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Abstract Geometric branch-and-bound methods are commonly used solution algorithms
for non-convex global optimization problems in small dimensions, say for problems with
up to six or ten variables, and the efficiency of these methods depends on some required
lower bounds. For example, in interval branch-and-bound methods various well-known lower
bounds are derived from interval inclusion functions. The aim of this work is to analyze the
quality of interval inclusion functions from the theoretical point of view making use of a
recently introduced and general definition of the rate of convergence in geometric branch-
and-bound methods. In particular, we compare the natural interval extension, the centered
form, and Baumann’s inclusion function. Furthermore, our theoretical findings are justified
by detailed numerical studies using the Weber problem on the plane with some negative
weights as well as some standard global optimization benchmark problems.

Keywords Global optimization · Interval analysis · Continuous problems ·
Approximation algorithms · Geometric branch-and-bound · Facility location problems

1 Introduction

In global optimization, we want to find the global minimum of a given objective function
f : R

n → R over a feasible area X , i.e. we want to solve the optimization problem

min
x∈X

f (x).

Since these problems are often hard to solve even in relatively small dimensions n, geometric
branch-and-bound methods are suitable solution approaches, see e.g. Horst et al. (2000) or
Floudas and Pardalos (2009). The main task throughout these algorithms is the calculation
of the required lower bounds. Several quite different techniques to do so can be found in the
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literature. For instance, commonly used techniques for facility location problems have been
introduced in Drezner and Suzuki (2004), Hansen et al. (1985), Plastria (1992), and Blanquero
and Carrizosa (2009). Recently, we analyzed the quality of these bounding operations from
the theoretical point of view, see Schöbel and Scholz (2010).

Interval analysis is a general framework for calculations with intervals, see e.g. Ratschek
and Rokne (1988), which is also a suitable tool for the calculation of lower bounds as outlined
in the textbook Hansen (1992) or in Ratschek and Voller (1991). Some empirical studies con-
cerning the quality of these bounds can be found in the literature, see Csallner and Csendes
(1996), Tóth and Csendes (2005), and Tóth et al. (2007). Our main interest in the present
paper is to extend our results from Schöbel and Scholz (2010) to interval methods. In partic-
ular, we will analyze bounding operations derived from interval analysis from the theoretical
point of view using the same definition of the rate of convergence as introduced in Schöbel
and Scholz (2010). In other words, our definition of the rate of convergence can be used to
analyze several quite different bounding procedures known from the literature.

The remainder of the paper is organized as follows. In the next section we give a sum-
mary of interval analysis which will be needed throughout this paper. Next, the geometric
branch-and-bound method is briefly reviewed in Sect. 3. The main contribution of our work
can be found in Sect. 4 where we analyze the calculation of some lower bounds derived from
interval analysis from the theoretical point of view. Furthermore, detailed numerical results
in Sect. 5 justify our theoretical findings from the empirical point of view. Finally, a brief
discussion of our results can be found in Sect. 6.

2 Interval analysis

In this section we summarize some principles of interval analysis as given for example in
Neumaier (1990), Ratschek and Rokne (1988), or Hansen (1992). Note that we assume
compact intervals throughout this paper.

Notation 1 A (compact) interval X is denoted by

X = [a, b] ⊂ R

with a ≤ b. Moreover, the left and right endpoints are denoted by X L = a and X R = b,
respectively. If X L = X R = z we will sometimes use the short form X = z = [z, z],
i.e. [z, z] is equivalent to z.

Next, arithmetic operations between intervals are defined as follows.

Definition 2 Let X = [a, b] and Y = [c, d] be two intervals. Then the interval arithmetic
is given by

X � Y := {x � y : x ∈ X, y ∈ Y },
where � denotes the addition, multiplication, subtraction, division, minimum, or maximum
as long as x � y is defined for all x, y ∈ Y .

By definition, X � Y again yields an interval which contains x � y for all x ∈ X and y ∈ Y
and which can be computed easily. Apart from interval arithmetic also interval operations
are defined as follows.
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Definition 3 Let X = [a, b] be an interval. Then the interval operation is given by

op(X) := {op(x) : x ∈ X} =
[

min
x∈X

op(x), max
x∈X

op(x)

]
,

where op : X → R denotes a continuous function such that op(X) is an interval.

In the following we assume operations such that the interval op(X) can be computed
easily. For example, if op is an increasing function we obtain

op(X) = [op(a), op(b)]
and if op is a decreasing function we obtain

op(X) = [op(b), op(a)]
for all intervals X = [a, b].
Definition 4 An interval function F(X1, . . . , Xn) is an interval valued function with n
intervals as argument using interval arithmetics and interval operations as defined before.

Example 1 An interval function F(X, Y ) with two intervals X and Y as argument is

F(X, Y ) = exp

(
X + Y

Y 2 + [1, 1]
)

= exp

(
X + Y

Y 2 + 1

)
.

