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Abstract Global optimization problems with limited structure (e.g., convexity or differen-
tiability of the objective function) can arise in many fields. One approach to solving these
problems is by modeling the evolution of a probability density function over the solution
space, similar to the Fokker–Planck equation for diffusions, such that at each time instant,
additional weight is given to better solutions. We propose an addition to the class of model-
based methods, cumulative weighting optimization (CWO), whose general version can be
proven convergent to an optimal solution and stable under disturbances (e.g., floating point
inaccuracy). These properties encourage us to design a class of CWO algorithms for solving
global optimization problems. Beyond the general convergence and stability analysis, we
prove that with some additional assumptions the Monte Carlo version of the CWO algorithm
is also convergent and stable. Interestingly, the well known cross-entropy method is a CWO
algorithm.

Keywords Stochastic optimization · Cumulative weighting · Convergence

1 Introduction

Many questions in engineering and science can be formulated as optimizing over an objec-
tive function. When the objective function is differentiable, its derivative has explicit form,
and has few finite local extrema, the problem is highly tractable—the first-order necessary
condition generates a set of candidate solutions, the greatest of which is an optimal solution.
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On the other hand, objective functions absent any structural information can be challeng-
ing to solve analytically. Approaches developed to solve these problems numerically can
be divided into two categories: deterministic and random search. Random search is further
divided into instance-based (e.g., simulated annealing, genetic algorithm, tabu search, nested
partitions, generalized hill climbing, and evolutionary programming) and model-based algo-
rithms [e.g., annealing-adaptive search (AAS), cross-entropy (CE), model reference adaptive
search (MRAS), and estimation of distribution algorithms (EDAs)]. For the interested reader,
Hu et al. [1] have a recent survey paper on model-based methods, which also contains refer-
ences to instance-based methods mentioned in this paragraph.

The cumulative weighting optimization (CWO) method extends the class of model-based
methods by introducing an alternative weight-update equation. The weight-update equation
is important for model-based methods, as it decides the search direction for the next time
step. Our equation is inspired by Cumulative Prospect Theory (CPT) and has an intuitive
connection with the risk-sensitive nature of the human decision making process. The new
equation can be proven to converge to solutions of optimization problems when it can be
solved analytically. Interestingly, the well known cross-entropy method is a special case of
the CWO method. We also provide a convergence result when an analytical solution cannot
be obtained and the problem requires an approximate solution. The approximate version, later
referred to as the Monte Carlo version, will first project the underlying distribution onto a
family of easy-to-sample from distributions and then sample from the projected distribution.
The techniques used in the convergence analysis of the Monte Carlo version will follow the
work of Hu et al. [2] with two major differences: the class of functions considered and the
mean vector equation.

Moving from theory to implementation, this paper proceeds as follows: Section 2 presents
the problem statement. Section 3 introduces the concept of probability weighting functions.
In Sect. 4, rigorous convergence and stability analyses on both the general and Monte Carlo
versions of the CWOmethod are presented. In this section, we provide additional analysis for
the case when the optimizers are isolated and the family of distributions used has continuous
density, due to the additional assumptions required. Finally, Sect. 5 describes a few CWO
numerical algorithms and tabulates their simulation results.

2 Problem

In many engineering applications, we seek a best solution based on an objective function.
For example, in the well known traveling salesman problem (TSP), we are looking for the
cheapest route that visits all cities and terminates at the starting point. Problems of this nature
can be formulated as the following optimization problem:

x∗ ∈ argmax
x∈X H (x) , (1)

where x∗ is an optimal solution to the problem and X is a compact subset of Rn (the n-
dimension real space). H : X �→ R, the objective function, is a bounded deterministic
measurable function possibly with multiple local extrema. The set of optimizers for Eq. (1)
is denoted by X∗ := {x∗ ∈ X|H (x) ≤ H (x∗) , ∀x ∈ X}. The following assumption holds
throughout this paper.

Assumption 1 There exists a global optimal solution to Eq. (1), i.e., X∗ is nonempty.
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In practice, this assumption is true for many optimization problems. For example, the
assumption holds trivially when H is continuous. In general, the objective function lacks
properties such as convexity and differentiability. Let the set of non-negative reals be denoted
by R+. Common in many situations, a measurable strictly increasing fitness function, φ :
R �→ R+, is introduced to reformulate Eq. (1) as: x∗ ∈ argmaxx∈X φ (H (x)) . A similar
fitness function modified problem statement can be found in Hu et al. [1].

Remark 1 Since the reformulated problem guarantees the range of the new fitness-objective
function [i.e., φ (H(·))] is non-negative, and it has the same optimizers as the original
problem; we will only need to consider the case when H is non-negative in Eq. (1), i.e.,
H : X �→ R+.

3 Probability weighting functions

Probability weighting functions have many applications in science and engineering. Kahne-
man and Tversky [3] proposed the original Prospect Theory (PT) in the 1970s, which has
probabilistic weighting as one of its main features. They were unsatisfied with PT due to its
violation of stochastic dominance, and thus suggested CPT in the 1990s [4]. CPT improves
PT by re-weighting outcome cumulative distribution functions (CDFs) instead of outcome
probability density functions (PDFs). An example of weighting functions used by CPT is
w (p) := pγ

(pγ +(1−p)γ )1/γ
, γ ∈ (0, 1) , p ∈ [0, 1] , which can be applied to a CDF or a

complementary CDF. Their definition is presented below.

Definition 1 A weighting function, w : [0, 1] �→ [0, 1], is a monotonically non-decreasing
and Lipschitz continuous function with w(0) = 0 and w(1) = 1.

There are a few well-known weighting functions: 1) a simple polynomial weighting function
has the form: w (p) = 1 − (1 − p)b , b > 1; 2) a more complicated weighting function

involving exponentials has the form: w(p) = ecp − 1

ec − 1
, where c < 0. Other parametric

weighting functions can be found in [5].
In later sections, weighting functions are used in models to update a PDF over the solution

space; hence,we are interested inweighting functionswith the additional property of optimal-
seeking; this is important for guaranteeing CWO’s convergence to optimality.

Definition 2 A weighting function, w : [0, 1] �→ [0, 1], is optimal-seeking if

w (αx + (1 − α) y) > αw (x) + (1 − α) w(y), ∀α ∈ (0, 1), x �= y, x, y ∈ [0, 1].
Proposition 1 An optimal-seeking weighting function satisfies the inequality w(p) >

p, ∀p ∈ (0, 1) .

Proof If we let x = 1 and y = 0, we have

w (α) > αw (1) , ∀α ∈ (0, 1),

by Definition 2. By applying equations α = p and w (1) = 1, the proof follows trivially.
Optimal-seeking is called risk-seeking in fields that model risk-sensitivity. In this paper,

we only consider optimal-seeking weighting functions. 	

Assumption 2 w is an optimal-seeking weighting function.
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In its historical application, an optimal-seeking weighting function places more weight on
highly rewarding outcomes. In particular, it is used to overweight the probabilities of unlikely
events and underweight the probabilities of highly likely events. In our context, the optimal-
seeking property of the weighting function is used to place more weight on higher ranked
or more desirable outcomes. In the example below, we apply an optimal-seeking weighting
function to a complementary CDF.

Example 1 Adie is rolled and the player receives a payoff that is equivalent to the outcome of
the roll. For example, if the player rolled a 1, then he/she is given a $1 reward. The expected
payoffs for both the risk-neutral and optimal-seeking cases are calculated below assuming
the die is fair. The outcome of the roll is a random variable denoted by R.

The risk-neutral expected payoff is calculated as: E [R] = ∑6
n=1 (1 − F (n)) =

∑6
n=1

n
6 = 21

6
≈ 3.5, where F (n) is the CDF evaluated at outcome n. Using the weighting

function w (p) = 1 − (1 − p)2 , the corresponding optimal-seeking re-weighted expected
payoff is: Ew [R] = ∑6

n=1 w (1 − F (n)) = ∑6
n=1 w

( n
6

) = ∑6
n=1 1 − (

1 − n
6

)2 = 161
36 ≈

4.47222.

Remark 2 The reader should observe the fact that the optimal-seeking re-weighted expected
payoff is greater than that of the risk-neutral, which will be key in proving the convergence
of the CWO method.

4 Convergence and stability analysis

Convergence and stability are two desirable properties for any global optimization method.
In particular, we would like to provide a theoretical guarantee that the CWO method will
converge to an optimal solution and remain there under “reasonable” disturbances. These
properties will be proven true for both the general and Monte Carlo versions of the CWO
method in this section, with each version explained in detail in a subsection. We highlight
the case of isolated optimizers in this section due to the additional assumptions, and a slight
modification of the standard approach is required.

4.1 General theory

The best way to gain some intuition for the CWO method is to understand the finite solution
space case. To make the idea concrete, let X in Eq. (1) be the set {1, . . . , N } . In this case,
Assumption 1 is trivially satisfied and Assumption 2 is always true in our analysis. Let Px

denote the set of probability mass functions (PMFs) overX, and the set of PMFs exclusively
supported on optimal solutions is denoted by PX∗ := {

P ∈ Px |∑x∈X∗ P (x) = 1
}
. Since

any element ofPX∗ has positiveweight assigned to optimal solutions and zeroweight assigned
to non-optimal solutions, it follows that finding an element of PX∗ solves Eq. (1).

