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Abstract We provide a correction of the closed-form solutions for the multivariate
McCormick relaxations of the binary product provided by Tsoukalas and Mitsos (JOGO,
59:633-662, 2014). The original closed-form solution may provide a function that is a non-
convex relaxation or a convex function that is not a relaxation or a function that is neither
convex nor a valid relaxation in some special cases. We prove the validity of the new closed-
form solution.

In [1] Tsoukalas and Mitsos introduced the multivariate McCormick relaxations and in par-
ticular the multivariate McCormick relaxation of the binary product of functions. To provide
a better overview, in the following we only consider the convex relaxation in detail. All
results are analogously applicable to the concave relaxation for which we directly provide
the closed-form solution. We adopt all assumptions made in [1]. The convex relaxation of
g (@) = mult (f1 @) f2@) = f1 @) f> (@) with fi : Z CR" — R s given by:

V@ = min max{H (x), Hx)}
xiel 1]
st fiY @ <x1 < fi° @) ey

£ @ <x2 < f5° @

The online version of the original article can be found under doi:10.1007/s10898-014-0176-0.

B Alexander Mitsos
amitsos @alum.mit.edu

RWTH Aachen University, AVT - Aachener Verfahrenstechnik, Process Systems Engineering,
Turmstrasse 46, 52056 Aachen, Germany

2 Olayan School of Business, American University of Beirut, Riad El-Solh Beirut 1107 2020, Lebanon

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-016-0470-0&domain=pdf
http://dx.doi.org/10.1007/s10898-014-0176-0

220 J Glob Optim (2017) 68:219-225

with
Hy (@) = fyxi+ flo = [l @ = fia+ - 171
The concave relaxation is given by:

g @ = max  min {fx+ e = 1t B+ flxe = 1 1)

Xi€lJiT T
st. {7 @) <x1 = f{° @) @

£P@ <x2 = f5°@

where fl.L, fiU denote bounds for f;, i.e., fl.L < fi@ =< fiU forallz € Z and f£?, f¢ are
convex and concave relaxations of f;.
In [1] the authors also provide a closed-form solution for relaxation (1). The closed form

they provide for the convex relaxation is given by

K @+ fmid (5% @, f5° @), kf(* @ + &) = f7f7,

TN L @+ flEmid (f8 @), £ @), kfE @ + ) — fEfE J ’
K@+ mid (f5° @, f5° @, cfi @ +¢) = /{1

TN L e @+ flmid (£ @), @), kffS @ +¢) — fEFE [

gz;)d(z) = min fomid ( lcv @, fl(‘c @), fzcu(:)7() + f]U fzcv () — flUfZU’ (3)

max CU (Y s
frmid (£ @ fi @ 22 4 fE gt @ - fE gt
fmid (15 @ £ @, E22) + 1V fse @ - U Y

max L, cv cc fza(z)*f L rcc L oL
frmid (7 @, i @, Z2E) 4l pse @ — £ 1

with

= f= 1 ‘= r _f1Lf2L.
= =t

In the following, we show that the closed-form solution (3) is not always correct. More
specifically, in some special cases it is neither convex nor a valid relaxation, see Fig. 1, and
sometimes it is convex but not a relaxation, see Fig. 2. We give a simple counter example for
each case and discuss the issue. Subsequently, we provide a corrected closed-form solution
for the multivariate McCormick binary product of functions.

Example 1 Consider g (z) = mult (f1 (2), f2(z)) with f1(z) = (z+ 1)2 and f> (2)
= (z—1)°%+1o0n Z = [0, 1]. We use exact bounds for f1, f> given by f]L =1, f]U =4,
fZL =1, fo = 2. We use envelopes for the relaxations of fi, f> given by:

@) =@+ 17, fE () =1+ 3z,
Fl@=c-D+1, ff@=2-z
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Fig. 1 The old wrong closed form gf)l”d (3) gives a function that is neither convex nor a valid relaxation.
The new correct formula g52,, (5) provides the desired convex relaxation for g (z) = exp (z) - exp (z) on
Z = [0, 1]. Note that gg;’d is plotted only over Z = [0, 0.7] to make the issues more visible
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Fig. 2 The old wrong closed form g(‘;[”d (3) gives a convex but not valid relaxation, while the new correct

formula g5Y,, (5) provides the convex relaxation for g (z) = (z + 1)2 ((z - l)6 + 1) on Z =[0,1]