For example, we obtain

F([0, 2], [−1, 1]) = exp

( [−1, 3]
[0, 1] + [1, 1]

)
= exp([−1, 3]) = [exp(−1), exp(3)].

Since our main goal in this work is to solve global optimization problems, we now define the
natural interval extension.

Definition 5 Let f (x1, . . . , xn) be a fixed representation (see Example 4) of a real valued
function with n real numbers as argument using arithmetics and operations such that the
corresponding interval arithmetics and interval operations are defined.

Then the natural interval extension of f (x1, . . . , xn) is given by the interval function
F(X1, . . . , Xn) where arithmetics and operations are replaced by their corresponding interval
arithmetics and interval operations.

Example 2 The natural interval extension of

f (x, y) = 4 · x2 + sin(y)

x2 + 1

is given by

F(X, Y ) = [4, 4] · X2 + sin(Y )

X2 + [1, 1] = 4 · X2 + sin(Y )

X2 + 1

where X and Y are intervals.

The natural interval extension leads to general lower bounds as required throughout
branch-and-bound algorithms. To this end, we need the following statement which can be
found in any standard textbook of interval analysis such as Neumaier (1990), Ratschek and
Rokne (1988), or Hansen (1992).
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Theorem 1 (Fundamental theorem) Let F(X1, . . . , Xn) be the natural interval extension of
f (x1, . . . , xn). Then

f (Y1, . . . , Yn) ⊆ F(Y1, . . . , Yn)

for all intervals Yk ⊆ Xk for k = 1, . . . , n, where

f (Y1, . . . , Yn) := { f (x1, . . . , xn) : xk ∈ Yk for k = 1, . . . , n}.

Proof See, for instance, Hansen (1992). ��

The following two examples show some properties of natural interval extension
F(X1, . . . , Xn) which we always should keep in mind.

Example 3 In general we have

f (X1, . . . , Xn) 	= F(X1, . . . , Xn).

For example, consider f (x) = x2 − 2x with natural interval extension

F(X) = X2 − 2 · X

and let Y = [1, 2]. Since f is monotone increasing on Y , we find

f (Y ) = [ f (1), f (2)] = [−1, 0].
But the natural interval extension yields

F(Y ) = F([1, 2]) = [1, 4] − [2, 4] = [−3, 2].

Example 4 Defining

f1(x) = 4(x2 − x) and f2(x) = (2x − 1)2 − 1,

we have f1(x) = f2(x) for all x ∈ R. This is not true for the natural interval extension and
intervals. Consider the natural interval extensions

F1(X) = 4 · (X2 − X) and F2(X) = (2 · X − 1)2 − 1.

Then, for Y = [0, 2], we obtain

F1([0, 2]) = [−8, 16] and F2([0, 2]) = [−1, 8].
Therefore, we always assume a fixed representation of f (x) if we consider the corresponding
natural interval extension F(X), see Definition 5.

Moreover, note that F2([0, 2]) = f2([0, 2]) since f2(
1
2 ) = −1 and f2(2) = 8. Thus, the

interval function F2(X) yields stronger bounds as we will see in the following.

In order to avoid these problems, we introduce the following definition which is of fun-
damental importance in the following sections.

Definition 6 A fixed representation of a continuous real valued function f (x1, . . . , xn) is
said to be a single-use expression if in its representation every variable x1 to xn occurs at
most once.
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Example 5 Consider

f1(x) = exp(4(x2 − x)) and f2(x) = exp((2x − 1)2 − 1).

Then f2 is a single-use expression while f1 is not although f1(x) = f2(x) for all x ∈ R. As
a second example consider

f1(x, y) = (x + y)2 + 3 and f2(x, y) = x2 + 2xy + 3 + y2.

Here, only f1 is a single-use expression although again f1(x, y) = f2(x, y) for all
(x, y) ∈ R

2.

The reason for the definition of single-use expressions is the following result.

Theorem 2 Let F(X1, . . . , Xn) be the natural interval extension of a single-use expression
f (x1, . . . , xn). Then

f (Y1, . . . , Yn) = F(Y1, . . . , Yn)

for all intervals Yk ⊆ Xk for k = 1, . . . , n.

Proof See, for instance, Neumaier (1990). ��
Remark 1 Let f (x1, . . . , xn) be a single-use expression, let F(X1, . . . , Xn) be the corre-
sponding natural interval extension, and consider some intervals Yk ⊆ Xk for k = 1, . . . , n.
Then, from Theorem 2 we know that there exists a (y1, . . . , yn) ∈ Y1 × · · · × Yn such that

f (y1, . . . , yn) = F(Y1, . . . , Yn)L .

But note that it is in general not an easy task to find such a (y1, . . . , yn).

For the case of general interval functions, we need the following definition.

Definition 7 An interval function F(X1, . . . , Xn) is said to be an interval inclusion function
of f (x1, . . . , xn) if

f (Y1, . . . , Yn) ⊆ F(Y1, . . . , Yn)

for all intervals Yk ⊆ Xk for k = 1, . . . , n.

