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Abstract
We investigate via a conjugate duality approach general nonlinear minmax location problems
formulated by means of an extended perturbed minimal time function, necessary and suf-
ficient optimality conditions being delivered together with characterizations of the optimal
solutions in some particular instances. A parallel splitting proximal pointmethod is employed
in order to numerically solve such problems and their duals. We present the computational
results obtained in matlab on concrete examples, successfully comparing these, where pos-
sible, with earlier similar methods from the literature. Moreover, the dual employment of the
proximal method turns out to deliver the optimal solution to the considered primal problem
faster than the direct usage on the latter. Since our technique successfully solves location
optimization problems with large data sets in high dimensions, we envision its future usage
on big data problems arising in machine learning.

Keywords Gauge (Minkowski) function · Minimal time function · Minmax multifacility
location problem · Sylvester problem · Apollonius problem · Proximal point algorithm ·
Epigraphical projection · Projection operator · Machine learning

1 Preliminaries

In this paper we investigate nonlinear minmax location problems that are generalizations of
the classical Sylvester problem in location theory—not to be confused with Sylvester’s line

Sorin-Mihai Grad: Formerly at the Faculty of Mathematics and Computer Science, Leipzig University;
partially supported by DFG (the German Research Foundation) under Project GR3367/4-1 and FWF
(Austrian Science Fund), Project M-2045.

B Sorin-Mihai Grad
sorin-mihai.grad@univie.ac.at

Oleg Wilfer
oleg.wilfer@mathematik.tu-chemnitz.de

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

2 Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-019-00746-5&domain=pdf
http://orcid.org/0000-0002-1139-7504


122 Journal of Global Optimization (2019) 74:121–160

problem, and of the celebrated Apollonius problem, formulated by means of an extended
perturbed minimal time function via a conjugate duality approach, necessary and sufficient
optimality conditions being delivered together with characterizations of the optimal solutions
in some particular instances. This approach is necessary in order to be able to numerically
solve such problems and their corresponding dual problems by means of a proximal method.
Applying the mentioned algorithm on the duals of some concrete location problems in mat-
lab delivers optimal solutions to the latter faster and with reduced costs. To the best of our
knowledge this is the first time such a method is considered for this type of location opti-
mization problems and the general framework we consider opens the possibility for other
problems of more or less similar type (arising, for instance, in machine learning) to be solved
in an analogous way. The original location optimization problem cannot be directly numer-
ically solved by means of the usual algorithms because the involved functions often lack
differentiability, while a direct employment of some proximal point method is not possible
because of the complicated structure of the objective function, that consists of the maximum
of n functions, each containing a composition of functions.

In order to introduce the general nonlinear minmax location problems we propose a new
perturbed minimal time function that generalizes the classical minimal time function, intro-
duced over 4decades ago and recently reconsidered byMordukhovich and Nam in a series of
papers (see, for instance, [14–16,19]) and the book [13], and several of its recent extensions
(cf. [12,16,19,24,31]). The motivation to investigate such problems comes from both theoret-
ical and practical reasons, as location type problems arise in various areas of research and real
life, such as geometry, physics, economics or health management, applications from these
fields being mentioned in our paper as possible interpretations of our results. As suggested,
for instance, in [1,21], solving general location problems as considered in this paper could
prove to be useful in dealing with some classes of constrained optimization, too, like the ones
that appear in machine learning. Actually, given the fact that the algorithm we propose is
able to successfully solve location optimization problems with large data sets in high dimen-
sions faster than its counterparts from the literature makes us confident regarding a future
usage of this technique on big data problems arising in machine learning, for instance those
approached by means of support vector techniques.

To be able to deal with the considered general nonlinear minmax location problems by
means of conjugate duality we rewrite them as multi-composed optimization problems, for
which we have recently proposed a duality approach in [10,25,27,29]. The corresponding
necessary and sufficient optimality conditions are then derived. While most of the theoretical
results are provided in the general framework of Banach spaces, in themore restrictive setting
of Hilbert spaces we were also able to provide characterizations of the optimal solutions of
the considered problems by means of the dual optimal solutions. Two special cases of the
general problem,motivated by economic interpretations, are discussed in amore detailedway,
followed by an exact formula of the projection operator onto the epigraph of the maximum of
norms, that may prove to be useful in other applications, too. The fourth section of the paper
is dedicated to numerical experiments that are presented in a finitely dimensional framework
that is specific to most of the possible practice applications of our results. Employing a
splitting proximal point method from [3], we solve inmatlab concrete location optimization
problems corresponding to the mentioned special cases and their conjugate duals, rewritten
as unconstrained minimization problems. The computational results show that the primal
optimal solutions are obtained faster when numerically solving the dual problems. One of
these concrete examples was numerically solved in [13,17] bymeans of a subgradientmethod
and a comparison of the computational results is provided as well, stressing once again the
superiority of the algorithm proposed in the present paper. Another comparison is made
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with the log–exponential smoothing accelerated gradient method proposed in [1] in several
examples, one of them including a large data set in high dimensions and our method turns
out again to converge faster towards the optimal solution of the considered location problem.

Let X be a Hausdorff locally convex space and X∗ its topological dual space endowed
with the weak* topology w(X∗, X). Thus the dual of X∗ is X . For x ∈ X and x∗ ∈ X∗,
let 〈x∗, x〉 := x∗(x) be the value of the linear continuous functional x∗ at x . A set U ⊆ X
is called convex if t x + (1 − t)y ∈ U for all x, y ∈ U and t ∈ [0, 1]. A nonempty set
K ⊆ X that satisfies the condition t K ⊆ K for all t ≥ 0 is said to be a cone. Note that
any cone contains the origin of the space it lies in, denoted by 0X for the space X . Consider
a convex cone K ⊆ X , which induces on X a partial ordering relation “�K ”, defined by
�K := {(x, y) ∈ X × X : y − x ∈ K }, i.e. for x, y ∈ X it holds x �K y ⇔ y − x ∈ K .
We attach to X a largest element with respect to “�K ”, denoted by +∞K , which does not
belong to X and denote X = X ∪ {+∞K }. Then it holds x �K +∞K for all x ∈ X .
We write x ≤K y when x �K y and x �= y, ≤:=�R+ and <:=≤R+ . On X consider
the following operations and conventions: x + (+∞K ) = (+∞K ) + x := +∞K for all
x ∈ X and λ · (+∞K ) := +∞K for all λ ∈ [0,+∞]. K ∗ := {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0
∀x ∈ K } is the dual cone of K and by convention 〈x∗,+∞K 〉 := +∞ for all x∗ ∈ K ∗. By
a slight abuse of notation we denote the extended real space R = R ∪ {±∞} and consider
on it the following operations and conventions: λ + (+∞) = (+∞) + λ := +∞ for all
λ ∈ [−∞,+∞], λ+(−∞) = (−∞)+λ := −∞ for allλ ∈ [−∞,+∞), λ·(+∞) := +∞
for all λ ∈ [0,+∞], λ · (+∞) := −∞ for all λ ∈ [ − ∞, 0), λ · (−∞) := −∞ for all
λ ∈ (0,+∞], λ · (−∞) := +∞ for all λ ∈ [ − ∞, 0) and 0(−∞) := 0. Given S ⊆ X ,
we denote its algebraic interior by core S, its normal cone at x ∈ X is NS(x) := {x∗ ∈
X∗ : 〈x∗, y − x〉 ≤ 0 ∀ y ∈ S} if x ∈ S and NS(x) = ∅ otherwise, its conic hull is
cone S := {λx : x ∈ S, λ ≥ 0}, while if S is convex its strong quasi relative interior
(see [6]) is sqri S := {x ∈ S : cone(S − x) is a closed linear subspace}.

For a given function f : X → R we consider its effective domain dom f := {x ∈
X : f (x) < +∞} and call f proper if dom f �= ∅ and f (x) > −∞ for all x ∈ X . The
epigraph of f is epi f = {(x, r) ∈ X ×R : f (x) ≤ r}. Recall that a function f : X → R is
called convex if f (λx + (1−λ)y) ≤ λ f (x)+ (1−λ) f (y) for all x, y ∈ X and all λ ∈ [0, 1].
For a subset A ⊆ X , its indicator function δA : X → R is

δA(x) :=
{
0, if x ∈ A,

+∞, otherwise,

and its support function σA : X∗ → R is σA(x∗) = supx∈A〈x∗, x〉. The conjugate function
of f with respect to the nonempty subset S ⊆ X is defined by

f ∗
S : X∗ → R, f ∗

S (x∗) = sup
x∈S

{〈x∗, x〉 − f (x)}.

One has the Young–Fenchel inequality f (x) + f ∗
S (x∗) ≥ 〈x∗, x〉 for all x ∈ S and all

x∗ ∈ X∗. In the case S = X , f ∗
S turns into the classical Fenchel–Moreau conjugate function

of f denoted by f ∗. The conjugate of f ∗ is said to be the biconjugate function of f and is
denoted by f ∗∗ : X → R. Given the proper functions fi : X → R, i = 1, . . . , n, their infimal
convolution is f1� f2� . . . � fn : X → R,

(
f1� f2� . . . � fn

)
(x) = inf

{∑n
i=1 fi (xi ) : xi ∈

X , i = 1, . . . , n,
∑n

i=1 xi = x
}
. We say that the infimal convolution is exact at x ∈ X when

for x the infimum in its definition is attained.
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A function f : X → R is called lower semicontinuous at x ∈ X if lim infx→x f (x) ≥
f (x) and when this function is lower semicontinuous at all x ∈ X , then we call it lower
semicontinuous. The largest lower semicontinuous function nowhere larger than f is its lower
semicontinuous envelope f̄ : X → R. Let W ⊆ X be a nonempty set, then a function f :
X → R is called K -increasing on W , if from x �K y follows f (x) ≤ f (y) for all x, y ∈ W .
When W = X , then we call the function f K -increasing. If we take an arbitrary x ∈ X such
that f (x) ∈ R, thenwe call the set ∂ f (x) := {x∗ ∈ X∗ : f (y)− f (x) ≥ 〈x∗, y−x〉 ∀y ∈ X}
the (convex) subdifferential of f at x , where the elements of this set are called subgradients.
Moreover, if ∂ f (x) �= ∅, thenwe say that f is subdifferentiable at x and if f (x) /∈ R, thenwe
make the convention that ∂ f (x) := ∅. Note that the subgradients of f can be characterized
by means of f ∗, more precisely x∗ ∈ ∂ f (x) if and only if f (x) + f ∗(x∗) = 〈x∗, x〉, i.e. the
Young–Fenchel inequality is fulfilled as an equality for x and x∗.

Let Z be anotherHausdorff locally convex space partially ordered by the convex cone Q ⊆
Z and Z∗ its topological dual space endowedwith theweak* topologyw(Z∗, Z). The domain
of a vector function F : X → Z = Z ∪ {+∞Q} is dom F := {x ∈ X : F(x) �= +∞Q}. F
is called proper if dom F �= ∅. When F(λx + (1−λ)y) �Q λF(x)+ (1−λ)F(y) holds for
all x, y ∈ X and all λ ∈ [0, 1] the function F is said to be Q-convex. The Q-epigraph of F is
epiQ F = {(x, z) ∈ X ×Z : F(x) �Q z} andwhen Q is closedwe say that F is Q-epi-closed
if epiQ F is a closed set. Let us mention that in the case Z = R and Q = R+, the notion
of Q-epi-closedness falls into the one of lower semicontinuity. For a z∗ ∈ Q∗ we define the
function (z∗F) : X → R by (z∗F)(x) := 〈z∗, F(x)〉. Then dom(z∗F) = dom F . Moreover,
it is easy to see that if F is Q-convex, then (z∗F) is convex for all z∗ ∈ Q∗. Let us point out that
by the operations we defined on a Hausdorff locally convex space attached with a maximal
element and on the extended real space, there holds 0 f = δdom f and (0Z∗ F) = δdom F

for any f : X → R and F : X → Z . The vector function F is called positively Q-lower
semicontinuous at x ∈ X if (z∗F) is lower semicontinuous at x for all z∗ ∈ Q∗. The function
F is called positively Q-lower semicontinuous if it is positively Q-lower semicontinuous
at every x ∈ X . Note that if F is positively Q-lower semicontinuous, then it is also Q-
epi-closed, while the inverse statement is not true in general (see: [6, Proposition 2.2.19]).
F : X → Z is called (K , Q)-increasing on W , if from x �K y follows F(x) �Q F(y)

for all x, y ∈ W . When W = X , we call this function (K , Q)-increasing. Last but not least
denote the optimal objective value of an optimization problem (P) by v(P) and note that
when an infimum/supremum is attained we write min/max instead of inf/sup.

Furthermore, letH be a real Hilbert space equipped with the scalar product 〈·, ·〉H, where
the associated norm ‖ · ‖H is defined by ‖y‖H := √〈y, y〉H for all y ∈ H. IfH = R

m , then
‖ · ‖Rm is the Euclidean norm and we will write for simplicity just ‖ · ‖. The proximal point
operator of parameter γ > 0 of a function f : H → R at x ∈ H is defined as

proxγ f : H → H, proxγ f (x) = argmin
y∈H

{
γ f (y) + 1

2
‖y − x‖2

}
.

For more on convex optimization in Hilbert spaces we warmly recommend [3].

2 Nonlinear minmax location problems

As the perturbed minimal time functions play a decisive role in this article, we start this
section with some of their properties.
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2.1 Properties of the perturbedminimal time function

In order to introduce the perturbed minimal time functions, one needs first to define a gauge.
In the literature one can find different functions called gauges, see, for instance, [9] or [22,
Section 15]. In the following we call gauge function (known in the literature also as the
Minkowski functional) of a set C ⊆ X the function γC : X → R, defined by

γC (x) := inf{λ > 0 : x ∈ λC}.
Note that the gauge function can also take the value +∞ if there does not exists an element
λ > 0 such that x ∈ λC , as by definition it holds inf ∅ = +∞. From the definition it follows
that dom γC = coneC if 0 ∈ C and dom γC = coneC\{0} if 0 /∈ C . As γ∅ ≡ +∞, we
consider further the set C to be nonempty. The conjugate function of γC is (cf. [6, Example
2.3.4], as the additional hypotheses imposed there on C are actually not employed for this
formula) γ ∗

C : X∗ → R

γ ∗
C (x∗) =

{
0, if σC (x∗) ≤ 1,

+∞, otherwise.

Furthermore, the polar set of C is C0 := {x∗ ∈ X∗ : σC (x∗) ≤ 1}, and by means of the
polar set the dual gauge of C is defined by

γC0(x∗) := sup
x∈C

〈x∗, x〉 = σC (x∗).

Remark 2.1 The conjugate of γC can equivalently be expressed by

γ ∗
C (x∗) :=

{
0, if γC0(x∗) ≤ 1,

+∞, otherwise,
= δC0(x∗) ∀x∗ ∈ X∗.

It is well-known that for the gauge function the generalized Cauchy–Schwarz inequality
is fulfilled. The proof of this inequality is rare to find and for this reason we give it here.

Lemma 2.1 It holds γC (x)γC0(x∗) ≥ 〈x∗, x〉 for all x ∈ X, x∗ ∈ X∗.

Proof Let x∗ ∈ X∗ and x ∈ X . If 〈x∗, x〉 ≤ 0, then there is nothing to prove, as the gauge
and the dual gauge are nonnegative functions.

