
Journal of Global Optimization (2019) 75:227–245
https://doi.org/10.1007/s10898-019-00780-3

Nonconvex min–max fractional quadratic problems under
quadratic constraints: copositive relaxations

Paula Alexandra Amaral1 · Immanuel M. Bomze2

Received: 8 October 2018 / Accepted: 12 April 2019 / Published online: 9 May 2019
© The Author(s) 2019

Abstract
In this paper we address a min–max problem of fractional quadratic (not necessarily con-
vex) over linear functions on a feasible set described by linear and (not necessarily convex)
quadratic functions. We propose a conic reformulation on the cone of completely positive
matrices. By relaxation, a doubly nonnegative conic formulation is used to provide lower
bounds with evidence of very small gaps. It is known that in many solvers using Branch
and Bound the optimal solution is obtained in early stages and a heavy computational price
is paid in the next iterations to obtain the optimality certificate. To reduce this effort tight
lower bounds are crucial. We will show empirical evidence that lower bounds provided by
the copositive relaxation are able to substantially speed up a well known solver in obtaining
the optimality certificate.

Keywords Min–max fractional quadratic problems · Conic reformulations · Copositive
cone · Completely positive cone · Lower bounds

Mathematics Subject Classification 90C47 · 90C22 · 90C26 · 90C32

1 Introduction andmotivation

In optimization, the objective function of the underlyingmathematicalmodel represents a cer-
tain performance measure to be optimized. In many situations this performance is described
as the ratio of two functions to accurately reflect the trade-off between two, sometimes com-
peting, aspects of the system, like profit versus the number of employees or production versus
consumption, mean value and variance, cost versus time or volume. Problems of this kind
arise in many different activities such as financial planning (where the ratio of debt/equity
must be considered), in production planning (inventory/sales or revenue/employee), health
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care (cost/patient), blending problems (income/quantity of raw material), in the domains of
optics, engineering, or information retrieval, to name just a few. More application examples
can be found in the first chapter of [25].
Sometimes the fractional relation is ignored for the sake of model simplicity and replaced
by a parameterized linear function. An alternative approach introduces bounds on one of the
functions as a constraint in the model. However, recent interest has focused on more realistic
mathematical models, and increased research effort focuses on advanced methodologies to
directly address the problem of ratio optimization, also known as fractional programming.

Consider the so called single-ratio fractional problem,

min
x∈�

f (x)
g(x)

, (1.1)

where � ⊆ R
n is a bounded convex set and it is assumed that g(x) > 0 for x ∈ �. If f

and g are affine functions and � is a polyhedron, problem (1.1) is called a linear fractional
optimization problem. If the functions f and g are quadratic (one of them can be affine) and
� is a polyhedron, we will call this problem as a quadratic fractional optimization problem
on a polyhedron. If � is not a polyhedron it will just be referred as a quadratic fractional
optimization problem.

Fractional problems (1.1) are nonconvex in general. Under convexity and concavity
assumptions for f and g respectively, and nonnegativity of f if g is not affine, (1.1) is termed
a convex–concave fractional program [22], and the objective function is strictly quasi-convex.
Any local solution to a convex–concave fractional program is also a global solution, as it hap-
pens for general convex programs, and in addition a solution of the Karush–Kuhn–Tucker
optimality conditions is a global solution if the numerator and denominator functions are
differentiable on an open set containing �. But the convexity and concavity assumptions are
restrictive, and in many practical problems they are not valid.

As a generalization of (1.1) we can find the generalized fractional program or min–max
fractional optimization problem

min
x∈�

max
y∈U

f (x, y)
g(x, y)

, (1.2)

and as a special case the discrete case, where we have a finite set I = {1, . . . , m} instead of
U :

min
x∈�

max
i∈I

fi (x)
gi (x)

. (1.3)

In the sequel we will consider the discrete case and assume that:

• � ⊂ R
n is compact; (1.4)

• for all i ∈ I , fi and gi are continuous on an open set �̃ ⊆ R
n containing � ; (1.5)

• gi (x) > 0 for all x ∈ � and all i ∈ I ; (1.6)

• fi (x) > 0 for all x ∈ � and all i ∈ I . (1.7)

