−→w ) ≤ Ct , (50)

q
(−→w ) ≥ Cq , (51)

r
(−→w ) ≤ Cr. (52)

Problem 3 phase three/3) Find a project schedule −→w such that

q
(−→w ) → max (53)

assuming

t
(−→w ) ≤ Ct , (54)

q
(−→w ) ≥ Cq , (55)

r
(−→w ) ≤ Cr. (56)

Note that the requirements for all the constants in each phase ensure that this phase has at
least one solution and that this matrix can be handled in the next phase.

2.2 Modeling flexible project plans

Although the proposed model can be used for both discrete and continuous versions of
multimode resource-constrained project scheduling problems, in simulations, we addressed
both continuous and discrete versions of MRCPSP. For practical reasons, we use a specific,
deterministic, multimodal project domain matrix (PDM) to model the resource-constrained
hybrid multimode resource allocation problem. The PDM is an n by m matrix (see, e.g.,
Table 2),where n = |A| is the number of tasks,ρ is the number of resources,m = n+(3+ρ)ω

and ω = |W | is the number of modes [15]. The PDM has five domains: the logic domain
(LD), time domain (TD), quality domain (QD), cost domain (CD) and resource domain
(RD) (see Table 2). In the initial step, LD := P, where P ∈[0, 1]n×n is the score matrix.
The diagonal [PDM]i,i = [LD]i,i = [P]i,i represents the task completion scores, and
those out of the diagonal PDMi, j = LDi, j = Pi, j (i �= j) represent the task dependency
scores between task ai and task a j . Empty cells represent the unplanned tasks and their
unknown requirements. While specifying constraints, the demands of unplanned tasks are
not specified. In the simulation, two contract strategies are compared, the agile strategy,
which schedules unplanned task to the next sprint, but the constraints are assumed to be
fixed, and the extreme strategy, which involves new tasks with their demands and modifies
the constraints considering the unplanned task demands.

TD, QD and CD contain of the corresponding data of multicompletion modes −→wi ∈ W
(i ≤ ω) as columns, (minimum, maximum) values while the resource domain (RD) is built
up similarly for each resource (the columns are for ri, j for i ≤ ω, j ≤ ρ, see Table 2).

Kosztyáan [15] shows how to handle and resolve cycles in a PDM. Therefore, without
loss of generality, we can assume that there is no cycle in the project net. In other words, the
LD of the PDM can be rearranged as an upper triangular matrix.

Example 3 Table 2 shows an example of a project plan. Table 2(a) shows the original project
plan, where the PDM is already ready to mark new/unplanned tasks. As shown in Table 1,
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two contract strategies can handle the unplanned tasks. Following application management
(AM), the original constraints are kept, and tasks can be completed provided all demands
are not greater than the constraints. Extreme project management modifies the constraint to
involve the unplanned tasks (see the last two rows in Table 2), whereas if handling unplanned
tasks and dependencies are not allowed, then only task B is the mandatory task. Therefore,
TPTmin = 1, TPCmin = 2, TPRmin = [2, 1]T can be specified without calculating all
possible scenarios. According to Eq. (17), TPQmax = 1, TPQmin = 0.8/(4 × 0.9) = 0.22,
while if the unplanned task E is also considered, than minimal values of the total project
cost are TPCmin = 2 and TPQmin = (0.8 + 1.0)/(4 × 0.9 + 1.0) = 0.39. The minimal
duration TPTmin = 1 and resource demands TPRmin = [2, 1]T are not changed. Therefore,
if the extra costs/duration/resource demands of the unplanned task can be accepted and the
constraint can be modified, it may be beneficial for project scheduling.

2.3 The algorithms

2.3.1 PHASE ONE

We are given the matrixM0 ∈ {X ,∅, ?}n×n . Suppose that all the “?” symbols in the diagonal
are in the first σ rows (columns). The algorithm sequentially changes these symbols to either
“X” or “∅” in this order; such a change is called a step. These changes are not final, and
the original matrixM0 is also saved. We look for the optimum similar to a “back-and-forth”
method, saving information in the buffer B (a set) of possible ways that we might investigate
later. After replacing as many elements ofM as we can (satisfying Eqs. (38), (39), and (41)),
we go back to the cases in which B has higher scores ⊗diag than M has. (All the possible
variations ofM0 form a binary tree of size 2σ with rootM0.)