Let 〈x∗, x〉 > 0. If γC (x) > 0 then we have that

γC0(x∗) ≥ sup
λ>0, γC (x)≤ 1

λ

λ〈x∗, x〉 = 〈x∗, x〉 sup
0<λ≤ 1

γC (x)

λ = 1

γC (x)
〈x∗, x〉,

i.e. γC (x)γC0(x∗) ≥ 〈x∗, x〉.
Otherwise, if γC (x) = 0, then one has that

γC0(x) ≥ sup
λ>0, 0=γC (x)≤ 1

λ

λ〈x∗, x〉 = +∞,

i.e. γC (x)γC0(x∗) = 0(+∞) ≥ 〈x∗, x〉. ��
Given a nonempty set � ⊂ X and a proper function f : X → R, we define the extended

perturbed minimal time function T C
�, f : X → R as the infimal convolution of γC , f and δ�,

i.e. T C
�, f := γC� f �δ�, more precisely

T C
�, f (x) := inf

y∈X , z∈�
{γC (x − y − z) + f (y)} .

123



126 Journal of Global Optimization (2019) 74:121–160

Remark 2.2 To the best of our knowledge the function T C
�, f has not been considered in

this form in the literature yet and it covers as special cases several important functions.
For instance, if f = δ{0X }, then one gets the classical minimal time function (see [13–15])
T C

� : Rn → R, T C
� (x) := inf{t ≥ 0 : (x − tC)∩� �= ∅}, that, when� = {0X } collapses to

the gauge function. In [12] one finds two perturbations of the classical minimal time function,
γC� f (introduced in [31] and motivated by a construction specific to differential inclusions)
and γC�( f + δ�), that contains as a special case the perturbed distance function introduced
in [24]. The latter function hasmotivated us to introduceT C

�, f ,where the function f and the set
� do not share the same variable anymore and can thus be split in the dual representations.
Other generalizations of the classical minimal time function can be found, for instance,
in [5,16,19]. Theminimal time function and its generalizations have been employed in various
areas of research such as location theory (cf. [13,19]), nonsmooth analysis (cf. [5,12,14–
16,19,24,31]), control theory and Hamilton–Jacobi partial differential equation (mentioned
in [5]), best approximation problems (cf. [24]) and differential inclusions (cf. [31]). Note
also the connection observed in [19] between the minimal time function and the scalarization
function due to Tammer (Gerstewitz) considered in vector optimization.

Moreover, as T C
�, f is an infimal convolution its conjugate function turns into (see [6,

Proposition 2.3.8.(b)]) (T C
�, f )

∗ = γ ∗
C + f ∗ + σ� = δC0 + f ∗ + σ� (see Remark 2.1).

Since dom γC �= ∅ and γC is a nonnegative function, it follows by [6, Lemma 2.3.1.(b)]
that γ ∗

C = δC0 is proper, convex and lower semicontinuous. If f has an affine minorant, then
f ∗ is a proper, convex and lower semicontinuous function, too. Further, under the additional
assumption C0 ∩ dom f ∗ ∩ dom σ� �= ∅, [6, Theorem 2.3.10] yields that the biconjugate
of T C

�, f is, under the mentioned hypotheses, given by (T C
�, f )

∗∗ = γ ∗∗
C � f ∗∗�σ ∗

�, and one
can derive as byproducts conjugate and biconjugate formulae for the classical minimal time
function and its other extensions mentioned in Remark 2.2.

Theorem 2.1 Let C be convex, closed and contain 0X , � be closed and convex and f : X →
R be also convex and lower semicontinuous such that C0 ∩ dom f ∗ ∩ dom σ� �= ∅. Suppose
that one of the following holds

(a) epi γC + epi f + (� × R+) is closed,
(b) there exists an element x∗ ∈ C0 ∩ dom f ∗ ∩ dom σ� such that two of the functions

δC0 , f ∗ and σ� are continuous at x∗.

Then T C
�, f is proper, convex and lower semicontinuous and moreover, it holds

T C
�, f (x) = min

y∈X , z∈�
{γC (x − y − z) + f (y)} ∀x ∈ X ,

i.e. the infimal convolution of γC , f and δ� is exact.

Proof As C is closed and convex such that 0X ∈ C , it follows by [27, Theorem 1] that
γC is proper, convex and lower semicontinuous. Further, the nonemptiness, closedness and
convexity of � imply the properness, convexity and lower semicontinuity of δ�. Hence, one
gets from the Fenchel–Moreau Theorem that γ ∗∗

C = γC , f ∗∗ = f and δ∗∗
� = δ� and from [6,

Theorem 3.5.8.(a)], taking into consideration that the conjugate functions of f , δ� and γC are
proper, convex and lower semicontinuous (as noted above), follows the desired statement.��
Remark 2.3 Under the hypotheses of Theorem 2.1 the subdifferential of T C

�, f can be written

for any x ∈ X as ∂T C
�, f (x) = ∂γC (x − y − z)∩∂ f (y)∩ N�(z), where y and z are the points

where the minimum in the definition of the infimal convolution is attained. Note, moreover,
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that the subdifferential of γC at any x ∈ X coincides with the face of C0 exposed by x
(cf. [11]), i.e. ∂γC (x) = {x∗ ∈ C0 : 〈x∗, x〉 = σC0(x)}.
Remark 2.4 Results connected to the situation when the regularity condition (b) in Theo-
rem 2.1 is fulfilled can be found, for instance, in [23]. The support function of a compact
convex set is real valued and continuous, however, in the absence of compactness it is surely
continuous only on the (relative) interior of its domain, while an indicator function is con-
tinuous over the interior of the corresponding set.

Taking f to be a gauge or an indicator function one obtains the following geometrical
interpretations of the generalization of the extended perturbed minimal time function.

Remark 2.5 Let C,�, G ⊆ X be convex and closed sets such that 0X ∈ C ∩ G. Then

T −C
�,γG

(x) = inf
α,β>0, z∈�, y∈X ,

x−y−z∈−αC, y∈βG

{α + β} = inf
α,β>0, z∈�, k∈X ,

x−k∈−αC, k−z∈βG

{α + β}

= inf
α,β>0,

(x+αC)∩(�+βG)�=∅
{α + β}.

The last formula suggests interpreting α as the minimal time needed for the given point x
to reach the set � along the constant dynamics −C , while � is moving in direction of x
with respect to the constant dynamics characterized by the set G. The value β gives then the
minimal time needed for � to reach x .

Remark 2.6 Let S ⊆ X , � and C be convex and closed, with S �= ∅ and 0X ∈ C . Then

T −C
�,δS

(x) = inf{λ > 0 : y ∈ S, z ∈ �, x − y − z ∈ −λC}
= inf{λ > 0 : (x + λC) ∩ (S + �) �= ∅}.

The extended perturbedminimal time function reduces to the classical minimal time function
with the target set S + �, i.e. if the set C describes constant dynamics, then T −C

�,δS
(x) is the

minimal time λ > 0 needed for the point x to reach the target set S+� (see for instance [13]).
However, one can also write

T −C
�,δS

(x) = inf{λ > 0 : y ∈ S, z ∈ �, x − y − z ∈ −λC}
= inf{λ > 0 : (x + S + λC) ∩ � �= ∅}, (1)

and, when C characterizes again constant dynamics, T −C
�,δS

(x) can be understood as the
minimal time λ > 0 needed for the set S translated by the point x to reach the target set �.

Remark 2.7 When C is convex and closed with 0 ∈ C , � is convex and compact and
f = δ{0X }, then σ� is continuous and T C

�,δ{0X } is proper, convex and lower semicontinu-

ous by Theorem 2.1, and can be written as T C
�,δ{0X } = minz∈� γC (· − z). This statement can

also be found in the special case X = R
n in [13, Theorem 3.33 and Theorem 4.7]. Moreover,

in [12] it is assumed that γC�( f +δ�) is exact, under similar hypotheses that would actually
guarantee this outcome.

Remark 2.8 If 0X ∈ coreC , γC has a full domain, consequently so does the corresponding
extended perturbed minimal time function since in general dom T C

�, f = dom γC + dom f +
dom δ�.
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3 Duality results

3.1 Location problemwith perturbedminimal time functions

In [27] the authors approached nonlinear minmax location problems by means of the conju-
gate duality in the case where the distances were measured by gauge functions. In this section
we investigate such location problems in a more general setting, namely, where the distances
are measured by perturbed minimal time functions.

Let X be a Banach space (note that most of the following investigations can be extended
to a Fréchet space, too) and ai ∈ R+, i = 1, . . . , n, be given nonnegative set-up costs, where
n ≥ 2 and consider the following generalized location problem

(P S
h,T ) inf

x∈S
max
1≤i≤n

{
hi

(
T Ci

�i , fi
(x)
)

+ ai

}
,

where S ⊆ X is nonempty, closed and convex,Ci ⊆ X is closed and convexwith 0X ∈ int Ci ,
�i ⊆ X is nonempty, convex and compact, fi : X → R is proper, convex and lower
semicontinuous, hi : R → R with hi (x) ∈ R+, if x ∈ R+, and hi (x) = +∞, otherwise, is
proper, convex, lower semicontinuous and increasing on R+, i = 1, . . . , n.

Note that the assumptions made above yield that 0X∗ ∈ C0
i ∩ dom σ� ∩ dom f ∗

i and as
γ ∗

Ci
= δC0 and σ�i are continuous functions (as 0 ∈ int Ci and �i is convex and compact),

one gets by Theorem 2.1 that T Ci
�i , fi

is a proper, convex and lower semicontinuous function
with full domain and thus continuous, i = 1, . . . , n. Moreover, since hi is a proper, convex,
lower semicontinuous and increasing function, i = 1, . . . , n, it follows that the objective
function of (P S

h,T ) is proper, convex and lower semicontinuous, which means that (P S
h,T ) is

a convex optimization problem.
Now, we analyze how can be understood the location problem (P S

h,T ) in the more simple
situationwhere the function hi is linear continuous on (0,+∞) and fi is the indicator function
of a nonempty, closed and convex subset of X , i = 1, . . . , n.

Remark 3.1 In the context of the Remark 2.5 let us consider the following concrete minmax
location problem where hi (x) = x + δR+(x), x ∈ R, ai = 0, and Ci , Gi and �i are closed
and convex sets such that 0X ∈ Ci ∩ Gi for all i = 1, . . . , n,

(P S
γG ,T ) inf

x∈X
max
1≤i≤n

{
T −Ci

�i ,γGi
(x)
}

= inf
x∈X , t∈R, T −Ci

�i ,γGi
(x)≤t,

i=1,...,n

t

= inf
x∈X , t∈R, inf{αi +βi >0:(x+αi Ci )∩(zi +βi Gi )}≤t,

zi ∈�i ,i=1,...,n

t = inf
x∈X , αi , βi , t>0, αi +βi ≤t,zi ∈�i ,
(x+αi Ci )∩(zi +βi Gi )�=∅, i=1,...,n

t .

The last formulation allows the following economical interpretation. Given n countries,
each with a growing demand Gi for a product and an average income (or average budget)
characterized by the set �i , i = 1, . . . , n, consider a company, which produces and sells
this product, planning to build a production facility. The production speed of the production
facility as well as the preference of the company for a country are characterized by the setsCi ,
i = 1, . . . , n. Then the objective of the company is to determine a location x for a production
facility such that the total demand for the product can be satisfied in the shortest time, i.e. the
company wants to enter all lucrative markets as fast as possible. Additionally, in the general
case when the functions h1, . . . , hn are not necessarily linear (over their domains), these can
be seen as cost or production functions, while the set-up costs a1, . . . , an are the costs of the
testing of the products to meet the various specifications asked by each of the n countries.
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Remark 3.2 When Li ⊆ X , i = 1, . . . , n, are nonempty, closed and convex sets, fi = δLi

and hi = · + δR+(·), i = 1, . . . , n, (P S
h,T ) reads as (see also Remark 2.6)

(P S
T ) inf

x∈S
max
1≤i≤n

{
T Ci

�i ,δLi
(x) + ai

}
= inf

x∈S, t∈R,

T Ci
�i ,δLi

(x)+ai ≤t,

i=1,...,n

t = inf
x∈S, t∈R,

inf{λi >0:(x−λi Ci )∩(�i +Li )�=∅}+ai ≤t,
i=1,...,n

t

and can be seen as finding a point x ∈ S and the smallest number t > 0 such that

(x − (t − ai )Ci ) ∩ (�i + Li ) �= ∅ ∀i = 1, . . . , n, (2)

where Ci can be defined as a generalized ball with radius t − ai , i = 1, . . . , n (see [13]).
This approach is especially useful if the target set is hard to handle, but can be split into a
Minkowski sum of two simpler sets�i and Li , i = 1, . . . , n, as happens for instance with the
rounded rectangles that can be written as sums of rectangles and circles. Note also that [2]
addresses the situation when the projection onto a Minkowski sum of closed convex sets
coincides with the sums of projections into these sets. Alternatively, (P S

T ) can be written as

(P S
T ) inf

x∈S
max
1≤i≤n

{
T Ci

�i ,δLi
(x) + ai

}
= inf

x∈S, t∈R,
inf{λi >0:(x−Li −λi Ci )∩�i �=∅}+ai ≤t,

i=1,...,n

t,

which allows the interpretation as finding a point x ∈ S and the smallest number t > 0 such
that

(x − Li − (t − ai )Ci ) ∩ �i �= ∅ ∀i = 1, . . . , n. (3)

Both (2) and (3) are generalizations of the classical Sylvester problem that consists in finding
the smallest circle that encloses finitely many given points.

In order to approach the problem (P S
h,T ) by means of the conjugate duality concept

introduced in [25] (with X0 = R
n partially ordered by the convex cone K0 = R

n+, X1 = Xn

partially ordered by the trivial cone K1 = {0Xn } and X2 = X ), we consider the following
functions

f : Rn → R, f (z) :=
{

max
1≤i≤n

{hi (zi ) + ai }, if z = (z1, . . . , zn)� ∈ R
n+, i = 1, . . . , n,

+∞, otherwise,

F : Xn → R
n , F(y1, . . . , yn) :=

(
T C1

�1, f1
(y1), . . . , T Cn

�n , fn
(yn)

)�
and G : X → Xn ,

G(x) := (x, . . . , x). With these newly introduced functions we can write the optimization
problem (P S

h,T ) as a multi-composed optimization problem (cf. [25,27])

(P S
h,T ) inf

x∈S
( f ◦ F ◦ G)(x).

Notice that the function f is proper, convex, Rn+-increasing on F(dom F) + K0 =
dom f = R

n+ and lower semicontinous. Moreover, as the functions T Ci
�i , fi

, i = 1, . . . , n,
are proper, convex and lower semicontinuous, it is obvious that the function F is proper,Rn+-
convex andRn+-epi-closed. In addition, as the function G is linear continuous, it follows that
the function F does not need to be monotone as asked in the general theory in [10,25,27,29].
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Employing the duality concept introduced in [10,25] we attach to (P S
h,T ) the following con-

jugate dual problem

(DS
h,T ) sup

z∗
i ∈R+, w∗

i ∈X∗,
i=1,...,n

{
inf
x∈S

{
n∑

i=1

〈w∗
i , x〉

}
− f ∗(z∗) − (z∗F)∗(w∗)

}
,

where z∗ = (z∗
1, . . . , z∗

n)� ∈ R
n+ and w∗ = (w∗

1, . . . , w
∗
n) ∈ (X∗)n are the dual variables.