Note that condition (1.6) aims at ensuring that gi (x) �= 0 and so the problem is well-
posed. The positivity condition is not restrictive because we can multiply both numerator
and denominator by (−1) ensuring this condition even if gi (x) < 0. We can assume (1.7)
without loss of generality since we can always consider an equivalent problem adding L to
fi (x)
gi (x)

in the objective function for i ∈ I with L > 0 large enough such that the new numerator
fi (x) + Lgi (x) > 0 on �.
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In this paper we are particularly interested in problems (1.3) since they are relevant for
performing worst-case analysis as mentioned in [15,20]. Indeed, suppose that the uncertainty
set U ⊂ R

p is a polytope with known (few) vertices v1, . . . vm , so U = conv {vi : i ∈ I },
and further assume that the objective f (x, y)/g(x, y) depends in a quasiconvex way on y
for any fixed x ∈ �. Now putting fi (x) = f (x, vi ) and gi (x) = g(x, vi ), it is obvious that
problems (1.2) and (1.3) are the same, so that the robust formulation can be phrased in terms
of finitely many scenarios which do not affect the set � representing precisely known (not
uncertain, global) constraints. Closely related applications arise from goal programming and
multicriteria optimization when Chebychev’s norm is used to evaluate the goals or criteria,
leading to

min
x∈�

max
w∈�

{
m∑

i=1

wi
fi (x)
gi (x)

}
, (1.8)

where � = {
w ∈ R

m+ : ∑m
i=1 wi = 1

}
is the standard simplex in R

m . The equivalence of
(1.3) and (1.8) follows as above, or else directly from the fact that the maximum of m
numbers is equal to the maximum of their convex combinations [8,13]. Problem (1.8) is
particularly interesting when pooling of the rival objective functions is considered, in which
case the components wi are the pooling weights. Then the min–max solution provides a
robust pooling by suggesting a strategy that does not depend on the prevailing scenario.

The solution of (1.3) allows the decision maker to compute the best strategy under the
worst-case scenario. In practical terms, solving themin–maxproblemensures that the solution
value will not deteriorate whichever scenario turns out to be the true one. The real solution
evaluation will be at least as good as the min–max value. In this context the above mentioned
applications of (1.1) can be directly extended to (1.3) in cases where there is some uncertainty
related to outside factors. The maximum operator can be avoided by introducing another
variable; indeed, problem (1.3) is equivalent to the following problem

min
x,v

{
v : x ∈ �,

fi (x)
gi (x)

≤ v, i ∈ I

}
. (1.9)

We will investigate (1.3) in case of quadratic functions fi and affine gi . Problems of
this type have applications in maximal predictability portfolio [11], cluster analysis [19],
transportation problems with several objective functions [24], and investment allocation
problems [27], to name but a few.

This paper is organized in five sections. After this introduction, Sect. 2 presents a review
on some methods for addressing general min–max problems. In Sect. 3 the conic reformu-
lation and a tractable relaxation is constructed. This section also incorporates a discussion
regarding the extension of these results to the quadratic over quadratic case. Sect. 4 reports
computational experience, followed by concluding remarks in the last section.

2 Short review of some traditional methods

Before we proceed we will present in this section two traditional approaches for addressing
the min–max problem. Both suffer from the same drawback, namely for general matrices the
subproblems are nonconvex, so most of them cannot be solved quickly and the first approach
does not even guarantee optimality. Throughout this section, we assume for simplicity of
exposition that � is compact and all involved functions are continuous.
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2.1 Theminimum-regret approach

We start by introducing a naive minimax strategy based on the regret concept [20]. First,
an optimal solution (which generically is unique) for each individual objective function is
obtained:

x∗
k ∈ argmin

x∈�

fk(x)
gk(x)

. (2.1)

Next, the impact of solution x∗
k , k ∈ I , on the other objective functions is investigated,

tantamount to the loss incurred by adopting x∗
k if a scenario different from k occurs:

αk := max
i∈I\{k}

{
fi (x∗

k)

gi (x∗
k)

− fi (x∗
i )

gi (x∗
i )

}
.

The best strategy x∗ will be the one corresponding to the solution that would be the least
damaging if a different scenario replaces the one for which the solution is optimal, i.e., select
i ∈ I such that αi = mink∈I αk and put x∗ = x∗

i .

2.2 A generalization of the Dinkelbach approach

Denote by

λ∗ = min
x∈�

max
i∈I

fi (x)
gi (x)

. (2.2)

In [9] a method for solving (1.3) based on the Dinkelbach approach for a single ratio is
presented. considering a parameterized version of problem (2.2):

F(λ) = min
x∈�

{
max
i∈I

{ fi (x) − λgi (x)}
}

, (2.3)

and a solution of the equation F(λ) = 0 is sought. It is known that F(λ) has some important
properties, namely:

(a) F is real-valued, decreasing and continuous;
(b) (2.2) and (2.3) always have optimal solutions;
(c) λ∗ is finite and F(λ) = 0 if and only if λ = λ∗.

Algorithm 1 describes the adaptation of the single ratio Dinkelbachmethod tomultiple ratios.
The difference consists mainly in the update of the parameter λ in each iteration, steps (1)
and (2).