Here, M denotes the actual matrix before the next replacement, so [M] j, j = “?” ⇐⇒
i ≤ j ≤ σ for some 1 ≤ i ≤ σ , and denote by M [i, i = Y ] the matrix after replacing Mi,i

with Y , where Y ∈ {X ,∅}.
Before replacing [M]i,i , we save the other possibility, which we do not follow in the

present step, in B. The elements of B are of the form

b =
(

i, [M]1..n,1..n , Y , ⊗max
diag (M [i, i = Y ])

)

(57)

= (

i,−→m , Y ,⊗b
)

, (58)

where i denotes the element in the diagonal of M we are replacing, −→m = M1..n,1..n is
the actual content of the diagonal of M (specifically, Mi,i = “?”), Y ∈ {X ,∅} and ⊗b =
⊗max

diag (M [i, i = Y ]) is the“ideal” score we may achieve by replacing Mi,i with Y .8 B may
contain several elements with the same ⊗b value, but at this moment, we do not know which
value can be realized later, i.e., satisfy (38)–(41)

Remark 2 B contains only M [i, i = Y ] extensions that have not yet been investigated but
fulfill the bounds of (38)–(41). More precisely, for their extension,

Cmin (M [i, i = Y ] ,W) ≤ Cc, (59)

Tmin (M [i, i = Y ] ,W) ≤ Ct , (60)

Qmax (M [i, i = Y ] ,W) ≥ Cq , (61)

⊗max
diag (M [i, i = Y ]) ≥ Cdiag. (62)

8 ⊗b in (58) denotes a nonnegative real number, and ⊗max
diag was defined in (4).
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Remark 3 Before starting step i for 1 < i , at the end of step i − 1, we have inserted Y into
the i − 1-th entry of M. Since we are now extending this configuration, B does not contain
the corresponding record b = (

i − 1,−→m , Y ,⊗b
)

.

The algorithm starts a new cycle whenever it goes back to an element of B and starts to
replace “?” from the i = i0 + 1-th entry of the diagonal. Problem 1 may have a solution
if, for at least in one cycle, we are able to step i to σ (satisfying (38)–(41)). Of course, we
store all the in-closures M′ of M0 that were found by the algorithm and may be optimal
solutions to Problem 1. If B contains an element b with a higher score than M′ has (i.e.,
⊗b > ⊗diag

(

M′)), then we start a new cycle from b. During this cycle, i cannot be increased
to σ , ⊗b = ⊗max

diag (M [i, i = Y ]) may fall below ⊗diag (M), or we might obtain a solution
better thanM′.

START Let i0 := 0, i = 1, B := ∅.
GENERAL STEP (1 ≤ i ≤ σ),M is the actual matrix. Let

biX : =
(

i, M1..n,1..n, X , ⊗max
diag (M [i, i = X ])

)

, (63)

bi∅ : =
(

i, M1..n,1..n, ∅, ⊗max
diag (M [i, i = ∅])

)

. (64)

Case (i) Neither bi∅ nor biX fulfills (59)–(62) and B = ∅. Then, STOP since Problem 1
has no solution.

Case (ii) Neither bi∅ nor biX fulfills (59)–(62) but B �= ∅. Recall that in Cases (i) and
(ii), B may contain elements of type b = (

j,−→m , Y ,⊗b
)

only if j < i by Note 2 and (57),
(58), and (63), (64). In Case ii), choose any element b ∈ B such that ⊗b is maximal (in B).
Then, reset the diagonal of M according to −→m , set i := j , delete b from B, and proceed to
the General Step.

Case (iii) Exactly one of biX or bi∅ fulfills (59)–(62), say, biY . LetMi,i := “Y ” and go to
Step Increasing i .

Case (iv) Both biX and bi∅ fulfill (59)–(62).
If ⊗max

diag (M [i, i = X ]) ≤ ⊗max
diag (M [i, i = ∅]), then let Mi,i := “∅”, B := B ∪ {

biX
}

,

and go to Step Increasing i .
If ⊗max

diag (M [i, i = X ]) > ⊗max
diag (M [i, i = ∅]), then let Mi,i := “X”, B := B ∪ {

bi∅
}

,

and go to Step Increasing i .
STEP INCREASING (i) If i < σ , then let i := i + 1 , and go to the General Step. In

the case i = σ , go to the Check Step.
CHECK STEP (i = σ ) First, save the recent M with its ⊗diag (M). If B contains an

element b = (

j,−→m , Y ,⊗b
)

such that

⊗b > ⊗diag (M) , (65)

then go back to b and start a new cycle, i.e., reset the diagonal of M according to −→m , set
i := j , delete b from B, and go to the General Step.

END of the Algorithm.
(The algorithm is visualized in Fig. 2.)

Remark 4 If we want to find all optimal solutions to Problem 1, then replace (65) with

⊗b ≥ ⊗diag (M) . (66)
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Fig. 2 Flowchart of the proposed algorithm

Of course, we must first save (in an output buffer) the solution(s) we have found so far.
Then, we pick the next element b ∈ B in the buffer, reset the diagonal ofM according to −→m ,
set i := j , delete b from B, and go to the General Step.
We call this algorithm the Hybrid Project Ranking Algorithm.

Theorem 3 The saved matrices (in the Check Step) of the above algorithm are exactly the
optimal solutions to Problem 1. Specifically, there are no saved matrices if and only if (38)–
(40) in Problem 1 has no solution at all.

