
J Glob Optim (2010) 46:287–306
DOI 10.1007/s10898-009-9426-y

One-dimensional nested maximin designs

Edwin R. van Dam · Bart Husslage · Dick den Hertog

Received: 24 August 2006 / Accepted: 23 April 2009 / Published online: 8 May 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The design of computer experiments is an important step in black-box evaluation
and optimization processes. When dealing with multiple black-box functions the need often
arises to construct designs for all black boxes jointly, instead of individually. These so-called
nested designs are particularly useful as training and test sets for fitting and validating meta-
models, respectively. Furthermore, nested designs can be used to deal with linking parame-
ters and sequential evaluations. In this paper, we introduce one-dimensional nested maximin
designs. We show how to nest two designs optimally and develop a heuristic to nest three
and four designs. These nested maximin designs can be downloaded from the website http://
www.spacefillingdesigns.nl. Furthermore, it is proven that the loss in space-fillingness, with
respect to traditional maximin designs, is at most 14.64 and 19.21%, when nesting two and
three designs, respectively.

Keywords Computer simulation · Global optimization · Linking parameter · Maximin
design · Mixed integer linear programming · Packing problem · Space-filling · Training and
test set

The research of E. R. van Dam has been made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences.
The research of B. G. M. Husslage has been financially supported by the Samenwerkings Orgaan Brabantse
Universiteiten (SOBU).

E. R. van Dam (B) · B. Husslage · D. den Hertog
Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000 LE
Tilburg, The Netherlands
e-mail: Edwin.vanDam@uvt.nl

B. Husslage
e-mail: Husslage@casema.nl

D. den Hertog
e-mail: D.denHertog@uvt.nl

123

http://www.spacefillingdesigns.nl
http://www.spacefillingdesigns.nl

288 J Glob Optim (2010) 46:287–306

1 Introduction

Maximin designs play an important role in the area of (deterministic) black-box evaluation
and optimization. By nature, a black-box function is not given explicitly, however, we may
perform function evaluations. Based on these evaluations an approximation model for the
black box can be constructed, which leads to more insight in the black box and which
opens the way for optimization techniques. Unfortunately, function evaluations often con-
stitute time-consuming computer simulations, thereby limiting the number of evaluations
performed. A proper design of computer experiments then becomes vitally important, see
e.g., Sacks et al. (1989), Jones et al. (1998), Booker et al. (1999), Myers (1999), den Hertog
and Stehouwer (2002), and Kleijnen and van Beers (2004).

We will use the term design to denote the set of points that will be evaluated. Such a
design should at least be space-filling in some sense to provide information about the entire
black-box domain. Several space-filling measures, like maximin, minimax, IMSE, and max-
imum entropy, are used in the literature; see e.g., Montgomery (1984), Sacks et al. (1989),
and Morris and Mitchell (1995). A good survey of these criteria can be found in Santner
et al. (2003), in which it is also shown that maximum entropy and distance-based criteria are
preferable when conducting computer experiments. We will therefore consider the maximin
criterion, which maximizes the minimal distance among all pairs of points, in this paper.
Maranas et al. (1995) and Nurmela and Östergård (1997, 1999) among others, consider
maximin designs in two dimensions, whereas Gensane (2004) considers maximin designs in
three dimensions. Finding the maximin design is in fact an optimization problem with many
local optima. Global optimization techniques are used in, e.g., Pintér (2001), Stortelder et al.
(2001), and Pintér et al. (2008), to solve such problems. A collection of other maximin prob-
lems and solution techniques can be found in Du and Pardalos (1995). For maximin Latin
hypercube designs, the reader is referred to van Dam et al. (2007, 2009) and Husslage et al.
(2008).

In real-life problems there is often a need for nested designs. This type of design consists
of two separate designs, with the requirement that one design is a subset of the other design.
Such nested designs can be found by mixed integer linear programming, however, this may
be computationally expensive, or even impossible, in particular for larger problem instances.
This paper shows how to construct one-dimensional nested maximin designs. Furthermore,
it is proven that the loss in space-fillingness, with respect to traditional maximin designs, is
at most 14.64 and 19.21%, when nesting two and three designs, respectively. There are three
main reasons for nesting maximin designs: training and test sets, linking parameters, and
sequential evaluations.

To start with the first, consider the problem of fitting and validating a particular metamodel.
First, this approximation model is fitted to the obtained data, i.e., the responses obtained when
evaluating the design points in the training set. Then, a new set of design points, i.e., the test
set, is evaluated and the obtained responses are compared to the response values predicted by
the metamodel. If the differences between the predicted and the actual response values are
small the metamodel is said to be valid. Training and test sets are often used in, for example,
neural networks. See also Cherkassky and Mulier (1998) for a more detailed description of
the use of training and test sets, and Hurrion (1997) and Su et al. (2005) for several interesting
neural network applications. Since a metamodel should be a global approximation model,
i.e., it should be valid for the entire feasible region, the evaluation points, in both the training
set and the test set, should cover the entire region. Moreover, the evaluation points in the
test set should not lie too close to the evaluation points in the training set, i.e., the total set
of evaluation points should be space-filling. Note that this is accomplished by nesting two

123

J Glob Optim (2010) 46:287–306 289

designs, say, X1 and X2, with respect to, for example, the maximin criterion. The sets X1

and X2\X1 can then be used as the training set and the test set, respectively.
Another reason for using nested designs is caused by linking parameters. Consider a prod-

uct that consists of two components, each of them represented by a black-box function. In
practice it often occurs that the functions have an input parameter in common, also called
a linking parameter, see Husslage et al. (2003). Evaluating such a linking parameter at the
same setting in both functions (i.e., component-wise) leads to an evaluation of the product.
Not only do product evaluations provide a better understanding of the product, they are also
very useful in the product optimization process. Another reason for using the same settings
for (linking) parameters is due to physical restrictions on the simulation tools. Setting the
parameters for computer experiments can be a time-consuming job in practice, since charac-
teristics, like shape and structure, have to be redefined for every new experiment. Therefore,
it is preferable to use the same settings as much as possible. By constructing nested designs,
these common settings for the parameters can be determined.