As alluded to earlier, finite solution space model-based methods iterate on a PMF so that it
will eventually concentrate its mass on optimal solutions. Let Pt denote a PMF overX at time
t , i.e., Pt ∈ Px ; then solving Eq. (1) is equivalent to finding an algorithm that can update Pt
iteratively such that Pt ∈ PX∗ , ∀t > τ ∈ (0,∞) . If P0 has a positive mass on at least one of
the optimal solutions, i.e., P0 (X∗) > 0, then one way of insuring Pt eventually reaches PX∗
is by using an optimal-seeking weighting function. The idea can be better demonstrated by
introducing a step size variable Δ. Let the set-valued map M : X �→ 2X return all elements
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in the solution space with the same outcome, i.e., M (x) := {ξ ∈ X|H (ξ) = H (x)} ; then
Pt can be updated according to the following equation:

Pt+Δ (x) = βt (x)

⎛

⎝w

⎛

⎝
∑

ξ∈X:H(ξ)≥H(x)

Pt (ξ)

⎞

⎠ − w

⎛

⎝
∑

ξ∈X:H(ξ)>H(x)

Pt (ξ)

⎞

⎠

⎞

⎠Δ

+ (1 − Δ)Pt (x) , (2)

where
∑

ξ∈M(x) βt (ξ) = 1, ∀x ∈ X, and w is an optimal-seeking weighting function. In
Eq. (2), the difference between the first w distorted term and the second w distorted term is
the set {ξ ∈ X|H (ξ) = H (x)} . In the finite solution space case, we can verify that Pt+Δ is
indeed a probability measure by summing over X, i.e.,

∑
x∈X Pt+Δ (x), and checking that

the sum is 1. Since for each x ∈ X, the negative term in Eq. (2) cancels out with a positive
term in the summation except forw (1) = 1, it is verified that

∑
x∈X Pt+Δ (x) = 1 and Pt+Δ

is a probability measure.
When Δ = 1, we obtain a simpler equation evolving on t = {0, 1, 2, . . . }:

Pt+1 (x) = βt (x)

⎛

⎝w

⎛

⎝
∑

ξ∈X:H(ξ)≥H(x)

Pt (ξ)

⎞

⎠ − w

⎛

⎝
∑

ξ∈X:H(ξ)>H(x)

Pt (ξ)

⎞

⎠

⎞

⎠, (3)

where time t can be treated as the iteration count.
Similar to the observation in Remark 2, it will be shown later in the paper that

Et [H ] :=
∑

x∈X
H (x) Pt (x) ≤

∑

x∈X
H(x)Pt+1 (x) = Et+1 [H ] , (4)

where the equality is achieved onlywhen Pt ∈ PX∗ and H is treated as a random variable. The
following example illustrates in continuous-time the point that Et [H ] is strictly increasing
in t unless Pt reaches PX∗ .

Example 2 Let X be the finite solution space [1, 2, 3, 4] and pick any optimal-seeking prob-
ability weighting function w. We assume that H(4) = H(3) > H(2) > H(1) ≥ 0. The
continuous-time analogue of Eq. (2) for this example is written as

dPt (1)

dt
= (w [1] − w [Pt (2) + Pt (3) + Pt (4)]) − Pt (1)

dPt (2)

dt
= (w [Pt (2) + Pt (3) + Pt (4)] − w [Pt (3) + Pt (4)]) − Pt (2)

dPt (3)

dt
= βw [Pt (3) + Pt (4)] − Pt (3)

dPt (4)

dt
= (1 − β)w [Pt (3) + Pt (4)] − Pt (4) , β ∈ [0, 1] .

From Proposition 1, we know that w(p) > p, ∀p ∈ (0, 1), which implies dPt (3)
dt + dPt (4)

dt >

0, ∀Pt (3) + Pt (4) ∈ (0, 1) and dPt (3)
dt + dPt (4)

dt = 0, if Pt (3) + Pt (4) ∈ {0, 1} .

The weight on the optimal solutions for this example (i.e., the mass on X∗ = {3, 4})
monotonically increases and asymptotically approaches the set PX∗ . Since the weight on the
optimal solutions is increasing and the total weight has to sum to one, the weight on the
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non-optimal solutions approaches zero, i.e.,
⎡

⎢
⎢
⎣

Pt (1)
Pt (2)
Pt (3)
Pt (4)

⎤

⎥
⎥
⎦ �⇒

t→∞

⎡

⎢
⎢
⎣

0
0
α3

α4

⎤

⎥
⎥
⎦ , α3, α4 > 0, α3 + α4 = 1.

Remark 3 Since the weight on optimal solutions monotonically increases and approaches 1,
it follows that the corresponding re-weighted expected payoff is monotonically increasing in
t until optimality.

Thus, the CWOmethod updates Pt iteratively, so that Pt approaches PX∗ asymptotically. The
limit of Pt as t → ∞ only has weight on optimal solutions; hence, optimal solutions can be
inferred from it.

The finite solution space case offers themost intuition; however, to apply theCWOmethod
to a wide variety of problems, we will need to work with more general solution spaces. In the
rest of this section, Eq. (1) is solved given that X is a compact subset of a finite-dimensional
vector space i.e.,Rn . Similar to the finite solution space case, the set of probability measures
defined on the Borel measurable space (X,B (X)) is denoted by Px , which has the Prohorov
topology. We reference [6] and [7] for technical details on the Prohorov topology. While the
following assumption is not strictly required for the CWO method, it is used in the analysis
for ease of notation.

Assumption 3 w is differentiable and has a bounded first derivative, which is denoted by
w′.

In general, boundedness of the sub-gradient should be sufficient for the application of the
CWO method.

At each time t, the push-forward measure of Pt through H in Eq. (1) is denoted by

PH
t (B) := Pt ◦ H−1 (B) , ∀B ∈ B

(
R+)

, (5)

where H−1 (B) is the preimage of B under H , andB
(
R+)

denotes the Borel σ -algebra for
R+. For the justification of usingR+ in Eq. (5), see Remark 1. Furthermore, H can be treated
as a random variable from (X,B (X)) to

(
R+,B

(
R+))

.
For any B ∈ B

(
R+)

and A ∈ B (X), the generalization of Eq. (2) to the continuous-time
solution space X is

Ṗ H
t (B) =

∫

B
w′ (PH

t ([y,∞))
)
PH
t (dy) − PH

t (B) (6)

Pt (A) =
∫

A
βt (x) P

H
t (H (dx)) , (7)

where
∫
M(x) βt (dξ) = 1, M (x) := {ξ ∈ X|H (ξ) = H (x)} , ∀x ∈ X; i.e., βt can be

viewed as a probability measure supported on all ξ ∈ X with the same H (x) value. Here,
Ṗ H
t (B) is interpreted as the time derivative of PH

t (B). Note that Eq. (7) says that given βt ,

Pt can be determined from PH
t , which is a solution of Eq. (6). Special attention is paid to

the equation governing the optimal solutions:

Ṗ H
t

(
y∗) = w

(
PH
t

(
y∗)) − PH

t

(
y∗) ,

where y∗ = maxx∈X H (x) .
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Wang [8] proposes an alternative set of evolution equations, also nonlinear Fokker–Planck
equations [9,10], motivated by evolutionary game theory. As the reader will see later, we
reach the same convergence results as Wang et al. [11] with a modified approach.

Similar to the finite solution space case, the set of probability measures exclusively sup-
ported on optimal solutions is denoted by PX∗ := {P ∈ Px |P (X∗) = 1} , where X∗ denotes
the set of optimal solutions, i.e., X∗ := {x∗ ∈ X|H(x) ≤ H(x∗), ∀x ∈ X} . The reader is
reminded that obtaining an element of PX∗ is equivalent to solving the optimization problem
stated in Eq. (1). The goal is to prove that Eqs. (6–7) update Pt such that Pt approaches PX∗
asymptotically. The first step is to prove the existence and uniqueness of a solution for Eq.
(6).

Theorem 1 For each P0 ∈ Px and its corresponding push-forward measure PH
0 , the ordi-

nary differential equation (6) has a unique solution for t ∈ R+.

Proof The outline of our proof follows [12] and [13]. The total variation norm on a σ -finite
signed measure P over

(
R+,B

(
R+))

at time t is denoted by:

‖P‖ = sup
g

∣
∣
∣
∣

∫

R+
g(y)P (dy)

∣
∣
∣
∣ ,

where the sup is taken over all measurable functions g : R+ → R and

sup
y∈R+

|g (y)| ≤ 1.

We simplify our notations by introducing the following shorthand:

C
(
PH
t

)
(B) :=

∫

B
w′ (PH

t ([y,∞))
)
PH
t (dy) − PH

t (B) ,

where B ∈ B
(
R+)

. Since PH
t is a probability measure on

(
R+,B

(
R+))

, we have

∥
∥
∥C

(
PH
t

)∥
∥
∥ = sup

g

∣
∣
∣
∣

∫

R+
g (y)C

(
PH
t

)
(dy)

∣
∣
∣
∣

≤ sup
g

∣
∣
∣
∣

∫

R+
g (y) w′ (PH

t ([y,∞))
)
PH
t (dy)

∣
∣
∣
∣ + sup

g

∣
∣
∣
∣

∫

R+
g (y) PH

t (dy)

∣
∣
∣
∣

≤
∫

R+
w′ (PH

t ([y,∞))
)
PH
t (dy) +

∫

R+
PH
t (dy)

≤ K
∫

R+
PH
t (dy) +

∫

R+
PH
t (dy)

≤ (K + 1) ,

where K is the Lipschitz constant for w. The inequality above proves the boundedness of
C

(
PH
t

)
.