When we evaluate (3), we get k = —%, .= % and see that g/, (z) is given by

fmid (18 @, £ @, ) 4 pV g @ — U AL

fhmid (77 @, i @, BEE) 4 plp5 @) — S
2mid (f°(2), f£€(2), T =35 (2)) + 450 (2) — &

- [ mid (F° (), £, T =38 (D) + £ () — 1 }

= mid (f{* (@), f{° (2,7 =3f" @) + f5° () - 1

=@+ @) — 1
=@-D+3z+1 4

8ola () = max

As can be seen in Fig. 2, the resulting function g;}; is convex but not a relaxation of g.

We now discuss what causes the mistake and give a correct closed-form solution for (1).
The envelope of the binary product in Example 1 is constructed over the exact bounds of fi, f>
givenby X = [ ff, V'] x [f¥. f¥] and s strictly monotonically increasing over X with its
minimum in the corner point (£, f). The minimum of the envelope over the box given by
[ff” i (z)] X [fzc” (@, 3¢ (z)fis then attained in the corner point (ff” (), f3° (z)).
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Formula (3) falsely gives the corner point ( i@, 5 (z)) as the solution of formulation
(1) because it holds that

mid (ff” @, F< (), L i ) — fE(2) over Z = [0, 1].

Note that similar examples can be constructed where (3) excludes the optimal corner
(ffc @, f;¢ (z)) for the convex relaxation and the corners (ff” @), f5°¢ (z)), (flcc ),
£ (z)) for the concave relaxation. In the proof of Lemma 1, it becomes clear why

the corners (¥ @), f5° @), (f° @), f5" (z)) cannot be excluded by the mid (...) term
when computing the convex relaxation. The same argumentation applies to the corners

( P @, f° (z)) , ( fiC @, f5° (z)) when regarding the concave relaxation.

To avoid the exclusions described above, we correct the current closed-form solutions by
explicitly adding the two corners that can be excluded by the mid (...) terms in the case of
a monotonic envelope of the binary product. We add ( L@, f5° (z)), ( @, ¢ (z))
to the closed form of the multivariate convex relaxation and we add the corners
(ff @), f5° @), (f{° @), f5¥ (2)) to the closed form of the multivariate concave relax-
ation. The new closed-form solutions for the multivariate McCormick relaxations of the
binary product of functions are then given by

I @+ fimid (f5 @), f5° @), kff" @ +¢) — fEfF
B @+ flmid (f5° @), f5° @, kffC @ +¢) = U f)
@+ fimid (f5° @), f5° @), kff° @ +¢) = fLfY
fmid (£ @ fC @, B22E) 4 pU psv @ - LAY
fZ"("“ + A @ = fEpE

+ 1@ = U 1Y
+fEfC@— fE

' @+ fVmid (£5° @), 5 @) . kff @ +¢) — V£,

I mld f @, fi°@,

cv - 1 ' 5
Snew (&) = min 'fz mid (i @, f° @, L9 ©

)
)
fhmid (1 @ £ @), f“” %)
fzf @+ 15 @ — A

@+ 1 @ - S ]
f2 f“ @+ 1715 @ = A

(z)+f1f”(z) rt it l

with
Sl S o S I
L=k L - rE

’
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and
[ A @+ fmid (5 @ 5 @ k@ +0) = fUS
Y LY e @) 4 flmid (£ @), 5@, kf0 @ +¢) — fEY |
(Y@, 5@, «ffS@+¢) — fYfE,
(fs ) =

@+ fUmid
@+ fEmid (£ @), 5@, kff<@+¢) — fEfY

fhmid (10 @, £ @, %)-i‘fl[]fzw @ — Uk
fmid (f7 @, fi° @, BE) + fl g5 @ - fE Y
frmid (£ @, 1 @ ) 4V pse @ — S A
| Amia (1 @, i€ @ B2E) + s @ A
i@+ 1Y 15 @ = Uk

K@+ s @- l

L@+ @— U 1y

R+ /5 @- ]

min

min

(6)

g;iw (z) = max

min

min

with
N E R L i et I
L=t L - rE

Lemma 1 shows that formulas (5) and (6) are correct.