The convergence of this method is linear, in contrast to the superlinear convergence in
case of the Dinkelbach method for a single ratio (which follows by analogy to the Newton
method). A better convergence is obtained by modifying the update of xk to

xk ∈ argmin
x∈�

max
i∈I

fi (x) − λk gi (x)
gi (xk−1)

by approximating a Newton step, and thus increasing the convergence rate to superlinearity.
This method is also equivalent to the partial linearization procedure in [3]. See [9].
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Data: �, fi , gi for i ∈ I
Result: Solution of problem (2.2)
x0 ∈ �;
STOP=false;
k ← 1;

ε = 10−6;
1 λ1 ← max

i∈I

fi (x0)
gi (x0)

;

while STOP=false do

xk ∈ argmin
x∈�

max
i∈I

{ fi (x) − λk gi (x)}

if F(λk ) < ε then
STOP=true;

output the optimal solution xk and optimal value λk ;
else

2 λk+1 ← max
i∈I

fi (xk )
gi (xk )

;

k ← k + 1;
end

end

Algorithm 1: Dinkelbach for multiple ratios

3 A copositive approach

Let us recall the problem (1.3) under investigation

min
x∈�

max
i∈I

fi (x)
gi (x)

.

In this work we are considering

fi (x) = x	Qix + 2b	
i x + ci = [

1 x	 ] [ ci b	
i

bi Qi

] [
1
x

]
(3.1)

gi (x) = 2r	i x + di = [
di 2r	i

] [ 1
x

]
(3.2)

and

� =
{
x ∈ R

n+ : Ax = a , x	Aqx + 2a	
q x + αq ≤ 0 for all q∈[1 : p]

}
(3.3)

with A a k × n matrix while aq ∈ R
n and Aq ∈ Mn for all q∈[1 : p]. We write 2ri in

the linear term later in (3.2), to keep the analogy with the numerator and to allow for a
simpler notation when discussing extensions to the quadratic over quadratic case. Observe
that we have implicitly introduced slack variables for the linear constraints but keep quadratic
inequalities as constraints. No definiteness assumptions are made on Aq . Likewise, in the
sequel we will make no assumptions about matrices Qi in (3.1), other than symmetry.

Our proposal is to use copositive optimization to construct good lower bounds that can be
incorporated in a global optimization method for solving this class of min–max problems.
Many solvers return a feasible solution at early stages of the branch and bound tree which
turns out to be optimal after a following, in many cases long, sequence of iterations, incurring
heavy computational burden for obtaining an optimality certificate. Good lower bounds are
crucial at this stage.Wewill show how the lower bounds provided by the copositive relaxation
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can speed up BARON to obtain this optimality certificate earlier. But before that we briefly
recapitulate some essential concepts about copositive optimization.

3.1 Quick facts about copositive optimization

A conic optimization problem in the space Sn of symmetric matrices of order n consists in
optimizing a linear function with linear constraints over a cone K ⊆ Sn :

γK := inf
X∈K {C • X : Ai • X ≥ bi , i∈[1 :m]} (3.4)

where X • Y = trace (Y	X) = ∑n
i, j=1 Xi j Yi j . The dual of (3.4) is also a conic optimization

problem of the form

γK∗ := sup
u∈Rm+

{
b	u : Su := C −

m∑
i=1

uiAi ∈ K∗
}

(3.5)

which involves the dual cone

K∗ := {Y ∈ Sn : X • Y ≥ 0 for all X ∈ K} . (3.6)

As usual, we drop sign constraints ui ≥ 0 on the dual variables in case of linear equality
constraints Ai • X = bi on the primal side.

Well-investigated special matrix cones include the semidefinite cone S+
n ⊂ Sn of all

positive-semidefinite symmetric n × n matrices (i.e. those X with no negative eigenvalue,
denoted by X � O), and the cone Nn ⊂ Sn of symmetric n × n matrices X with no negative
entry (denoted by X ≥ O). These two cones are selfdual, S+

n = S+∗
n and Nn = N ∗

n .
Combination of both properties leads to the cone of so-called doubly nonnegativematrices

Dn = S+
n ∩ Nn = {X ∈ Sn : X ≥ O and X � O} . (3.7)

The dual cone D∗
n = S+

n + Nn , so Dn is no longer self-dual. While all of aforementioned
cones are tractable in a certain sense, there is an important intractable subcone ofDn , namely
the cone of all completely positive symmetric n × n matrices,

CPn = conv
{
xx	 : x ∈ R

n+
}

, (3.8)

with its dual cone, that of copositive matrices which are symmetric of order n:

COPn =
{
X ∈ Sn : y	Xy ≥ 0 for all y ∈ R

n+
}

. (3.9)