Proof In each step, the algorithm chooses the best of (at most) two possibilities but buffers
the other for further investigation. The value⊗diag (M) for eachM is a sharp upper bound for
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Table 3 Results of phase one for Example 3

(a) Considering only planned tasks
Logic Domain Time Domain Cost Domain Quality Domain Resource DomainPDM A B C D E t1 t2 t3 c1 c2 c3 q1 q2 q3 r11 r21 r31 r12 r22 r32

A X 1.0 0.8 0.2 4 5 6 2 4 3 0.8 0.9 0.8 2 3 0 3 0 3
B 0.0 X 0.0 0.4 2 3 1 3 3 5 0.8 0.9 0.9 3 5 2 2 2 1
C 0.0 0.0 X 0.0 8 6 4 5 5 4 0.7 0.9 0.9 0 1 0 1 0 2
D 0.0 0.0 0.0 ∅ 9 9 9 7 7 7 0.9 0.9 0.9 2 2 2 0 0 0
E

Constraints: 18 19 0.75 10 6

(b) Considering unplanned tasks, with fixed and flexible constraints
Logic Domain Time Domain Cost Domain Quality Domain Resource DomainPDM A B C D E t1 t2 t3 c1 c2 c3 q1 q2 q3 r11 r21 r31 r12 r22 r32

A X 1.0 0.8 0.2 0.0 4 5 6 2 4 3 0.8 0.9 0.8 2 3 0 3 0 3
B 0.0 X 0.0 0.4 0.0 2 3 1 3 3 5 0.8 0.9 0.9 3 5 2 2 2 1
C 0.0 0.0 X 0.0 0.4 8 6 4 5 5 4 0.7 0.9 0.9 0 1 0 1 0 2
D 0.0 0.0 0.0 ∅ 0.0 9 9 9 7 7 7 0.9 0.9 0.9 2 2 2 0 0 0
E 0.0 0.0 0.0 0.0 X 1 2 3 3 3 2 1.0 1.0 1.0 2 2 1 2 2 1

Original constraints: 18 19 0.75 10 6
Modified constraints: 21 22 0.75 12 8

further continuation ofM. Therefore, all the buffered possibilities with smaller ⊗ than those
of the finished (and saved) matrices (in the Check Step) could be deleted from the buffer.
Since the algorithm checks each remaining element of the buffer (see the Check Step), at the
end, we must obtain each optimal solution. ��

The result of phase one is to find [depending on the meaning of the completion scores
and the aggregation functions (see Definition 4)] the most desired or most probable project
scenario. Table 3 shows the results of phase one of Example 3.

Example 4 At the end of the result of phase one, only two options are allowed: tasks will
be included in (“X” see on Table 3) or (because of the low priority) will be excluded from
(see “∅” on Table 3) the project plan. Table 3 shows that in the case of excluding a task from
a project plan, all of its demands, completion modes and dependencies are also excluded
from the project plan. Similar to the original project plan, minimal and maximal values
of demands can be specified without calculating all possible project structures. TPTmin =
max(4+1, 1) = 5 if only planned tasks are considered, and TPTmin = max(4+1, 1, 1) = 5
if both planned and unplanned tasks are considered. TPCmin = 2 + 3 + 4 = 9 if only
planned tasks are considered, and TPCmin = 2 + 3 + 4 + 2 = 11 if both planned and
unplanned are considered. Because task D is excluded, if only planned tasks are considered:
TPQmax = 3×0.9/4×0.9 = 0.75, while if both planned and unplanned tasks are considered,
TPQmax = (3× 0.9+ 1)/(4× 0.9 = 0.75+ 1) = 0.80, which shows that if unplanned tasks
can be completed, the total project quality can increase.

The goal of phase two is to find the most desired/most probable project structure within
a project scenario. However, the project structure always depends on the result of phase one.
Therefore, the “highest” scoring project structure can be interpreted only within a specified
project scenario.

2.3.2 PHASE TWO

In phase two, the goal is to find the most probable or most desired project structure within
the specified project scenario. The algorithm and most of the notation for phase two are
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Table 4 Results of phase two for Example 4

(a) Considering only planned tasks
Logic Domain Time Domain Cost Domain Quality Domain Resource DomainPDM A B C D E t1 t2 t3 c1 c2 c3 q1 q2 q3 r11 r21 r31 r12 r22 r32

A X X X ∅ 4 5 6 2 4 3 0.8 0.9 0.8 2 3 0 3 0 3
B ∅ X ∅ ∅ 2 3 1 3 3 5 0.8 0.9 0.9 3 5 2 2 2 1
C ∅ ∅ X ∅ 8 6 4 5 5 4 0.7 0.9 0.9 0 1 0 1 0 2
D ∅ ∅ ∅ ∅ 9 9 9 7 7 7 0.9 0.9 0.9 2 2 2 0 0 0
E

Constraints: 18 19 0.75 10 6

(b) Considering unplanned tasks, with fixed and flexible constraints
Logic Domain Time Domain Cost Domain Quality Domain Resource DomainPDM A B C D E t1 t2 t3 c1 c2 c3 q1 q2 q3 r11 r21 r31 r12 r22 r32