Hence, every interval inclusion function leads to lower bounds on the objective function
as required throughout the following prototype algorithm. As an example, the natural interval
extension yields an interval inclusion function due to Theorem 1.

3 The prototype algorithm

In order to simplify our notations we need the following definition.

Definition 8 A compact box X is the Cartesian product of intervals, i.e.

X = [a1, b1] × · · · × [an, bn].
Moreover, the diameter of a box X ⊂ R

n is

δ(X) = max{‖x − x ′‖2 : x, x ′ ∈ X} =
√

(b1 − a1)2 + · · · + (bn − an)2
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and the center of a box X ⊂ R
n is defined by

c(X) =
(

1

2
(a1 + b1), . . . ,

1

2
(an + bn)

)
.

Consider an objective function f : R
n → R defined on a box X ⊂ R

n . Then our goal is to
minimize f on X . To this end, we suggest a geometric branch-and-bound algorithm which
needs a bounding operation as introduced in Schöbel and Scholz (2010).

Notation 9 Let X ⊂ R
n be a box and consider f : X → R. A bounding operation is a

procedure to calculate for any subboxes Y ⊆ X a lower bound L B(Y ) ∈ R with

L B(Y ) ≤ f (x) for all x ∈ Y

and to specify a point P(Y ) ∈ Y .

Note that the choice of P(Y ) is of fundamental importance for our theoretical and empir-
ical studies in the following.

For a given bounding operation we can use the following algorithm to find an approxima-
tion of the global minimum x∗ ∈ X within an absolute accuracy of ε > 0.

(1) Calculate a lower bound L B(X) for f (Y ) and set U B = f (P(X)) and L = {X}.
(2) Choose a box with the lowest lower bound in L, split it into s congruent smaller boxes

Y1, . . . , Ys , delete the selected box from L, and add Y1, . . . , Ys to L. Calculate lower
bounds L B(Y1), . . . , L B(Ys) and update

U B = min{U B, f (P(Y1)), . . . , f (P(Ys))}.
Delete all boxes Y from L with L B(Y ) + ε ≥ U B.

(3) When there are no boxes left, i.e. L = ∅, the algorithm terminates and U B is within
the absolute accuracy of ε from the optimum. If there are boxes left, return to step ( 2 ).

We remark that this algorithm is only appropriate for problems in small dimensions, say
for problems with up to six or ten variables. The reason is that the number of considered
subboxes throughout the algorithm as well as the time for calculating the required lower
bounds increases very fast with increasing number of variables.

In the next section, we discuss several bounding operations which can be easily derived
using methods from interval analysis.

4 Interval inclusion functions

In order to analyze bounding operations from the theoretical point of view, we need one more
definition which again was introduced in Schöbel and Scholz (2010).

Definition 10 Let X ⊂ R
n be a box and f : X → R. Furthermore, consider the minimization

problem

min
x∈X

f (x).

We say a bounding operation has the rate of convergence p ∈ N if there exists a constant
C > 0 such that

f (P(Y )) − L B(Y ) ≤ C · δ(Y )p (1)

for all boxes Y ⊆ X .
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Although some empirical studies concerning a related concept for the rate of convergence
can be found in the literature, see Csallner and Csendes (1996) and Tóth and Csendes (2005),
our definition including the specific point P(Y ) leads to a concept which can be applied for
bounding operations in general and not only for interval inclusion functions. In particular,
we calculated the theoretical rate of convergence for the Lipschitzian bounding operation,
the d.c. bounding operation, and a general bounding operation in Schöbel and Scholz (2010).
Our goal in the following is to calculate the rate of convergence also for some bounding
operations given by interval inclusion functions.

4.1 Natural interval bounding operation

Assume that f (x) = f (x1, . . . , xn) consists only of arithmetics and operations such that the
corresponding natural interval extension F(X) = F(X1, . . . , Fn) exists, see Definition 5,
and recall that the superscript L indicates the left endpoint of an interval. Then, from the
fundamental theorem of interval analysis, see Theorem 1, we directly obtain the natural
interval bounding operation

L B(Y ) = F(Y )L and P(Y ) = c(Y ).

The natural interval bounding operation can be used in general for global optimization prob-
lems. Numerical examples can be found e.g. in Hansen (1992). Moreover, this bounding
operation also finds several applications in location problems, see e.g. Fernández et al. (2007)
and Tóth et al. (2009).

Before we can present a general statement concerning the rate of convergence of the
natural interval bounding operation, we need the following result.

Lemma 3 Consider a box X ⊂ R
n, let f : X → R be a Lipschitzian function with constant

L such that f (x) is a single-use expression, and assume that the natural interval extension
F(X) of f (x) exists. Then

δ(F(Y )) = F(Y )R − F(Y )L ≤ C · δ(Y )

holds for all boxes Y ⊆ X and the constant C > 0 does not depend on Y .