By [27, Theorem 4] one has

f ∗(z∗
1, . . . , z∗

n) = min
n∑

i=1
λi ≤1, λi ≥0,

i=1,...,n

{
n∑

i=1

[(λi hi )
∗(z∗

i ) − λi ai ]
}

,

while (z∗F)∗(w∗) = ∑n
i=1

(
z∗

i T
Ci
�i , fi

)∗
(w∗

i ), thus (DS
h,T ) becomes

(DS
h,T ) sup

n∑
i=1

λi ≤1, λi ,z∗
i ≥0,

w∗
i ∈X∗, i=1,...,n

{
− σS

(
−

n∑
i=1

w∗
i

)
−

n∑
i=1

[(λi hi )
∗(z∗

i ) − λi ai ]

−
n∑

i=1

(
z∗

i T
Ci
�i , fi

)∗
(w∗

i )

}
.

In order to investigate further this dual problem, we separate in the sum
∑n

i=1(λi hi )
∗ the

terms with λi > 0 and the terms with λi = 0 as well as in
∑n

i=1

(
z∗

i T
Ci
�i , fi

)∗ the terms with

z∗
i > 0 and the terms with z∗

i = 0 in (DS
h,T ). Denote I = {

i ∈ {1, . . . , n} : z∗
i > 0

}
and

R = {r ∈ {1, . . . , n} : λr > 0}. If i ∈ {1, . . . , n}\I it holds (0 · T Ci
�i , fi

)∗ = σX = δ{0X∗ },
while when i ∈ I one gets

(
z∗

i T
Ci
�i , fi

)∗
(w∗

i ) =
{

z∗
i f ∗

i

(
1
z∗

i
w∗

i

)
+ σ�i (w

∗
i ), if γC0

i
(w∗

i ) ≤ z∗
i ,

+∞, otherwise.
(4)

Further, let us consider the case r ∈ {1, . . . , n}\R, i.e. λr = 0, then one has, since z∗
r ≥ 0,

(0 · hr )
∗(z∗

r ) = sup
zr ≥0

{z∗
r zr } =

{
0, if z∗

r = 0,
+∞, otherwise.

(5)

For r ∈ R, i.e. λr > 0, follows

(λr hr )
∗(z∗

r ) = λr h∗
r

(
z∗

r

λr

)
. (6)

Hence, formula (5) implies that if r /∈ R then z∗
r = 0, otherwise the values being not relevant

for the dual problem, which means that I ⊆ R. Therefore (DS
h,T ) turns into

sup
λi , z∗

i ≥0, i=1,...,n,

I={i∈{1,...,n}:z∗
i >0}⊆R={r∈{1,...,n}:λr >0},

w∗
i ∈X∗, γ

C0
i
(w∗

i )≤z∗
i , i∈I ,

∑
r∈R

λr ≤1

{
− σS

(
−
∑
i∈I

w∗
i

)
−
∑
r∈R

λr

[
h∗

r

(
z∗

r

λr

)
− ar

]
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−
∑
i∈I

[
z∗

i f ∗
i

(
1

z∗
i
w∗

i

)
+ σ�i (w

∗
i )

]}
. (7)

Remark 3.3 Let ai = 0, i = 1, . . . , n. Taking the functions hi as in Remark 3.2, their
conjugates are h∗

i = δ(−∞,1], i = 1, . . . , n, and the conjugate dual problem to (P S
T ) reads

as

(DS
T ) sup

λi , z∗
i ≥0, i=1,...,n,

∑
r∈R

λr ≤1,

I={i∈{1,...,n}:z∗
i >0}⊆R={r∈{1,...,n}:λr >0},

z∗
r ≤λr , r∈R, w∗

i ∈X∗, γ
C0

i
(w∗

i )≤z∗
i , i∈I

{
−σS

(
−
∑
i∈I

w∗
i

)

−
∑
i∈I

[
z∗

i f ∗
i

(
1

z∗
i
w∗

i

)
+ σ�i (w

∗
i )

]}
.

This dual problem can be simplified as follows.

Proposition 3.1 The problem (DS
T ) can be equivalently written as

(D̃S
T ) sup

u∗
i ≥0, i=1,...,n, Ĩ={i∈{1,...,n}:u∗

i >0},
v∗

i ∈X∗,i∈ Ĩ ,γ
C0

i
(v∗

i )≤u∗
i ,i∈ Ĩ ,

∑
i∈ Ĩ

u∗
i ≤1

{
− σS

⎛
⎝−

∑
i∈ Ĩ

v∗
i

⎞
⎠

−
∑
i∈ Ĩ

[
u∗

i f ∗
i

(
1

u∗
i
v∗

i

)
+ σ�i (v

∗
i )

]}
.

Proof Take first a feasible element (λ, z∗, w∗) = (λ1, . . . , λn, z∗
1, . . . , z∗

n, w∗
I ) ∈ R

n+ ×
R

n+ × (X∗)|I | to the problem (DS
T ), where by w∗

I ∈ (X∗)|I | we denote the vector having as
componentsw∗

i with i ∈ I , and set Ĩ = I , u∗
i = λi , i ∈ Ĩ , u∗

j = 0, j /∈ Ĩ and v∗
i = w∗

i , i ∈
Ĩ , v∗

j = 0X∗ , j /∈ Ĩ , then it follows from the feasibility of (λ, z∗, w∗) that
∑n

i∈ Ĩ u∗
i ≤

1, u∗
i > 0, v∗

i ∈ X∗, γC0
i
(v∗

i ) ≤ u∗
i , i ∈ Ĩ and u∗

j = 0, j /∈ Ĩ , i.e. (u∗, v∗) ∈ R
n+ × (X∗)| Ĩ |

is feasible to the problem (D̃S
T ).Hence, it holds−σS

(−∑i∈I w∗
i

)−∑i∈I

[
z∗

i f ∗
i ((1/z∗

i )w
∗
i )+

σ�i (w
∗
i )
] = −σS

( − ∑
i∈ Ĩ v∗

i

) − ∑
i∈ Ĩ

[
u∗

i f ∗
i ((1/u∗

i )v
∗
i ) + σ�i (v

∗
i )
] ≤ v(D̃S

T ) for all
(λ, z∗, w∗) feasible to (DS

T ), i.e. v(DS
T ) ≤ v(D̃S

T ).
To prove the opposite inequality, take a feasible element (u∗, v∗) of the problem (D̃S

T )

and set I = R = Ĩ , z∗
i = λi = u∗

i and w∗
i = v∗

i for i ∈ I = R and z∗
j = λ j = 0 for

j /∈ I = R, then we have from the feasibility of (u∗, v∗) that
∑

r∈R λr ≤ 1, z∗
k = λk >

0, k ∈ R, λl = 0, l /∈ R and γC0
i
(w∗

i ) ≤ z∗
i , i ∈ I , whichmeans that (λ, z∗, w∗) is a feasible

element of (DS
T ) and it holds −σS

( − ∑
i∈I v∗

i

) − ∑n
i∈I

[
u∗

i f ∗
i ((1/u∗

i )v
∗
i ) + σ�i (v

∗
i )
] =

−σS
(−∑i∈I w∗

i

)−∑i∈I

[
z∗

i f ∗
i ((1/z∗

i )w
∗
i ) + σ�i (w

∗
i )
] ≤ v(DS

T ) for all (u∗, v∗) feasible
to (D̃S

T ), which implies v(D̃S
T ) ≤ v(DS

T ). Finally, it follows that v(D̃S
T ) = v(DS

T ). ��
Also the general dual problem (DS

h,T ) can be rewritten as follows.
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Proposition 3.2 The problem (DS
h,T ) can be equivalently written as

(D̂S
h,T ) sup

λi , z∗
i ≥0, w∗

i ∈X∗,
n∑

i=1
λi ≤1,

γ
C0

i
(w∗

i )≤z∗
i ,i=1,...,n

{
− σS

(
−

n∑
i=1

w∗
i

)
−

n∑
i=1

[
(λi hi )

∗ (z∗
i

)− λi ai

+ (z∗
i fi )

∗ (w∗
i

)+ σ�i (w
∗
i )
] }

.

Proof Let (λ1, . . . , λn, z∗
1, . . . , z∗

n, w∗
1, . . . , w

∗
n) be a feasible solution to (D̂S

h,T ), then
it follows from r /∈ R = {r ∈ {1, . . . , n} : λr > 0} by (5) that z∗

r = 0, i.e. I ={
i ∈ {1, . . . , n} : z∗

i > 0
} ⊆ R, and for i ∈ {1, . . . , n}\I we have 0 ≤ γC0

i
(w∗

i ) ≤ 0 ⇔
w∗

i = 0X∗ . This means that (λ1, . . . , λn, z∗
1, . . . , z∗

n, w∗
I ) is feasible to (DS

h,T ) and by (5)

and (6) follows immediately that v(D̂S
h,T ) ≤ v(DS

h,T ).
Conversely, by the previous considerations it is clear that from any feasible solution to

(DS
h,T ) one can immediately construct a feasible solution to (D̂S

h,T ) such that v(DS
h,T ) ≤

v(D̂S
h,T ) by taking w∗

i = 0X∗ for i ∈ {1, . . . , n}\I . ��

Remark 3.4 The index sets I and R of the dual problem (DS
h,T ) in (7) give a minute char-

acterization of the set of feasible solutions and are useful in the further approach. From the
numerical aspect however, they transform the dual (7) into a discrete optimization problem,
making it very hard to solve. For this reason we use for theoretical approaches the dual
(DS

h,T ) in the form of (7) and for numerical studies its equivalent dual formulation provided

in Proposition 3.2. In this context, the dual (D̃S
T ) is equivalent to

(D̃S
T ) sup

z∗
i ≥0,w∗

i ∈X∗, γ
C0

i
(w∗

i )≤z∗
i ,

i=1,...,n,
n∑

i=1
z∗

i ≤1

{
−σS

(
−

n∑
i=1

w∗
i

)
+

n∑
i=1

[
z∗

i ai − f ∗
i (w∗

i ) − σ�i (w
∗
i )
]}

.

The weak duality for the primal–dual pair (P S
h,T ) − (DS

h,T ) holds by construction, i.e.

v(P S
h,T ) ≥ v(DS

h,T ), and we show that the considered hypotheses guarantee strong duality,
too.

Theorem 3.1 (Strong duality) Between (P S
h,T ) and (DS

h,T ) strong duality holds, i.e.

v(P S
h,T ) = v(DS

h,T ) and the conjugate dual problem has an optimal solution (λ1, . . . , λn, z∗
1,

. . . , z∗
n, w∗

I
) ∈ R

n+ × R
n+ × (X∗)|I | with the corresponding index sets I ⊆ R ⊆ {1, . . . , n}.

Proof The conclusion follows by [25, Theorem 4], whose hypotheses are fulfilled as seen
below. The properness and convexity properties of the involved functions and sets are guar-
anteed by the standing assumptions formulated in the beginning of the section. It remains
to verify the fulfillment of a regularity condition. We use the generalized interior point reg-
ularity condition (RCC

2 ) introduced in [25] for multi-composed optimization problems that
is a development of the one given in the general case in [30]. First, notice that f is lower
semicontinuous, K0 = R

n+ is closed and has a nonempty interior, S is closed, F is Rn+-epi-
closed, while the linear continuous function G is obviously {0Xn }-epi-closed. The continuity
of G voids (see [25, Remark 5]) the necessity of having int K1 �= ∅, a condition that is
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in this case not fulfilled. The other requirements of the regularity condition are fulfilled as
well, namely 0X ∈ sqri((X ∩ S) + X) = X , 0Rn ∈ sqri(F(dom F) − dom f + K0) =
sqri(F(dom F) − R

n+ + R
n+) = R

n and (recall that dom T Ci
�i , fi

= X , i = 1, . . . , n)
0Xn ∈ sqri(G(dom G ∩ dom g ∩ S) − dom F + K1) = sqri(G(S) − Xn + {0Xn }) = Xn . ��

The next statement is dedicated to deriving necessary and sufficient optimality conditions
for the primal–dual pair (P S

h,T ) − (DS
h,T ).

Theorem 3.2 (Optimality conditions) (a) Let x ∈ S be an optimal solution to the prob-
lem (P S

h,T ). Then there exists (λ1, . . . , λn, z∗
1, . . . , z∗

n, w∗
I
) ∈ R

n+ × R
n+ × (X∗)|I | with the

corresponding index sets I ⊆ R ⊆ {1, . . . , n} as an optimal solution to (DS
h,T ) such that

(i) max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}

= ∑
i∈I

z∗
i T

Ci
�i , fi

(x) − ∑
r∈R

λr

[
h∗

r

(
z∗

r
λr

)
− ar

]
= ∑

r∈R

λr

[
hr

(
T Cr

�r , fr
(x)
)

+ ar

]
,

(ii) λr h∗
r

(
z∗

r
λr

)
+ λr hr

(
T Cr

�r , fr
(x)
)

= z∗
r T

Cr
�r , fr

(x) ∀r ∈ R,

(iii) z∗
i T

Ci
�i , fi

(x) + z∗
i f ∗

i

(
1
z∗

i
w∗

i

)
+ σ�i (w

∗
i ) = 〈w∗

i , x〉 ∀i ∈ I ,

(iv)
∑
i∈I

〈w∗
i , x〉 = −σS

(
−∑

i∈I

w∗
i

)
,

(v) max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
= hr

(
T Cr

�r , fr
(x)
)

+ ar ∀r ∈ R,

(vi)
∑

r∈R

λr = 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z∗
i > 0, i ∈ I , and z∗

j = 0, j /∈ I ,

(vii) γC0
i
(w∗

i ) = z∗
i , w∗

i ∈ X∗\{0X∗ }, i ∈ I .

(b) If there exists x ∈ S such that for some (λ1, . . . , λn, z∗
1, . . . , z∗

n, w∗
1, . . . , w

∗
I
) ∈ R

n+ ×
R

n+ × (X∗)|I | with the corresponding index sets I ⊆ R ⊆ {1, . . . , n} the conditions (i)–
(vi i) are fulfilled, then x is an optimal solution to (P S

h,T ), (λ1, . . . , λn, z∗
1, . . . , z∗

n, w∗
I
) is an

optimal solution to (DS
h,T ) and v(P S

h,T ) = v(DS
h,T ).

Proof (a) By [25, Theorem 5] we obtain the following necessary and sufficient optimality
conditions for the primal–dual pair (P S

h,T ) − (DS
h,T )

(i’) max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
+ ∑

r∈R

λr

[
h∗

r

(
z∗

r
λr

)
− ar

]
= ∑

i∈I

z∗
i T

Ci
�i , fi

(x),

(ii’)
∑
i∈I

z∗
i T

Ci
�i , fi

(x) + ∑
i∈I

[
z∗

i f ∗
i

(
1
z∗

i
w∗

i

)
+ σ�i (w

∗
i )
]

= ∑
i∈I

〈w∗
i , x〉,

(iii’)
∑
i∈I

〈w∗
i , x〉 + σS

(
−∑

i∈I

w∗
i

)
= 0,

(iv’)
∑

r∈R

λr ≤ 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z∗
i > 0, i ∈ I , and z∗

j = 0, j /∈ I ,

(v’) γC0
i
(w∗

i ) ≤ z∗
i , w∗

i ∈ X∗, i ∈ I .