Next, we need to prove that the right hand side of Eq. (6) is Lipschitz continuous. Letting
PH
t and QH

t denote two probability measures defined on
(
R+,B

(
R+))

, we know from the
definition of the norm that

∥
∥
∥C

(
PH
t

)
− C

(
QH

t

)∥
∥
∥ ≤ sup

g

∣
∣
∣
∣

∫

R+
g (y)

(
C

(
PH
t

)
− C

(
QH

t

))
(dy)

∣
∣
∣
∣ . (8)
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Furthermore, we have

∣
∣
∣C

(
PH
t

)
− C

(
QH

t

)∣
∣
∣ (B) =

∣
∣
∣
∣

(∫

B
w′ (PH

t ([y,∞))
)
PH
t (dy) − PH

t (B)

)

−
(∫

B
w′ (QH

t ([y,∞))
)
QH

t (dy) − QH
t (B)

)∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

B
w′ (PH

t ([y,∞))
)
PH
t (dy) −

∫

B
w′ (QH

t ([y,∞))
)
QH

t (dy)

∣
∣
∣
∣

+
∣
∣
∣PH

t (B) − QH
t (B)

∣
∣
∣ (9)

≤ K

∣
∣
∣
∣

∫

B

(
PH
t − QH

t

)
(dy)

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

B

(
PH
t − QH

t

)
(dy)

∣
∣
∣
∣

≤ (K + 1)

∣
∣
∣
∣

∫

B

(
PH
t − QH

t

)
(dy)

∣
∣
∣
∣ . (10)

By substituting Eq. (10) into Eq. (8), we have

∥
∥
∥C

(
PH
t

)
− C

(
QH

t

)∥
∥
∥ ≤ (K + 1) sup

g

∣
∣
∣
∣

∫

R+
g(y)

(
PH
t − QH

t

)
(dy)

∣
∣
∣
∣

= (K + 1)
∥
∥
∥PH

t − QH
t

∥
∥
∥ .

Hence, the right hand side of Eq. (6) is Lipschitz continuous in PH
t with the constant

K + 1. Using [14, Corollary3.9], we conclude that Eq. (6) with an initial measure PH
0 has a

unique solution. 	


Next, PH
t is proved to be a probability measure over

(
R+,B

(
R+))

for any t.

Lemma 1 Given that PH
0 is a probability measure, then a solution PH

t of Eq. (6) at each
time t > 0 is a probability measure, i.e.,

PH
t (B) ≥ 0, ∀B ∈ B

(
R+)

, PH
t

(
R+) = 1, ∀t ∈ R+, PH

t (∪i Bi ) =
∑

i

PH
t (Bi ) ,

where {Bi } is any countable collection of pairwise disjoint elements of B
(
R+)

.

Proof If we can prove that Ṗ H
t

(
R+) = 0 and Ṗ H

t (∪i Bi ) = ∑
i Ṗ

H
t (Bi ), then we have

obtained our desired result. Using Eq. (6), the fact that
∫ 1
0 w′ (s) ds = w (1) − w (0) = 1,

w′ is bounded, and the dominated convergence theorem, it is straightforward to prove this
assertion. 	


The next Lemma is needed in Theorem 5, which shows Et [H ] is monotonically increasing
in t [cf. Remark 2 and Eq. (4)].

Lemma 2 Given an optimal-seeking weighting function, w, there exists a ỹ ∈ R+ such that

∫

R+
y
(
w′ (PH

t ([y,∞))
))

PH
t (dy) −

∫

R+
yPH

t (dy) (11)
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can be decomposed into the sum of its non-negative and negative parts, i.e., Eq. (11) equals
(∫ ∞

ỹ
y
(
w′ (PH

t ([y,∞))
))

PH
t (dy) −

∫ ∞

ỹ
y PH

t (dy)

)

︸ ︷︷ ︸
non−negative

+
(∫ ỹ

0
y
(
w′ (PH

t ([y,∞))
))

PH
t (dy) −

∫ ỹ

0
yPH

t (dy)

)

︸ ︷︷ ︸
negative

.

Proof We constructively find ỹ. Since w is a monotonically non-decreasing function, it
satisfies

w′ (PH
t ([y,∞))

)
≥ 0, ∀y ∈ R+.

Furthermore, since w is also optimal-seeking, we have

w′ (PH
t ([y1,∞))

)
> w′ (PH

t ([y2,∞))
)

, ∀y1 > y2 ∈ R+. (12)

Because w (0) = 0 and w (1) = 1 by definition, we have w′ (PH
t ([y,∞))

)
> 1, for

some y ∈ R+. From Eq. (12), we know if y2 satisfies the above inequality, then so does
y1 ≥ y2 ∈ R+. Hence, we can conclude that ỹ is the smallest such y. 	

The theorems below present a blueprint to obtain an element of PX∗ utilizing the solution
Pt of Eqs. (6–7). Accomplishing this goal, the initial point set in Theorem 1 is restricted to
measures P0 that allow Pt to approach PX∗ , i.e., limt→∞ Pt ∈ PX∗ . The following definition
helps us to present this idea succinctly.

Definition 3 The set of all optimal initial solution probability measures is denoted by:

IX∗ := {
P ∈ Px |P

(
X∗) > 0

}
.

The corresponding set of H push-forward optimal probability measures over
(
R+,B

(
R+))

is denoted by IH∗ := {
P ◦ H−1|P ∈ IX∗

}
.

Definition 3 is essential, as a requirement on the initial condition of the system (i.e., P0 ∈ IX∗ ),
for the convergence and stability of the system. This condition can be too stringent when the
optimizers are isolated and IX∗ is restricted to measures with continuous densities, since no
positive measure can be placed on isolated points. In the next section, we will address this
issue specifically by modifying the definition of IX∗ and adding an extra assumption on the
objective function H . The next theorem proves PH

t (maxx∈X H (x)), the probability measure
on optimal solutions, will converge to 1 as t → ∞.On the other hand, the probabilitymeasure
on non-optimal solutions will approach zero as t → ∞.

Theorem 2 If PH
t is a solution of Eq. (6) with initial points in IH∗ (i.e., PH

0 ∈ IH∗ ) and
y∗ = maxx∈X H (x) , then the following claims hold:

1. PH
t (y∗) is a monotonically non-decreasing function of t that converges to 1 as t → ∞;

2. PH
t

(
R+\y∗) → 0 as t→ ∞.

Proof We recall that the following equation is true :

Ṗ H
t

([
y∗,∞)) = w

(
PH
t

([
y∗,∞))) − PH

t

([
y∗,∞))

.
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From Proposition 1, we obtain the fact that w
(
PH
t

([
y∗,∞)

))
> PH

t

([
y∗,∞)

)
. From the

two equations above, we conclude that

Ṗ H
t

(
y∗) > 0, ∀PH

t

(
y∗) ∈ (0, 1) , and Ṗ H

t

(
y∗) = 0 when PH

t

(
y∗) = 1.

Since PH
0 ∈ IH∗ , the first claim is obvious. The second claim follows from the first claim.

	

The next theorem connects the properties of PH

t with those of Pt as t → ∞. This is an
important step for understanding the evolution of Eqs. (6–7).

Theorem 3 If P0 ∈ IX∗ and Pt is a solution of Eqs. (6–7), then the following claims hold:
1) limt→∞ Pt (X∗)=1; 2) limt→∞ Pt (X\X∗)=0.

Proof Since we know

Pt (A) =
∫

A
βt (x)P

H
t (H (dx)) , ∀A ∈ B (X) , ∀t ∈ R+,

the first claim is proved by writing down the following equation and using Theorem 2:

lim
t→∞ Pt

(
X∗) = lim

t→∞

∫

X∗
βt (x)P

H
t (H (dx))

= lim
t→∞ PH

t

(
y∗) = 1.

The second claim follows from the first claim. 	

We are interested in finding the limit points of Eqs. (6–7). Ideally, these limit points should
be elements in PX∗ . In order to guarantee this, we restrict the initial points to be elements of
IX∗ . To facilitate our discussion, we introduce the following definition.

Definition 4 A limit set of Eqs. (6–7) from an initial set I is denoted by

L [I] :=
{

P∞ ∈ Px |∃P0 ∈ I, {tk} > 0, s.t. P∞ (A) = lim
tk→∞ Ptk (A) , ∀A ∈ B (X)

}

,

where Pt is a solution of Eqs. (6–7) and limk→∞ tk = +∞. The useful limit set L [IX∗ ] is
characterized by the theorem below.

Theorem 4 The limit set of Eqs. (6–7) starting from any initial point P0 ∈ IX∗ is PX∗ , i.e.,

L [IX∗ ] = PX∗ := {
P ∈ Px |P

(
X∗) = 1

}
.