Proof From Theorem 2 we know that

f (Y ) = F(Y ) = [F(Y )L , F(Y )R]
for all subboxes Y ⊆ X since f (x) is a single-use expression. Thus, there are some �, r ∈ Y
with

f (�) = F(Y )L and f (r) = F(Y )R .

Therefore, we find

F(Y )R − F(Y )L = f (r) − f (�) ≤ L · ‖r − �‖2 ≤ L · δ(Y )

and the statement is shown. ��
Lemma 4 Consider a box X ⊂ R

n, let m1, . . . , ms : X → R be Lipschitzian functions
such that m1(x) to ms(x) are single-use expressions, and assume that the natural interval
extensions M1(X) to Ms(X) exist. Furthermore, consider

f (x) = h(m1(x), . . . , ms(x)),
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where h : R
s → R is a Lipschitzian function with constant L such that h(x) is a single-use

expression and assume that the natural interval extension H(X) exists. Then

δ(F(Y )) = F(Y )R − F(Y )L ≤ C · δ(Y )

holds for all boxes Y ⊆ X and the constant C > 0 does not depend on Y . Moreover, F(X)

is the natural interval extension of f (x).

Proof For any Y ⊆ X , we find some

� = (�1, . . . , �s), r = (r1, . . . , rs) ∈ M1(Y ) × · · · × Ms(Y )

such that

H(M1(Y ), . . . , Ms(Y ))L = h(�) and H(M1(Y ), . . . , Ms(Y ))R = h(r)

since h(x) is a single-use expression. Hence, using Lemma 3 we obtain

δ(F(Y )) = δ(H(M1(Y ), . . . , Ms(Y )))

= H(M1(Y ), . . . , Ms(Y ))R − H(M1(Y ), . . . , Ms(Y ))L

= h(r) − h(�) ≤ L · ‖r − �‖2

= L ·
√

(r1 − �1)2 + · · · + (rs − �s)2

≤ L ·
√√√√ s∑

k=1

(
Mk(Y )R − Mk(Y )L

)2

≤ L ·
√√√√ s∑

k=1

(Ck · δ(Y ))2 ≤ L · √
s · Cmax · δ(Y )

with Cmax = max{C1, . . . , Cs}. ��
Finally, we can prove the following result.

Theorem 5 Consider a box X ⊂ R
n, let m1, . . . , ms : X → R be Lipschitzian functions

such that m1(x) to ms(x) are single-use expressions, and assume that the natural interval
extensions M1(X) to Ms(X) exist. Furthermore, consider

f (x) = h(m1(x), . . . , ms(x))

where h : R
s → R is a Lipschitzian function with constant L such that h(x) is a single-use

expression and assume that the natural interval extension H(X) exists.
Then the natural interval bounding operation has a rate of convergence of p = 1.

Proof Using the previous result, we directly obtain

f (P(Y )) − L B(Y ) ≤ F(Y )R − F(Y )L ≤ C · δ(Y )

which shows the rate of convergence of p = 1. ��
To sum up, we found a general family of functions such that the natural interval bounding

operation has a rate of convergence of p = 1. We remark that almost all commonly used
objective functions in location theory as well as standard global optimization benchmark
functions, see Sect. 5.2, can be expressed in the required form. However, this is not true in
general as the following counterexample shows.
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Example 6 Consider the one-dimensional and differentiable objective function

f (x) = √
sin(7x) + cos(3x) + 2.

This function should be written as f (x) = h(m1(x), m2(x)) with

m1(x) = sin(7x) + 1, m2(x) = cos(3x) + 1, and h(x1, x2) = √
x1 + x2.

Thus, we know that m1(x) ≥ 0 and m2(x) ≥ 0 for all x ∈ R and m1 and m2 are Lipschitzian
functions, but h is not Lipschitzian on [0,∞)2. However, in our numerical studies in Sect. 5.2
it can be seen that even for this function we obtain an empirical rate of convergence of one,
see Table 4.

The next example shows that we cannot expect a rate of convergence higher than p = 1
for the natural interval bounding operation.

Example 7 Consider f (x) = x2 and the box X = [0, 2]. Furthermore, define the sequence
Yμ = [1 − μ, 1 + μ] for 0 < μ < 1 with c(Yμ) = 1. Then the natural interval bounding
operation yields

L B(Yμ) = (Y 2
μ)L = (1 − μ)2 = 1 − 2μ + μ2.

Thus, we find

f (P(Yμ)) − L B(Yμ)

δ(Yμ)2 = 1 − (1 − 2μ + μ2)

4μ2 = 2μ − μ2

4μ2 = 1

2μ
− 1

4

which is unbounded for μ → 0. Hence, we cannot find a constant C > 0 such that

f (P(Yμ)) − L B(Yμ) ≤ C · δ(Y )2

for all μ > 0.

4.2 Centered interval bounding operation

Apart from the natural interval bounding operation we can use the natural interval extension
of the Taylor expansion as follows, see also Hansen (1992).