Sequential evaluations are a third reason for using nested designs. In practice, it is com-
mon that after evaluating an initial set of design points, extra evaluations are needed. As an
example, suppose we construct an approximation model for a black-box function based on
n1 function evaluations. However, after validating the obtained model it turns out that an
extra set of, say, n2 − n1 function evaluations is needed to properly fit the current model.
We then face the problem of constructing a design on n2 points, given the initial design on
n1 points. It would be better to anticipate on the possibility of extra evaluations. This can
be accomplished by constructing the two designs (on n1 and n2 points) at once, hence, by
constructing a nested design.

We will now give a more strict formulation of our problem. Let there be m ∈ N nested
sets (or designs) X1 ⊆ X2 ⊆ · · · ⊆ Xm and index sets I1 ⊆ I2 ⊆ · · · ⊆ Im = {1, . . . , nm},
where Xi = {x j | j ∈ Ii } and |Ii | = ni , i = 1, . . . , m. Thus Ii tells us which x j are contained
in set Xi , and the Xi ’s define the nested design. We assume without loss of generality that
all points x j ∈ [0, 1]. Note that when we consider a set Xi independently, a space-filling
distribution of the x j over the interval [0, 1] is obtained by spreading the points equidistantly
over the interval, resulting in a minimal distance of 1

ni −1 among the points. Our aim is to
determine x j and Ii such that every set Xi is as much as possible space-filling with respect
to the maximin criterion. To this end we define di as the minimal scaled distance among all
points in the set Xi , i.e., di = min j,k∈Ii , j �=k(ni − 1)|x j − xk | for all i . Then, we have to
maximize d = mini di over all I1 ⊆ I2 ⊆ · · · ⊆ Im , with |Ii | = ni , and x j ∈ [0, 1], i.e., we
get the following mathematical program:

max min
j,k∈Ii ; j �=k

i=1,...,m

(ni − 1)|x j − xk |

s.t. I1 ⊆ I2 ⊆ · · · ⊆ Im = {1, . . . , nm}
|Ii | = ni , i = 1, . . . , m − 1
0 ≤ x j ≤ 1, j ∈ Im .

(1)

This will yield the maximin distance d and a corresponding nested maximin design in terms
of the Ii ’s and x j ’s.

Note that above formulation of the nested maximin design problem is again a nonlinear
optimization problem for which global optimization techniques could be used. In this paper,
however, we derive analytical solutions for the case of m = 2, and for m = 3 and m = 4
we derive lower bounds for the maximin distance d and propose a mixed integer linear

123

290 J Glob Optim (2010) 46:287–306

programming formulation to obtain exact solutions. Unfortunately, when the number of
design points is large, the corresponding mixed integer linear programming problem cannot
be solved (within a reasonable amount of time). Therefore, we propose a heuristic to obtain
approximate solutions.

This paper is organized as follows. In Sect. 2, we derive an exact formula for the maximin
distance of two nested sets. This derivation also shows how to construct the corresponding
nested maximin designs. In Sect. 3, we continue with three nested sets, for which we prove
a lower bound on the maximin distance and develop a heuristic to construct good nested
designs. Section 4 shows that the heuristic for three nested sets can also be used to construct
good nested designs for four nested sets. Furthermore, in this section we prove a lower bound
on the maximin distance for all m ∈ N that satisfy the restriction nm < 2n1. Finally, Sect. 5
provides the conclusions and some topics for further research.

2 Two nested sets

We first discuss the case of two nested sets, i.e., m = 2. Note that this case is of particular
interest when using the sets X1 and X2\X1 as a training set and a test set, respectively. In
Sect. 2.1, we start with the general problem formulation and show how to nest two sets opti-
mally. Furthermore, in this section we derive a formula for the maximin distance and prove
a tight lower bound on this distance. In Sect. 2.2, we introduce the notion of dominance and
discuss the trade-off between d1 and d2.

2.1 Maximin distance

The general problem for two nested sets can be formalized as the following mathematical
program:

max min
j,k∈Ii

i=1,2; j �=k

(ni − 1)|x j − xk |

s.t. I1 ⊆ I2 = {1, . . . , n2}
|I1| = n1

0 ≤ x j ≤ 1, j ∈ I2.

(2)

To obtain a feasible solution that maximizes the objective function in (2), we may choose
without loss of generality x1 = 0, xn2 = 1, xi < xi+1, 1 ∈ I1, and n2 ∈ I1. For a given
I1, containing the indices, say, 1 = a1 < a2 < · · · < an1 = n2 we introduce the sequence
v = (v1, . . . , vn1−1) given by vi = ai+1 − ai . Thus vi − 1 gives the number of additional
points of X2 between the i-th and (i + 1)-st point of X1. It is clear that the set of possible
I1 is in one-one correspondence to the set of positive integral sequences v, summing to
n2 − 1. Now the approach to solve problem (2) is to first fix I1, and its corresponding
a = (a1, . . . , an1) and v, and obtain an expression for the maximal distance δv , subject to
the remaining constraints, and then to maximize δv over all v. It turns out that finding δv is
rather simple.

Lemma 1 For fixed I1, and corresponding a, v, the optimal value δv equals(
n1−1∑
i=1

max

{
vi

n2 − 1
,

1

n1 − 1

})−1

.

123

J Glob Optim (2010) 46:287–306 291

Proof Fix a, v, and let δv be the corresponding maximal distance. Since xi+1 − xi ≥ δv

n2−1

for all i , we have that xai+1 − xai ≥ vi
δv

n2−1 . We also have that xai+1 − xai ≥ δv

n1−1 , hence

xai+1 − xai ≥ max

{
vi

δv

n2 − 1
,

δv

n1 − 1

}
.