We have CP4 = D4 but CPn � Dn for n ≥ 5.
A copositive optimization problem is a conic problem (3.4) with K = COPn , and most

authors include in the definition of copositive optimization also the case K = CPn . This
problem class has recognized merits since it admits reformulations of hard optimization
problems, such as continuous nonconvex quadratic [4,5,18], mixed-integer quadratic [7],
continuous [2] and mixed-integer [1] fractional quadratic problems. Basically, by lifting
quadratic expressions, all constraints can be linearized, pushing the hardness entirely into
the cone description. Indeed, checking that a matrix is in CPn is NP-hard [10], and it is
co-NP-complete to check whether a matrix is copositive [14]. Nevertheless it is an important
feature of completely positive formulations that relaxations giving tight lower bounds can
be obtained by replacing CPn by Dn , for instance. Even tighter relaxation bounds can be
obtained by the so-called approximation hierarchies which replace CPn by other tractable

123



Journal of Global Optimization (2019) 75:227–245 233

cones (polyhedral or expressible by linear matrix inequalities). These approximation hierar-
chies can be constructed using simplices [6,23], sums-of-squares [16] or polynomials [4,17].

3.2 Copositive reformulation

We now present a reformulation based on copositive optimization of problem (1.3) written
now in a more descriptive way to facilitate further reading.

λ∗ = min
x∈�

h(x) with h(x) = max
i∈I

[
1 x	 ] [ ci b	

i
bi Qi

] [
1
x

]
[

di 2r	i
] [ 1

x

] . (3.10)

Using a Shor lifting and considering y	 = [
1 , x	] we write h(x) in (3.10) by

ĥ(y) = max
i∈I

y	Q̂iy

r̂	i y
with Q̂i =

[
ci b	

i
bi Qi

]
and r̂i =

[
di

2ri

]
.

Next we square the homogenized linear constraints:

Ax = a ⇐⇒ ‖Ax − a‖2 ≤ 0 ⇐⇒ y	Â0y ≤ 0 , (3.11)

where

Â0 =
[

a	a −a	A
−A	a A	A

]
.

Likewise, homogenize the quadratic constraints by introducing, for all q∈[1 : p],

Âq =
[

αq a	
q

aq Aq

]
.

So, denoting

�̂ =
{
y ∈ R

n+1+ : y0 = 1, y	Âqy ≤ 0 for all q∈[0 : p]
}

,

we arrive at

λ∗ = min
y∈�̂

ĥ(y). (3.12)

The linear constraints (3.11) are homogenized as inequalities instead of equivalent equal-
ities (given that Â0 is pd) to simplify notation, defining all the constraints, quadratic and
linear, with the same structure.

Next, borrowing from (1.9), we introduce another variable v ∈ R and using hypothe-
sis (1.6), we obtain

λ∗ = min
(y,v)∈�̂×R

{
v : y

	Q̂iy

r̂	i y
≤ v for all i ∈ I

}

= min
(y,v)∈�̂×R

{
v : y	Q̂iy ≤ v̂r	i y for all i ∈ I

}
. (3.13)
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Now considering z = [y	 v]	 and

Q̆i =
[
Q̂i o
o	 0

]
for i ∈ I ,

R̆i =
[

O 1
2̂ ri

1
2̂ r

	
i 0

]
for i ∈ I ,

Ăq =
[
Âq o
o	 0

]
for q∈[0 :m],

we obtain

λ∗ = min
z∈Rn+1+

{
zn+1 : z0 = 1, z	Q̆iz ≤ z	R̆iz, i ∈ I , z	Ăqz ≤ 0, q∈[0 : p]

}
. (3.14)

Now for X = zz	, we obtain the following reformulation of (3.14), more precisely, of
(λ∗)2, in view of z∗

n+1 ≥ 0:

γ ∗ = min
X∈CP rk 1

n+2

{
Xn+1,n+1 : X00=1 , (Q̆i − R̆i ) • X ≤ 0 , i ∈ I , Ăq • X≤0 , q∈[0 : p]

}
,

(3.15)

where CP rk 1
n+2 := {X ∈ CPn+2 : rank X = 1}. Dropping the rank constraint leads to the com-

pletely positive relaxation

γ ∗
C P = min

X∈CPn+2

{
Xn+1,n+1 : X00=1 , (Q̆i − R̆i ) • X≤0 , i ∈ I , Ăq • X≤0 , q∈[0 : p]

}
,

(3.16)

with its dual

γ ∗
C O P = sup

u∈Rm+p+2
+

⎧⎨
⎩u0 : En+1 − u0E0 −

m∑
i=1

ui (Q̆i − R̆i ) −
p∑

q=0

μq Ăq ∈ COPn+2

⎫⎬
⎭ ,

(3.17)

where Ek • X = Xkk . Weak duality and rank relaxation yield immediately the relations
γ ∗