Proof The proof will be done in two parts: first by proving L [IX∗ ] ⊃ PX∗ , then by proving
L [IX∗ ] ⊂ PX∗ . The first case can be proved by taking an element P ∈ PX∗ . By the definition
of L [IX∗ ] (i.e., the limit set of Eqs. (6–7) starting from IX∗ ), we conclude that P ∈ L [IX∗ ].

The second claim is proved by contradiction. We assume there is an element Q∞ ∈
L [IX∗ ] , but not in PX∗ , which implies

Q∞ (A) = lim
t→∞ Qt (A) =

∫

A
βt (x) lim

t→∞ PH
t (H (dx)) , ∀A ∈ B (X)

s.t. Q0
(
X∗) > 0, Q∞

(
X\X∗) > 0.

The first equality is due to the fact that Q∞ ∈ L [IX∗ ]. The second equality due to
dominated convergence theorem in the equation above, along with Eqs. (6–7), implies
limt→∞ PH

t

(
R+\y∗) > 0, which contradicts the second claim of Theorem 2 stating

limt→∞ PH
t

(
R+\y∗) = 0. 	
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The following theorem shows the monotonically increasing nature of Et [H ], which will be
useful later in proving the stability of Eqs. (6–7).

Theorem 5 Let PH
t be a solution for Eq. (6) with its initial point in IH∗ , then the following

claims are true:

1. Et [H ] is monotonically non-decreasing in t ∈ R+;
2. if Pτ /∈ L [IX∗ ] , then Eτ [H ] is strictly increasing in τ ∈ R+.

Proof We start our proof by differentiating the expected value:

d

dt
Et [H ] =

∫

R+
y Ṗ H

t (dy)

=
∫

R+
y
(
w′ (PH

t ([y,∞))
))

PH
t (dy) −

∫

R+
yPH

t (dy)

=
∫ ∞

ỹ
y
(
w′ (PH

t ([y,∞))
))

PH
t (dy) −

∫ ∞

ỹ
y PH

t (dy)

+
(∫ ỹ

0
y
(
w′ (PH

t ([y,∞))
))

PH
t (dy) −

∫ ỹ

0
yPH

t (dy)

)

≥ ỹ
∫

R+
Ṗ H
t (d (y)) = ỹ × 0 = 0.

The swapping of integration and differentiation in the last equation is allowed due to the
dominated convergence theorem. The ỹ variable is used to decompose the expected outcome
function into non-negative and negative parts (cf. Lemma 2). The last line of the inequality
is true because PH

t is a probability measure (cf. Lemma 1). The first claim is proved.
The second claim is proved by contradiction. Assume Pτ /∈ L [IX∗ ], i.e., Pτ is not a limit

point, and d
dτ

Eτ [H ] = 0, i.e., Eτ [H ] is not increasing. Along with Theorem 2, the equality
above implies that H is equal to a constant C = maxx∈X H (x). This implies that PH

τ is a
Dirac measure concentrated at C , which means Pτ ∈ L [IX∗ ] (cf. Theorem 4). 	

At this point, we have demonstrated the convergence to optimality property of our method.
We now explore the stability property of our method. The metric function d in the following
definitions is the Prohorov metric found in the appendix of [6, p. 170].

Definition 5 Let L be a subset of Px . For a point P ∈ Px , we define the distance between P
and L as

d (P,L) := inf {d (P, Q) , ∀Q ∈ L} .

L is called Lyapunov stable, with respect to a sequence of measures {Pt }, if for all ε > 0,
there exists a δ > 0 such that

d (P0,L) < δ ⇒ d (Pt ,L) < ε, ∀t > 0.

L is called asymptotically stable, with respect to a sequence ofmeasures {Pt }, ifL is Lyapunov
stable, and there exists a δ > 0 such that

d (P0,L) < δ ⇒ d (Pt ,L) → 0

as t → ∞.

The next theorem is the main result of this section.
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Theorem 6 L [IX∗ ] is a compact set and it is asymptotically stable.

Proof We need to first prove that L [IX∗ ] is a compact set. Since from Theorem 4, we have
L [IX∗ ] = PX∗ , we can instead prove that

PX∗ := {
P ∈ Px |P

(
X∗) = 1

}

is compact. It is easy to see that PX∗ is tight, since X∗ is pre-compact (i.e., X∗ ⊂ X and X is
compact). Furthermore, we can prove it is a closed set by contradiction. Assume there exists
a sequence {Pn} ∈ PX∗ such that Pn → P̂ /∈ PX∗ . This implies ∃N such that ∀n > N , we
have Pn (X∗) < 1, and Pn (X\X∗) > 0, which implies

lim
n→∞ PH

n

(
R+\y∗) > 0.

This contradicts the second claim of Theorem 2; hence, PX∗ = L [IX∗ ] is a compact set.
We pick the Lyapunov function

V (Pt ) = y∗ − Et [H ] ,

where V (Pt ) > 0, for all Pt ∈ Px\PX∗ , and V (Pt ) = 0, for Pt ∈ PX∗ = L [IX∗ ]. From
Theorem 5 we have V̇ (Pt ) < 0 for all t > 0 if Pt /∈ PX∗ . Furthermore, we know that
V̇ (Pt ) = 0, ∀t > 0, if Pt ∈ PX∗ . Using V (Pt ) as the Lyapunov function, and the fact
that PX∗ = L [IX∗ ] is a compact set, we can appeal to a generalized version of Lyapunov’s
theorem (see [15, Chapter 5]). The desired conclusion is reached. 	

The use of a Lyapunov function for proving the asymptotic stability of the limit set can be
found previously in Wang’s dissertation [8].

4.2 Isolated optimizers

In Sect. 4.1,we require that our initial distribution P0 belong to IX∗ ,which requires P0 (X∗) >

0. This is reasonable in many cases: (1) if the solution space is large but finite; (2) if the
optimizers are not isolated. However, for the case when the optimizers are isolated and IX∗
is restricted to measures with continuous densities, the condition P0 (X∗) > 0 cannot be
satisfied, because the probability measure at a single point is always zero. For example, when
minimizing H (x) = x2, it is convenient to start with a Gaussian distribution due to its
simple form. Since Gaussian measures have continuous densities, it is impossible to satisfy
the condition P0 (X∗) > 0. Thus, we need to make a slight modification to the definition
for IX∗ and the statements of the theorems in the previous section. The modifications will
lead to the conclusion that the weight update system will converge to measures that place all
their weight in the ball neighborhoods of the optimizers. We make a slight modification to
the definition of the IX∗ so that the positive measure requirement is satisfied as long as the
measure is positive for any neighborhood of at least one element in X∗. In other words, as
long as the initial measure has not excluded all neighborhoods of all optimizers, it should be
included in the admissible initial probability measure set ĨX∗ , which is defined below.

Definition 6 The set of all optimal initial solution probability measures is denoted by:

ĨX∗ := {
P ∈ Px |∃x∗ ∈ X∗,∀δ > 0, s.t, P

({
x ∈ X|‖x − x∗‖ < δ

})
> 0

}
.

The corresponding set of H push-forward optimal probability measures over
(
R+,B

(
R+))

is denoted by ĨH∗ := {
P ◦ H−1|P ∈ ĨX∗

}
.
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An example can illustrate the reasonableness of ĨX∗ for the isolated optimizers case. If
we would like to minimize the function H (x) = x2, which has a single isolated optimizer
at x = 0, then any Gaussian distribution can satisfy the requirement imposed by ĨX∗ , since
for any δ-neighborhood around x = 0, the measure under P0 is non-zero. After we redefined
the admissible initial distributions, there needs to be an additional continuity assumption on
the objective function H .

Assumption 4 H , the objective function, is continuous at all x∗ ∈ X∗.

Assumption 4 is needed here so that the neighborhoods around elements inX∗ have values
close to the optimal objective value y∗. In the rest of this section, we will list the modified
version of the theorems analogous to the theorems in the previous section eliminating any
redundancy.

Theorem 7 If PH
t is a solution of Eq. (6) with initial points in ĨH∗ (i.e., PH

0 ∈ ĨH∗ ) and
y∗ = maxx∈X H (x) , then the following claims hold for an arbitrary ε > 0:

1. PH
t

([
y∗ − ε,∞)

)
is a monotonically non-decreasing function of t that converges to 1

as t → ∞;
2. PH

t

(
R+\ [

y∗ − ε,∞)
) → 0 as t→ ∞.

Proof Using Assumption 4, we know for any ε > 0, there exists a δ̃ > 0 such that

‖x − x∗‖ < δ̃ → ‖y∗ − f (x) ‖ < ε, ∀x∗ ∈ X∗.

As a consequence, we know that PH
0 ∈ ĨH∗ , which is induced by P0 ∈ ĨX∗ that has non-

zero probability over the δ̃-neighborhood of at least one optimizer x∗ ∈ X∗, has non-zero
probability over the ε-neighborhood of y∗. The rest follows from the same proof technique
as in Theorem 2.

For the following theorems, we introduce the notation:

Xδ,∗ := {
x ∈ X|∃x∗ ∈ X∗, s.t, ‖x − x∗‖ < δ

}
.

The next theorem is needed to characterize the limiting behavior of Eqs. (6–7).

Theorem 8 If P0 ∈ IX∗ and Pt is a solution of Eqs. (6–7), then the following claims hold
for any δ > 0: 1) limt→∞ Pt

(
Xδ,∗)=1; 2) limt→∞ Pt

(
X\Xδ,∗) = 0.