From this we find that

1 = xan1
− xa1 ≥ δv

n1−1∑
i=1

max

{
vi

n2 − 1
,

1

n1 − 1

}
,

which shows that the stated expression for δv is an upper bound. It is clear from the above
that, and how, this upper bound can be attained, which proves the lemma. ��

We now have to maximize δv over all appropriate sequences v. For ease of notation define
c2 = n2−1

n1−1 .

Proposition 1 Let 2 ≤ n1 ≤ n2. The maximin distance in (2) is given by

d = 1

1 + �c2	 +
c2� − c2 − �c2	
c2� 1
c2

. (3)

Proof As mentioned before, we have to maximize δv , which is equivalent to minimizing

n1−1∑
i=1

max

{
vi

n2 − 1
,

1

n1 − 1

}

over all integer-valued v, such that
∑n1−1

i=1 vi = n2 − 1.
We claim that it is optimal to let v only take values �c2	 and
c2�. This is clearly true if

n2 − 1 is a multiple of n1 − 1, since in that case picking a larger value than c2 for any of the
vi will increase the objective function. Therefore, assume now that n2 − 1 is not a multiple
of n1 − 1. To prove our claim, first assume that vi ≤ �c2	 − 1 for some i . Let j be such that
v j ≥
c2� (such a j exists). Then by adding 1 to vi , and subtracting 1 from v j , we obtain v′
for which the objective function is strictly smaller than for v. This follows from the inequality

max

{
vi

n2 − 1
,

1

n1 − 1

}
+ max

{
v j

n2 − 1
,

1

n1 − 1

}

> max

{
vi + 1

n2 − 1
,

1

n1 − 1

}
+ max

{
v j − 1

n2 − 1
,

1

n1 − 1

}
,

which is easily checked to be true. Hence, the original v is not optimal. Similarly, the case
where vi ≥
c2� + 1 for some i is ruled out.

Thus it follows that the optimal v has vi = �c2	 for p = (n1 − 1)(
c2� − c2) values of i ,
and vi =
c2� for the remaining i . The value for d now easily follows from Lemma 1. ��

For a graphical representation of the maximin distance as function of n1 and n2, see Fig. 1.
Using the above results, a nested maximin design can easily be constructed:

123

292 J Glob Optim (2010) 46:287–306

Fig. 1 Maximin distance as function of n1 and n2

Fig. 2 A nested maximin design for n1 = 4 and n2 = 8, with d = 21
23 0.9130

Construction 1 Let 2 ≤ n1 ≤ n2. A nested maximin design, with maximin distance d as in
(3), is given by

x j+1 =
{

d
n1−1

j
�c2	 j = 0, . . . , p �c2	 ;

d
n1−1 p + d

n2−1 (j − p �c2) j = p �c2	 + 1, . . . , n2 − 1;
(4)

I1 = {1 + j �c2	 | j = 0, . . . , p}
⋃

{1 + p �c2	 + (j − p)
c2� | j = p + 1, . . . , n1 − 1}.
As an example, we construct a nested maximin design for n1 = 4 and n2 = 8. From (3) we
get that the maximin distance equals d = 21

23 0.9130. Substituting d and p = 2 in (4)
results in the points x1 = 0, x2 = 7

46 , x3 = 14
46 , x4 = 21

46 , x5 = 28
46 , x6 = 34

46 , x7 = 40
46 , and

x8 = 1, and yields the set I1 = {1, 3, 5, 8}, implying that X1 = {x1, x3, x5, x8}. See Fig. 2
for a graphical representation of this nested maximin design.

Besides computing the maximin distance for a given n1 and n2, (3) can also be used to
prove a general lower bound on the maximin distance.

Proposition 2 Let 2 ≤ n1 ≤ n2. Then 1 ≥ d > (4 − 2
√

2)−1 0.853553.

Proof Consider the function z : [1,∞) → R given by

z(c2) = 1 + �c2	 +
c2� − c2 − �c2	
c2� 1

c2
= 1 + (c2 − �c2)(
c2� − c2)

c2
≥ 1.

123

J Glob Optim (2010) 46:287–306 293

If c2 ∈ N then z(c2) = 1, i.e., z is minimal and hence d = z(c2)
−1 ≤ 1, else

z(c2 + 1) = 1 + (c2 − �c2)(
c2� − c2)

c2 + 1
< z(c2); c2 �∈ N.

Therefore, in this case z is maximal for some c2 ∈ (1, 2). Restrict z to (1, 2):

z(c2) = 1 + 1 + 2 − c2 − 2

c2
= 4 − c2 − 2

c2
,

which is maximal for c2 = √
2. For c2 ∈ Q, c2 ≥ 1:

z(c2) < z(
√

2)= 4 − 2
√

2, and then d >
1

z(
√

2)
= 1

4 − 2
√

2
= 1

2
+ 1

4

√
2 0.853553.

��
Note that the obtained lower bound is tight since we can take c2 arbitrarily close to

√
2. The

interpretation of this lower bound is that for all values of n1 and n2, by nesting the sets X1

and X2 we will never lose more than 14.64%, with respect to the “restriction free” maximin
distance. In practice this implies that a linking parameter can be included in the maximin
designs, or the designs can be used as training and test sets, at a cost of using designs that
are at most 14.64% worse with respect to space-fillingness.