Consider X ⊂ R
n and assume that f : X → R is continuously differentiable. Then, for

all subboxes Y ⊆ X and c = (c1, . . . , cn) = c(Y ) we know that

f (x) = f (c) + ∇ f (ϑ(x))T · (x − c) for all x ∈ Y

and ϑ(x) ∈ Y . Using again the fundamental theorem of interval analysis, this Taylor expan-
sion leads to

f (Y ) = f (Y1, . . . , Yn) ⊆ f (c) +
n∑

k=1

Gk(Y ) · (Yk − ck),

where Gk(X) is the natural interval extension of

gk(x) := ∂ f

∂xk
(x) for k = 1, . . . , n.

Finally, define z = (z1, . . . , zn) ∈ Y with zk ∈ {Y L
k , Y R

k } such that

(Gk(Y ) · (Yk − ck))
L = (Gk(Y ) · (zk − ck))

L
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for k = 1, . . . , n. Hence, we constructed the centered interval bounding operation

L B(Y ) = f (c) +
n∑

k=1

(Gk(Y ) · (Yk − ck))
L and P(Y ) = z.

Theorem 6 Let X ⊂ R
n and consider a continuously differentiable function f : X → R

such that the natural interval extensions of

gk(x) = ∂ f

∂xk
(x) for k = 1, . . . , n

exist and satisfy the conditions given in Lemma 4.
Then the centered interval bounding operation has a rate of convergence of p = 2.

Proof For all Y ⊆ X the first order Taylor expansion of f yields

f (x) = f (c) + ∇ f (ϑ(x))T · (x − c)

with ϑ(x) ∈ Y for all x ∈ Y . Next, for all k = 1, . . . , n find wk ∈ Gk(Y ) such that

(Gk(Y ) · (Yk − ck))
L = wk · (zk − ck),

where zk ∈ Yk as defined before. Note that these values exist since x · y is a single-use
expression. Finally, define

u = (u1, . . . , un) = ∇ f (ϑ(z)) ∈ G1(Y ) × · · · × Gn(Y ).

Thus, Lemma 4 yields

f (P(Y )) − L B(Y ) = ∇ f (ϑ(z))T · (z − c) −
n∑

k=1

(Gk(Y ) · (Yk − ck))
L

= uT · (z − c) −
n∑

k=1

wk · (zk − ck)

=
n∑

k=1

(uk − wk) · (zk − ck)

≤
n∑

k=1

|uk − wk | · |zk − ck |

≤
n∑

k=1

δ(Gk(Y )) · 1

2
δ(Y ) ≤

n∑
k=1

Ck · δ(Y ) · 1

2
δ(Y )

=
(

1

2
·

n∑
k=1

Ck

)
· δ(Y )2

and the rate of convergence of p = 2 is shown. ��
Example 8 Consider f (x) = x3, the box X = [0, 2], and the sequence Yμ = [1 −μ, 1 +μ]
for 0 < μ < 1 with c = c(Yμ) = 1. Then we find

f (c) + F ′(Yμ) · (Yμ − c) = 1 + 3 · [1 − μ, 1 + μ]2 · [−μ,μ].
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Thus, the centered interval bounding operation yields

L B(Yμ) = 1 + 3 · ([(1 − μ)2, (1 + μ)2] · [−μ,μ])L

= 1 + 3 · (1 + μ)2 · (−μ) = 1 − 3μ − 6μ2 − 3μ3

and we obtain P(Yμ) = z = (1 − μ). This leads to

f (P(Yμ)) − L B(Yμ)

δ(Yμ)3 = (1 − μ)3 − (1 − 3μ − 6μ2 − 3μ3)

8μ3

= (1 − 3μ + 3μ2 − μ3) − (1 − 3μ − 6μ2 − 3μ3)

8μ3

= 9μ2 + 2μ3

8μ3 = 9

8μ
+ 1

4

which is again unbounded for μ → 0. Therefore, the centered interval bounding operation
does not have a rate of convergence of p ≥ 3.

4.3 Baumann’s interval bounding operation

In the previous subsection, we used the first order Taylor expansion of f at c = c(Y ). But
note that for both for the calculation of the bounding operation and for the rate of convergence
of p = 2 we can use the Taylor expansion of f at any point y ∈ Y . The idea of Baumann
(1988) was to use a specific point b = b(Y ) ∈ Y instead of c = c(Y ) ∈ Y as follows.

Consider again a box X ⊂ R
n and assume that f : X → R is continuously differentiable.

Denote by Gk(X) again the natural interval extensions of

gk(x) := ∂ f

∂xk
(x) for k = 1, . . . , n.

Then we define b = (b1, . . . , bn) ∈ Y by

bk =
⎧⎨
⎩

(δ(Gk(Y ))−1 · (
Gk(Y )R · Y L

k − Gk(Y )L · Y R
k

)
if 0 ∈ Gk(Y )

Y L
k if Gk(Y )L ≥ 0

Y R
k if Gk(Y )R ≤ 0

for k = 1, . . . , n. As before, we obtain

f (Y ) = f (Y1, . . . , Yn) ⊆ f (b) +
n∑

k=1

Gk(Y ) · (Yk − bk).