A X X X ∅ ∅ 4 5 6 2 4 3 0.8 0.9 0.8 2 3 0 3 0 3
B ∅ X ∅ ∅ ∅ 2 3 1 3 3 5 0.8 0.9 0.9 3 5 2 2 2 1
C ∅ ∅ X ∅ ∅ 8 6 4 5 5 4 0.7 0.9 0.9 0 1 0 1 0 2
D ∅ ∅ ∅ ∅ ∅ 9 9 9 7 7 7 0.9 0.9 0.9 2 2 2 0 0 0
E ∅ ∅ ∅ ∅ X 1 2 3 3 3 2 1.0 1.0 1.0 2 2 1 2 2 1

Original constraints: 18 19 0.75 10 6
Modified constraints: 21 22 0.75 12 8

the same as in phase one. We have to determine the “?” symbols outside of the diagonal
of M in a fixed (but arbitrary) order. Before each replacement, we save the other possibility
in a buffer, similar to (57), checking the conditions corresponding to (43) and (44), such
as (59)–(62), which correspond to (38)–(40). In each step, we have to refresh Tmin (M,W)

and ⊗nd (M). The properties of the phase two algorithm can be proved along the lines of
Theorem 3 and Sect. 2.3.4. That is, the algorithm in phase 2 finds all optimal solutions since
it saves and investigates all real candidates in the buffer. The complexity is investigated in
Sect. 2.3.4.

Example 5 Following Examples 3 and 4, Table 4 shows the results of phase two
Minimal and maximal values of demands can also be specified without calculating all

possible project plans. TPTmin = 4 + max(1, 4) = 8 if only planned tasks are considered,
and TPTmin = max(4 + max(4, 1), 1) = 8. Since at phase two tasks are already not
excluded from the project plan, minimal/maximal values of the cost/quality/resource are not
modified.

2.3.3 PHASE THREE

After phase two we obtain a project structure, which represents a traditional multimode
resource-constrained project scheduling problem (MRCPSP). In this phase, when considera-
tions of discrete completion modes are specified, we use Creemers [4]’s algorithm to specify
the solution of the MRCPSP, and the continuous version of the problem is solved by Mong-
hasemi et al. [18]’s algorithm. If there is no feasible solution to the given algorithm,we should
go back to phase two and select the next project structure from the buffer. The optimal
output matrix is a kind of domainmappingmatrix (DMM), see Table 5, where flexible depen-
dency and uncertain task completion are excluded or included. Therefore, the logic domain
(LD) of the output matrix is a dependency structure matrix (DSM), where “X” represents
included tasks on the diagonal, and included dependencies are on the out-diagonals of the
LD. The optimal output matrix (furthermore, the project schedule matrix (PSM)) contains
one vector of time/cost demands (TD,CD) and one vector of quality parameters (QD). The
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Table 5 Results of phase three
for Example 5

Logic domain TD CD QD RD

PSM A B C E t c q r1 r2
(a) With all tasks

A X X X 5 3 0.9 3 0

B ∅ X ∅ 1 5 0.9 2 1

C ∅ ∅ X 4 4 0.9 0 2

E

Constraints 18 19 0.75 10 6

(b)With fixed constraints

A X X X ∅ 4 2 0.8 2 3

B ∅ X ∅ ∅ 1 5 0.9 2 1

C ∅ ∅ X ∅ 4 4 0.9 0 2

E ∅ ∅ ∅ X 1 3 1.0 1 1

Original constraints 18 19 0.75 10 6

Modified constraints 21 22 0.75 12 8

PSM also contains an n by r submatrix of resource demands (RD) and a vector of scheduled
start times (SST).

Example 6 Following Example 3 and Examples 4–5, Table 5 shows the results of phase
three.

Table 5 shows that because of the quality constraint, the lowest duration cannot be selected
if unplanned tasks are not considered (see Table 5a). In this case, TPT = 5+max(1, 4) = 9,
TPC = 3 + 5 + 4 = 12, TPQ = 3 × 0.9/4 × 0.9 = 0.75, and TPR= [3, 2]T . At the same
time, if unplanned tasks are considered, than the lowest duration of tasks can be selected. In
this case, TPT is not increased. TPT = max(4+max(1, 4), 1) = 8. TPC = 2+5+4+3 = 14
if every task is completed as early as possible TPR= [3, 4]T , while TPQ = (0.8 + 0.9 +
0.9+1.0)/(4×0.9+1.0) = 0.78. Example 5 shows that unplanned tasks do not necessarily
increase the time demands, and because the growth of relative quality occurs, customers can
be more satisfied.

2.3.4 Algorithmic complexity

Briefly, in phase one, ⊗diag (M) is calculated and Tmin (M,W) is refreshed (see Defini-
tion 14), so each cycle is at most quasilinear, but we have no bounds on the total size of
the buffer. Similarly, in phase two, we have to calculate Tmin (M,W) and ⊗nd (M), which
implies a similar upper bound on time as in phase one. Perhaps some extreme counterexam-
ples may cause exponential running time, but practical runs (see Sect. 3) provided quadratic
runs, both in phase one and in phase two.