C O P ≤ γ ∗
C P ≤ γ ∗ = (λ∗)2. If an optimal solution of (3.16) has rank one then we have

γ ∗
C P = γ ∗ and vice versa.
Further, tractable relaxations of above conic problems may use approximation hierar-

chies for CPn+2, for instance by replacing CPrk1
n+2 by Dn+2, the cone of doubly nonnegative

matrices. In this case we obtain the following problem:

δ∗ = min
X∈Dn+2

{
Xn+1,n+1 : X00 = 1 , (Q̆i − R̆i ) • X ≤ 0 , i ∈ I , Ăq • X ≤ 0 , q∈[0 : p]

}
(3.18)

for which
√

δ∗ ≤ √
γ ∗

C P ≤ √
γ ∗ = λ∗.

Example 3.1 Consider the following example:

min
x∈R2+

max

{
− x1

2 − 4 x1 x2+2 x1+x2
2−4 x2−1

2 x1+2 x2+1
,
2 x1

2 − 2 x1 x2+4 x1+2 x2
2 − 4 x2+4

4 x1+8 x2+3

}

s.t. x1 + 2x2 = 2

−x21 + 4x22 ≤ 4
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Fig. 1 Nonconvex quadratic over affine: Example 3.1

Upon 0 ≤ x2 = 1 − x1
2 , the quadratic constraints reduces to x1 ≥ 0 (which is redundant)

and we obtain the following one-dimensional problem

min
x1∈[0,2]max

{−13 x12 + 4 x1 + 16

4 (x1 + 3)
,
7 x12

22
+ 2 x1

11
+ 2

11

}
.

Figure 1 shows both fractions and the nonconvex objective h(x). The optimal solution
x∗ = [0.8898, 0.5551]	 is designated by a circle. The optimal value is 0.5955 as opposed to
the copositive relaxation bound 0.5141 attained at an optimal solution with a rank exceeding
one. Note that as we are in dimension four, problems (3.16) and (3.18) coincide.

The next example considers a convex instance where the objective h(x) is smooth at the
optimal solution.

Example 3.2 Consider

min
x∈R2+

max

{
3 x12−2 x1 x2+2 x1+2 x22−4 x2+1

2 x1+2 x2+1
,
4 x12−2 x1 x2+4 x1+3 x22−4 x2+4

4 x1+1

}
s.t. 2x1 + 5x2 = 10

Upon x2 = (10 − 2x1)/5 we obtain the following one-dimensional problem

min
x1∈[0,5]max

{
103 x12 − 90 x1 + 25

30 x1 + 125
,
132 x12 − 80 x1 + 200

100 x1 + 25

}

Figure 2 shows a representation of the univariate problem, now the solution is obtained
at a stationary point of one function corresponding to the optimal solution x∗

1 = 1.0650
and x∗

2 = 1.5740. The optimal value is λ∗ = 2.0115, the square of which coincides with
the value γ ∗

C P at the optimal rank-one-solution z∗(z∗)	 of the copositive relaxation (3.16)
with z∗ = [1, x∗

1 , x∗
2 , λ

∗]	. Again we are in dimension four, so problems (3.16) and (3.18)
coincide. Furthermore, there is neither a conic duality gap nor a relaxation gap,

√
δ∗ =
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Fig. 2 Convex quadratic over affine: Example 3.2

√
γ ∗

C O P = √
γ ∗

C P = √
γ ∗ = λ∗, in this example. We will specify a more general condition

for zero relaxation gap below.

Theorem 3.3 (a) For any u = [u0, . . . um, μ0, . . . μp]	 ∈ R
m+p+2
+ consider the following

symmetric matrix of order n + 2:

Su :=

⎡
⎢⎢⎢⎢⎢⎢⎣

σu s	u −
m∑

i=1
ui di/2

su Pu −
m∑

i=1
ui ri

−
m∑

i=1
ui di/2

(
−

m∑
i=1

ui ri

)	
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.19)

where

σu :=
m∑

i=1

ui ci +
p∑

q=1

μqαq + μ0a	a − u0,

su :=
m∑

i=1

uibi +
p∑

q=1

μqaq − μ0A
	a,

and

Pu :=
m∑

i=1

uiQi +
p∑

q=1

μqAq + μ0A
	A .

If Su is copositive, then
√

u0 ≤ λ∗, so we get a valid lower bound for the problem (1.3)
with affine-linear denominators gi (x).
(b) Now suppose that x∗ ∈ � and put

√
u0 = h(x∗). If for this value of u0, above Su is

copositive, then x∗ solves the problem (1.3) with affine-linear denominators gi (x), and both
the conic duality and relaxation gaps are zero:
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√
γ ∗

C O P =
√

γ ∗
C P = √

γ ∗ = λ∗ = h(x∗) .