Additionally, one has by Theorem 3.1 that v(P S
h,a) = v(DS

h,a), i.e.

max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
= −σS

⎛
⎝−

∑
i∈I

w∗
i

⎞
⎠−

∑
r∈R

λr

[
h∗

r

(
z∗

r

λr

)
− ar

]
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−
∑
i∈I

[
z∗

i f ∗
i

(
1

z∗
i
w∗

i

)
+ σ�i (w

∗
i )

]
,

that can be equivalently written as
⎡
⎣ max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
−
∑
r∈R

(
λr hr

(
T Cr

�r , fr
(x)
)

+ λr ar

)⎤⎦

+
∑
i∈I

[
z∗

i

(
T Ci

�i , fi
(x)
)

+ z∗
i f ∗

i

(
1

z∗
i
w∗

i

)
+ σ�i (w

∗
i ) − 〈w∗

i , x〉
]

+
⎡
⎣σS

⎛
⎝−

∑
i∈I

w∗
i

⎞
⎠+

∑
i∈I

〈w∗
i , x〉

⎤
⎦+

∑
i∈I

[
λi h

∗
i

(
z∗

i

λi

)

+ λi hi

(
T Ci

�i , fi
(x)
)

− z∗
i T

Ci
�i , fi

(x)
]

+
∑

r∈R\I

[
λr h∗

r (0) + λr hr

(
T Cr

�r , fr
(x)
)

− 0 ·
(
T Cr

�r , fr
(x)
)]

= 0,

where the last two sums arise from the fact that I ⊆ R. By [27, Lemma 2] holds that the
term within the first pair of brackets above is nonnegative. Moreover, by the Young–Fenchel
inequality we have that the terms within the other brackets are nonnegative, too, and hence,
it follows that all the terms within the brackets must be equal to zero. Combining the last
statement with the optimality conditions (i ′)–(v′) yields

(i) max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
= ∑

i∈I

z∗
i T

Ci
�i , fi

(x) − ∑
r∈R

λr

[
h∗

r

(
z∗

r
λr

)
− ar

]

= ∑
r∈R

(
λr hr

(
T Cr

�r , fr
(x)
)

+ λr ar

)
,

(ii) λr h∗
r

(
z∗

r
λr

)
+ λr hr

(
T Cr

�r , fr
(x)
)

= z∗
r T

Cr
�r , fr

(x) ∀r ∈ R,

(iii) z∗
i T

Ci
�i , fi

(x) + z∗
i f ∗

i

(
1
z∗

i
w∗

i

)
+ σ�i (w

∗
i ) = 〈w∗

i , x〉 ∀i ∈ I ,

(iv)
∑
i∈I

〈w∗
i , x〉 = −σS

(
−∑

i∈I

w∗
i

)
,

(v)
∑

r∈R

λr ≤ 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z∗
i > 0, i ∈ I , and z∗

j = 0, j /∈ I ,

(vi) γC0
i
(w∗

i ) ≤ z∗
i , w∗

i ∈ X∗, i ∈ I , and w∗
j = 0X∗ , j /∈ I .

From conditions (i) and (v) we obtain that

max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
=
∑
r∈R

(
λr hr

(
T Cr

�r , fr
(x)
)

+ λr ar

)

≤
∑
r∈R

λr max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
≤ max

1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
,

which means on the one hand that∑
r∈R

λr max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
= max

1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
,
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i.e. condition (v) can be written as∑
r∈R

λr = 1, λk > 0, k ∈ R, λl = 0, l /∈ R, z∗
i > 0, i ∈ I , and z∗

j = 0, j /∈ I , (8)

and on the other hand that∑
r∈R

(
λr hr

(
T Cr

�r , fr
(x)
)

+ λr ar

)
=
∑
r∈R

λr max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
(9)

or, equivalently,

∑
r∈R

λr

[
max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
− hr

(
T Cr

�r , fr
(x)
)

+ ar

]
= 0. (10)

As the brackets in (10) are nonnegative and λr > 0 for r ∈ R, it follows that the terms inside
the brackets must be equal to zero, more precisely,

max
1≤ j≤n

{
h j

(
T C j

� j , f j
(x)
)

+ a j

}
= hr

(
T Cr

�r , fr
(x)
)

+ ar ∀r ∈ R. (11)

Further, Theorem 2.1 implies the existence of pi , qi ∈ X such that

T Ci
�i , fi

(x) = γCi (x − pi − qi ) + fi (pi ) + δ�i (qi ) ∀i = 1, .., n.

Employing the condition (iii) one gets

z∗
i γCi (x − pi − qi ) − z∗

i fi (pi ) − δ�i (qi ) + z∗
i f ∗

i

(
1

z∗
i
w∗

i

)
+ σ�i (w

∗
i ) = 〈w∗

i , x〉,

equivalently writable as

[
z∗

i γCi (x − pi − qi ) − 〈w∗
i , x − pi − qi 〉

]+
[

z∗
i fi (pi ) + z∗

i f ∗
i

(
1

z∗
i
w∗

i

)
− 〈w∗

i , pi 〉
]

+ [δ�i (qi ) + σ�i (w
∗
i ) − 〈w∗

i , qi 〉
]
, i ∈ I . (12)

By the Young–Fenchel inequality all the brackets in (12) are nonnegative and must therefore
be equal to zero, i.e.

z∗
i γCi (x − pi − qi ) = 〈w∗

i , x − pi − qi 〉,
z∗

i fi (pi ) + z∗
i f ∗

i

(
1

z∗
i
w∗

i

)
= 〈w∗

i , pi 〉,

δ�i (qi ) + σ�i (w
∗
i ) = 〈w∗

i , qi 〉, i ∈ I . (13)

Now, by (13), condition (vi) and Lemma 2.1 (the generalized Cauchy–Schwarz inequality)
yield

z∗
i γCi (x − pi − qi ) = 〈w∗

i , x − pi − qi 〉 ≤ γC0
i
(w∗

i )γCi (x − pi − qi ) ≤ z∗
i γCi (x − pi − qi ),

which means that condition (vi) can be expressed as

γC0
i
(w∗

i ) = z∗
i , w∗

i ∈ X∗\{0X∗ }, i ∈ I , and w∗
j = 0X∗ , j /∈ I . (14)

The optimality conditions (i)–(vi), (8), (11) and (14) deliver the desired statement.
(b) All the calculations done in (a) can also be made in the reverse order, yielding thus

the conclusion. ��
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Remark 3.5 If we consider the situation when the set-up costs are arbitrary, i.e. ai can also
be negative, i = 1, . . . , n, then the conjugate function of f looks like (see [27, Remark 6])

f ∗(z∗
1, . . . , z∗

n) = min
n∑

i=1
λi =1, λi ≥0,

i=1,...,n

{
n∑

i=1

[(λi hi )
∗(z∗

i ) − λi ai ]
}

.

As a consequence, the corresponding dual problem turns out to be almost the same one
as in (7) with the additional constraint

∑
r∈R λr = 1 and all the statements given in this

subsection can be easily adapted for this general case where the set-up costs are arbitrary.

3.2 Special case I

We study now the location problem involved in the economical scenario discussed in
Remark 3.1 (we set Ci = −Ci ), i.e.

(PγG , T ) inf
x∈X

max
1≤i≤n

{
T Ci

�i ,γGi
(x)
}

,

and its dual problem (cf. Proposition 3.1, note that S = X , ai = 0 and f ∗
i = δG0

i
, i =

1, . . . , n)

(DγG , T ) sup
z∗

i ≥0, i=1,...,n, I={i∈{1,...,n}:z∗
i >0},

w∗
i ∈X∗, i∈I , γ

C0
i
(w∗

i )≤z∗
i ,

γ
G0

i
(w∗

i )≤z∗
i ,i∈I ,

∑
i∈I

z∗
i ≤1,

∑
i∈I

w∗
i =0X∗

{
−
∑
i∈I

σ�i

(
w∗

i

)}
.

Theorem 3.1 yields the following duality statement for the primal–dual pair (PγG , T )-
(DγG , T ).

Theorem 3.3 (Strong duality) Between (PγG , T ) and (DγG , T ) holds strong duality, i.e.
v(PγG , T ) = v(DγG , T ) and the dual problem has an optimal solution.

The necessary and sufficient optimality conditions for the primal–dual pair of optimization
problems (PγG , T ) − (DγG , T ) can be obtained by using the same ideas as in Theorem 3.2.

Theorem 3.4 (Optimality conditions) (a) Let x ∈ X be an optimal solution to the problem
(PγG , T ). Then there exists an optimal solution to (DγG , T ) (z∗

1, . . . , z∗
n, w∗

1, . . . , w
∗
n) with

the corresponding index set I ⊆ {1, . . . , n} such that

(i) max
1≤ j≤n

{
T C j

� j ,γG j
(x)
}

= ∑
i∈I

z∗
i T

Ci
�i ,γGi

(x),

(ii) z∗
i T

Ci
�i ,γGi

(x) + σ�i (w
∗
i ) = 〈w∗

i , x〉 ∀i ∈ I ,

(iii)
∑
i∈I

w∗
i = 0X∗ ,

(iv) max
1≤ j≤n

{
T C j

� j ,γG j
(x)
}

= T Ci
�i ,γGi

(x) ∀i ∈ I ,

(v)
∑
i∈I

z∗
i = 1, z∗

i > 0, i ∈ I , and z∗
j = 0, j /∈ I ,

(vi) γC0
i
(w∗

i ) = z∗
i , w∗

i ∈ X∗\{0X∗ }, γG0
i
(w∗

i ) ≤ γC0
i
(w∗

i ), i ∈ I .

(b) If there exists x ∈ H such that for some (z∗
1, . . . , z∗

n, w∗
1, . . . , w

∗
n) and the corresponding

index set I the conditions (i)–(vi) are fulfilled, then x is an optimal solution to (PγG , T ),
(z∗

1, . . . , z∗
n, w∗

1, . . . , w
∗
n) is an optimal solution to (DγG , T ) and v(PγG , T ) = v(DγG , T ).
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Proof As h∗
i = δ(−∞,1] for all i = 1, . . . , n, one has from the optimality condition (i i) of

Theorem 3.2 that z∗
r T

Cr
�r ,γGr

(x) = λ
∗
r T

Cr
�r ,γGr

(x) for all r ∈ R, which in turn yields that I = R

and λi = z∗
i for all i ∈ I (as 0 < z∗

r ≤ λr and I ⊆ R). Furthermore, as f ∗
i = δG0

i
, it follows

by the optimality conditions (i i i) and (vi i) of Theorem 3.2 that γG0
i
(w∗

i ) ≤ γC0
i
(w∗

i ) for

all i ∈ I . Summing up these facts with the optimality conditions of Theorem 3.2 yields the
desired statement. ��

We use the optimality conditions listed in Theorem 3.4 to provide a more exact charac-
terization to the optimal solutions to the optimization problem (PγG ,T ).

Theorem 3.5 Let ∩i∈I �i = ∅, 0 ∈ int Gi , C0
i ∩ Gi ∩ dom σ�i �= ∅ for all i ∈ I , and x ∈ X

be an optimal solution to the optimization problem (PγG , T ). If (z∗
1, . . . , z∗

n, w∗
1, . . . , w

∗
n) ∈

R
n+ × (X∗)n is an optimal solution to (DγG , T ) with the corresponding I ⊆ {1, . . . , n}, then

x ∈
⋂
i∈I

[
∂
(
v(DγG , T )γC0

i

)
(w∗

i ) + ∂σ�i (w
∗
i )
]
.

Proof From 0X ∈ int Ci and 0X ∈ int Gi follows that 0X∗ ∈ int C0
i and 0X∗ ∈ int G0

i such
that γC0

i
and γG0

i
are continuous for all i ∈ I . Hence, Theorem 2.1 secures the existence of

φi ∈ X and ψi ∈ �i such that T Ci
�i ,γGi

(x) = γCi (x − φi − ψi ) + γGi (φi ), i ∈ I . Further, we

have by the optimality conditions (i i) and (iv) of Theorem 3.4

(γCi (x − φi − ψi ) + γGi (φi ))γC0
i
(w∗

i ) + σ�i (w
∗
i ) = 〈w∗

i , x〉
⇔
[
γCi (x − φi − ψi )γC0

i
(w∗

i ) − 〈w∗
i , x − φi − ψi 〉

]
+
[
γGi (φi )γC0

i
(w∗

i ) − 〈w∗
i , φi 〉

]

+ [σ�i (w
∗
i ) − 〈w∗

i , ψi 〉
] = 0, i ∈ I ,

from which follows with the Young–Fenchel inequality that

x − φi − ψi ∈ ∂
(
γCi (x − φi − ψi )γC0

i

)
(w∗

i ), (15)

φi ∈ ∂
(
γGi (φi )γC0

i

)
(w∗

i ), (16)

ψi ∈ ∂σ�i (w
∗
i ), i ∈ I . (17)

If γCi (x − φi − ψi ) + γGi (φi ) = 0, i ∈ I , then we have by (15), (16) and (17) that
x ∈ ∂σ�i (w

∗
i ) for all i ∈ I , such that x ∈ �i for all i ∈ I , which contradicts our assumption.

If there exists i ∈ I such that γCi (x − φi − ψi ) = 0, then v(DγG , T ) = γGi (φi ) > 0 and
we get by (15), (16) and (17) that

x − ψi ∈ ∂δX∗(w∗
i ) + ∂

(
γGi (φi )γC0

i

)
(w∗

i ) = {0X∗ } + γGi (φi )∂γC0
i
(w∗

i )

= v(DγG , T )∂γC0
i
(w∗

i ).

If there exists i ∈ I such that γCi (x − φi − ψi ) > 0 and γGi (φi ) = 0, then it follows in a
similar way by (15), (16) and (17) that

x − ψi ∈ v(DγG , T )∂γC0
i
(w∗

i ).

Finally, if there exists i ∈ I such that γCi (x − φi − ψi ) > 0 and γGi (φi ) > 0, then one has
by (15), (16) and (17) that

x − ψi ∈ ∂
(
(γCi (x − φi − ψi ) + γGi (φi ))γC0

i

)
(w∗

i ) = v(DγG , T )∂γC0
i
(w∗

i ).
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In summary, we have x − ψ ∈ v(DγG , T )∂γC0
i
(w∗

i ), which implies that

x ∈ v(DγG , T )∂γC0
i
(w∗

i ) + ∂σ�i (w
∗
i ) for all i ∈ I . ��

Remark 3.6 LetH be a real Hilbert space, βi > 0, pi ∈ H,Ci = {x ∈ H : βi‖x‖H ≤ 1}, γGi

a norm and �i = {pi }, i = 1, . . . , n, with p1, . . . , pn distinct, then one has by Theorem 3.5

x = v(DγG , T )

βi‖w∗
i ‖H

w∗
i + pi ∀i ∈ I .

Note that if v(PγG , T ) = 0, then γCi (x − pi − zi ) + γGi (zi ) = 0 for all i = 1, . . . , n,
which means that zi = 0H and x = pi for all i = 1, . . . , n, i.e. one gets a contradiction.
Therefore, taking into consideration that v(PγG , T ) > 0 and the strong duality statement,
one gets v(DγG , T ) > 0 and by the optimality condition (i i i) of Theorem 3.4 follows

∑
i∈I

βi‖w∗
i ‖H

v(DγG , T )
(x − pi ) =

∑
i∈I

w∗
i = 0H ⇔ x = 1∑

i∈I

βi‖w∗
i ‖H

∑
i∈I

βi‖w∗
i ‖H pi .