In more detail, in general, the nth-largest value can be determined within O(n log n)

computation time (e.g., [22]); however, our decision tree is a special binary heap where
a quasilinear search algorithm can be specified. In Sect. 2.3, we saw that the best project
structures can be found within O(s+d), where s is the number of supplementary tasks to be
completed (phase one), and d is the number of flexible task dependencies (phase two). If
there are no supplementary tasks to be completed, the number of possible project structures
depends only on the number of flexible dependencies. If there are d flexible dependencies,
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then there are 2d possible project plans (phase two). In case of acyclic project networks,
the maximal number of flexible dependencies is n(n − 1)/2, and in this case, the number of
possible project structures is 2n(n−1)/2 (phase two). If there are s supplementary tasks, then
2s project scenarios can be specified. In a special case, if s = n and d = n(n − 1)/2, then
there are 2n project scenarios (phase one) and

∑n
j :=0

(n
j

)

2 j( j−1)/2 project plans (phase

two).
The computational demand of the proposed hybrid algorithm with respect to the fulfilled

PEM=LD of a specified deterministic PEM is O(d) = O(n(n − 1)/2) ≈ O(n2) in the case
of a fulfilled upper triangular matrix (NDSM) with only mandatory tasks, and the run time
O(d+s) = O(n+n(n−1)/2) ≈ O(n2) is similar when regarding a fulfilled upper triangular
matrix with all supplementary tasks (phase one). For example, when n = 50, completely
filled upper triangular NDSM and PEM specify 5, 78 · 10368 possible project plans, while
our algorithm finds a project structure within O(502) steps (phase two). However, at the
end of the project selection process, where we have a feasible project structure, the proposed
algorithm has to call a method for the multimode resource-constrained project scheduling
problem. In this case, the complexity of the (MRCPSP) method and the complexity of project
selection are multiplied. As MRCPSP are NP-hard problems, the hybrid versions of these
problems are also NP-hard problems.

3 Method of testing project management approaches

The main goal of this section is to test the proposed algorithm and compare it to several
state-of-the art algorithms. At the same time, since applied methods can imitate decision
makers, different kinds of project management and scheduling approaches can be com-
pared. In this section, the proposed algorithm is tested on the modified MMLIB [28] project
database and on generated projects, which were generated by ProGEN [13]. Flexible and
traditional approaches are implemented by algorithms from the literature review. Both the
continuous version of time–quality–cost trade-off methods and the discrete version of mul-
timode resource-constrained project scheduling problems are compared. The implemented
algorithms imitate decision makers (i.e., project managers), who can select a technology
(completion mode) from the set of multimodes and/or who can reorganize the project. The
main question was to investigate scenarios in which flexible approaches produce more fea-
sible projects.

3.1 Data sources and selected initial project plans

The aim of selecting and generating initial project plans is to meet as much as possible the
expectations for flexible project management approaches, especially the features of agile,
extreme and hybrid projects.

1. Vanhoucke [30] showed that flexible projects usually contain more parallel tasks; there-
fore, according to Vanhoucke [30], the number of parallel tasks is greater than the number
of serial tasks.9 Nevertheless, one of the most popular agile approaches, the KANBAN
method, limits the number of parallel WIP tasks, and allows only 3–5 WIPs. Therefore,
in the simulation, the number of WIPs must be lower than 5.

9 Following the simulations of Vanhoucke [30], i2 = (m − 1)/(n − 1) ∈ [0.2, 0.3], where m is the number
stages in a topological ordered network and n is the number of tasks. i2 = 1 if all tasks are completed in a
serial manner, and i2 = 0 if all tasks are completed in parallel.
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2. Projects are usually separated into smaller autonomous subprojects (sprints) (see, e.g.,
[8]), that should completed within 2–5weeks; therefore, the number of tasks is limited
and should not be greater than 30.

3. Projects should contain at least two types of renewable resources (e.g., in software
projects, a programmer and a tester).

4. Projects should contain at least two completion modes to apply continuous trade-off
methods and at least three for testing the discrete version of MRCPSP.

Two kinds of datasets are specified. The logic networks of Dataset A came from the standard
project database [30]. Project plans of Dataset B are generated by the standard project
generator software ProGen [13].