Defining z = (z1, . . . , zn) ∈ Y with zk ∈ {Y L
k , Y R

k } such that

(Gk(Y ) · (Yk − bk))
L = (Gk(Y ) · (zk − bk))

L

for k = 1, . . . , n we have Baumann’s interval bounding operation

L B(Y ) = f (b) +
n∑

k=1

(Gk(Y ) · (Yk − bk))
L and P(Y ) = z.

Analogous to the centered interval bounding operation, we find quadratic convergence.
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Corollary 7 Let X ⊂ R
n and consider a continuously differentiable function f : X → R

such that the natural interval extensions of

gk(x) = ∂ f

∂xk
(x) for k = 1, . . . , n

exist and satisfy the conditions given in Lemma 4.
Then Baumann’s interval bounding operation has a rate of convergence of p = 2.

Proof The proof is similar to Theorem 6 and therefore omitted here. ��
Baumann (1988) has shown the specific choice of b which leads to the optimal centered

form in the following sense. For all y = (y1, . . . , yn) ∈ Y we have

f (y) +
n∑

k=1

(Gk(Y ) · (Yk − yk))
L ≤ f (b) +

n∑
k=1

(Gk(Y ) · (Yk − bk))
L .

Thus, Baumann’s interval bounding operation yields the best lower bound among all possible
centered forms. Hence, in our numerical results presented in the next section we expect a
smaller constant C compared to the centered interval bounding operation.

We remark that in the literature some related results about quadratic convergence for
Baumann’s form can be found. For instance, under certain conditions Chuba and Miller
(1972) and Krawczyk and Nickel (1982) proved that

δ

(
f (b) +

n∑
k=1

Gk(Y ) · (Yk − bk)

)
− δ( f (Y )) ≤ C · δ(Y )2.

But note that our result is stronger than this one since we in general do not have any infor-
mation about δ( f (Y )) in the left hand side of this inequality.

5 Numerical results

Our goal in this section is to measure the rate of convergence from the empirical point of
view. To this end, changing the inequality into an equality in Equation (1) and applying the
natural logarithm yields

log( f (P(Y )) − L B(Y )) = log(C) + p · log(δ(Y )).

For a given test function f , we can calculate the left hand side of this expression and log(δ(Y ))

for some selected boxes Y ⊆ X . We then obtain the empirical rate of convergence p and
log(C) by linear regression. This strategy was also used in Tóth and Csendes (2005) and
Tóth et al. (2007) to analyze related concepts and in Schöbel and Scholz (2010) to evaluate
Lipschitzian and d.c. bounding operations.

5.1 The Weber problem on the plane

In order to present some first numerical experiences, we consider the Weber problem on the
plane with positive and negative weights, see Tuy et al. (1995) or Drezner and Suzuki (2004).
Assume a given set of s demand points a1, . . . , as ∈ R

2 and weights w1, . . . , ws ∈ R. Then
the Weber problem is to minimize the objective function

f (x) =
s∑

k=1

wk · ‖ak − x‖2.
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Fig. 1 Results for the empirical rate of convergence using randomly selected boxes. Natural interval bounding
operation (left), centered interval bounding operation (middle), and Baumann’s interval bounding operation
(right)

Table 1 Results for the
empirical rate of convergence
using randomly selected boxes

Bounding operation C p

Natural interval bounding operation 124.01 1.00

Centered interval bounding operation 19.06 2.00

Baumann’s interval bounding operation 9.32 2.04

For this function, we can directly apply the natural interval bounding operation. But since
the objective function is not differentiable at the demand points a1, . . . , as , we cannot directly
apply the centered interval bounding operation and Baumann’s interval bounding operation.
Therefore, for any box Y ⊆ X we consider

f̃ (x) =
s∑

k=1
ak 	∈Y

wk · ‖ak − x‖2 +
s∑

k=1
ak∈Y, wk<0

wk · dmax
k (Y ),

where dmax
k (Y ) = max{‖ak − x‖2 : x ∈ Y }. Note that f̃ is calculated for every subbox Y

separately. Hence, f̃ (x) ≤ f (x) for all x ∈ Y and f̃ is differentiable for all x ∈ Y . Moreover,
f = f̃ if ak 	∈ Y for k = 1, . . . , s or if δ(Y ) = 0.

In our numerical experiences, we generated a fixed problem instance with s = 100 demand
points uniformly distributed in X = [−10, 10]×[−10, 10] and weights uniformly distributed
in [−4, 6].

In a first study, we randomly selected 1,000 boxes Y ⊆ X with different widths such
that f (P(Y )) − L B(Y ) 	= 0 for all three bounding operations since log(0) does not exist.
Figure 1 shows the results where linear regressions yield the values of C and p summarized
in Table 1.