Remark 3.7 Let ∩i∈I �i = ∅, 0 ∈ int Gi and γC0
i
(x) = γG0

i
(x) = 0 if and only if x = 0X ,

i = 1, . . . , n.
(i) Following Proposition 3.2, the dual problem (D̃γG , T ) can be rewritten as

(D̃γG , T ) sup

y∗
i ∈X∗, i=1,...,n,

n∑
i=1

y∗
i =0X∗ ,

n∑
i=1

max

{
γ

C0
i
(y∗

i ), γ
G0

i
(y∗

i )

}
≤1

{
−

n∑
i=1

σ�i

(
y∗

i

)}
,

consequently v(PγG , T ) = v(D̃γG , T ).
(i i) As the Slater constraint qualification corresponding to (D̃γG , T ) is fulfilled (for

instance for y∗
i = 0X∗ , i = 1, . . . , n), there holds strong duality for it and its Lagrange

dual problem, that can be reduced after some calculations to

(DD̃γG , T ) inf
λ≥0, x∈X

{
λ +

n∑
i=1

sup
y∗

i ∈X∗

{
〈x, y∗

i 〉 − λmax
{
γC0

i
(y∗

i ), γG0
i
(y∗

i )
}

− σ�i (y∗
i )
}}

. (18)

Since λ = 0 implies, taking into consideration that ∩n
i=1�i = ∅, that the value of the

objective function of (DD̃γG , T ) is+∞, one canwriteλ > 0 in the constraints of (DD̃γG , T ).
Moreover, since 0X∗ ∈ dom γC0

i
∩ dom γG0

i
∩ dom σ�i and σ�i is continuous for all i =

1, . . . , n, [6, Theorem 3.5.8.(a)] yields

sup
y∗

i ∈X∗

{
〈x, y∗

i 〉 − λmax
{
γC0

i
(y∗

i ), γG0
i
(y∗

i )
}

− σ�i (y∗
i )
}

= min
yi ∈�

{
λmax

{
γC0

i
(·), γG0

i
(·)
}∗ ( 1

λ
(x − yi )

)}
. (19)

(i i i) For any i = 1, . . . , n, the conjugate of max
{
γC0

i
(·), γG0

i
(·)
}
from (19) becomes

max
{
γC0

i
(·), γG0

i
(·)
}∗

(x) = sup
x∗∈X∗, t≥0,

γ
C0

i
(x∗)≤t, γ

G0
i
(x∗)≤t

{〈x, x∗〉 − t}, i = 1, . . . , n. (20)
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As theSlater constraint qualification for the problem in the right-hand side of (20) is obviously
fulfilled, one obtains via strong Lagrange duality

max
{
γC0

i
(·), γG0

i
(·)
}∗

(x) = min
α≥0, β≥0,

α+β≤1

(
αγC0

i
+ βγG0

i

)∗
(x). (21)

Note that amore general formula for this conjugate can be found in [7]. Recall that 0X ∈ int Ci

and 0X ∈ int Gi , which implies that 0X∗ ∈ int C0
i and 0X∗ ∈ int G0

i and thus, dom γC0
i

=
dom γG0

i
= X∗. Hence, we have 0 · γC0

i
= 0 · γG0

i
= δX∗ . We apply [6, Theorem 3.5.8.(a)]

to the formula in the right-hand side of (21), where the minimum is assumed to be attained
at (ᾱ, β̄).

If ᾱ = 0 and β̄ > 0, then we have

min
0≤β≤1

(
δX∗ + βγG0

i

)∗
(x) = min

0<β≤1

{
δ{0X }(x − zi ) + βγ ∗

G0
i

(
1

β
zi

)}

=
{
0, if 0 < β̄ ≤ 1, γGi (x) ≤ β̄,

+∞, otherwise
=
{
0, if γGi (x) ≤ 1
+∞, otherwise.

(22)

If ᾱ > 0 and β̄ = 0, then one gets similarly that

min
0≤α≤1

(
αγC0

i
+ δX∗

)∗
(x) =

{
0, if γCi (x) ≤ 1
+∞, otherwise.

(23)

Finally, when ᾱ > 0 and β̄ > 0, then

min
α≥0, β≥0,

α+β≤1

(
αγC0

i
+ βγG0

i

)∗
(x) = min

zi ∈X

{
ᾱγ ∗

C0
i

(
1

ᾱ
(x − zi )

)
+ β̄γ ∗

G0
i

(
1

β̄
zi

)}

=
{
0, if γCi (x − zi ) + γGi (zi ) ≤ 1,
+∞, otherwise.

(24)

As γC0
i
(x) = γC0

i
(x) = 0 ⇔ x = 0X , it follows from (22), (23) and (24) that

min
α≥0, β≥0,

α+β≤1

(
αγC0

i
+ βγG0

i

)∗
(x)=

{
0, if γCi (x − zi ) + γGi (zi ) ≤ 1,
+∞, otherwise,

i = 1, . . . , n.

(25)

(iv) Bringing (18), (19) and (25) together allows us consecutively to reformulate the
Lagrange dual problem (DD̃γG , T ) as

min
λ>0, x∈X , yi ∈�i , zi ∈X ,

γCi (x−yi −zi )+γGi (zi )≤λ, i=1,...,n

λ = min
λ>0, x∈X ,

min
yi ∈�i , zi ∈X

{
γCi (x−yi −zi )+γGi (zi )

}≤λ, i=1,...,n

λ

= min
λ>0, x∈X ,

T Ci
�i ,γGi

(x)≤λ, i=1,...,n

λ = min
x∈H max

1≤i≤n

{
T Ci

�i ,γGi
(x)
}

.

This shows on the one hand that the optimization problem (PγG , T ) has an optimal solution
and on the other hand that the Lagrangemultipliers λ > 0 and x ∈ X characterize the optimal
objective value and the optimal solution to the problem (PγG , T ), respectively. Furthermore,
this fact also implies that the relation between the primal problem (PγG , T ), its dual problem
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(D̃γG , T ) and its bidual problem (DD̃γG , T ) is completely symmetric under the considered
hypotheses.

Remark 3.8 As noted in Remark 3.2, the problem (PγG , T ) can also be written as

(PγG , T ) inf
x∈X ,t∈R,

T Ci
�i ,γGi

(x)≤t, i=1,...,n

t = inf
x∈X , t∈R,

(x,t)∈epiT Ci
�i ,γGi

, i=1,...,n

t = inf
x∈X , t∈R

{
t +

n∑
i=1

δ
epiT Ci

�i ,γGi

(x, t)

}
,

to which one can assign the corresponding Fenchel dual problem that can be reduced to

(DF
γG , T ) sup

x∗
i ∈X∗,t∗i ∈R, i=1,...,n,
n∑

i=1
x∗

i =0X∗ ,
n∑

i=1
t∗i =−1

{
−

n∑
i=1

σ
epiT Ci

�i ,γGi

(x∗
i , t∗i )

}
.

Now, let us take a careful look at

σ
epiT Ci

�i ,γGi

(x∗
i , t∗i ) = sup

(x,t)∈X×R, T Ci
�i ,γGi

(x)≤t

{〈x∗
i , x〉 + t∗i t}, (26)

and as for fixed (x∗
i , t∗i ) ∈ X∗ ×R the Slater constraint qualification is obviously fulfilled in

the right-hand side of (26) one has

σ
epiT Ci

�i ,γGi

(x∗
i , t∗i ) = min

λi ≥0
sup

(x,t)∈X×R

{
〈x∗

i , x〉 + t∗i t − λi

(
T Ci

�i ,γGi
(x) − t

)}
, i = 1, . . . , n.

If for some i ∈ {1, . . . , n}, λi = 0, then

σ
epiT Ci

�i ,γGi

(x∗
i , t∗i ) =

{
0, if x∗

i = 0X∗ , t∗i = 0
+∞, otherwise,

otherwise, it holds for some i ∈ {1, . . . , n},

σ
epiT Ci

�i ,γGi

(x∗
i , t∗i ) = min

λi >0

{
λi sup

x∈X

{〈
1

λi
x∗

i , x

〉
− T Ci

�i ,γGi
(x)

}
+ sup

t∈R
{t(t∗i + λi )}

}

= min
λi >0, t∗i =−λi ,

γ
C0

i
(x∗

i )≤λi , γ
G0

i
(x∗

i )≤λi

{−σ�i (x∗
i )
}
.

Therefore, the Fenchel dual problem transforms to

(DF
γG , T ) sup

λi ∈R, x∗
i ∈X∗, γ

C0
i
(x∗

i )≤λi , γ
G0

i
(x∗

i )≤λi ,

i=1,...,n,
n∑

i=1
λi =1,

n∑
i=1

x∗
i =0X∗

{
−

n∑
i=1

σ�i

(
x∗

i

)}
.
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Setting x∗
j = w∗

j , j ∈ I , and λi = z∗
i , i = 1, . . . , n, allows to write the Fenchel dual problem

as

(DF
γG , T ) sup

z∗
i ∈R, w∗

i ∈X∗, γ
C0

i
(w∗

i )≤z∗
i , γ

G0
i
(w∗

i )≤z∗
i ,

i=1,...,n,
n∑

i=1
λi =1,

n∑
i=1

w∗
i =0X∗

{
−

n∑
i=1

σ�i

(
w∗

i

)}
.

More than that, one has byweak duality v(DF
γG , T ) ≤ v(DγG , T ) = v(D̃γG , T ) = v(PγG , T ).

But this approach has two drawbacks. First, for strong duality between (PγG , T ) and
(DF

γG , T ) one needs to verify the fulfillment of a regularity condition, see, for instance, [6,
Theorem 3.2.8]). Moreover, this Fenchel dual cannot be easily reduced to an optimization
problem of the form (D̃γG , T ).

Remark 3.9 A further dual problem of interests is the (direct) Lagrange dual to (PγG ,T )

(DL
γG , T ) sup

λi ≥0, i=1,...,n
inf

(x,t)∈X×R

{
t +

n∑
i=1

λi

(
T Ci

�i ,γGi
(x) − t

)}

= sup
λi ≥0, i=1,...,n

{
inf
x∈X

{
n∑

i=1

λiT Ci
�i ,γGi

(x)

}
− sup

t∈R

{
t

(
1 −

n∑
i=1

λi

)}}

= sup

λi ≥0, i=1,...,n,
n∑

i=1
λi =1

inf
x∈X

{
n∑

i=1

λiT Ci
�i ,γGi

(x)

}
.

The Slater condition is for the problem (P̃γG , T ) fulfilled, i.e. it holds strong duality for
the primal–dual pair (P̃γG , T )-(DL

γG , T ), and from the optimality conditions of Theorem 3.7

follows that λ ∈ R
n+ with λi = (1/βi )‖y∗

i ‖H, i ∈ I , and λ j = 0, j /∈ I , is an optimal
solution to the Lagrange dual (DL

γG , T ).

3.3 Special case II

In this part of the paper, we analyze the special case where S = X , ai = 0, hi (x) :=
x + δR+(x), x ∈ R, fi (x) := δLi (x) and Li ⊆ X is a nonempty, closed and convex set for
all i = 1, . . . , n, such that the minmax location problem (P S

h,T ) turns into

(PT ) inf
x∈X

max
1≤i≤n

{
T Ci

�i ,δLi
(x)
}

,

Remark 3.10 By construction v(PT ) > 0. If X = R
m and the gauges are taken to be the

corresponding Euclidean norm, then the problem (PT ) can be seen as finding a point x ∈ H
such that the maximal distance to its Euclidean projections onto the target sets �i + Li ,
i = 1, . . . , n, is minimal. If n = 3, X = R

2,�i = {0R2} and Li = {x ∈ R
2 : ‖x − pi‖ ≤ ai },

where ai > 0 and pi ∈ R
2, i = 1, 2, 3, then this problem is also known as the classical

Apollonius problem (see [4,13,18]).
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The corresponding dual problem (DT ) to (PT ) becomes, via Remark 3.4,

(DT ) sup
z∗

i ≥0, i=1,...,n,

I={i∈{1,...,n}:z∗
i >0}, w∗

i ∈X∗,i∈I ,
γ

C0
i
(w∗

i )≤z∗
i ,i∈I ,

∑
i∈I

z∗
i ≤1,

∑
i∈I

w∗
i =0X∗

{
−
∑
i∈I

[
σLi

(
w∗

i

)+ σ�i

(
w∗

i

)]}
.

Additionally to this dual problem, we consider the following one, that is equivalent to it
in the sense that they share the same optimal objective value and this can be proven similarly
to the proof of [27, Theorem 9],

(D̃T ) sup

y∗
i ∈X∗, i=1,...,n,I=

{
i∈{1,...,n}:γ

C0
i
(y∗

i )>0

}
,∑

i∈I
γ

C0
i
(y∗

i )≤1,
∑
i∈I

y∗
i =0X∗

{
−
∑
i∈I

[
σLi

(
y∗

i

)+ σ�i

(
y∗

i

)]}
.

Remark 3.11 Considering (D̃T ) in a finitely dimensional setting as a minimization problem,
the following economical interpretation arises, where the objective function can be seen as
a cost function. The components of the dual variables y∗

i ∈ R
m , i = 1, . . . , n, express the

expected expenditures on public goods and services, where i can be identified as one of n
locations. More precisely, every location i has its own vector of m expenditures. Examples
of public goods and services can be, for instance, parks, police stations, fire departments
or highways. If a component of any vector is zero, then this means that the market (or the
citizens) of this location is (are) saturated regarding this good or service and if a component
is negative, then the market is supersaturated. The constraint

∑n
i=1 γC0

i
(y∗

i ) ≤ 1 defines
then the limitation of the budget for the public goods and services, while the constraint∑n

i=1 y∗
i = 0Rm describes the substitution character of the goods and services. The latter

means that if the market i has expected expenditures on a special good or service, then it is
taken from an another location which is supersaturated. Therefore, the dual problem (D̃T )

can be understood as a cost minimization problem of the government of n locations, which
has to find the optimal allocation of public goods and services (y∗

1, . . . , y∗
n) for n locations

(that can be districts, towns or federal states) such that all expected expenditures can be
financed, the demands on public goods and services of the citizens are saturated and the
costs minimal. Another scenario appears by considering the dual problem (D̃T ) as a cost
minimization problem of the World Health Organization (WHO), where the components of
a vector z∗

i ∈ R
m represents the expected expenditures on medical treatment and health

care for m diseases for a region i in the world, i = 1, . . . , n,. Here also the constraint∑n
i=1 γC0

i
(y∗

i ) ≤ 1 characterizes the budget restrictions of the WHO. Moreover, if in a
region i for a disease j ∈ {1, . . . , m} no medical treatment is required and medical staff and
products are no longer needed (which means that the associated component y∗

i j is negative),
for instance because a certain disease was eradicated there, then these expenditures can be
reallocated to other regions which needmedical treatment for the disease j . It is important not
towaste any expenditures, therefore their summust be zero, i.e. the constraint

∑n
i=1 y∗

i = 0Rm

must be fulfilled. For an economical interpretation of (PT ) we refer to [4].