Use of logic network

Since all applied databases contained logic plans, the original project plans were used. More-
over, 5 project plans (j3031_7, j3035_10, j3042_1, j3031_5, j3064_10) satisfied the above
mentioned criteria from Dataset A, and 5 additional project plans were generated by ProGen.
Unfortunately, all databases contained neither flexible dependencies/supplementary tasks nor
unplanned tasks; therefore, on one hand, score values are attached to the customized rate of
tasks and dependencies. The rate of flexible dependencies and supplementary tasks were
between 10 and 40% ( f f ∈ {0.1, 0.2, .., 0.4}) (see an example in Fig. 3a). The proposed
algorithm can exclude tasks and dependencies, and the original network can be changed; how-
ever, at least the mandatory tasks and fixed dependencies must be completed (see Fig. 3a).
On the other hand, the original database does not contain unplanned tasks and dependencies.
Therefore, the ratio of unplanned tasks and dependencies are specified between 0 and 40%
(u f ∈ 0.0, 0.10, .., 0.40) (see an example in Fig. 3c). Unplanned tasks and dependencies
can contain mandatory tasks and fixed dependencies (see Fig. 3d). This modified dataset
is capable of checking flexible management approaches. The modified databases contain 2
datasets, which contain 5–5 original project plans. These project plans contain a flexible
project plan with 4 kinds of flexible rates. Moreover, 5 kinds of ratios of unplanned tasks and
dependencies can be attached to the original project plan. Therefore, 2 × 5 × 4 × 5 = 200
logic plans are investigated.

Use of demands

Since quality parameters aremissing from every known project database, we have to calculate
according to the quality–cost trade-off functions. Only the relative quality functions were
calculated. In the case of the continuous version, a higher budget that can allow higher
quality is considered.

Moreover, usually an inverse proportionality can be assumed between the cost and quality.
The (relative) quality parameters were simulated to the i-th task. In the case of the continuous
version of trade-off methods, only two completion modes are specified for minimal/maximal
values of durations/cost and resource demands. However, in the discrete version ofMCRPSP,
a randomized third completion mode is generated for time, cost, quality and resources;
therefore, the trade-off assumptions between time–cost, time-resources and cost–quality are
not satisfied in this case. Since both the discrete and the continuous version of the problem
are examined, 200 × 2 = 400 project plans are specified.

Calculating constraints

All of the traditional approaches, agile projectmanagement approaches, and applicationman-
agement approaches specify the budget, deadlines and resource constraints based on only
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(a) Flexible dependencies and supplementary
tasks are considered.

(b) Only mandatory tasks and fixed depen-
dencies are considered.

(c) All planned and unplanned tasks and de-
pendencies are considered.

(d) Unplanned mandatory tasks and depen-
dencies are considered.

Fig. 3 j3530_10 networks form MMLIB [28]

the planned tasks and dependencies. However, the extreme project management approach
allows the project managers to confirm the extra cost and duration of unplanned tasks, and the
constraints can be modified. Therefore, in the simulation, two kinds of contract strategy are
compared. In the first strategy, the constraints are specified by considering only planned tasks.
The agile project management approach does not allow new, unplanned tasks and dependen-
cies. Therefore, these new tasks will be completed in a next sprint. However, the application
management approach can confirm new tasks for which the original budget constraint allows
their completion.

The other contract strategy is the flexible contract strategy, where the new tasks can
increase the budget and can modify the deadline.

In the simulation, the five constraints (Ct ,Cc,Cq ,Cs ,Cr) were between the possible mini-
mal and maximal values of demands. Then, Eq. (67) calculates:
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Cx = Cx% (TPXmax − TPXmin) + TPXmin (67)

where Cx represents the constraints (i.e., Cx ∈ {Ct ,Cc,Cq ,Cs,Cr}) and TPX represents
the total project time/cost/quality/score/resources, respectively. Cx% ∈ {0.7, 0.9}, if Cx% ∈
{Ct ,Cc,Cri }, i = 1, .., ρ and Cx% ∈ {1 − 0.7, 1 − 0.9} = {0.1, 0.3}, if Cx% ∈ {Cq ,Cs}.

Two kinds of contract strategies and 25 kinds of constraints on 400 project plans specified
400 × 2 × 25 = 25,600 problems.

Target function

Though different kinds of target functions can be considered, we only want to specify the
most desired project plan (maximal total project scores), where the completion time of the
project is minimal.

Applied agents

Applied algorithms imitate decision makers. The traditional project management approach
does not allow flexible dependencies and supplementary tasks; therefore, all flexible depen-
dencies are considered as fixed and all supplementary tasks are considered as mandatory
tasks. In the case of discrete completion modes, we obtain an MRCPSP problem, which was
solved by Creemers [4]’s algorithm, while the continuous version of the problem was solved
by Monghasemi et al. [18]’s algorithm. These algorithms imitate the decision maker who
follows a traditional project management approach. Furthermore, these algorithms are called
Traditional Project Management agents (TPMa).

To implement Agile Project Management agents (APMa), we used Kosztyán [15]’s
Exact Project Ranking (EPR) algorithm. This algorithm does not consider different kinds
of completion modes. Therefore, only minimal (so called normal) time demands and their
cost/quality/resource demands are considered. Furthermore, this algorithm is called the Agile
Project Management agent (APMa).