In case of sequential evaluations the interpretation is somewhat different. A standard way
to perform (two-stage) sequential evaluations is to first choose n1 points, equidistantly dis-
tributed over the interval [0, 1]. After the evaluations, if needed, n2 − n1 extra points are
taken, resulting in d ′ = c2
c2� ; see Sect. 2.2. Clearly, d ≥ d ′ and d ′ = c2
c2� ≥ c2

c2+1 > 1
2 , for

c2 > 1. If one evaluation stage turns out to be sufficient, using the points in (1) will result in
a design that is at most 14.64% worse than the (standard) equidistant design (since we lose
1 − d). However, if a second evaluation stage is needed then our approach results in a better
space-filling design (since we win d − d ′). Figure 3 shows the net gain of our approach, i.e.,
(d − 1) + (d − d ′), as function of c2. For n2 ≤ 100 the net gain takes values in the interval
[−0.07, 0.48].
2.2 Dominance

In the last section we appraised the sets X1 and X2 to be equally important. What if one set is
more important than the other? Or, given a fixed value for d1, what is the corresponding max-
imal value of d2? To examine this, we first introduce the notion of dominance. We will call a
combination (d1, d2) dominant if it is not possible to improve one of the coordinates, without
deteriorating the other coordinate. Knowing the dominant combinations is very useful in
practice. It enables us to determine the trade-off between d1 and d2, i.e., it helps us finding
a combination that best satisfies our requirements, like “X2 is more important than X1”.
Note that the maximin combination (d, d), with d as in (3), is dominant. The combinations(
1, c2
c2�

)
and

(�c2	
c2

, 1
)

are also dominant, which can be argued as follows:

• Fixing d1 = 1, the points of X1 must be equidistantly distributed, i.e., X1=
{

0, 1
n1−1 ,

2
n1−1 , . . . , 1

}
. Due to the restriction I1 ⊆ I2 we need to find settings for the n2 − n1 extra

points in X2, such that d2 is maximal. This is accomplished by choosing these n2 − n1

points as equally as possible spread over the n1 − 1 intervals formed by the points in
X1, which corresponds to v taking only the values �c2	 and
c2�, as before. Hence, after
scaling, this gives a minimal distance of

123

294 J Glob Optim (2010) 46:287–306

0 5 10 15 20 25 30 35 40
− 0.1

0.0

0.1

0.2

0.3

0.4

0.5

N
et

ga
in

c2

Fig. 3 Net gain of our approach as function of c2

d = d2 = (n2 − 1)

(
1

n1 − 1
· 1

c2�
)

= c2

c2� .

• Fixing d2 = 1, the points of X2 must be equidistantly distributed, i.e., X2 = {
0, 1

n2−1 ,
2

n2−1 , . . . , 1
}
. To maximize d1, the n2 − 1 intervals must as equally as possible be spread

over the n1 − 1 intervals that are to be formed by the points in X1. Every interval of X1

will then contain either �c2	 or
c2� intervals of length 1
n2−1 , and the minimal distance,

after scaling, will be given by

d = d1 = (n1 − 1)

(
1

n2 − 1
�c2	

)
= �c2	

c2
.

Since
(
1, c2
c2�

)
and

(�c2	
c2

, 1
)

bound the values of d1 and d2 we will call them extreme dom-

inant combinations. Moreover, note that these bounds imply that d ≥ max
{ c2
c2� ,

�c2	
c2

}
. For

a given n1 and n2 all dominant combinations can be characterized by the following linear
function.

Proposition 3 Let 2 ≤ n1 ≤ n2. All dominant combinations (d1, d2) are characterized by
the linear function f : [�c2	

c2
, 1

] → [c2
c2� , 1
]
, where

d2 = f (d1) = ((c2 −
c2�)d1 + 1)
c2

c2�(c2 − �c2) . (5)

Proof Like in Lemma 1, we have for a given I1, and corresponding a, v, that

1 ≥
n1−1∑
i=1

max

{
vi

n2 − 1
d2,

1

n1 − 1
d1

}
. (6)

Hence, for a given a, v, and d1 ≤ 1, it is optimal to choose d2 as large as possible, such that
equality is attained in (6).

123

J Glob Optim (2010) 46:287–306 295

We claim that for any d1, with �c2	
c2

≤ d1 ≤ 1, a maximal d2 is obtained by letting v take
only the values �c2	 and
c2�, just like in Proposition 1. Note that this needs no further proof
for d1 = �c2	

c2
and d1 = 1, therefore we may assume that �c2	

c2
< d1 < 1, and, hence, that c2

is not an integer.
To prove the claim, fix d1, and suppose that there is a v giving an optimal d2 with

vi ≥
c2� + 1 for some i . Let j be such that v j ≤ �c2	 (such a j exists). Since d2 is
optimal we may assume that d2 ≥ c2
c2� . Now let v′ be obtained from v by subtracting 1 from
vi , and adding 1 to v j . Since d2 is optimal, the d ′

2 corresponding to v′ is at most d2.
From the equalities in (6) for the pairs (v, d2) and (v′, d ′

2), and the inequality d ′
2 ≤ d2, we

obtain that

max

{
vi

n2 − 1
d2,

1

n1 − 1
d1

}
+ max

{
v j

n2 − 1
d2,

1

n1 − 1
d1

}

≤ max

{
vi − 1

n2 − 1
d2,

1

n1 − 1
d1

}
+ max

{
v j + 1

n2 − 1
d2,

1

n1 − 1
d1

}
.

Because of the inequalities vi ≥
c2� + 1, v j ≤ �c2	, 1 ≥ d2 ≥ c2
c2� , and �c2	
c2

< d1 < 1,
this reduces to

vi

n2 − 1
d2 + 1

n1 − 1
d1 ≤ vi − 1

n2 − 1
d2 + max

{
v j + 1

n2 − 1
d2,

1

n1 − 1
d1

}
.

Now this implies that
v j +1
n2−1 d2 ≥ 1

n1−1 d1, and, hence, the inequality further reduces to
1

n1−1 d1 ≤ v j
n2−1 d2. Using that �c2	

c2
< d1 and d2 ≤ 1, this implies that v j > �c2	, which is a

contradiction, hence, the considered v does not give an optimal d2. Similarly, it can be shown
that the case where vi < �c2	 for some i is not optimal.