Proof Using the fact that the objective function is continuous around the optimizers (i.e.,
Assumption 4), we know that there exists an corresponding δ for each ε. Furthermore, since
the ε is arbitrary in Theorem 7 and we can always shrink the δ by shrinking the ε around the
isolated optimizers, δ can be made arbitrarily small as well.

The next theorem states that if we start from ĨX∗ , the limit set will place all the weight in the
neighborhoods of the optimizers.

Theorem 9 The limit set of Eqs. (6–7) starting from any initial point P0 ∈ ĨX∗ is PX̃∗ , i.e.,

L
[
ĨX∗

] = PX̃∗ := {
P ∈ Px |∀δ > 0, P

(
Xδ,∗) = 1

}
.

Proof See the proof for Theorem 4 and replace Theorem 2 with Theorem 7.

The next theorem is needed in our final conclusion stated in Theorem 11.
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Theorem 10 Let PH
t be a solution for Eq. (6) with its initial point in ĨX∗ , then the following

claims are true:

1. Et [H ] is monotonically non-decreasing in t ∈ R+;
2. if Pτ /∈ L

[
ĨX∗

]
, then Eτ [H ] is strictly increasing in τ ∈ R+.

Proof See the proof for Theorem 5.

Finally, by using Theorems 7 and 10 and applying a Lyapunov function, we have our desired
conclusion.

Theorem 11 L
[
ĨX∗

]
is a compact set and it is asymptotically stable.

Proof See the proof for Theorem 6 and replace Theorems 2 and 5 with Theorems 7 and 10.

In other words, the modified theorems state that if Eqs. (6–7) start with a probability measure
that places some weight on an arbitrarily small neighborhood of at least one optimizer, then
the system will converge to an element in L

[
ĨX∗

]
, the set of probability measures that only

has weight on arbitrarily small neighborhoods of the optimizers. Furthermore, L
[
ĨX∗

]
is

asymptotically stable.

4.3 Monte Carlo version

In Sect. 4.1, we have demonstrated that when the solution space is a subset of Rn , the
CWO method will exhibit convergence and stability properties that are desirable for any
optimization method. The theorems are proven when the probability measure can be mod-
eled perfectly; however, there is no result on the CWO method’s Monte Carlo version (cf.
Algorithm 1) convergence, which is important in practice. The analysis techniques applied
and the convergence proved in this section are significantly different from that of the general
version. The difference is caused by the two layers of approximation used for efficient sim-
ulation: projection and sampling. In addition, we are able to apply the analysis techniques
in [2] to Eq. (16), which is a more general version of equations considered previously for
model-based methods.

In practice, we often assume the existence of a PDF pt for Pt such that

Pt (A) =
∫

A
pt (x) μ (dx) , ∀A ∈ B (X) , (13)

where μ is the Lebesgue or discrete measure on X. For brevity, we use the following nota-
tions: ξ≥ (H (x)) := {ξ ∈ X|H(ξ) ≥ H (x)} , ξ> (H (x)) := {ξ ∈ X|H(ξ) > H (x)} , and
ξ= (H (x)) := {ξ ∈ X|H(ξ) = H (x)} . In this section, we restrict the βt function to be of
the form:

β (x, pt ) = σ (x, pt ) pt (x)

Pt (ξ= (H (x)))
.

Then, in discrete-time (i.e., t ∈ {0, 1, 2, . . . }), Eqs. (6–7) is rewritten more simply as:

pt+1 (x) = β (x, pt )
(
w′ (Pt

(
ξ≥ (H (x))

))
Pt (ξ

= (H (x)))
)

= β (x, pt )
Pt (ξ= (H (x)))

pt (x)

(
w′ (Pt

(
ξ≥ (H (x))

)))
pt (x)

= σ (x, pt )W (H (x) , pt ) pt (x) , (14)
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where

W (H (x) , pt ) := w′ (Pt
(
ξ≥ (H (x))

))

is introduced to highlight its dependency on H (x) and pt . It is common to let β (x, pt ) =
pt (x)

Pt (ξ=(H(x))) , thus σ (x, pt ) = 1 and Eq. (14) becomes

pt+1 (x) = w′ (Pt
(
ξ≥ (H (x))

))
pt (x) .

Note that in the previous section, we allow β to vary with time t ; however, in this section, we
require a more explicit structure on β, namely it depends on x and pt . To recap, the relevant
assumptions for this section are Assumptions 1, 2, and 3. Furthermore, we will use t to denote
time and k to denote the iteration count going forward.

While Eq. (14) brings us a step closer to an implementable algorithm, we are still faced
with a major challenge—given a p0, an initial point, it is not clear that we can solve Eq. (14),
a nonlinear Fokker-Planck equation, analytically. Hence, solving Eq. (14) numerically is a
natural alternative. In solving Eq. (14), most numerical methods need to sample from the PDF
pt , which can be difficult at times. One common approach to circumvent this difficulty is to
project pt onto a family of easy-to-sample-from parameterized density functions denoted by
F := { fθ |θ ∈ �}, via the Kullback–Leibler (KL) divergence:

D (pk, fθ ) :=
∫

X
ln

(
pk (x)

fθ (x)

)

pk (x) μ (dx) ,

where θ ∈ � and fθ ∈ F. The projection is done by minimizing the KL divergence, i.e.,

θk = argmin
θ∈�

D (pk, fθ ) ,

so that the reference PDF pk is updated through its surrogate PDF fθ . We adopt the notations
Pθ (·) and Eθ [·] for the probability measure and expectation with respect to the surrogate
PDF fθ . On the other hand, Pk (·) and Ek [·] denote the probability measure and expectation
of the reference PDF at the k-th iteration. With a slight abuse of notation, we write X for
both Xk and Xθ , the random variables with the PDFs pk and fθ , respectively.

The natural exponential families (NEFs), inmany applications, can be used as the surrogate
parameterized family of PDFs. They are convenient to use in implementations and can lead
to a closed analytical solution in our analysis. Their definition from [2, Definition 2.1] is
presented below.

Definition 7 A parameterized family F := {
fθ |θ ∈ � ⊆ Rd

}
on X is called a natural expo-

nential family (NEF) if there exist continuous mappings Γ : Rn �→ Rd and K : Rd �→ R
such that fθ (x) = exp

(
θTΓ (x) − K (θ)

)
, where � := {

θ ∈ Rd | |K (θ)| < ∞}
is the

natural parameter space and K (θ) = ln
∫
X exp

(
θTΓ (x)

)
μ (dx) .

Remark 4 Let the interior of � be denoted by �̊. In this section, we use the following
properties of the family from [16]: (1) K (θ) is strictly convex on �̊; (2) the Jacobian
for K (θ) is Eθ [Γ (X)], i.e., ∇K (θ) = Eθ [Γ (X)] ; (3) the Hessian matrix for K (θ) is
Covθ [ (X)], where Covθ [·] is the covariance with respect to fθ . Therefore, the Jacobian for
the parameterized mean vector function, m (θ) := Eθ [Γ (X)] , is strictly positive definite
and invertible. This fact implies, along with the inverse function theorem, that m (θ) is also
invertible. Since m (θ) is invertible, we can iterate our algorithm on m (θ) instead of θ, and
recover θ as needed via the inverse function m−1 (·) .
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In the existing work using NEFs for global optimization, the model follows the form:

pk+1 (x) = S (H (x)) pk (x)

Epk [S (H (X))]
, (15)

where S : R+ �→ R+ is an increasing, possibly iteration-varying function. Examples include:
(1) proportional selection [17–19], where

pk+1 (x) = S (H (x)) pk (x)

Epk [S (H (X))]
;

(2) Boltzmann distribution [20], where

pk+1 (x) = exp (H (x) /Tk)∫
X exp (H (x) /Tk) dx

= exp (H (x) ((1/Tk) − (1/Tk−1))) pk (x)

Epk

[
exp (H (X) ((1/Tk) − (1/Tk−1)))

] ,

and {Tk} is a sequence of predetermined parameters; (3) importance sampling [21], where

pk+1 (x) = S (H (x)) fθk (x)

Eθk [S (H (X))]
.

In the CWO method, looking at Eq. (14), our model has the form:

pk+1 (x) = S (x, H (x) , pk) pk (x) , ∀t ∈ {0, 1, . . . } . (16)

There are two major differences between our model [cf. Eq. (16)] and previous models [cf.
Eq. (15)]. Firstly, the S function in our model, a mapping from

(
X,R+,Px

)
toR+, takes two

additional parameters x and pk . Secondly, our model ensures that Epk [S (X, H (X) , pk)] =
1; hence, there is no need for normalization. It is also interesting to note that, for a fixed
pt and x , S (x, ·, pt ) is an increasing function. Acknowledging these differences, we will
prove that the Monte Carlo version of Eq. (14) converges to the internal chain recurrent set
of an ordinary differential equation. The definition of internal chain recurrent sets will be
introduced later along with the corresponding ordinary differential equation in our analysis.
The development of the theorems below runs in parallel with the work of Hu et al. [2], with
the major difference in the structure of the S function as discussed in this paragraph. The
main idea is to apply techniques from the stochastic approximation literature to model-based
methods.