As can be seen, the empirical rates of convergence agree fairly well with our theoretical
results. Note that the constant C is smaller for Baumann’s interval bounding operation com-
pared to the centered interval bounding operation as expected from Sect. 4.3. Furthermore,
the larger deviation for Baumann’s interval bounding operation can be explained since for
randomly selected boxes we are very often in a case where we obtain an exact lower bound.
Thus, especially for smaller boxes it is very likely to find f (P(Y ))− L B(Y ) = 0, see above.

Since the natural interval bounding operation has a rate of convergence of only p = 1,
the branch-and-bound method as described in Sect. 3 is too slow if we are using the natural
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Fig. 2 Results for the empirical rate of convergence solving one particular problem instance. Centered interval
bounding operation (left) and Baumann’s interval bounding operation (right)

Table 2 Results for the
empirical rate of convergence
solving one particular problem
instance

Bounding operation Iterations C p

Centered interval bounding operation 2,116 28.96 2.01

Baumann’s interval bounding operation 1,363 21.41 2.01

Table 3 Minimum, maximum,
and average number of iterations
for the branch-and-bound
algorithm for 10 different Weber
problem instances

Bounding operation Min Max Ave.

Centered interval bounding operation 1,373 2,150 1,781.2

Baumann’s interval bounding operation 545 1,660 1,130.3

interval bounding operation. Therefore, we only consider the other two bounding operations
for the remainder of this subsection.

In a second study, we again used the same problem instance but we now considered all
boxes which occur while running the branch-and-bound method with ε = 10−10. Our results
are illustrated in Fig. 2 and Table 2.

As before, we obtained a rate of convergence of approximately p = 2 for both bounding
operations and the constant C is again smaller for Baumann’s interval bounding operation
compared to the centered interval bounding operation.

In a third study, we analyzed the number of iterations needed throughout the branch-
and-bound algorithm for 10 different randomly generated problem instances as before with
s = 100 demand points. Our results can be found in Table 3.

Although both bounding operations have a rate of convergence of p = 2, the number
of iterations is much smaller for Baumann’s interval bounding operation. This fact can be
explained by the smaller constant C as discussed in our second study. We remark that similar
results can be found for other values of s.

5.2 Global optimization benchmark problems

For some further numerical results, we solved some standard global optimization benchmark
problems in different dimensions n, see Hansen (1992) and Schwefel (1981). A detailed list
of the test functions used in the following can be found in the Appendix.

For all functions, we calculated the empirical rate of convergence as described before by
linear regressions. Furthermore, we applied the branch-and-bound algorithm using the initial
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Table 4 Numerical results for several standard global optimization test problems with n ≤ 2

Bounding operation Iterations Run time (s) C p

Example 6 with n = 1 and ε = 10−10

Natural interval 270,502 653.25 1.28 1.01

Centered interval 218 0.00 4.56 2.03

Baumann’s interval 119 0.00 4.16 2.15

Six Hump Camel with n = 2 and ε = 10−10

Natural interval n.a. n.a. 4,026.63 0.99

Centered interval 2,003 0.12 1,553.56 2.02

Baumann’s interval 821 0.03 10.05 2.03

Levy 3 with n = 2 and ε = 10−10

Natural interval n.a. n.a. 87.63 1.02

Centered interval 8,039 0.40 314.80 2.03

Baumann’s interval 4,273 0.16 225.38 2.17

Levy 5 with n = 2 and ε = 10−10

Natural interval n.a. n.a. 89.78 1.01

Centered interval 2,893 0.28 314.97 2.02

Baumann’s interval 2,278 0.17 191.57 2.18

Levy 13 with n = 2 and ε = 10−10

Natural interval n.a. n.a. 42.71 0.97

Centered interval 18,758 0.95 510.79 2.00

Baumann’s interval 13,717 0.58 432.21 2.22

Schwefel 25 with n = 2 and ε = 10−10

Natural interval 169 0.00 39.85 0.99

Centered interval 1,077 0.04 6.58 2.00

Baumann’s interval 320 0.00 2.01 2.01

Fermat-Weber problem with n = 2 and ε = 10−10

Natural interval n.a. n.a. 124.12 1.00

Centered interval 2,116 0.26 19.21 2.01

Baumann’s interval 1,363 0.17 8.88 2.03

box X = [−10, 10]n and ε = 10−10 for all problems. Note that each selected box throughout
the algorithm was bisected perpendicular to the direction of the maximum width component
in two subboxes.

Our numerical results can be found in Tables 4 and 5. Therein, we reported the empirical
rates of convergence calculated from 1,000 randomly selected boxes Y ⊂ X as before as well
as the run time and the number of iterations needed to solve the problems. Note that n.a. stands
for not available since the algorithm was stopped if the number of iterations exceeded one
million and the run time was >1 hour.