Thus, for any d1 it is optimal to take a such that vi = �c2	 for p = (n1 − 1)(
c2� − c2)

values of i , and vi =
c2� for the remaining i . The value for d2 as a function of d1 now easily
follows from equality in (6). ��

We remark that for fixed a and v, the relation between d1 and d2 can be found by con-
sidering equality in (6). This relation will be a piece-wise linear function. Further, note that
for c2 ∈ N the graph of (5) results in the single point (1, 1), and that setting d1 = d2 in
(5) yields the maximin distance d , with d as in (3). See Fig. 4 for a graphical example of
the linear function f . This figure shows the set of dominant combinations for n1 = 4 and
n2 = 8, including the two extreme dominant combinations

(
1, c2
c2�

) = (1, 0.7778) and(�c2	
c2

, 1
) = (0.8571, 1). Moreover, the line d1 = d2 intersects the dominant set exactly in

the maximin combination (d, d) = (0.9130, 0.9130).

3 Three nested sets

We now discuss the case of three nested sets, i.e., m = 3. Section 3.1 starts with the gen-
eral problem formulation. Since we are not able to come up with an explicit formula for
the maximin distance we use mixed integer linear programming to solve the problem for
several n1, n2, n3. Fortunately, a lower bound on the maximin distance can still be proven.
Section 3.2 discusses dominant combinations and in Sect. 3.3 a heuristic that yields extremely
good nested designs is developed.

123

296 J Glob Optim (2010) 46:287–306

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

d2

d1

Fig. 4 All dominant combinations (d1, d2) for n1 = 4 and n2 = 8, and the line d1 = d2

3.1 Maximin distance

The general problem for three nested sets can be formalized as the following mathematical
program:

max min
j,k∈Ii

i=1,2,3; j �=k

(ni − 1)|x j − xk |

s.t. I1 ⊆ I2 ⊆ I3 = {1, . . . , n3}
|Ii | = ni , i = 1, 2
0 ≤ x j ≤ 1, j ∈ I3.

(7)

As in Sect. 2.1 we may choose without loss of generality x1 = 0, xn3 = 1, xi < xi+1, 1 ∈ I1,
n3 ∈ I1, 1 ∈ I2, and n3 ∈ I2. For a given I2, containing the indices, say, 1 = b1 < b2 <

· · · < bn2 = n3 we introduce the sequence w = (w1, . . . , wn2−1) given by w j = b j+1 − b j .
Given an I1 contained in this I2 we let 1 = a1 < a2 < · · · < an1 = n2 be such that bai ∈ I1

for i = 1, . . . , n1. Notice that in this case {ai |i = 1, . . . , n1} �= I1. Analogously to the
definition introduced in Sect. 2.1, we let vi = ai+1 − ai . Thus vi − 1 gives the number of
additional points of X2 between the i-th and (i + 1)-st point of X1, while w j − 1 gives the
number of additional points of X3 between the j-th and (j + 1)-st point of X2. Now the
analogue of Lemma 1 is the following.

Lemma 2 For fixed I1, I2, and corresponding a, b, v, w, the optimal value δa,w equals⎛
⎝n1−1∑

i=1

max

⎧⎨
⎩

ai+1−1∑
j=ai

max

{
w j

n3 − 1
,

1

n2 − 1

}
,

1

n1 − 1

⎫⎬
⎭

⎞
⎠

−1

.

123

J Glob Optim (2010) 46:287–306 297

Fig. 5 A nested maximin design for n1 = 4, n2 = 8, and n3 = 18, with d = 357
398 0.8970

We would now have to maximize δa,w over all appropriate sequences a and w. Unfortunately,
we are not able to come up with an explicit formula for the maximin distance, as we did for
two nested sets in Sect. 2.1. However, we can rewrite (7) as a mixed integer linear program:

max d
s.t. d ≤ (n3 − 1)(x j+1 − x j), j ∈ I3\{n3}

d ≤ (ni − 1)(xk − x j) + 2 − zik − zi j , i = 1, 2; j, k ∈ I3; j < k
n3∑
j=1

zi j = ni , i = 1, 2

z1 j ≤ z2 j , j ∈ I3

0 ≤ x j ≤ 1, j ∈ I3

zi j ∈ {0, 1}, i = 1, 2; j ∈ I3.

(8)

Here, zi j = 1 if j ∈ Ii , and zi j = 0 otherwise. The constraints
∑n3

j=1 zi j = ni and z1 j ≤ z2 j

insure that |Ii | = ni and I1 ⊆ I2, respectively. Using (8) and the XA Mixed Integer Solver
we found results up to n3 = 25, with computation times varying from 1 second to almost
2.5 h for some instances, on a PC with an 800-MHz Pentium III processor.

As an example of a nested maximin design, take n1 = 4, n2 = 8, and n3 = 18. Solving
(8) for this instance yields the sets I1 = {1, 7, 12, 18} and I2 = {1, 4, 7, 10, 12, 14, 16, 18},
implying that X1 = {x1, x7, x12, x18} and X2 = {x1, x4, x7, x10, x12, x14, x16, x18}, which
gives d = 357

398 0.8970. See Fig. 5 for a graphical representation of the design.
Although we do not have an explicit formula for the maximin distance, we can prove a

general lower bound on this distance. To accomplish this, let d(n1, n2, n3) be the optimal
value for d as function of n1, n2, n3, and consider the following lemma.

Lemma 3 Let 2 ≤ n1 ≤ n2 ≤ n3. Then d(n1, n2, n3) ≤ d(n1, n2, n3 + n2 − 1).

Proof Consider any a and w for the problem of (n1, n2, n3). For the problem of (n1, n2, n3 +
n2 − 1) we consider the same a, and w′ which is given by w′

j = w j + 1 for all j . Since

max

{
w j + 1

n3 + n2 − 1 − 1
,

1

n2 − 1

}
≤ max

{
w j

n3 − 1
,

1

n2 − 1

}
,

which is easy to show, this implies that δa,w′(n1, n2, n3 + n2 − 1) ≥ δa,w(n1, n2, n3), and
the result follows. ��
Proposition 4 Let 2 ≤ n1 ≤ n2 ≤ n3. Then 1 ≥ d(n1, n2, n3) >

(
6−3 3

√
4
)−1 0.807887.