Despite that the original version of EPR does not allow the unplanned tasks and depen-
dencies, the proposed extension of the PDM matrix and the extension of the set of activities
can capably solve the problem. If the constraints are calculated based only on the planned
tasks, and there is no chance to modify the constraints, the algorithm imitates the application
management approach; therefore, the modified version of EPR is called an ApplicationMan-
agement agent (AMa). However, if the extra demands can modify the constraints, than the
modified EPR can imitate the decisions of the extreme project managers, and this algorithm,
henceforward, is called the eXtreme Project Management agent (XPMa).

The proposed algorithm handles both the supplementary and the unplanned tasks and
dependencies, and in addition, it can handle the multimode of completion modes. The deci-
sion maker can combine the multimode and the project screening techniques to reorganize
the project. This algorithm can imitate the decision maker who follows the hybrid project
management approach. Therefore this algorithm is, furthermore, called the Hybrid Project
Management agent (HPMa).

Feasibility and the scheduling performance

On one hand, one of the main aspects of comparing the examined agents is to specify feasible
project plans, namely, which agent and which project management approach can solve more
problems.

On the other hand, it is also important to determine which feasible method can save more
time, cost and resources. Therefore, the scheduling performances are specified as follows:
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T PT% = Ct/T PT − 1 (68)

T PC% = Cc/T PC − 1 (69)

T PR% = Mean(Cri /T PRi − 1), i = 1, .., ρ (70)

T PQ% = T PQ/Cq − 1 (71)

T PS% = T PS/Cs − 1 (72)

All scheduling performances are between [0,∞], specifically, 0 if the total project
time/cost/quality/score/resource and the given constraints are equal. The scheduling per-
formances are 1 if half of the budget, duration, resource demands, etc. can be saved. A
greater value can produce higher scheduling performance.

The verification of optimality is a considerably hard problem because in this case, we
should specify all the possible project structures, and we should find an optimal solution in
a fixed project structure. However, because of the problem complexity (see Sect. 2.3.4), this
kind of testing works only in small problems. Therefore, we tested the proposed algorithm
only in small projects, where the logic domain was 5 × 5.

4 Results

If unplanned tasks are not allowed, three kinds of algorithms can be compared, both for
the continuous version of the time–quality–cost trade-off problem (CTQCTP) and the dis-
crete version of the multimode resource-constrained project scheduling problem (MRCPSP).
TPMa represents the traditional projectmanagement approach, where every (not onlymanda-
tory, but supplementary) task and all (not only fixed, but flexible) tasks are included in the
project; therefore, we obtain either the traditional (resource-constrained) CTQCTP or an
MRCPSP problem. To imitate CTQCTP, we used Creemers [4]’s algorithm, while in the case
of MRCPSP, Monghasemi et al. [18]’s is implemented.

4.1 Results of feasibility test and verification optimality

Given the large number of project scenarios and project structures in the cases of flexible
projects (see Sect. 2.3.4) and the NP-hardness of MRCPSP-s, the feasibility is first checked.
The question was to determine which method can produce a more feasible project.

Considering all databases and all the continuous and discrete problems, the feasibility rate
was 72.03%. Despite that the agile project management approach (implemented by Kosztyán
[15]) cannot handle multimodes and trade-offs, the feasibility rate was 78.64%.

More feasible projects could be specified if the flexibility factor was higher (see Fig. 4).
However, the proposed HPMa can produce projects that are 98.83% flexible.
Figure 4 shows that in the case of more flexible projects, the agile project manage-

ment approach produces more feasible projects, while the traditional project management
approaches performbetter if the flexibility ratio is lower. Because the characteristics of project
management agents are not different when considering dataset A and dataset B, we combined
these datasets and show results on the joined dataset.

Verification of optimality of the proposed method was performed in two steps. First,
without using resource constraints, flexible task dependencies, and supplementary tasks, the
optimal solution of a CTQTCP problem can be specified by Creemers [4]’s algorithm. In
this case, we used the original project plans where there were no supplementary tasks and
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(a) For hybrid CTQCTP (b) For hybrid MRCPSP

Fig. 4 Comparing feasibility. HPMa represents the proposed algorithm, APMa represents Kosztyán [15]’s
expert project ranking algorithm, TPMa follows Creemers [4]’s algorithm for trade-off problems and Mong-
hasemi et al. [18]’s algorithm for solving MRCPSP

flexible dependencies. Since phase three of the proposed method also applies Creemers [4]’s
algorithm, the original algorithm and the proposed algorithm produced the same results.
Similarly, if trade-offs are not considered, Kosztyán [15]’s algorithm can specify the optimal
solution. In this case, the proposed and Kosztyán [15]’s algorithm produced the same results.
After the first step, we specified random 5× 5 logic domains, which is quite small to specify
all possible project scenarios and all project structures. According to the complexity of the
problem, the number of possible project plans is

∑5
j :=0

(5
j

)

2 j( j−1)/2 = 1450 (see Sect. 2.3.4).
For all possible project plans without resource constraints, Kosztyán [4]’s and the proposed
algorithm are compared, and both algorithms could find the optimal solution. However, this
mode of verification cannot be used for larger matrices because for a 6× 6 logic domain, the
possible project plan is 979,841.