The following statement is then a direct consequence of Theorem 3.1.

Theorem 3.6 (Strong duality) Between (PT ) and (D̃T ) holds strong duality, i.e. v(PT ) =
v(D̃T ) and the dual problem has an optimal solution y∗ ∈ Xn.
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The necessary and sufficient optimality conditions for the primal–dual pair of optimization
problems (PT )− (D̃T ) can be derived by Theorem 3.6 similarly to the ones in Theorem 3.2.

Theorem 3.7 (Optimality conditions) (a) Let x ∈ X be an optimal solution to the problem
(PT ). Then there exists an optimal solution to (D̃T ) y∗ ∈ (X∗)n with the corresponding
index set I ⊆ {1, . . . , n} such that

(i) max
1≤ j≤n

{
T C j

� j ,δL j
(x)
}

= ∑
i∈I

γC0
i
(y∗

i )T
Ci
�i ,δLi

(x),

(ii) γC0
i
(y∗

i )T
Ci
�i ,δLi

(x) + σLi

(
y∗

i

)+ σ�i

(
y∗

i

) = 〈y∗
i , x〉, i ∈ I ,

(iii)
∑
i∈I

y∗
i = 0X∗ ,

(iv)
∑
j∈I

γC0
i
(y∗

i ) = 1, y∗
i ∈ X∗\{0X∗ }, i ∈ I , and y∗

i = 0X∗ , i /∈ I ,

(v) T Ci
�i ,δLi

(x) = max
1≤ j≤n

{
T C j

� j ,δL j
(x)
}

, i ∈ I .

(b) If there exists x ∈ X such that for some (y∗
1, . . . , y∗

n) ∈ (X∗)n with the correspond-
ing index set I the conditions (i)–(v) are fulfilled, then x is an optimal solution to (PT ),
(y∗

1, . . . , y∗
n) is an optimal solution to (D̃T ) and v(PT ) = v(D̃T ).

The next statement makes use of Theorem 3.7 in order to provide an exact characterization
of the optimal solutions of the optimization problem (PT ).

Theorem 3.8 Let x ∈ X be an optimal solution to the optimization problem (PT ). If
(y∗

1, . . . , y∗
n) ∈ (X∗)n is an optimal solution to (D̃T ) with the corresponding I ⊆ {1, . . . , n},

then

x ∈
⋂
i∈I

[
∂
(
v(D̃T )γC0

i

)
(y∗

i ) + ∂σLi (y∗
i ) + ∂σ�i (y∗

i )
]
.

The proof of Theorem 3.8 is analogous to the one of Theorem 3.5, so we skip it.
In the rest of the paper we assume that X = H, where H is a real Hilbert space, βi > 0

and γCi (·) = βi‖ · ‖H. Note that in this situation Ci = {x ∈ H : βi‖x‖H ≤ 1}, X∗ = H and
γC0

i
(·) = (1/βi )‖ · ‖H, i = 1, . . . , n.

Corollary 3.1 Let x ∈ Hn be an optimal solution to the optimization problem (PT ). If
(y∗

1, . . . , y∗
n) ∈ Hn is an optimal solution to (D̃T ) with the corresponding I ⊆ {1, . . . , n},

then there exist φi ∈ �i and ψi ∈ Li fulfilling σLi

(
y∗

i

) = 〈y∗
i , ψi 〉 and σ�i

(
y∗

i

) = 〈y∗
i , φi 〉,

i.e. ψi ∈ ∂σLi (y∗
i ) and φi ∈ ∂σ�i (y∗

i ), i ∈ I , such that

x = 1∑
i∈I

βi‖y∗
i ‖H

∑
i∈I

βi‖y∗
i ‖H(φi + ψi ).

Proof By Theorem 3.8 it holds for each i ∈ I

x ∈ ∂

(
v(D̃T )

1

βi
‖ · ‖H

)
(y∗

i ) + ∂σLi (y∗
i ) + ∂σ�i (y∗

i ),

which means that there exist φi ∈ ∂σLi (y∗
i ) and ψi ∈ ∂σ�i (y∗

i ) such that

x − φi − ψi ∈ v(D̃T )
1

βi
∂ (‖ · ‖H) (y∗

i ).
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As y∗
i �= 0H, it follows, as v(D̃T ) > 0 due to Remark 3.6 and Theorem 3.7, that

βi

v(D̃T )
(x − φi − ψi ) = 1

‖y∗
i ‖H

y∗
i , i ∈ I . (27)

Now, we take the sum over all i ∈ I in (27) and get that

1

v(D̃T )

∑
i∈I

βi‖y∗
i ‖Hx = 1

v(D̃T )

∑
i∈I

βi‖y∗
i ‖H(φi + ψi ) +

∑
i∈I

y∗
i . (28)

From the optimality condition (i i i) of Theorem 3.7 follows that the last term of (28) is equal
to zero, which finally yields that

x = 1∑
i∈I

βi‖y∗
i ‖H

∑
i∈I

βi‖y∗
i ‖H(φi + ψi ). (29)

��
Remark 3.12 If �i = H and Li = {pi }, i = 1, . . . , n, where p1, . . . , pn are distinct points
in H, then (see [27, Corollary 1])

x = 1∑
i∈I

βi‖y∗
i ‖H

∑
i∈I

βi‖y∗
i ‖H pi .

Remark 3.13 Take note that one can prove in the same way as in the proof of [27, Corollary
2] that for a feasible solution y∗ to (D̃T ) it holds

‖y∗
i ‖H ≤ βsβi

βs + βi
, i ∈ I ,

where βs := max1≤i≤n{βi }.
Remark 3.14 Under the assumption that β1 = . . . = βn = 1 and ∩n

i=1(�i + Li ) = ∅, any
two nonzero components of an optimal solution y∗ to (D̃T ) are linearly independent. To see
this, let us assume that there exist i, j ∈ I , i �= j , and k j > 0 such that y∗

i = k j y∗
j . Further,

it holds by (27) that

y∗
i = ‖y∗

i ‖H
v(D̃T )

(x − φi − ψi ) = k j y∗
j = k j

‖y∗
j‖H

v(D̃T )
(x − φ j − ψ j ),

from which follows that

x − φi − ψi = k j
‖y∗

j‖H
‖y∗

i ‖H
(x − φ j − ψ j ),

thus one gets that x − φi − ψi = x − φ j − ψ j ⇔ φi + ψi = φ j + ψ j , which contradicts the
assumption that ∩n

i=1(�i + Li ) = ∅. Therefore, y∗
i �= k j y∗

j , k j > 0, i �= j , for all i, j ∈ I .

Remark 3.15 (i) Clearly, if ∂σ�i +Li (y∗
i ) is a singleton for some i ∈ I (which is the situation,

when for instance the set �i + Li is strictly convex or its indicator function is Gâteaux-
differentiable at y∗

i ), then the optimal solution x of (PT ) can be determined immediately by
the formula (27), i.e.

x = v(D̃T )

βi‖y∗
i ‖H

y∗
i + φi + ψi .
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(i i) Recall moreover that v(D̃T ) = v(PT ) due to Theorem 3.6. For instance, take for an
index i ∈ I the sets �i := {0H} and Li := {x ∈ H : ‖x − pi‖H ≤ ai }, where pi ∈ H and
ai > 0, then

ψi ∈ ∂σLi (y∗
i ) ⇔ ψi ∈ ∂

(
1

ai
‖ · ‖H

)
(y∗

i ) + pi ⇔ ai (ψi − pi ) ∈ ∂ (‖ · ‖H) (y∗
i )

⇔ ai (ψi − pi ) = 1

‖y∗
i ‖H

y∗
i ⇔ ψi = 1

ai‖y∗
i ‖H

y∗
i + pi ,

hence

x =
(

v(D̃T )

βi
+ 1

ai

)
1

‖y∗
i ‖H

y∗
i + pi .

(i i i) Let us consider another situation where H = R
m , ‖ · ‖∞ is the ∞-norm, ‖ · ‖1

is the l1-norm, �i := {0Rm } and Li := {x ∈ R
m : ‖x − pi‖∞ ≤ ai }. Further, let x =

(x1, . . . , xm)T ∈ R
m , y∗

i = (y∗
i1, . . . , y∗

im)T ∈ R
m , ψi = (ψi1, . . . , ψim)T ∈ R

m and
pi = (pi1, . . . , pim)T ∈ R

m . One has

ψi ∈ ∂σLi (y∗
i ) = ∂ (ai‖ · ‖1) (y∗

i ) + pi

⇔ 1

ai
(ψi − pi ) ∈ ∂(‖ · ‖1)(y∗

i ) ⇔ 1

ai
(ψi j − pi j ) ∈

⎧⎪⎨
⎪⎩

{1}, if y∗
i j > 0,

{−1}, if y∗
i j < 0,

[ − 1, 1], if y∗
i j = 0,

(30)

i ∈ I , j = 1, . . . , m. Now, we define the following index set J = { j ∈ {1, . . . , m} : y∗
i j =

0 for all i ∈ I }, then it follows for j ∈ J from (30) that

1

ai
(ψi j − pi j ) ∈ [−1, 1] ⇔ ψi j ∈ pi j + [−ai , ai ] . (31)

Combining (27) and (31) implies that under the corresponding hypotheses it holds

x j ∈
⋂
i∈I

(
pi j + [−ai , ai ]

)
, j ∈ J .

Otherwise, if j /∈ J , there exists i ∈ I such that y∗
i j > 0 and by (30) it holds

ψi j =
{

ai + pi j , if y∗
i j > 0,

−ai + pi j , if y∗
i j < 0,

(32)

and hence, one gets by (27) and (32) that

x j =
⎧⎨
⎩

v(D̃T )

βi ‖y∗
i ‖ y∗

i j + ai + pi j , if y∗
i j > 0,

v(D̃T )

βi ‖y∗
i ‖ y∗

i j − ai + pi j , if y∗
i j < 0.

(iv) Finally, when m = 2, |I | > 2 and β1 = . . . = βn = 1, it follows by Remark 3.14
that J = ∅ and hence, there exist i, j ∈ I with y∗

i1 �= 0 and y∗
j2 �= 0 such that

x1 =
⎧⎨
⎩

v(D̃T )

‖y∗
i ‖ y∗

i1 + ai + pi1, if y∗
i1 > 0,

v(D̃T )

‖y∗
i ‖ y∗

i1 − ai + pi1, if y∗
i1 < 0,

and x2 =
⎧⎨
⎩

v(D̃T )

‖y∗
j ‖ y∗

j2 + a j + p j2, if y∗
j2 > 0,

v(D̃T )

‖y∗
j ‖ y∗

j2 − a j + p j2, if y∗
j2 < 0.

123



146 Journal of Global Optimization (2019) 74:121–160

Remark 3.16 The optimality conditions of Theorem 3.7 allow to give the following geomet-
rical interpretation of the set of optimal solutions to the conjugate dual problem (D̃T ) in the
situation when H = R

m . When γCi (·) = ‖ · ‖ one gets from condition (i i) of Theorem 3.7
via the Young–Fenchel inequality ‖y∗

i ‖‖x − φi − ψi‖ = 〈y∗
i , x − φi − ψi 〉, which means

that the vectors y∗
i and x − φi − ψi , i ∈ I , are parallel and directed to x . Further, from

the optimal condition (v) of Theorem 3.7 one gets that i ∈ I , i.e. y∗
i �= 0H, if the points

φi + ψi ∈ �i + Li are lying on the boundary of the ball centered at x with radius (D̃T ).
If i /∈ I , i.e. y∗

i = 0H, then the points φi + ψi ∈ �i + Li are lying on the border of a ball
centered at x with radius t < v(D̃T ). Hence, the vectors y∗

i , i ∈ I , can be interpreted as
force vectors, which pull the sets �i + Li , i ∈ I , in direction of the center, the gravity point
x , to reduce the minimal time needed to reach the farthest set(s) (see Fig. 2).

We close this section with a statement which gives a formula of the projection operator
onto the epigraph of the maximum of norms needed for our numerical experiments.

Theorem 3.9 Let γC : H1 × . . . × Hn → R be defined by γC (x1, . . . , xn) :=
max1≤i≤n{(‖xi‖Hi )/wi }, with wi > 0, i = 1, . . . , n, then it holds

Pepi γC (x1, . . . , xn, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x1, . . . , xn), if max
1≤i≤n

{
1
wi

‖xi‖Hi

}
≤ ξ,

(0H1 , . . . , 0Hn , 0), if ξ < 0 and
n∑

i=1
wi‖xi‖Hi ≤ −ξ,

(y1, . . . , yn, θ), otherwise,

where

yi = xi − max{‖xi‖Hi − (κ + ξ)wi , 0}
‖xi‖Hi

xi , i = 1, . . . , n, and θ =
∑n

i=k+1 w2
i τi + ξ∑n

i=k+1 w2
i + 1

with

κ =
∑n

i=k+1 w2
i τi − ξ

∑n
i=k+1 w2

i∑n
i=k+1 w2

i + 1
(33)

and k ∈ {0, 1, . . . , n − 1} is the unique integer such that τk + ξ ≤ κ ≤ τk+1 + ξ , where
the values τ0, . . . , τn are defined by τ0 := 0 and τi := (‖xi‖Hi )/wi , i = 1, . . . , n, and in
ascending order.

Proof As C = {(x1, . . . , xn) : H1 × . . . × Hn : max1≤i≤n{(1/wi )‖xi‖Hi }} ≤ 1 (see [26,
Remark 1]), [28, Corollary 2.5] reveals that

Pepi γC (x1, . . . , xn, ξ) =
⎧⎨
⎩

(x1, . . . , xn, ξ), if max
1≤i≤n

{ 1
wi

‖xi‖Hi } ≤ ξ,

(y1, . . . , yn, θ), otherwise,

where

(y1, . . . , , yn) = (x1, . . . , xn) − κ PC0

(
1

κ
(x1, . . . , xn)

)
, θ = κ + ξ and κ > 0.