Proof Let (again) c2 = n2−1
n1−1 and c3 = n3−1

n2−1 . First, note that d(n1, n2, n3) = 1 if and
only if c2, c3 ∈ N. Because of Lemma 3, we may assume without loss of generality that

123

298 J Glob Optim (2010) 46:287–306

c3 < 2. To prove the stated inequality, we shall give an a and w such that δa,w(n1, n2, n3) >(
6 − 3 3

√
4
)−1.

Let a be such that the corresponding v takes the value vi = �c2	 for i = 1, . . . , p, with
p = (n1 − 1)(
c2� − c2), and vi =
c2� for the remaining i , i.e., it is the optimal a for two
nested sets. Since c3 < 2, it is possible to take w such that w j is one or two for all j , and we
shall do so. To further describe w, we distinguish between two cases.

If n3 − n2 ≥ �c2	(n1 − 1)(
c2� − c2), then we let w be such that w j = 2 for
j = 1, . . . , n3 − n2, and w j = 1 for the remaining j . Since max

{ 2
n3−1 , 1

n2−1

} = 2
n3−1 , we

have that

δ−1
a,w = (n1 − 1)(
c2� − c2) max

{
2�c2	
n3 − 1

,
1

n1 − 1

}

+ (n3 − n2 − �c2	(n1 − 1)(
c2� − c2))
2

n3 − 1
+ (n2 − 1 − (n3 − n2))

1

n2 − 1

= (
c2� − c2) max

{
0, 1 − 2�c2	

c2c3

}
+ 4 − c3 − 2

c3
.

Thus, if 2�c2	 < c2c3, then δ−1
a,w = (
c2�−c2)

(
1 − 2�c2	

c2c3

)
+4−c3− 2

c3
. Call this expression

f (c2), then it is easy to see that f (c2 + 1) < f (c2), hence, we may restrict our attention to
the case where 1 < c2 < 2. From the above we now obtain that δ−1

a,w = 6 − c2 − c3 − 4
c2c3

.

This expression is at most 6 − 3 3
√

4, a value that is attained only if c2 = c3 = 3
√

4. The
case 2�c2	 ≥ c2c3 is straightforward (then δ−1

a,w ≤ 4 − 2
√

2), so for the case n3 − n2 ≥
�c2	(n1 − 1)(
c2� − c2) we have proven the lower bound on d .

If n3 − n2 < �c2	(n1 − 1)(
c2� − c2), then we may assume that c2 is not an integer. Let
p = (n1 − 1)(
c2� − c2), and introduce t = n3−n2

p = c2(c3−1)

c2�−c2

. It follows that
t� ≤ �c2	.
We now take w as follows: for m(t − �t) values of i = 1, . . . , m we have
t� values of j ,
ai ≤ j < ai+1 for which w j = 2, and the remaining �c2	 −
t� of such j-s have w j = 1;
for the other values of i = 1, . . . , m we have �t	 values of j , ai ≤ j < ai+1 for which
w j = 2, and the remaining �c2	 − �t	 of such j-s have w j = 1; and for all j ≥ am+1 we
have w j = 1. From Lemma 2, we now find that

δ−1
a,w = m(t − �t) max

{

t� 2

n3 − 1
+ (�c2	 −
t�) 1

n2 − 1
,

1

n1 − 1

}

+ m(1 − t + �t) max

{
�t	 2

n3 − 1
+ (�c2	 − �t) 1

n2 − 1
,

1

n1 − 1

}

+ (n1 − 1)(c2 − �c2)
c2� 1

n2 − 1

=
c2� − c2

c2
(t − �t) max

{

t�

(
2

c3
− 1

)
, c2 − �c2	

}

+
c2� − c2

c2
(1 − t + �t) max

{
�t	

(
2

c3
− 1

)
, c2 − �c2	

}
+ 1.

We now assume that

�t	
(

2

c3
− 1

)
< c2 − �c2	 <
t�

(
2

c3
− 1

)
.

123

J Glob Optim (2010) 46:287–306 299

In the other cases it is straightforward to show that δ−1
a,w ≤ 4 − 2

√
2. Then

δ−1
a,w =
c2� − c2

c2
(t − �t)
t�

(
2

c3
− 1

)
+
c2� − c2

c2
(1 − t + �t)(c2 − �c2) + 1. (9)

Using the left inequality in above assumption we find that

δ−1
a,w <

c2� − c2

c2
(t − �t)

(
2

c3
− 1

)
+
c2� − c2

c2
(c2 − �c2) + 1

≤ (c3 − 1)

(
2

c3
− 1

)
+
c2� − c2

c2
(c2 − �c2) + 1

≤ 4 − 2
√

2 +
c2� − c2

c2
(c2 − �c2).

If c2 > 4, then this upper bound suffices (its maximum is attained at c2 = √
20), as one can

easily check. For c2 < 4, fix k =
t� (≤ 3), and let c2 > k. Then (9) reduces to

δ−1
a,w = 1+3k−kc3−2k

c3
−(c3−1)(c2−�c2)+k

c2�−c2

c2

(
c2−�c2	−(k−1)

(
2

c3
−1

))
,

the maximum of which is attained for some c2 between k and k + 1, i.e., �c2	 is minimal.
For each k = 1, 2, 3 (separately) it is now possible to obtain an appropriate upper bound on
δ−1

a,w, under the assumptions that k ≤ c2 ≤ k + 1 and 1 ≤ c3 ≤ 2. For k = 1, this upper

bound is 6 − 3 3
√

4, and it is attained when c2 = c3 = 3
√

2. ��

Note that the obtained lower bound is tight since we can take c2 and c3 arbitrarily close to
3
√

2, and in these cases the given a and w are optimal; see Proposition 6. The interpretation
of this lower bound is that for all values of n1, n2, n3, by nesting the sets X1, X2, X3 we
will never lose more than 19.21%, with respect to the “restriction free” maximin distance.
In practice this implies that a linking parameter can be included in the maximin designs, at
a cost of using designs that are at most 19.21% worse with respect to space-fillingness.