Proof (a) The matrix Su as defined in (3.19) coincides with the slack matrix of the dual
problem (3.17), as one can easily verify. By assumption, this Su is feasible to (3.17), hence
we obtain

√
u0 ≤

√
γ ∗

C O P ≤
√

γ ∗
C P ≤ √

γ ∗ = λ∗ .

(b) Now put
√

u0 = h(x∗). If Su is still feasible to (3.17), we now get h(x∗) = √
u0 ≤√

γ ∗
C O P ≤ √

γ ∗
C P ≤ √

γ ∗ = λ∗ ≤ h(x∗), and all assertions are established. ��

3.3 Some considerations about the constrainedmin–max quadratic over quadratic
case

Before presenting the computational experiencewe discuss some limitations regarding exten-
sions of the previous work, on a conic reformulation, to the quadratic over quadratic case,
when:

fi (x) = x	Qix + 2b	
i x + ci = [

1 x	 ] [ ci b	
i

bi Qi

] [
1
x

]
(3.20)

gi (x) = x	Tix + 2r	i x + di = [
1 x	 ] [ di r	i

ri Ti

] [
1
x

]
(3.21)

The quadratic over affine case is obtained considering Ti = O for i ∈ I . Knowing that
it is possible to replace a quadratic expression in the objective function by an additional
variable introducing this relation as a constraint of the problem, we immediately looked for
the possibility of applying the same conic reformulation to this more general case but we
faced strong limitations regarding the conic relaxation.

First we show that that this case can be converted to a quadratic over affine problem, as
(3.10) with the introduction of additional variables, xn+i replacing the quadratic expressions
x	Tix in gi (x) and adding the quadratic constraints x	Tix ≥ xn+i for i ∈ I . A problem with
an affine denominator is obtained subject to m + p+1 quadratic constraints plus (linear) sign
constraints. It is worth noting that additional quadratic constraints should not pose further
difficulties concerning the conic reformulation.An equivalent problem is obtained as follows:

λ∗ = min
x∈�

h(x) (3.22)

where

� =
{
x ∈ R

n+m+ : Ax = a, x	Tix ≥ xn+i , i ∈ I
}

⊂ R
n+m ,

denoting by O zero matrices of various but suitable size

A = [
A O

]
and Ti =

[
Ti O
O O

]
, i ∈ I ,

and

h(x) = max
i∈I

f i (x)
gi (x)

, f i (x) = x	Qix + 2b
	
i x + ci , gi (x) = 2r	i x + di
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Fig. 3 Nonconvex quadratic over quadratic: Example 3.4

where we abbreviated

Qi =
[
Qi O
O O

]
, bi =

[
bi

o

]
, 2ri =

[
2ri
ei

]

with ei the i th column of the identity matrix Im of order m.

Example 3.4 Consider the following example

min
x∈�

max

{
− x12 − 4 x1 x2+2 x1+x22−4 x2−1

x12+2 x1+x22+2 x2+1
,
2 x12 − 2 x1 x2+4 x1 + 2 x22 − 4 x2+4

3 x12+2 x1 x2+4 x1+3 x22+8 x2+3

}
(3.23)

with � = {
x ∈ R

2+ : x1 + 2x2 = 2
}
. Upon replacing x2 = 1 − x1

2 we obtain the following
one-dimensional problem

min
x1∈[0,2]max

{−13 x12 + 4 x1 + 16

5 x12 + 16
,

14 x12 + 8 x1 + 8

11 x12 − 4 x1 + 56

}
.

Figure 3 shows both quadratic ratios, and the optimal value 0.4381 over [0, 2] attained
at the optimal solution x∗ = [0.9122, 0.5439]	 is designated by a circle. Applying above
reasoning, problem (3.23) can be rewritten as

min
x∈�

max

{
− x12 − 4 x1 x2+2 x1+x22 − 4 x2 − 1

x3+2 x1+2 x2+1
,
2 x12 − 2 x1 x2+4 x1+2 x22 − 4 x2+4

x4+4 x1+8 x2+3

}

with

� = {
x ∈ R

4+ : x1 + 2x2 = 2 , x1
2 + x2

2 ≥ x3 , 3 x1
2 + 2 x1 x2 + 3 x2

2 ≥ x4
}

,

with the same optimal value, now attained at [0.9122, 0.5439, 1.1279, 4.3759]	 with
objective value λ∗ = 0.4381. Solving problem (3.16) for this instance yields an optimal
solution with a relaxation bound of

√
δ∗ = 0.3713. We note that this lower bound is not as
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tight as in the previous examples with a relative relaxation gap λ∗−√
δ∗

λ∗ ≈ 15.25% as opposed
to 13.67% in Example 3.1 (and zero in Example 3.2).