By [29, Lemma 4.5] the polar set of C looks like C0 = {(x1, . . . , xn) ∈ H1 × . . . × Hn :∑n
i=1 wi‖xi‖Hi ≤ 1} and from [28, Lemma 1.1] we derive that PC0

( 1
κ
(x1, . . . , xn)

) =
(x1, . . . , xn) if

∑n
i=1 wi‖xi‖Hi ≤ κ , i.e. (y1, . . . , yn) = (0H, . . . , 0H), which implies that

max1≤i≤n{yi } = 0 = θ = κ + ξ and hence, κ = −ξ .
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Otherwise, one has by [28, Lemma 1.1]

PC0

(
1

κ
(x1, . . . , xn)

)
= (z1, . . . , zn) ∈ H1 × . . . × Hn,

where

zi = max{‖xi‖Hi − κμwi , 0}
κ‖xi‖Hi

xi , i = 1, . . . , n,

and μ > 0 is a solution of the equation [see (11) of the proof of [28, Lemma 1.1]]

n∑
i=1

wi max{‖xi‖Hi − κμwi , 0} = κ. (34)

Therefore, it follows

yi = xi − max{‖xi ‖Hi − κμwi , 0}
‖xi ‖Hi

xi = ‖xi ‖Hi − max{‖xi ‖Hi − κμwi , 0}
‖xi ‖Hi

xi , i = 1, . . . , n,

and as for ‖xi‖Hi − κμwi ≤ 0 one gets yi = xi , i.e. ‖yi‖Hi = ‖xi‖Hi and for ‖xi‖Hi −
κμwi > 0, yi = (κμwi/‖xi‖Hi )xi , i.e. ‖yi‖Hi = κμwi , i = 1, . . . , n, we obtain

γC (y1, . . . , yn) = max
1≤i≤n

{
1

wi
‖yi‖Hi

}
= κμ = κ + ξ. (35)

Bringing (34) and (35) together yields

n∑
i=1

wi max
{‖xi‖Hi − (κ + ξ)wi , 0

} = κ. (36)

Clearly, if ‖xi‖Hi − ξwi ≤ 0 for all i = 1, . . . , n, i.e. max1≤i≤n{‖xi‖Hi /wi } ≤ ξ , then
‖xi‖Hi − ξwi − κwi ≤ 0 for all i = 1, . . . , n, and one gets by (36) that

κ =
n∑

i=1

wi max
{‖xi‖Hi − (κ + ξ)wi , 0

} = 0,

which means that yi = xi for all i = 1, . . . , n, and θ = ξ .
Now, we define the function g : R → R by

g(κ) =
n∑

i=1

w2
i max {τi − (κ + ξ), 0} − κ (37)

Take note, that there exists i ∈ {1, . . . , n} such that τi > 0 and so,

g(τn − ξ) =
n∑

i=1

w2
i max {τi − τn, 0} − κ = −κ < 0.

Moreover, as g is a piecewise linear function, one has, similarly to [28, Corollary 2.1], to
find the unique integer k ∈ {0, 1, . . . , n − 1} such that g(τk − ξ) ≥ 0 and g(τk+1 − ξ) ≤ 0.
This leads to

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i − κ

n∑
i=k+1

(w2
i + 1) = 0 ⇔ κ =

∑n
i=k+1 w2

i τi − ξ
∑n

i=k+1 w2
i∑n

i=k+1 w2
i + 1

and hence, θ = κ + ξ = (
∑n

i=k+1 w2
i τi + ξ)/(

∑n
i=k+1 w2

i + 1). ��
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Remark 3.17 In [8] the formula in the previous corollarywasgiven for the casewhereHi = R,
i = 1, . . . , n, in other words, where γC is the weighted l∞-norm.

Remark 3.18 The proof of the previous theorem allows us to construct an algorithm to deter-
mine κ of Theorem 3.9.

Algorithm

1. If max
1≤i≤n

{
1
wi

‖xi‖Hi

}
≤ ξ , then κ = 0.

2. If ξ < 0 and
n∑

i=1
wi‖xi‖Hi ≤ −ξ , then κ = −ξ .

3. Otherwise, define τ0 := 0, τi := ‖xi‖Hi /wi , i = 1, . . . , n, and sort τ0, . . . , τn in
ascending order.

4. Determine the values of g defined in (37) at κ = τi + ξ , i = 0, . . . , n.
5. Find the unique k ∈ {0, . . . , n − 1} such that g(τk − ξ) ≥ 0 and g(τk+1 − ξ) ≤ 0.
6. Calculate κ by (33).

4 Numerical experiments

The aim in this section is to solve numerically several types of concrete location problems
and their associated duals discussed in the previous section as well as to discuss the results
generatedviamatlab.Herewe set X = R

d andused for our numerical experiments aPCwith
an Intel Core i5 2400 CPU with 3.10GHz and 8GB RAM. Note that in the previous sections
we have considered for the theoretical investigations very general frameworks, however, in
order to get closer to the real world applications, our numerical experiments are performed
in finitely dimensional spaces.

First, we consider a location problem of the type analyzed in Sect. 3.3. To solve this kind
of a location problem and its dual, rewritten as unconstrained optimization problems, we
implemented in matlab the parallel splitting algorithm presented in [3, Proposition 27.8].
Note also that other recent proximal splitting methods could prove to be suitable for these
problems, too, and comparisons of their performances on the problems we solve below could
constitute an interesting follow-up of our investigations.

Theorem 4.1 (Parallel splitting algorithm) Let n be an integer such that n ≥ 2 and fi :
R

d → R be a proper, lower semicontinuous and convex function for i = 1, . . . , n. Suppose
that the problem

(P DR) min
x∈Rs

{
n∑

i=1

fi (x)

}

has at least one solution and that dom f1 ∩⋂n
i=2 int dom fi �= ∅. Let (μk)k∈N be a sequence

in [0, 2] such that
∑

k∈N μk(2 − μk) = +∞, let ν > 0, and let (xi,0)
n
i=1 ∈ R

d × . . . × R
d .

Set

(∀k ∈ N) rk = 1
n

n∑
i=1

xi,k ,

yi,k = proxν fi
xi,k, i = 1, . . . , n,

qk = 1
n

n∑
i=1

yi,k ,

xi,k+1 = xi,k + μk(2qk − rk − yi,k), i = 1, . . . , n.
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Then (rk)k∈N converges to an optimal solution to (P DR).

Take note, that for this purpose it is necessary to bring the location problem and its dual
problem into the form of an unconstrained optimization problemwhere the objective function
is a sum of proper, lower semicontinuous and convex functions. By following these ideas,
we rewrite the location problem (see Remark 3.7)

(PγG , T ) inf
x∈X

max
1≤i≤n

{
T Ci

�i ,γGi
(x)
}

= min
t>0, x∈Rd , zi ∈Rd ,

γCi (x−pi −zi )+γGi (zi )≤t, i=1,...,n

t

= min
t>0, x∈Rd , zi ∈Rd , αi ≥0, βi ≥0,
γCi (x−pi −zi )≤αi , γGi (zi )≤βi ,

αi +βi =t, i=1,...,n

t = min
t>0, x∈Rd , zi ∈Rd , αi ≥0, βi ≥0,

(x−pi −zi ,αi )∈epi γCi , (zi ,βi )∈epi γGi ,

αi +βi =t, i=1,...,n

t,

where Ci and Gi are closed and convex subsets of Rd with 0Rd ∈ int Ci , 0Rd ∈ int Gi , and
�i = {pi } with pi ∈ R

d , i = 1, . . . , n, as follows

(PγG , T ) min
t>0, x∈Rd , zi ∈Rd ,

αi ≥0, βi ≥0, i=1,...,n

{
t +

n∑
i=1

[
δepi γCi

(x − pi − zi , αi )

+δepi γGi
(zi , βi )

]
+ δH (α, β, t)

}
,

where α = (α1, . . . , αn)�, β = (β1, . . . , βn)� and H = {(α, β, t)� : αi + βi = t, i =
1, . . . , n}. Similarly, the dual problem

(DγG , T ) max
z∗

i ≥0, w∗
i ∈Rd ,γ

C0
i
(w∗

i )≤z∗
i ,

γ
G0

i
(w∗

i )≤z∗
i , i=1,...,n,

n∑
i=1

z∗
i ≤1,

n∑
i=1

w∗
i =0

Rd

{
−
∑
i∈I

σ�i

(
w∗

i

)}
,

can be equivalently rewritten as

(DγG , T ) − min
z∗

i ≥0, w∗
i ∈Rd

i=1,...,n

{
n∑

i=1

[
p�

i w∗
i + δepi γ

C0
i
(w∗

i , z∗
i ) + δepi γ

G0
i
(w∗

i , z∗
i )

]

+ δD(z∗) + δE (w∗)
}
,

where z∗ = (z∗
1, . . . , z∗

n)�, w∗ = (w∗
1, . . . , w

∗
n), D = {z∗ ∈ R

n+ : ∑n
i=1 z∗

i ≤ 1} and
E = {w∗ ∈ R

d × . . . × R
d : ∑n

i=1 w∗
i = 0Rd }. For both these optimization problems

the nonnegativity constraints can be omitted because they are implicitly contained in the
indicator functions of the epigraphs of gauges from the objective functions and one can verify
that the hypotheses of Theorem 4.1 are fulfilled. Moreover, for the full implementation of
this algorithm for solving these problems numerically, one requires also formulae of the
proximal mappings of the functions involved in the objective function of the primal and the
dual problem, which can be found for instance in [3,28].

Example 4.1 Take γCi = ‖ · ‖ and γGi = ‖ · ‖∞, i = 1, . . . , 5, and set d = 2, �i = {pi },
i = 1, . . . , 5, with p1 = (−8,−9)T , p2 = (10, 0)T , p3 = (11, 5)T , p4 = (−12, 10)T

and p5 = (4, 13)T . To compute the required proximal and projection points in the primal
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Table 1 Performance evaluation for 5 points in R
2

ε1 = 10−4 ε2 = 10−8

Primal (ν = 6) Dual (ν = 0.08) Primal (ν = 6) Dual (ν = 0.08)

CPU time (s) 0.2889 0.2049 0.7196 0.6352

Number of iterations 749 783 1949 2446

and dual problem we used Theorem 3.9 , [28, Lemma 2.1], [28, Lemma 2.2], [28, Corollary
2.1], [3, Proposition 23.32] and [3, Example 28.14 (iii)]. We ran our matlab programs for
various step sizes ν and chose always the origin as the starting point and set the initialization
parameters to the value 1.Thebest performance results of our tests are illustrated inTable 1.As
stopping criterion for the iteration of both programs we used the values ε1 = 10−4 and ε2 =
10−8, which define the maximum bounds from the optimal solution, respectively. matlab
computed for the location problem (primal) an optimal location at x = (−0.5, 2.2878)T

with

z1 = (5.9851, 5.9851)T , z2 = (−3.3359, 3.0337)T , z3 = (−3.7516,−2.7122)T ,

z4 = (7.7122,−7.7122)T , z5 = (−3.4694,−3.4402)T ,

(α1, . . . ., α5)
T = (5.5149, 7.6765, 7.7484, 3.7878, 7.6526)T

(β1, . . . , β5)
T = (5.9851, 3.8235, 3.7516, 7.7122, 3.8474)T ,

where the optimal objective value was v(PγG , T ) = 11.5. Note that the optimal solution of
the location problem is not unique and may differ for each chosen step size and starting point.

For the dual problem the following optimal solution was computed w∗
1 = w∗

2 = w∗
5 =

(0, 0)T ,w∗
3 = (−0.5, 0)T andw∗

4 = (0.5, 0)T with the objective function value v(DγG , T ) =
11.5, i.e. v(PγG , T ) = v(DγG , T ). Note that, similar to Remark 3.16, one can understand the
vectorsw∗

i , i = 1, . . . , n, as force vectors fulfilling the optimality conditions of Theorem 3.4
and increasing the maximum norm balls centered at the given points and the Euclidean
norm balls centered at x until their intersection is non-empty. Especially, it follows from
the optimality conditions (iv) and (vi) that an index i belongs to the optimal index set I ,
if the value of the associated extended minimal time function T Ci

�i ,γGi
at x is equal to λ,

which is exactly the case when the corresponding vector w∗
i is unequal to the zero vector

(in our example I = {3, 4}, see Fig. 1). At this point it is also important to say, that for a
better visualization we multiplied the vectors, characterizing the optimal solution of the dual
problem, in all figures with the value 3.

One can note in Table 1 that the primal method needs less iterations, while the dual method
generates faster a solution which is within the maximum bound from the optimal solution.
By using the formula from Remark 3.6, the optimal location can be determined immediately:

x = 1

0.5 + 0.5

(
0.5 · (11, 5)T + 0.5 · (−12, 10)T

)
= (−0.5, 7.5)T .

We also considered primal and dual problems defined by 20 given points. The computational
information can be seen in Table 2 and draws a similar picture as in the previous situation.
If we increase the accuracy to ε2 = 10−8 the dual method is faster than the primal method,
which could be especially a benefit for location problemswith a large number of given points.
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Fig. 1 Visualization of the optimal solutions of the location problem (PγG , T ) and its dual problem (DγG , T )

Table 2 Performance evaluation for 20 points in R2

ε1 = 10−4 ε2 = 10−8

Primal (ν = 6) Dual (ν = 0.08) Primal (ν = 6) Dual (ν = 0.08)

CPU time (s) 6.6447 12.6774 85.0740 68.3818

Number of iterations 3802 13,155 29,334 36,604

The second scenario of our numerical approach relies on the location problems discussed
in Sect. 3.3. In this situation the location problem can be rewritten as follows

(PT ) min
x∈Rd

max
1≤i≤n

{
T Ci

�i ,δLi
(x)
}

= min
t≥0, x∈H,

min
yi ∈�i , zi ∈Li

{
γCi (x−yi −zi )

}≤t,

i=1,...,n

t = min
t≥0, x∈Rd , yi ∈�i , zi ∈Li ,

(x−yi −zi ,t)∈epi γCi , i=1,...,n

t = min
t≥0, x,yi ,zi ∈Rd ,

i=1,...,n

{
t +

n∑
i=1

[
δepi γCi

(x − yi − zi , t) + δ�i (yi ) + δLi (zi )
]}

,

where Ci , Li ⊆ R
d are closed and convex sets with 0Rd ∈ int Ci and �i ⊆ R

d are convex
and compact sets, i = 1, . . . , n, and likewise one gets for its dual problem

(D̃T ) max
y∗

i ∈Rd , i=1,...,n,
n∑

i=1
γ

C0
i
(y∗

i )≤1,
n∑

i=1
y∗

i =0
Rd

{
−

n∑
i=1

[
σLi

(
y∗

i

)+ σ�i

(
y∗

i

)]}

= − min
y∗

i ∈Rd , i=1,...,n

{
n∑

i=1

[
σLi

(
y∗

i

)+ σ�i

(
y∗

i

)]+ δF (y∗
i ) + δE (y∗

i )

}
,
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Table 3 Performance evaluation for 7 points in R
2

ε1 = 10−4 ε2 = 10−8

Primal (ν = 39) Dual (ν = 0.11) Primal (ν = 39) Dual (ν = 0.11)

CPU time (s) 0.3786 0.1174 0.7640 0.2973

Number of iterations 541 330 1106 830

where y∗ = (y∗
1 , . . . , y∗

n ), E = {y∗ ∈ R
d × . . . × R

d : ∑n
i=1 y∗

i = 0Rd } and F = {y∗ ∈
R

d × . . . × R
d : ∑n

i=1 γC0
i
(y∗

i ) ≤ 1}. The nonnegativity constraint of (PT ) can be omitted
because it is implicitly contained in some indicator functions from the objective functions
and one can then verify that the hypotheses of Theorem 4.1 are fulfilled.