Lemma 1 The closed-form solution for gV (z) given by (1) is given by (5) and the closed-
Sform solution for g¢ (z) given by (2) is given by (6).

Proof We prove validity of the convex formula (5). The proof for the validity of (6) is
analogous.

Problem (1) minimizes max {H; (x), H> (x)} over the two-dimensional box
B = [f{'@. @] x [f5* @), f5° @] Let x* denote an optimal solution point of
problem (1), which by compactness exists. If it holds that H; (x*) # H (x*), then (1) is
equivalent to minimizing the appropriate H; (x) over B, where j is determined by

je arg max, H; (x™). @)

With j determined by (7), problem (1) reduces to a linear program. Indeed, there exists a
neighborhood of x*, A" (x* &), such that H; (x) = max {H; (x), H (x)} forallx € N (x* ¢),
yielding

Hi(x*)= min H;(x)=minH; (x),
j( ) XeBNN (x*¢) j() xeB ]()

where the second equality follows from convexity of H;.
Therefore, a solution of (1) has to lie at one of the corners of B, given by the set
= (DL, UL, DR, UR}, with

DL = (f{* @), f5' @), UL= (f{"@). fs° ),
R = (f{“@.f5" @), U —(fl @, f5° @)
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Fig. 3 Four possible cases of N/ # ). The box B is given by the four corners {DL, UL, DR, UR} and the two

additional points emerge from the intersection with /. In each case the six corners are elements of P=BNP.I
is represented by the dashed line

If, on the contrary, H; (x*) = Hj (x*), it follows that the intersection of B with the line
I = {x|xa = kx| + ¢}, with k and ¢ defined in (5), is non-empty and that (1) is equivalent
to minimizing H; (x) over B N /. Indeed,

mmH x>minH x>H X
I 1()_ 1()_ 1( )
and

in H) (x) < mi H (x), H = H (x*),
min H) (¥) < min max{f (), H (x)} 1 (x)

yielding minyepn; Hi (x) = Hj (x*). B N [ is the non-empty intersection of a line with a
box and is either a point or a line segment. Therefore, also in this case, (1) is equivalent
to a linear program with an optimal solution at the edge of the (potentially degenerate)
intersection B N /. The intersection of / with the lines defining the box B, see Fig. 3, give
the set I = {IL, IR, ID, IU} of candidate points for an optimal solution, with

IL = (f" @.kff" @ +¢), IR = (f @, Kf“(Z)+§)
ID:(f (z)—g“fzw(z))’wz(f D=6 )

It follows that the union P = B U /¢, always includes an optimal solution to problem (1),
which can be reformulated as

min max {H; (x), H> (x)}.
xeBNP

By definition we have B¢ C B. Furthermore, let M («, o2, @3) with o; € RZ be a mapping
that maps three collinear points to the middle one, and let

IL = M(DL,UL,IL), IR =M (DR,UR, IR),
[D =M (DL,DR,ID), [U =M UL,UR,IU).

Note that, although the domain of M (o, az, @3) is R2, it can be expressed by the one
dimensional mid (...) term, but we still introduce M (...) to avoid confusion. With ic
= {ﬁ IR, ID, ﬁ]} and P = B° U [€, it is easy to see that P = B N P. Observe, for
example, that IL = IL if and only if /L € B; otherwise, it evaluates to DL or U L. There-
fore (1) is further equivalent to

minmax {H (x), H (x)}.

xeP

@ Springer



J Glob Optim (2017) 68:219-225 225

This is a closed-form solution. It remains to show that we can drop UL and DR from P,
obtaining the proposed corrected formula (5), without affecting the result.

We show it for the corner U L, the proof for DR is analogous. We argue that U L is given
either by M (UL, UR, IU) or M (DL, UL, IL). Assume to the contrary that /U is to the right
of UL and IL is below UL. That is, assume that % > ' @andkf{’ @)+¢ < f5°@).
This would imply that /U is to the right and above /L and that the line /, passing from /U
to I L has positive slope, contradicting ¥ < 0. d

Note that formula (3) in [1], in addition to U L and DR, also incorrectly dropped DL and
UR.

Consider Example 1 again, with the correct closed form (5). We obtain the correct relax-
ation shown in Fig. 2.
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