Applying our approach in case of (three-stage) sequential evaluations incurs a loss of
1 − d when one stage suffices. If two stages are sufficient we obtain a net gain of d − d ′,
where d ′ = c2
c2� (see Sect. 2.1), and when all three stages are needed we gain d − d ′′,
where d ′′ ≤ d ′ ≤ d and d ′′ > 1

2 for c3 > 1. Thus, the net gain of our approach equals
(d − 1) + (d − d ′) + (d − d ′′) and it takes values in the interval [−0.19, 0.84] for n3 ≤ 25.

3.2 Dominance

The notion of dominance was introduced in Sect. 2.2. Similar as before, we will call a com-
bination (d1, d2, d3) dominant if it is not possible to improve one of the coordinates, without
deteriorating another coordinate. Unlike with two nested sets, the maximin combination
(d, d, d) is not necessarily dominant, e.g., d(4, 8, 17) = 0.9130, however, (0.9130, 0.9130,

0.9275) is dominant. In Sect. 2.2, we showed that
(
1, c2
c2�

)
and

(�c2	
c2

, 1
)

are extreme domi-
nant combinations for two nested sets. Extending these ideas to three nested sets, i.e., fixing
di = 1 and maximizing d j , j �= i , leads to extreme dominant combinations. Note that
the extreme dominant combinations are again lower bounds on the maximin distance d =
d(n1, n2, n3). An upper bound on d is obtained by the simple observation that d(n1, n2, n3) ≤
max{d(n1, n2), d(n1, n3), d(n2, n3)}. Furthermore, it is easily shown that d(n1, n2, n3) =
d(n2, n3) if and only if c2 ∈ N, and d(n1, n2, n3) = d(n1, n2) if and only if c3 ∈ N.

123

300 J Glob Optim (2010) 46:287–306

0.90
0.95

1.00

0.80

0.90

1.00

0.85

0.90

0.95

1.00

d1d2

d3

Fig. 6 Dominant combinations for n1 = 4, n2 = 8, and n3 = 18

All this may lead to the believe that we can extend the idea of finding the maximin dis-
tance by means of extreme dominant combinations, like we did for two nested sets. As an
example, from Fig. 6 it can be seen that the dominant combinations for n1 = 4, n2 = 8,
and n3 = 18, lie in a plane through the extreme dominant combinations (1, 0.7778, 0.9444),
(0.8571, 1, 0.8095), and (0.8824, 0.8235, 1). This plane intersects the line d3 = d2 = d1

exactly in the maximin combination (0.8970, 0.8970, 0.8970), strengthening the believe
that this method also works for three nested sets. Unfortunately, the dominant combina-
tions will not always fall in a plane through the extreme dominant points; see Fig. 7 for an
example of this. Furthermore, this plane can not always be used to find the maximin com-
bination. For example, take n1 = 6, n2 = 8, and n3 = 12. Then the plane through the ex-
treme dominant combinations (1, 0.7, 0.7333), (0.7143, 1, 0.7857), and (0.9091, 0.6364, 1),
results in the unattainable combination (0.8324, 0.8324, 0.8324), when intersected with the
line d3 = d2 = d1, thereby “missing” the correct maximin combination (0.8262, 0.8262,

0.8262).

3.3 Heuristic

In the previous section we showed that, when dealing with three nested sets, the maximin
distance cannot always be found by means of extreme dominant combinations. Note that
even when this method would work, we still had to find a way to construct the corresponding
nested maximin designs. Mixed integer linear programming can be used; however, it was
found to be too slow in finding nested maximin designs for large values of n1, n2, n3. We
have also tried to solve (7) with the state-of-the-art global optimization software LGO, see
Pintér (1995). Moreover, we have developed a heuristic that takes into account the special
structure of the problem. It appeared that the solutions obtained with our tailored heuris-
tic are much better than those obtained by the, more general, global optimization solver
LGO.

Our heuristic is based on the observation that all nested maximin designs that were found
by solving (8) contained the corresponding two nested sets assignments, as given in (4), as part
of their solutions, e.g., compare Figs. 2 and 5. Therefore, for given n1, n2, n3 (c2, c3 �∈ N),

123

J Glob Optim (2010) 46:287–306 301

we first use (1) to construct a nested maximin design on n1, n2. Every interval [xl , xl+1],
l ∈ I2\{n2}, then will have a width of at least d

n2−1 , where d = d(n1, n2) is as in (1). This
implies that we can add up to q points to each interval without decreasing d , as long as q
fulfills the inequality

d(q + 1)

n3 − 1
≤ d

n2 − 1
, or equivalently q + 1 ≤ c3,

which results in at most q = �c3	 − 1 additional points per interval, or (�c3	 − 1)(n2 − 1) in
total. Hence, if n3 − n2 ≤ (�c3	 − 1)(n2 − 1), we are finished, since spreading the n3 − n2

points equally over the n2 − 1 intervals will yield a nested maximin design with distance
d(n1, n2, n3) = d(n1, n2).

If n3 − n2 > (�c3	 − 1)(n2 − 1), we add q points to every interval and have r=
(n3 − n2) − (�c3	 − 1)(n2 − 1) < (n3 − n2) − (c3 − 2)(n2 − 1) = n2 − 1 points remaining.
These remaining r points are then sequentially added to one of the n2 − 1 intervals as fol-
lows. Consider the case where s points are already assigned, s ∈ {0, . . . , r −1}, and consider
the index sets I s

1 ⊆ I s
2 ⊆ I s

3 = {1, . . . , n′
3}, which describe the current nested design on

n1, n2, n′
3, where n′

3 = n2+(�c3	−1)(n2−1)+s. Then the corresponding maximal distance
can readily be computed using Lemma 2.