When observing in detail the structure of the constraints of the conic optimization relax-
ation for the quadratic over quadratic case we have (abbreviating Z = Xn+1:n+m,n+1:n+m)⎡
⎢⎢⎢⎣

ci b	
i o	 − 1

2di

bi Qi O −ri
o O O −1

2ei

− 1
2di − r	i − 1

2e
	
i 0

⎤
⎥⎥⎥⎦ •

⎡
⎢⎢⎣

1 x	
1:n x	

n+1:n+m v

x1:n X1:n,1:n . . . . . .

xn+1:n+m . . . Z . . .

v . . . . . . μ

⎤
⎥⎥⎦ ≤ 0

(3.24)

⎡
⎢⎢⎢⎣

a	a − a	A o	 0

−A
	
a A	A O o

o O O o

0 o	 o	 0

⎤
⎥⎥⎥⎦ •

⎡
⎢⎢⎣

1 x	
1:n x	

n+1:n+m v

x1:n X1:n,1:n . . . . . .

xn+1:n+m . . . Z . . .

v . . . . . . μ

⎤
⎥⎥⎦ ≤ 0 (3.25)

and ⎡
⎢⎢⎢⎣

0 o	 1
2e

	
i 0

o − Ti O o
1
2ei O O o

0 o	 o	 0

⎤
⎥⎥⎥⎦ •

⎡
⎢⎢⎣

1 x	
1:n x	

n+1:n+m v

x1:n X1:n,1:n . . . . . .

xn+1:n+m . . . Z . . .

v . . . . . . μ

⎤
⎥⎥⎦ ≤ 0 (3.26)

The occurrence of a sub-matrix of zeros (in the framed box) in constraints (3.24)–(3.26)
contributes to a severe deterioration of the quality of the lower bounds. Further research on
this topic is left for future investigation.

4 Computational experience

The numerical experiments were performed on a PC, Intel(R) Core(TM) i7-2640M,
2.80Ghz,400GB RAM. The software Matlab 2013Ra was used to run the global opti-
mization solver BARON [21] and SDPT3(4.0)/Octave [26], a Matlab package for
solving convex optimization problems involving linear equations and inequalities, second-
order cone constraints, and semidefinite constraints (linear matrix inequalities). The interface
YALMIP [12] was used to call SDPT3.

To study the empirical quality of the lower bounds provided by the relaxation (3.18) we
used the global optimization solver BARON to obtain, when possible, the optimal solution
to define the gaps and to provide a lower bound for comparison. It would be useless to use
the last lower bound provided by BARON since in most problems it would coincide with the
optimal value and it is the result of a chain of different methods (which are unknown to the
user). To compare with the first lower bound of BARONwould be a fair choice, but even better
is to compare the performance of BARON with itself when the lower bound of relaxation δ∗
is provided to this solver.
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The formulation defined for BARON input was the following:

λ∗ =min

{
v : fi (x)

gi (x)
≤v, i ∈ I , x	Aqx+a	

q x+αq ≤0, q∈[1 : p], Ax=a, x≥o, vl ≤v≤vu

}
.

The software BARON does not accept, as input, an initial lower bound to start the search,
but in this case, since the objective function is a single variable v and BARON accepts box
bounds (lower and upper) for variables it was in fact possible to indirectly impose a lower
bound by introducing the lower box bound vl for v. This allowed to study the quality of the
lower bound by solving (3.18), obtaining as optimal value X∗

n+1,n+1 and running BARON

twice, with vl = −∞ and vl =
√

X∗
n+1,n+1.

The limit time ( in seconds) for the first run of BARON was set to MaxTime = 250
and the gap tolerance EpsA = 10−4. On the second run of BARON, the time limit was
set differently to each instance to 250 minus the run time of SDPT3 for that instance. The
settings for SDPT3 were sdpt3.maxit = 500 for the maximal number of iterations and
sdpt3.gaptol = 10−2 for the gap tolerance.

Ten test instances were randomly generated for up to ten ratios, i.e.m = #I ∈ {3, 5, 10} in
(3.18), and variable dimensions n ∈ {5, 25, 50, 75}. All experiments had one linear equality
and one quadratic inequality constraint (k = p = 1) with, again, randomly chosen coeffi-
cients.

4.1 Empirical study on the quality of lower bounds

In the analysis of the results we focus to answer the question whether the relaxation is
more efficient than the battery of techniques used in BARON to generate lower bounds for
this problem, using a first run of BARON with v ≥ −∞ (RUN1) and a second run with

v ≥
√

X∗
n+1,n+1 (RUN2). We compare to the result of the SDPT3 solver for solving (3.18),

designated by RUN0.
Table 1 presents results from RUN0, RUN1 and RUN2 where the columns represent:

• Problem—Problem name ‘INSTaMbNc’ where ‘a’ is the instance number (0–9) for the
same specifications: ‘b’ number of ratios and ‘c’ number of variables.