With pk+1 defined by Eq. (16) and fθk the surrogate PDF at the k-th iteration, the smoothed
reference PDF is denoted by:

p̃k+1 (x) = αk pk+1 (x) + (1 − αk) fθk (x) , ∀αk ∈ (0, 1] , t ∈ {0, 1, . . . } . (17)

The smoothing factor αk is a design parameter that can be used to limit the effect of pk+1 on
p̃k+1.

Lemma 3 Assume that fθk+1 is a member of a natural exponential family with the parameter
space � denoted by F optimizing the KL divergence between p̃k+1 and F, i.e., θk+1 ∈
argminθ∈� D ( p̃k+1, fθ ) and θk+1 ∈ �̊, the interior of �, for all k. Then

m (θk+1) − m (θk) = −αk ∇θ D (pk+1, fθ )|θ=θk
, ∀k ∈ R+,

where m : Rd �→ Rd is the mean vector function (cf. Remark 4).
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Proof Using the argumentmade for proving Lemma 2 of [19] and the assumption that θk+1 ∈
�̊, we can prove that Eθk+1 [Γ (X)] = E p̃k+1 [Γ (X)] , where by definition m (θk+1) :=
Eθk+1 [Γ (X)] (cf. Remark 4). The rest of the proof uses the same argument as in Lemma 2.1
of [2]. Using the fact that Eθk+1 [Γ (X)] = E p̃k+1 [Γ (X)] , along with Eq. (17), it follows
that

m (θk+1) = αk Epk [S (X, H (X) , pk) Γ (X)] + (1 − αk)m (θk) ,

which can be rewritten as

m (θk+1) − m (θk) = αk Epk [S (X, H (X) , pk) (Γ (X) − m (θk))]

= −αk∇θ D (pk+1, fθ )|θ=θk
, (18)

where the last equality is obtained from the definitions of KL divergence and NEFs. 	

So far, Eq. (18) provides us a way to update θk via pk+1. Of course, in reality we do

not know pk+1; hence, we denote the estimator for pk+1 by p̂k+1, which has the form:
p̂k+1 (x) := S

(
X, H (x) , fθk

)
fθk . By substituting p̂k+1 into Eq. (18), we have

m (θk+1) − m (θk)

= αk Eθk

[
S
(
X, H (X) , fθk

)
(Γ (X) − m (θk))

]

= αk∇θ ln
(
Eθ

[
S
(
X, H (X) , fθk

)]
θ=θk

)
,

where the interchange of the derivative and the integral above is justified by the dominated
convergence theorem. The intuition from the equation above is that the algorithm will move
in the direction that will increase Eθ

[
S
(
X, H (X) , fθk

)]
.

In the CWO method, the S mapping has the specific form [cf. Eq. (14)]:

σ (x, pk)W (H (x) , pk) ;
hence, its estimated form is:

σ (x, θk)W (H (x) , θk) .

Themean vector function below,which differs from that of Proposition 3.1 in [2], describes
the dynamics for the mean vector function in the CWO method:

m (θk+1) = αk Eθk [(σ (x, θk)W (H (x) , θk)) Γ (X)]

+ (1 − αk) Eθk [Γ (X)] . (19)

By replacing themean vector function inAlgorithm2 from [2]with Eq. (19) (cf. Algorithm
1), we can prove the convergence of Algorithm 1.

Finally, we can prove that ηk in Eq. (20) will converge to the internally chain recurrent
sets (cf. Definition 8) of an ODE:

dη (t)

dt
= L (η) , ∀t ≥ 0, (21)

where L (η) := ∇θ ln Eθ

[
σ

(
X,m−1 (η)

)
W

(
H (X) ,m−1 (η)

)]∣
∣
θ=m−1(η)

is the (1 − ρ)-
quantile of H under fm−1(η).

Definition 8 Given an initial condition η (0) = y, let ηy (t) be the solution to Eq. (21). A
point x is said to be chain recurrent if for any δ > 0 and T > 0, there exist an integer
k ≥ 1, points y0, . . . , yk with yk = x, and time instances t0, . . . , tk−1 such that ti ≥ T,
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Algorithm 1 The Monte Carlo Version of CWO

1. Choose an initial PDF f
θ̂0

(·) onX, θ̂0 ∈ �̊. Specify constants ρ ∈ (0, 1) and ε > 0, parameter sequence

{αk } and {λk } . Set k = 0.
2. Randomly sample Nk i.i.d. solutions Λk = {

x1, . . . , xNk

}
from the distribution f

θ̂k
.

3. Calculate the sample (1 − ρ)-quantile γ̂k = H(�(1−ρ)Nk�),where �a� is the smallest integer greater than

a, and H(i) is the i th-order statistic of the sequence {H (xi )}Nk
i=1 .

4. Compute a new parameter θ̂k+1 = m−1 (
ηk+1

)
, where η0 := m

(
θ̂0

)
= E

θ̂0
[Γ (X)] , and

ηk+1 = αk
∑

x∈Λk

(σ (x, θk )W (H (x) , θk )) Γ (x)

+ (1 − αk )

⎛

⎝ λk

Nk

∑

x∈Λx

Γ (x) + (1 − λk ) ηk

⎞

⎠

(20)

is an empirical estimate of Eq. (19) based on the sampled solutions in Λk .

5. If a stopping rule is satisfied, then return θ̂k+1 and terminate; otherwise set k = k + 1 and go to Step 2.

‖x − y0‖ ≤ δ, and
∥
∥ηyi (ti ) − yi+1

∥
∥ ≤ δ for i = 0, . . . , k − 1. A compact invariant set

A (i.e., for any y ∈ A, the trajectory ηy (t) satisfies ηy (t) ⊂ A, ∀t ∈ R+) is said to be
internally chain recurrent if every point x ∈ A is chain recurrent.

The following theorem proves the convergence and stability of theMonte Carlo Algorithm 1.

Theorem 12 Assume that L (η) is continuous with a unique integral curve and the following
assumptions hold:

1. The parameter θ̂k+1 computed at step 4 satisfies θ̂k+1 ∈ �̊, ∀k;
2. The gain {αk} satisfies αk > 0, ∀k, αk → 0 as k → ∞, and

∑∞
k=0 αk = ∞.

lim supk→∞
(

λk
k−λ

)
< ∞ for some constant λ ≥ 0. Furthermore, there exists a

β > max {0, 1 − 2λ} such that

lim sup
k→∞

(
Nk

kβ

)

= lim sup
k→∞

(
kβ

Nk

)

.

3. For a given ρ ∈ (0, 1) and a distribution family F, the (1 − ρ)-quantile of
{H (X) , X ∼ fθ (x)} is unique for each θ ∈ �. Then, the sequence {ηk} generated
by Eq. (20) converges to a compact connected internally chain recurrent set of Eq.
(21) w.p.1. Furthermore, if the internally chain recurrent sets of Eq. (21) are isolated
equilibrium points, then w.p.1 {ηk} converges to a unique equilibrium point.

Proof See Theorem 3.1 in [2].

We have thus far shown that the Monte Carlo version of the CWO method converges to
the internally chain recurrent set of Eq. (21), an invariant set. Since Eq. (20) will remain
in the invariant set upon entrance, we have proved that Algorithm 1 is asymptotically sta-
ble. The major difference between the general and Monte Carlo convergence is that in the
general case we can characterize the limiting behavior more precisely, i.e., having all the
weight on optimal solutions. However, since the Monte Carlo version is an approximation
of the general version, it can converge to a set that contains more than distributions with
optimal solutions as support. The precise nature of the internally chain recurrent set of Eq.
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(21) depends on the projection used, hence requires additional analysis for each problem.
The chain recurrent set is closed and invariant; it contains all equilibrium points and any
point that is able to reach itself by making a series of following the system dynamic and
then jumping to a close by state (e.g., period orbits). The existence of these non-optimal
recurrent points can only be confirm by plotting the vector field of Eq. (21). Knowing
that in the worst case scenario the system will converge to the chain recurrent set is
helpful.

5 Numerical algorithms

In this section, we present a few numerical algorithms based on the CWO method. These
algorithms attempt to find an optimal solution iteratively. Each iteration consists of 5 stages:
generation, quantile-update, parameter-update, weight-update, and projection. The genera-
tion, quantile-update and projection stages remain the same for all variations of the generic
algorithm (i.e., Algorithm 2, where arrows are used as indentation markers). The weight-
update and projection steps, along with the equation in step 2 of Algorithm 2, correspond
to step 4 in Algorithm 1. The additional uniform random variable is included in step 2 of
Algorithm 2 to ensure all solutions are considered. We propose several approaches for con-
structing the weight-update stage. These algorithms build on the theoretical results using the
same types of modifications as are found in CE and MRAS (see [11,19,22]).