4.2 Comparing scheduling performance

Both XPMa and AMa are based on the modification of Kosztyán [15]’s algorithm. Figure 5
shows that HPMa produces the most feasible project. At the same time, the ratio of feasibility
can be increased if the constraints are not fixed as in AM but are flexible as in XPM.

Figure 6 shows the scheduling performances forMRCPSP problems, where greater values
are better (shows lower TPT, TPC, TPR and higher TPQ, TPS; see Eqs. (68)–(72)). The
HPMa produces the lowest TPT because the scheduling performance of the total project time
(TPT%), 2.18, is the best for the proposed algorithm, but the cost of this performance is such
that the other scheduling performance indicators are better for TPMa and APMa algorithms
(see Fig. 6a).

Although TPMa has produced the lowest ratio of feasible project plans, TPMa reduces
the most cost demands for feasible project plans.

APMa is the most effective for increasing quality and allocating resources. Figure 6b
shows that HPMa can reduce the TPT most effectively while keeping more tasks, but XPMa
and AMa can reduce cost and resources most effectively.

5 Discussion

In flexible project environments, flexible approaches, such as agile and extreme project man-
agement approaches, can specify more feasible projects; therefore, these approaches can
be more successful than the traditional approaches. At the same time, if there are more
completion modes, hybrid approaches can handle both the flexibility and the selection
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(a) Hybrid TQCPSP (b) Hybrid MRCPSP

Fig. 5 Results of management agents in the case of unplanned tasks

(a) Without unplanned tasks (b) With unplanned tasks

Fig. 6 Comparing scheduling performances for project management approaches

from completion modes. This combination of approaches can produce the most feasible
projects. The other advantage of the hybrid approach is that it can be used in cases of
both flexible ( f f is high) and nonflexible environments ( f f is low). On one hand, if there
is no flexible dependency and supplementary task, the HPMa is the equivalent of TPMa.
On the other hand, if there is only one completion mode and we consider only planned
tasks, HPMa is the equivalent of APMa. At the same time, in the flexible project envi-
ronment when unplanned tasks can also be included in the project, HPMa is equivalent
to AMa if constraints are fixed, but HPMa=XPMa if the constraint is flexible. Never-
theless, in the general case, if more than one completion mode (technology) is specified,
in a flexible project environment HPMa can use both traditional and flexible scheduling
techniques in order to specify feasible projects. Figure 5 shows that the flexible environ-
ment (higher flexibility factor) can increase the rate of flexibility more than the number
of unplanned tasks. However, if extra costs and extra efforts of unplanned tasks are con-
sidered, the ratio of flexibility can be increased. Although Fig. 6 shows results only for
MRCPSP, where trade-offs between time and cost, cost and quality, time and resources are
not assumed, a kind of trade-off between methods can be observed. Figure 6 shows that the
proposed HPMa can reduce TPTmost effectively, but this method is not superior. Traditional
and flexible project management approaches, such as APMa, XPMa, AMa can save more
money and more resources. Flexible approaches can provide greater increases in quality
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and can be more effective in resource allocation. HPMa can be most effective for reduc-
ing time because this approach can reorganize the project and can select from completion
modes, while other approaches use only one technique; however, other methods can save
more resources and can produce more quality, while HPMa is usually closer to the con-
straints.

6 Summary and conclusion

The proposed hybrid multimode resource-constrained project scheduling problem approach
may bridge the agile and traditional project management approaches. If there are no flexible
dependencies or supplementary task completions, the problem amounts to the traditional
MRCPSP problem. The hybrid project management (HPM) approach combines methods
(e.g., TQCTP. MRCPSP) from traditional project management, and structuring and scoring
techniques from agile project management.

The proposed algorithm is a fast, efficient method that supports the hybrid project man-
agement approach. The algorithm is able find an optimal solution according to predefined
preferences over factors such as time, cost and quality. The proposed algorithm is able to
handle unplanned tasks; therefore, this method can be used in a continuously changing envi-
ronment. This paper shows that a hybrid approach can be an adequate alternative to flexible
project management approaches. Traditional and flexible approaches can and should be com-
bined in order to specify more feasible projects, and increase the scheduling performance of
the project duration.

The developed matrix-based method and proposed exact algorithm may be important
and essential components of a project expert system supporting strategic decision making,
particularly in cases of large, complex, and flexible projects.

7 Limitations and future works

The proposedmodel extends the traditional multimode resource-constrained project schedul-
ing problem; however, in this model, only renewable resources (e.g., human resources)
and one nonrenewable resource (e.g., cost demand) are considered. In project management,
renewable, nonrenewable, and semirenewable resources may also be important parameters.
Therefore, this extension will be considered in future research. Another possible application
of this method is in risk management and risk analysis. Supplementary and unplanned task
completions can model changes in management or client claims. Flexible task dependency
can model technological changes. In these cases, a more appropriate matrix-based model
could be specified, and the efficiency on risk mitigation of traditional and flexible project
management approaches can be compared for different kinds of project plans.
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