• E1—Status of BARON RUN1 solution, ‘NorC’ means ‘textitNormal Completion’ and
‘MCPU’ stands for ‘Max. allowable CPU time exceeded’. The limit was set to 250
seconds.

• Btime—the difference between the CPU time of RUN1 and RUN2 when the status of
RUN1was ‘Normal Completion’ or the time ofRUN2 alonewhenRUN1 stopped because
of ‘Max. allowable CPU time exceeded’. When E1 is ‘MCPU’ and Btime is 250,00 it
means that also in the RUN2 the maximal CPU time was exceeded.

• Biter—the difference between the number of iterations of RUN1 and RUN2 when the
status ofRUN1was ‘Normal Completion’ or the time ofRUN2alonewhenRUN1 stopped
because of ‘Max. allowable CPU time exceeded’.

• BMN—the difference between the index of the best node (where the best upper boundwas
obtained) of RUN1 and RUN2 when the status of RUN1 was ‘textitNormal Completion’
or the best node for RUN2 alone when RUN1 stopped because of ‘Max. allowable CPU
time exceeded’.

• Baron LB—Lower Bound output for RUN1.
• Baron UB—Upper Bound output for RUN1.
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Fig. 4 Relative gaps for the m = 5 instances

• GAP1—100BARON UB−BARON LB
BARON UB for RUN1

• GAP2—100BARON UB−BARON LB
BARON UB for RUN2

• E2—Status of solution, 0 for ‘Successfully solved’, 3 for ‘Maximum iterations or time
limit exceeded’, 4 for ‘Numerical problems’ and 5 for ‘textitLack of progress’.

• YLB—SDPT3 RUN0 optimal value’s square root.

• GAP0—100BARON UB−YLB
BARON UB for RUN0

• Time—CPU time of RUN0

Looking at Table 1, merits of the lower bounds provided by (3.18) are clear and more
pronounced for larger instances. First we should observe the resulting gaps and see that for
the smaller problems the lower bound coincides with the optimal value in most instances. As
the size increases, it is evident that the lower bound from (3.18) outperforms BARON’s lower
bounding techniques. In some cases (INST8M5N25, INST8M5N50) only by providing the
lower bound from (3.18) it was possible to obtain the optimal solution. The caveats occur
for some numerical problems (E2 = 4) encountered in some instances, and the lower bound
cannot be trusted. In fact significantly negative gap values (< −10−2) represent these cases
while small negative gaps are just the result of error propagation. Figure 4 gives a graphical
representation of these gaps. It is clear that the line forGAP1 ismostly above that ofGAP2 and
GAP0 due to usage of (3.18), and that the line of GAP2 lies close to that of GAP0, meaning
that the proposed lower bound represents an important contribution. The decrease in each
instance fromGAP1 toGAP2 is the direct result of the a priori knowledge of this lower bound.

The next observation is related to CPU time in columns BTime and Time.Most of the time
the best upper bound is achieved at an early stage and so BARON puts considerably larger
effort in improving the lower bound. So, even discounting the fact that BARON time is not
only related to lower bound calculations, Table 1 shows that it clearly pays to have an initial
lower bound calculated by (3.18).
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In just a few cases (Btime< 0) it seems that it does not compensate the a priori knowledge
of the lower bound given by (3.18), even if the bound in the first node is really weak.Wemust
bear in mind that it is not clear at which stage of the procedure (if at all) BARON interprets
the lower bound box constraint for variable v also as a lower bound for the optimal value.
Nevertheless the overall conclusion is that it is a benefit and sometimes even crucial to have
the lower bound provided by (3.18).

5 Conclusion

In this paper we make a contribution to extend the class of hard optimization problems
for which a conic reformulation, based on the cone of copositive or completely positive
matrices, is known. We address min–max problems of fractional quadratic (not necessarily
convex) over affine functions on a feasible set described by linear and (not necessarily convex)
quadratic functions. Relaxations of copositive reformulations have proved to produce tight
lower bounds and empirical evidence obtained by the computational experience on this
problemcorroborates this statement. Relaxation of the completely positive cone by the doubly
nonnegative cone led to a tractable relaxation problemproviding lower boundswith very small
gaps, enabling us to globally solve a difficult optimization problem. It is known that in branch
and boundmethods, very good, sometimes even optimal, solutions are obtained at early stages
of traversing the problem tree. The effort to prove optimality or to state a safe termination
criterion for the search depends on closing the gap between the lower and upper bound, so
the quality of the first are crucial. In this paper we present a lower bounding procedure that
justifies once more the high reputation of relaxations gained from conic reformulations.
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