There are seven parameters in Algorithm 2. ρ0 is the initial percentile threshold, ρmin is
the minimum allowed percentile threshold, N0 is the initial sample size, ε

2 is the minimal
γk threshold improvement requirement, where γk is the corresponding value at threshold
ρk . ζ is the growth factor for the sample size, and ς is introduced to ensure all solutions
are considered. Lastly, α controls how much information the algorithm should retain from
the last iteration. In general, we want to start N0 to be at least in the hundreds; increasing
this parameter will improve the final solution. From condition 2 of Theorem 12, we know
that the number of samples, Nk, grows with the iteration count. In practice, we found that
the decision to increase the sample size can be made when the value found at the current
threshold ρk does not improve γk−1 by at least ε

2 . For CWO algorithms, ρ0 controls the trade-
off between speed and optimality. The lower the ρ0 the faster the algorithm will converge
to a solution; however, that solution might be far from optimal. Similar considerations go
into picking ρmin. We introduce the ε parameter to ensure that the threshold γ calculated at
the (1 − ρ) percentile is improving at each iteration. If an improvement does not happen,
then the algorithm is forced to either 1) reduce the threshold ρk until a sample better than γ

is found; 2) increase the sample size. In general, you want to avoid small ρ values in early
iterations of the algorithm; hence, ρ0 should not be too low such that the algorithm eliminates
many suboptimal solutions that are near optimal solutions too early. ζ is used to decide how
fast we want to grow our sample size when a satisfactory ρk update cannot happen. How
fast we are growing our sample size depends on ρk and ε. Finally, ς is introduced, so that
there is a non-zero probability over the neighborhood of any element of the solution space
satisfying the requirement imposed by IX∗ . ς is generally on the order of 0.01. In addition to
the parameters listed above, we also need to decide the family of distributions, gθ , we employ
for each of the optimization problem in this section. The decision is discussed in detail in
their respective sections.
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Algorithm 2 Generic CWO Algorithm
1. Initialization: Select a number N0 as the total initial number of candidate solutions generated at each

iteration and an initial gθ0 (a parameterized probability density distribution) defined on X. Pick an initial
quantile ρ0 ∈ (0, 1), ε ≥ 0, α, ς ∈ (0, 1);

2. Generation: Generate Nk i.i.d candidate solutions {xik }Ni=1 from

g̃θk = (1 − ς)((1 − α)gθk−1 + αgθk ) + ςU,

where U is the uniform distribution;
3. Quantile-Update: Calculate the (1 − ρk )-quantile, γ̃k+1 (ρk , Nk ) := φ (H)(�(1−ρk)Nk�), where �a� is

the smallest integer greater than a and H(i) is the i th highest value for the sequence
{
φ

(
H

(
xik

))}Nk

i=1
;

4. Parameter-Update:
If k=0 or γ̃k+1 (ρk , Nk ) ≥ γ̄k + ε

2 , then→ 4(a). Set γ̄k+1 = γ̃k+1 (ρk , Nk ) , ρk+1 = ρk , Nk+1 = Nk ;
else
→ Find the largest ρ̄ ∈ (0, ρk ) such that γ̃k+1 (ρ̄, Nk ) ≥ γ̄k + ε

2 ;→ If such a ρ̄ exists and ρ̄ > ρmin, then
→→ 4(b). γ̄k+1 = γ̃k+1 (ρ̄, Nk ) , ρk+1 = ρ̄, Nk+1 = Nk ;
→ else
→→ 4(c). γ̄k+1 = γ̄k , ρk+1 = ρk , Nk+1 = �ζNk�;

5. Weight-Update: Update the weights of the generated samples {xik }Ni=1;
6. Density Projection: Construct gθk+1 by projecting the density pk+1 = ∑N

i=1 wi
k+1δ(x − xik ) onto gθ by

solving

θk+1 = argmax
θ∈Θ

N∑

i=1

wi
k+1 ln gθ

(
xik

)
;

7. Stop if some stopping criterion is satisfied; otherwise go to step 2 and k = k + 1.

In our examples, Eq. (3) has a specific form:

pk+1 (x) = β (x, pk)

⎛

⎝w

⎛

⎝
∑

ξ∈X:H(ξ)≥H(x)

pk (ξ)

⎞

⎠ − w

⎛

⎝
∑

ξ∈X:H(ξ)>H(x)

pk (ξ)

⎞

⎠

⎞

⎠ , (22)

where β (x, pk) = pk (x)∑
ξ∈X:H(ξ)=H(x) pk (ξ)

, and pk+1 is the PMF at iteration k + 1, and w :
[0, 1] → [0, 1] is the probabilityweighting function. Let FH

k (·) be the continuous cumulative
distribution function for the outcome random variable H (X) , then Eq. (22) can be written
more compactly as:

pk+1 (x) =
⎛

⎝
w

(∑
ξ∈X:H(s)≥H(x) pk (ξ)

)
− w

(∑
ξ∈X:H(s)>H(x) pk (ξ)

)

∑
ξ∈X:H(s)=H(x) pk (ξ)

⎞

⎠ pk (x)

= w′ (1 − FH
k (H (x))

)
pk (x) .

Algorithm 2 is the generic CWO algorithm using Eq. (22) as the weight updating equation.
Later, two algorithms with different ways of updating the density function are described.
Although both weight-update methods will use Eq. (22), they differ in their assignment
of the sample weights. The performance of the algorithms is measured using asymmetric
traveling salesman problems and continuous test functions, which we will introduce in the
section below.
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5.1 Combinatorial optimization: ATSP

We apply variations of Algorithm 2 to several asymmetric traveling salesman problems
(ATSPs). They are taken from thewebsite http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95. We follow a similar approach as in Hu et al. [19], which is outlined
below. The reader is reminded here that Algorithm 2 is designed for maximization problems,
whereas we are searching for the minimum distances of ATSPs. The goal in each ATSP
problem is to find the minimum length of a tour that connects Ncities cities with the same
starting and ending cities. For an ATSP, we are given an Ncities-by-Ncities distance matrix
D, whose (i, j)th element Di, j represents the distance from city i to city j. The problem can
be mathematically stated as:

min
x∈X

⎧
⎨

⎩

Ncities−1∑

i=1

Dxi ,xi+1 + DxNcities
,x1

⎫
⎬

⎭
,

where x :=
{
x1, x2, . . . , xNcities

, x1
}
is an admissible tour and X is the set of all admissible

tours.
We use the same approach suggested byRubinstein [22], andDeBoer et al. [23] for solving

these problems. Each distance matrix D is given an initial state probability transition matrix,
whose (i, j)th element specifies the probability of transitioning from city i to city j. At each
iteration of the algorithm, there are two important steps: (1) generate random admissible tours
according to the probability transition matrix and evaluate the performance of each sampled
tour; (2) update the probability transition matrix based on the tours generated from step 1.
We denote the set of tours generated at the kth iteration by

{
xik

}
, where i ∈ {1, . . . , Nk}.

Without loss of generality, we will assume the samples are sorted according to their values

(i.e., H
(
xik

)
< H

(
x j
k

)
if and only if i < j).

A detailed discussion of the admissible tour generation process can be found in de Boer
et al. [23]. The CWO algorithm differs from other algorithms in how it updates its transition
matrix. At the kth iteration of CWO, the probability density function, pk (·, θk), parametrized
by the transition matrix θk is given by the equation below:

pk (x, θk) =
Ncities∏

l=i

Ncities∑

i, j

θk (i, j) I{x∈Xi, j (l)},

where Xi, j (l) is the set of all tours in X such that the lth transition is from city i to city j. We
can show that the new transition matrix is updated (i.e., stage 6 of Algorithm 2) as:

θk+1 (i, j) =
Nk∑

l=1

(
pw
k+1

(
xik

))
I{xik∈Xi, j },

where we denote the updated density by pw
k+1 (·) and {xik+1} is generated from pk(·, θk) (i.e.,

a density function that is parameterized by θk). The superscript w is used to emphasize the
dependence of the updated probability mass function on the probability weighting function
w. The construction of pw

k+1 (·) depends on the specific weight-update method.
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Algorithm 3 Tilted Weight Update

1. Remove all the non-elite samples, i.e., {x̂ ik } :=
{
xik : H

(
xik

)
≤ γ̄k

}
, where {x̂ ik } is the set of remaining

elite samples;
2. Assign a weight to each element in Y according to the equation:

pHk (y) = maxY y − y
∑

Y maxY y − y
,

where Y :=
{
H (x) |x ∈

{
x̂ ik

}}
;

3. Assign the updated outcome weights to samples according the following equation:

wi
k+1 = 1

N̂k,x̂ ik

⎛

⎜
⎜
⎝w

⎛

⎜
⎜
⎝

∑

j :H
(
x̂ j
k

)
≤H

(
x̂ ik

)
pHk

(
H

(
x̂ j
k

))

⎞

⎟
⎟
⎠ − w

⎛

⎜
⎜
⎝

∑

j :H
(
x̂ j
k

)
<H

(
x̂ ik

)
pHk

(
H

(
x̂ j
k

))

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

∀i ∈ {1, . . . , N̂k },

where N̂ k is the number of elite samples, and N̂k,x̂ ik
is the number of elements in

{
x̂ ik

}
having the same

outcome value as x̂ ik . We remind the reader that w : [0, 1] → [0, 1] is a probability weighting function

and wi
k+1 is the weight for the i th sample at iteration k + 1. The inequalities in step 3 change directions

due to the minimization problem.

5.1.1 Weight-update methods

In this section, we present several different methods of obtaining pw
k+1 (·) from a collection

of samples {xik} at the kth step. The first method we introduce is called tilted weight update.

Tilted weight update (CWO_T) The tilted weight-update method is described in Algorithm 3.
The key idea behind this variation is thatwe assign the initialweights of the samples according
to their outcome values: the smaller the value, the more initial weight it gets (see stage 2 in
Algorithm 3).