Example 4.2 Let d = 2, p1 = (−8, 8)T , p2 = (−7, 0)T , p3 = (−4,−1)T , p4 =
(2, 0)T , p5 = (2,−6)T , p6 = (7, 1)T , p7 = (6, 5)T , a1 = 1, a2 = 2, a3 = 3, a4 =
0.5, a5 = 2, a6 = 1, a7 = 1, b1 = 0.5, b2 = 2, b3 = 0.6, b4 = 1, b5 = 1.5, b6 =
1, b7 = 0.5, �i = {x ∈ R

2 : ‖x − pi‖∞ ≤ ai }, Li = {x ∈ R
2 : ‖x‖ ≤ bi } and γCi = ‖ · ‖,

i = 1, . . . , 7. Note that in this case σLi = ‖ · ‖ and σ�i = ‖ · ‖1, i = 1, . . . , 7. Using the
formulae given in [28, Corollary 2.3], [28, Corollary 2.1] and [28, Lemma 1.1] to compute the
proximal and projection points regarding the location problem and its dual, we tested various
step sizes ν, where the starting point was always the origin and the initialization parameters
were set to the value 1. The best performance results are presented in Table 3 and visualized in
Fig. 2 (note, that for a better visualization we multiplied the vectors, characterizing the opti-
mal solution of the dual problem, with the value 3). The cancellation criterion for ending the
iteration for both programs were the values ε1 = 10−4 and ε2 = 10−8, the maximum bounds
from the optimal solution. The optimal location we obtained is x = (−1.0765, 3.7039)T and
the optimal objective value is v(PT ) = 6.2788. Let us remark that the optimal solution of the
location problem is not unique and may differ for each chosen step size. The optimal solution
of the dual problem was found at y∗

1 = (0.4072,−0.2266)T , y∗
2 = y∗

3 = y∗
4 = (0, 0)T ,

y∗
5 = (−0.0186, 0.1330)T , y∗

6 = (−0.3886, 0.0936)T and y∗
7 = (0, 0)T , while the objective

function value was v(D̃T ) = 6.2788, which means that v(PT ) = v(D̃T ). In Table 3 one
can note that the dual method needed less CPU time as well as fewer iterations to determine
a solution which is within the maximum bound from the optimal solution compared to the
methodwhich solves the location problem directly. The optimal location can be reconstructed
by using the formulae given in Remark 3.15.

Setting Li = {0Rd }, i = 1, . . . , n, we were able to compare our two methods with the
one presented in [17, Theorem 4.1] (or [13, Theorem 4.69]) that employs the subgradient
method for solving the following generalized Sylvester problem

(PT ) min
x∈Rd

max
1≤i≤n

{
T Ci

�i ,δ{0
Rd }(x)

}
= min

t≥0, x,yi ∈Rd ,
i=1,...,n

{
t +

n∑
i=1

[
δepi γCi

(x − yi , t) + δ�i (yi )
]}

.

The corresponding dual problem looks then as follows

(D̃T ) max
y∗

i ∈Rd , i=1,...,n,
n∑

i=1
γ

C0
i
(y∗

i )≤1,
n∑

i=1
y∗

i =0
Rd

{
−

n∑
i=1

σ�i

(
y∗

i

)}
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Fig. 2 Visualization of the optimal solutions of the location problem (PT ) and its dual problem (D̃T )

= − min
y∗

i ∈Rd ,

i=1,...,n

{
n∑

i=1

σ�i

(
y∗)+ δF (y∗) + δE (y∗)

}
.

Theorem 4.2 (cf. [13, Theorem 4.69]) Let H = R
m, fix x1 ∈ R

m and define the sequences
of iterates by

xk+1 := xk − αkvk, k ∈ N,

where {αk} are positive numbers, and where

vk ∈
{

{0Rm }, if xk ∈ �i + Li ,

[ − ∂‖ · ‖(wk − xk)] ∩ N�i +Li (wk), if xk /∈ �i + Li ,

wherewk = P�i +Li (xk) for some i ∈ I =
{

j = 1, . . . , n : T C j
� j ,δL j

(x) = max
1≤l≤n

{
T Cl

�l ,δLl
(x)
}}

.

Define the value sequence

Vk := min

{
max
1≤l≤n

{
T Cl

�l ,δLl
(x)
}}

.

If the sequence {αk} satisfies
∑∞

k=1 αk = ∞ and
∑∞

k=1 α2
k < ∞, then {Vk} converges to the

optimal value V and {xk} converges to an optimal solution x to the problem (PT ).

Example 4.3 (cf. [17, Example 4.3]) Let d = 2, p1 = (−8, 8)T , p2 = (−7, 0)T , p3 =
(−4,−1)T , p4 = (2, 0)T , p5 = (2,−6)T , p6 = (7, 1)T , p7 = (6, 5)T , a1 = 1, a2 =
2, a3 = 3, a4 = 0.5, a5 = 2, a6 = 1, a7 = 1, �i = {x ∈ R

2 : ‖x − pi‖∞ ≤ ai }, Li =
{0R2}, γCi = ‖ · ‖, i = 1, . . . , 7. We tested the subgradient method for the sequence
αk1 = 1/k, which also was used in [17], as well as for the sequence αk1 = 1/

√
k + 1

(see [20, Section 3.2.3]). Note that the subgradient method is simple to implement and
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can be employed for solving minmax location problems generated by various norms and
generalized distances. The algorithms considered in this paper seem at the first look to be
more complicated, also due to the necessity of determining some epigraphical projections,
however, as seen below, theywork faster and cheaper, and, taking for instance the results from
Sect. 3, they can be employed for solving minmax location problems generated by various
norms and generalized distances as well.

For our numerical experiments we again used for all programs as starting point the origin
and for the cancellation criterion for ending the iteration the values ε1 = 10−4 and ε2 = 10−8.
Especially, we set again in the parallel splitting algorithms the initialization parameters to
the value 1 and tested these methods for various step sizes ν. The best performance results
were reached for the step sizes ν = 24 and ν = 0.076 for the location problem (primal)
and its associated dual problem, respectively. The optimal location was found to be x =
(−1.0556, 3.0556)T and for the optimal objective value we got the value v(PT ) = 7.1340.
The optimal solution of the dual problemwas determined as y∗

1 = (0.3755,−0.2491)T , y∗
2 =

y∗
3 = y∗

4 = y∗
7 = (0, 0)T , y∗

5 = (−0.0295, 0.1974)T , y∗
6 = (−0.3459, 0.0518)T and the

objective value v(D̃T ) = 7.1340, i.e. v(PT ) = v(D̃T ) (see Fig. 3). As the Tables 4 and 5
demonstrate, the dual method performs once again very well, especially for the accuracy
ε2 = 10−8. While the subgradient method is the fastest one for the accuracy ε1 = 10−4 and
the sequence αk1 = 1/k, it has not reached the precision ε2 = 10−8 after passing 500,000
iterations.

In Tables 6 and 7 we present the computational results obtained while solving a location
problem defined by 50 points, where the dual method performs once again very well and
is faster as the primal method. For the sequence αk1 = 1/k the subgradient method has
not reached machine precision after passing 500,000 iterations, whereas the sequence αk2 =
1/

√
k + 1 performs surprisingly very well for ε2 = 10−8. Hence, for the accuracy ε2 = 10−8

the sequence αk2 = 1/
√

k + 1 is the optimal strategy for the subgradient method, as it also
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Fig. 3 Visualization of the optimal solutions of the location problem (PT ) and its dual problem (D̃T )
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Table 4 Performance evaluation for 7 points in R
2 with ε1 = 10−4

Primal (ν = 24) Dual (ν = 0.076) Subgrad. (αk1 ) Subgrad. (αk2 )

CPU time (s) 0.1904 0.0871 0.0416 1.2782

Number of iteration 399 181 918 70,752

Table 5 Performance evaluation for 7 points in R
2 with ε2 = 10−8

Primal (ν = 24) Dual (ν = 0.076) Subgrad. (αk1 ) Subgrad. (αk2 )

CPU time (s) 0.3377 0.1608 0.7016 –

Number of iterations 730 453 37,854 > 500,000

Table 6 Performance evaluation for 50 points in R2 with ε1 = 10−4

Primal (ν = 27) Dual (ν = 0.025) Subgrad. (αk1 ) Subgrad. (αk2 )

CPU time (s) 5.6477 0.4292 – 27.1555

Number of iterations 2421 735 > 500,000 383,782

Table 7 Performance evaluation for 50 points in R2 with ε2 = 10−8

Primal (ν = 27) Dual (ν = 0.0046) Subgrad. (αk1 ) Subgrad. (αk2 )

CPU time (s) 16.1011 3.6020 – 32.2530

Number of iterations 6983 7207 – 436,138

was shown in [20, Section 3.2.3] under the additional assumption that the objective function
is Lipschitz continuous.

In the next, we present an example in the three-dimensional space, where we compared
the two parallel splitting algorithms for the location problem and its dual, respectively.

Example 4.4 Let d = 3, p1 = (−8, 8, 8)T , p2 = (−7, 0, 0)T , p3 = (−4,−1, 1)T , p4 =
(2, 0, 2)T , p5 = (2,−6, 2)T , p6 = (7, 1, 1)T , p7 = (6, 5, 4)T , a1 = . . . = a7 =
0.5, �i = {x ∈ R

3 : ‖x − pi‖∞ ≤ ai }, Li = {0R3}, γCi = ‖ · ‖, i = 1, . . . , 7. For
the numerical tests we used here the same values for the initialization parameters, starting
point and stopping criterion for the iteration as in the previous example. The performance
results were determined for the step sizes ν = 10 and ν = 0.055 for the location problem
and its associated dual problem, respectively, and are presented in Table 8. The optimal
location was identified at x = (−1.4350, 2.2492, 4.5693)T and for the optimal objective
value we got the value v(PT ) = 8.5408. The optimal solution of the dual problem was
determined as y∗

1 = (0.3289,−0.2848,−0.1589)T , y∗
2 = y∗

3 = y∗
4 = y∗

7 = (0, 0, 0)T ,
y∗
5 = (−0.0997, 0.2632, 0.0703)T and y∗

6 = (−0.2292, 0.0216, 0.0887)T and the objective
value v(DT ) = 8.5408, i.e. v(PT ) = v(DT ) (see Fig. 4).

As one can notice in Table 8, the dual algorithm needs roughly half of the time and the
number of iterations needed by the primal one to solve the problem.
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Table 8 Performance evaluation for 7 points in R
3

ε1 = 10−4 ε2 = 10−8

Primal (ν = 10) Dual (ν = 0.055) Primal (ν = 10) Dual (ν = 0.055)

CPU time (s) 0.1871 0.0992 0.4234 0.2042

Number of iterations 357 192 955 523

Fig. 4 Visualization of the optimal solutions of the location problem (PT ) and its dual problem (D̃T )

We close this section by a comparison of the fastest method of the above considered
solving strategies, i.e. the dual method, and the one introduced in [1] regarding speed and
especially precision in high dimensions.

Example 4.5 We consider the location problem (PT ) as well as its associated dual one (D̃T )

in the setting where �i = {x ∈ R
d : ‖x − pi‖∞ ≤ ai }, Li = {0Rd } and γCi = ‖ · ‖,

i = 1, . . . , n, and compare the dual method with the numerical algorithm build on the log–
exponential smoothing technique and Nesterov’s accelerated gradient method (log–exp),
which was developed in [1] for solving generalized Sylvester problems of the kind of (PT ).

We implemented this algorithm in matlab and used for our numerical tests the same
settings as in [1, Remark 5.1] and [1, Example 6.4] (i.e. ε = 10−6, ε̃ = 10−5, p0 = 5 and
γ0 = 0.5). We considered four situations where the test results are printed in the Tables 9,
10, 11 and 12. Notice, that in all situations the starting point was the origin and the points
p1, . . . , pn were generated by the command randn, while the corresponding radii a1, . . . , an
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Table 9 Performance evaluation for 10 points in R10

Dual (ν = 0.1) log–exp (N = 35000, v(PT ) = 3.099896)

CPU time (s) 0.2889 55.4856

Number of iterations 1167 32,265

Objective function value 3.099896 3.099896

were given by rand. As mentioned, we are interested in an analysis regarding the precision
of these two methods in such a way that the calculated objective values are exact up to six
decimal places, which is especially important in the situation when these calculations are a
part of a larger problem where the aim is to reduce rounding errors.

So, to guarantee this desired precision in all four situations we tested the log–exponential
smoothing algorithm for various numbers of iterations N . For the scenario in Table 9 we
received a solution such that the objective value was exact up to six decimal places for
N = 35,000 and saved the calculated solution as the optimal solution x to (PT ), where the
corresponding objective value was v(PT ) = 3.099896. Then we ran the log–exponential
algorithm a second time and noticed the number of iterations, the time needed to generate
a solution which is within the maximum bound of 10−6 from the optimal solution x and
the associated objective value. Note that, if we reduce the number of iterations in the log–
exponential smoothing algorithm then the speed to generate a solution such that the objective
value is close to the optimal objective value increases, but the accuracy decreases, i.e. then the
algorithm fails to calculate a solution such that the objective value is exact up to six decimal
places. For the scenarios in the Tables 10, 11 and 12 we proceed in the same manner, where
the corresponding values for N , v(PT ) and CPU time are also presented.

For the dual method we set in all situations N to 100,000 and saved the determined
solutions for the second run, where then the number of iterations and the CPU time needed to
get a solution which is within the maximum bound of 10−6 were noticed. The corresponding
objective values of the dual problem were also recorded.

As you may see in the Tables 9, 10, 11 and 12 the dual method performs again very well
regarding speed and also precision in all four situations, which makes it a good candidate
not only for problems where precision is of great importance but also for problems in high
dimensions, that appear for instance in machine learning. Take also note, that if one has an
optimal solution to the dual problem, then the optimal solution to the primal one can be
reconstructed by using the formulae given in Remark 3.15.

Remark 4.1 The examples investigated in this section reveal that the origin seems to be a
good starting point for running the proposed splitting proximal point method on the dual
problem of a given nonlinear minmax location problem. This is actually not very surprising

Table 10 Performance evaluation for 50 points in R50

Dual (ν = 0.07) log–exp (N = 45000, v(PT ) = 6.066194)

CPU time (s) 7.6268 70.3653

Number of iterations 1956 44,173

Objective function value 6.066194 6.066195
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Table 11 Performance evaluation for 100 points in R
100

Dual (ν = 0.07) log–exp (N = 70000, v(PT ) = 9.700309)

CPU time (s) 104.5634 145.2422

Number of iterations 3003 69,163

Objective function value 9.700309 9.700310

Table 12 Performance evaluation for 100 points in R
1000

Dual (ν = 0.01) log–exp (N = 700000, v(PT ) = 29.528790)

CPU time (s) 5328.3671 7026.1593

Number of iterations 4017 691,412

Objective function value 29.528790 29.528791

when one analyzes the constraints of the dual problems that do not allow (all) the components
of the feasible dual solutions to wander far away from the origin.

5 Conclusions

We investigate nonlinear minmax location problems (that generalize the classical Sylvester
problem) formulated by means of an extended perturbed minimal time function introduced
in this paper as well. The motivation to study such problems is not only intrinsic but comes
from various areas of research and real life, such as geometry, physics, economics or health
management, applications from these fields beingmentioned in our paper as possible interpre-
tations of our results. A conjugate duality approach based on rewriting the original problems
as multi-composed optimization ones is considered, necessary and sufficient optimality con-
ditions being delivered together with characterizations of the optimal solutions in some
particular instances. A parallel splitting proximal point algorithm from [3] is then applied on
some concrete location problems and on their duals in matlab, delivering optimal solutions
to the considered optimization problem faster and with reduced costs than the existing meth-
ods in the literature. The tests show that employing the method on the dual is the fastest (and
usually also the cheapest) way to solve a given nonlinear minmax location problem. Worth
noticing is that this conclusion can be reached regardless of the magnitude of the considered
data sets and of the dimension of the involved vectors, suggesting possible employment of the
considered method for solving big data problems arising, for instance, in machine learning,
by means of support vector techniques. Another idea for future developments of this contri-
bution consists in employing other recent proximal splitting methods for solving nonlinear
minmax location problems.
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