For all benchmark problems, the empirical rate of convergence is again similar to our theo-
retical studies. Moreover, for almost all problems the lower bounds obtained from the natural
interval bounding operation were not sharp enough such that we could solve the problems
efficiently. However, note that for two benchmark problems, namely for Schwefel 25 and for
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Table 5 Numerical results for several standard global optimization test problems with n ≥ 3

Bounding operation Iterations Run time (s) C p

Rosenbrock with n = 3 and ε = 10−10

Natural interval 179 0.00 3.54 · 105 0.99

Centered interval 133,015 10.25 0.80 · 105 1.99

Baumann’s interval 29,185 0.74 170.09 2.02

Fermat-Weber problem with n = 3 and ε = 10−10

Natural interval n.a. n.a. 95.31 1.00

Centered interval 39,426 8.88 9.11 2.00

Baumann’s interval 23,844 4.67 2.34 1.99

Fermat-Weber problem with n = 4 and ε = 10−10

Natural interval n.a. n.a. 115.06 1.00

Centered interval 238,719 134.96 8.95 2.00

Baumann’s interval 96,452 33.85 1.98 2.03

Shekel 5 with n = 4 and ε = 10−10

Natural interval n.a. n.a. 20.22 · 10−4 1.01

Centered interval 18,885 1.00 2.93 · 10−4 2.00

Baumann’s interval 3,057 0.12 0.76 · 10−4 1.81

Shekel 7 with n = 4 and ε = 10−10

Natural interval n.a. n.a. 27.16 · 10−4 1.01

Centered interval 19,325 1.02 4.02 · 10−4 2.00

Baumann’s interval 3,006 0.23 1.32 · 10−4 1.91

Shekel 10 with n = 4 and ε = 10−10

Natural interval n.a. n.a. 37.72 · 10−4 1.00

Centered interval 19,566 1.37 5.56 · 10−4 1.99

Baumann’s interval 3,062 0.22 2.25 · 10−4 1.89

Rosenbrock, the fastest way to solve the problem was to use the natural interval bounding
operation.

Finally, we remark that similar results can be obtained for different values of ε. How-
ever, for same larger values of ε, say ε = 10−2 or ε = 10−1, the natural interval bounding
operation fares better than the other two bounding operations since for larger boxes we often
obtain the sharpest bounds using the natural interval bounding operation.

6 Discussion

In this paper, we analyzed bounding operations derived from interval analysis from the the-
oretical point of view. We found out that the natural interval extension yields a bounding
operation with a rate of convergence of p = 1 while the centered interval bounding opera-
tion as well as Baumann’s interval bounding operation have a rate of convergence of p = 2.
Our theoretical results are also verified by various numerical experiences using the Weber
problem on the plane and some standard global optimization benchmark problems.
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We remark that we cannot generalize the centered interval bounding operation to a bound-
ing operation with an arbitrary rate of convergence using higher order Taylor extensions since
we are not in a position to determine the point P(Y ) = z as required. For a general bounding
operation, we refer to Schöbel and Scholz (2010).

Moreover, note that the empirical rates of convergence as calculated in Tóth and Csendes
(2005) and Tóth et al. (2007) seem to be very close to our theoretical results if we ignore
boxes with f (P(Y )) − L B(Y ) = 0. Therefore, our work now explains the empirical studies
reported e.g. in Tóth and Csendes (2005) from the theoretical point of view.

Appendix

In the following, we give a detailed list of test functions used for our numerical results in
Sect. 5.2. All these functions are standard global optimization benchmark problems and can
be found e.g. in Hansen (1992) and Schwefel (1981).

(1) Six Hump Camel with n = 2:

f (x1, x2) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2 .

(2) Levy 3 with n = 2:

f (x1, x2) =
5∑

k=1

(k · cos((k − 1)x1 + k)) ·
5∑

k=1

(k · cos((k + 1)x2 + k)) .

(3) Levy 5 with n = 2:

f (x1, x2) =
5∑

k=1

(k · cos((k − 1)x1 + k)) ·
5∑

k=1

(k · cos((k + 1)x2 + k))

+(x1 + 1.42513)2 + (x2 + 0.80032)2.

(4) Levy 13 with n = 2:

f (x1, x2) = sin2(3πx1) + (x1 − 1)2(1 + sin2(3πx2)) + (x2 − 1)(1 + sin2(2πx2)).

(5) Schwefel 25 with n = 2:

f (x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2.

(6) Fermat-Weber problem with n ∈ {2, 3, 4}:

f (x) =
100∑
k=1

wk · ‖x − ak‖2

with ak ∈ [−10, 10]n and wk ∈ [−4, 6], see also Sect. 5.1.
(7) Rosenbrock with n = 3:

f (x1, x2, x3) = 100(x2 − x2
1 )2 + (x1 − 1)2 + 100(x3 − x2

2 )2 + (x2 − 1)2.

(8) Shekel 5, Shekel 7, and Shekel 10 with n = 4:

(x) = −
m∑

k=1

1

‖Ak − x‖2
2 + 1

10 ck
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with m = 5, m = 7, and m = 10, respectively, and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and c = (1, 2, 2, 4, 4, 6, 3, 7, 5, 5).
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