We ran 30 independent experiments for seven ATSPs. In those experiments, we used the
probabilityweighting function:w (p) := 1−(1 − p)2 .The trials are done usingAlgorithm 2
with the parameters ρ0 = ρmin = 0.6, N0 = 1000, ε = 1, ζ = 2, ς = 0.02, α = 0.7 and the
weight-update scheme in Algorithm 3. The results are summarized in Table 1. Ncities is the
the number of cities for each problem; NTotal is the average number of total samples until the
solutions stop changing; Hbest is the best known solution; H∗ is the worst algorithm solution
from the repeated runs; H∗ is the best algorithm solution from the repeated runs; δ∗ and δ∗
are the percentage deviation of the worst and best algorithm solutions from the best known
solution, respectively; δ is the average percentage deviation of the algorithm solutions from
the best known solution. The important thing to note about the algorithm is its dependence on
the actual outcome values. In the next weight-update method, this dependence is eliminated;
instead, we weight the samples uniformly.

UniformWeightUpdate(CWO_U) Tilting assigns the initialweights of the samples {xik}using
their values. Uniformweight updating differs from tilting by assuming a uniform distribution
over the samples. Anothermajor difference from the above approach is that we no longer only
consider elite samples. Instead, we use a carefully chosen probability weighting function that
smoothly re-weights the samples. More specifically in stage 5 of Algorithm 2, we assume a
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Table 1 Performance of CWO_T on various ATSP problems based on 30 independent replications

ATSP Ncities NTotal (Std. err.) Hbest H∗ H∗ δ∗ δ∗ δ (Std. err.)

ftv33 34 6.59e4 (1.81e4) 1286 1379 1286 0.0723 0.0000 0.0396(0.0279)

ftv35 36 6.79e4 (1.63e4) 1473 1581 1473 0.0733 0.0000 0.0195(0.0172)

ftv38 39 8.81e4 (3.26e4) 1530 1651 1536 0.0791 0.0039 0.0243(0.0190)

p43 43 2.80e5 (1.04e5) 5620 5636 5622 0.0028 0.0004 0.0011(0.0007)

ry48p 48 4.65e5 (2.30e5) 14,422 18,725 14,618 0.2984 0.0136 0.0744(0.0676)

ft53 53 3.24e5 (1.23e5) 6905 7844 7059 0.1360 0.0223 0.0590(0.0247)

ft70 70 7.02e5 (3.32e5) 38,673 39,738 38,760 0.0275 0.00225 0.0130(0.0050)

Algorithm 4 CWO_U Weight Update Algorithm

1. Calculate the outcome cumulative distribution function, FH
k (H (x)), for {xik }, assuming a uniformdensity

(
i.e., pk (x) = 1

Nk

)
;

2. Assign the updated weights according the following equation:

wi
k+1 = 1

Nk,xik

⎛

⎜
⎜
⎝w

⎛

⎜
⎜
⎝

∑

j :H
(
x j
k

)
≤H

(
xik

)
pk

(
x j
k

)

⎞

⎟
⎟
⎠ − w

⎛

⎜
⎜
⎝

∑

j :H
(
x j
k

)
<H

(
xik

)
pk

(
x j
k

)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

∀i ∈ {1, . . . , Nk },

where Nk is the number of samples, and Nk,xik
, is the number of elements in

{
xik

}
having the same value

as xik .

uniform initial density and use the weighting function

wσ,ρ(p) :=
1
ρ
pσ + ln

(
1 + e−σ

) − ln

(

1 + e

(
−1+ p

ρ

)
σ
)

1
ρ
σ + ln

(
1 + e−σ

) − ln

(

1 + e

(
−1+ 1

ρ

)
σ
) , (23)

where σ is the optimal-seeking factor and ρ is the quantile threshold. σ and ρ are treated
as variables that parameterize the weighting function, whereas p is the argument of the
parameterized weighting function. Using Eq. (23), we modify the generic CWO algorithm
by altering the way the sample weights are updated. The algorithm has a strong connection
with the traditional cross-entropy method, which is explained below.

We remind the reader that the density update equation for cross-entropy is

pCEk+1(x) = 1{H(x) > γ }
l

pCEk (x)

∝ 1{H(x) > γ }pCEk (x),
(24)

where an indicator function is used to select the elite samples based on aρ dependent threshold
γ . In fact, the cross-entropy equation is just the limiting case, as σ → ∞, of the CWO_U
algorithm. As we increase the optimal-seeking factor, the derivative of Eq. (23) fixing ρ at 0.1
will approach a step function [i.e., Eq. (24)] with its discontinuity occurring at ρ = 0.1 (see

123



510 J Glob Optim (2016) 65:487–512

0.0 0.2 0.4 0.6 0.8 1.0
Prob.

2

4

6

8

10
Weight

0 5 10 15 20
Trials

7100

7200

7300

7400

7500

7600

OptimalValue

CE

CWO_U

(a)

(b)

Fig. 1 Derivatives of the weighting function and numerical results. a Derivatives of Eq. (23) as σ increases.
b CE versus CWO_U sorted trial runs

Table 2 CWO_U and CE performance results

ATSP Ncities NTotal (Std.) Hbest H∗ H∗ δ∗ δ∗ δ (Std.)

ft53 53 90,450 (6.0e3) 6905 7679 7037 0.112 0.0191 0.060 (0.0244)

ce_ft53 53 65,100 (5.7e3) 6905 7676 7088 0.111 0.0265 0.075 (0.0276)

Fig. 1a). Table 2 contains the results from running 20 trials of CWO_U and CE algorithms
with the parameters Δ = 0.01, ρ0 = 0.1, ρmin = 0.001, N0 = 1000, ε = 0, ζ = 1,
ς = 0.01, and α = 0.7. Note the additional parameter Δ updates the weight function in each
iteration by increasing the σ parameter in Eq. (23) by Δ.

We plot the sorted minimum tour distances obtained from the 20 trials of CE and CWO_U
algorithms in Fig. 1b.We observe from Fig. 1b that comparedwith the standard cross-entropy
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Table 3 CWO_U and CE performance results—continuous case

H NTotal (Std.) Hbest H∗ H∗ δ∗ δ∗ δ (Std.)

H1 1250 (51) −6.02074 −6.02066 −6.02074 0.00008 0.0 1.8e−5(2.6e−5)

ce H1 800 (0) −6.02074 −6.02047 −6.02074 0.00027 0.0 2.4e−5(6.1e−5)

H2 2380 (77) −10.1532 −10.152576 −10.153163 6.24 × 10−4 3.7 × 10−5 3.0e−4(2.0e−4)

ce H2 1800 (108) −10.1532 −2.682841 −10.153113 7.47036 8.7 × 10−5 3.7e−1(1.7)

method, our approach does better in every percentile. For example, the 19
20 th percentile would

contain the lowest optimal solution obtained among the 20 trials. The 18
20 th percentile would

contain the second lowest optimal solution obtained among the 20 trials.

5.2 Continuous problems

We further tested the CWOuniformweight update scheme on the continuous case, comparing
CWO_U against the CE method by minimizing two continuous test functions with many
local minima and isolated optimizers: 1) Forrester: H1(x) = (6x − 2)2 sin (12x − 4) , 0 ≤
x ≤ 1; 2) Shekel: H2(x) = −∑5

j=1

(∑4
i=1

(
xi − Ai j

)2 + Bj

)−1
, 0 ≤ xi ≤ 10, where

A1 = A3 = [4, 1, 8, 6, 3] , A2 = A4 = [4, 1, 8, 6, 7] , and Ai represents the i th row of the
matrix A. Furthermore, B = [0.1, 0.2, 0.2, 0.4, 0.4] . Table 3 contains the results of our 20
trial runs for each scenario, using the parameters Δ = 0.1, ρ0 = ρmin = 0.1, N0 = 100,
ε = 0, ζ = 1, ς = 0, and α = 0.7. We employed independent Gaussian distributions with
zero mean and standard deviation of 10 as the initial distributions in all dimensions for all
runs.

6 Conclusion

In the first part of this paper, we proved the convergence and stability of both the theoret-
ical and Monte Carlo versions of the CWO-based method. The proofs provided a rigorous
mathematical foundation for the two practical algorithmswe proposed in the numerical exam-
ples section. These two algorithms are variations of the generic CWO algorithm described
in Algorithm 2. The two algorithm variations, CWO_T and CWO_U, differ by how they
update their probability density functions over the solution space for each iteration. The first
approach, CWO_T, weights the samples according to their outcome values. On the other
hand, CWO_U, uniformly weights the samples. We benchmarked the performance of the
CWO_T algorithm and summarized the results in Table 1. Although the numeric values are
quite satisfactory, we wanted to see if we could improve these results. This effort led us to the
development of the second approach, CWO_U, which we consider as the preferred imple-
mentation of the CWO-base algorithm. Perhaps the most surprising fact is that by not taking
into account the outcome values of the samples, we are able to achieve better performance
results. Even more interesting is the fact that the standard cross-entropy approach is just a
limiting case of the CWO_U approach. Comparing the numerical results of CWO_U with
those of CE, we believe our algorithm is better at obtaining an optimal solution (see Fig. 1b).
Of course, the improvement in performance is at the expense of increasing computational
costs.
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