When assigning the (s + 1)-st point we first compute for each of the n2 − 1 intervals
what the maximal distance will be if the point is assigned to that particular interval, again
using Lemma 2. Naturally, the interval for which this distance is the largest is chosen and
the corresponding I s+1

1 ⊆ I s+1
2 ⊆ I s+1

3 describe the new nested design. In case of a tie we
choose that interval for which

max

⎧⎪⎨
⎪⎩

(
I s+1
2

)
i+1

−
(

I s+1
2

)
i

n3 − 1
,

1

n2 − 1

⎫⎪⎬
⎪⎭ − max

{(
I s
2

)
i+1 − (

I s
2

)
i

n3 − 1
,

1

n2 − 1

}

is the smallest, i = 1, . . . , n2 − 1. Here, (I s
2)i and (I s+1

2)i are defined as the i-th smallest
elements of the sets I s

2 and I s+1
2 , respectively. This value can be seen as the relative cost of

adding an extra point to a particular interval. Leaving out this second objective may result in
bad nested designs.

For given index sets I1, I2, I3 it takes O(n1n2) time to compute the maximal distance,
using Lemma 2. There are s ≤ r < n2 extra points to be added and for each of these points
n2 − 1 index sets have to be considered, hence, we have to apply Lemma 2 O(n2

2) times.
Therefore, a nested design for n1, n2, n3 is found in O(n1n2

3) time. Note that the complexity
does not depend on n3. Moreover, it turns out that our heuristic yields an optimal nested
design for all values of n1, n2, n3 we solved so far, i.e., for n3 ≤ 25. We conjecture that the
heuristic will find a nested maximin design for all n1, n2, n3.

4 Four or more nested sets

In this section, we discuss the case of m ≥ 4 nested sets. This can be formalized as the
following mathematical program:

123

302 J Glob Optim (2010) 46:287–306

max min
j,k∈Ii ; j �=k

i=1,...,m

(ni − 1)|x j − xk |

s.t. I1 ⊆ I2 ⊆ · · · ⊆ Im = {1, . . . , nm}
|Ii | = ni , i = 1, . . . , m − 1
0 ≤ x j ≤ 1, j ∈ Im .

(10)

Furthermore, Lemmas 2 and 3 can easily be generalized to more nested sets. In particular,

Lemma 4 Let 2 ≤ n1 ≤ · · · ≤ nm. Then d(n1, . . . , nm−1, nm) ≤ d(n1, . . . , nm−1, nm +
nm−1 − 1).

Now, we consider the case nm < 2n1. Let ci = ni −1
ni−1−1 , i = 2, . . . , m, and d =

d(n1, . . . , nm). For fixed I1, let it contain the indices 1 = a1 < a2 < · · · < an1 = nm .
Note that this a is somewhat different from a in the previous section, in the sense that it
here gives the relation between I1 and Im , instead of between I1 and I2. As before, let the
sequence v = (v1, . . . , vn1−1) be given by vi = ai+1 − ai . Thus vi − 1 gives the number of
additional points of Xm between the i-th and (i + 1)-st point of X1.

Proposition 5 Let m ≥ 3 and 2 ≤ n1 ≤ · · · ≤ nm < 2n1. Then the maximal value for d
equals

1

2m − 2
c2

− · · · − 2
cm

− c2c3 · · · cm
.

Proof Consider an I1 such that the corresponding v takes only values 1 and 2, i.e., between
two neighboring points from X1 there is at most one point from Xm . Since max

{ 2
n j −1 , 1

n1−1

}
= 2

n j −1 , and since the number of i such that vi = 1 equals 2n1 − nm − 1, it follows that

δv =
⎛
⎝(2n1 − nm − 1)

1

n1 − 1
+

m∑
j=2

(n j − n j−1)
2

n j − 1

⎞
⎠

−1

= (2m − 2c−1
2 − · · · − 2c−1

m − c2c3 · · · cm)−1.

That this v gives the optimal d can be shown by comparing δ−1
v′ , for a v′ with v′

i ≥ 3 for

some i , to δ−1
v′′ , where v′′ is obtained from v′ by letting v′′

i = v′
i − 1, and taking v′′

j = 2 for a
j with v′

j = 1. Such a j exists because of the condition nm < 2n1. We omit further technical
details. ��

Using Proposition 11, it is easy to show that the following holds:

Proposition 6 Let m≥2 and 2≤n1≤ · · · ≤nm < 2n1. Then 1≥d >
(
2m

(
1 − m

√
1
2

))−1
.

The lower bound for d is attained when ci = m
√

2 for all i . We conjecture that this lower
bound for d holds in all cases. This conjecture is supported by the results for m = 2 and
m = 3, see Propositions 2 and 4, respectively.

We remark further that the sequence
(
2m

(
1 − m

√
1
2

))−1 is decreasing in m, and converges

to 1
2 log 2 0.721348. Hence, if our conjecture is true we will never lose more than 27.87%,

with respect to the “restriction free” maximin distance, when nesting the sets X1, . . . , Xm .

123

J Glob Optim (2010) 46:287–306 303

0.80
0.90

1.000.80

1.00

0.80

0.90

1.00

d1d2

d3

Fig. 7 Dominant combinations for n1 = 4, n2 = 9, and n3 = 14

For the case m = 4 we extended the mixed integer linear program for three nested sets, see
(8), and found results up to n4 = 19. Unfortunately, as n4 gradually increases, the computation
time rapidly grows, leading to some instances that take 4 hours to solve. Therefore, we built
a heuristic that searches for good nested designs for given n1, n2, n3, n4. This heuristic first
constructs a nested design for n1, n2, n3, see Sect. 3.3, which is conjectured to be an optimal
nested design. Then the n4 − n3 extra points are sequentially added, in the way described in
Sect. 3.3. As can be observed from Fig. 8, for n4 ≤ 19 our heuristic often finds the maximin
distance (and thus the corresponding nested maximin design), and is not too far off in most
other cases. Unfortunately, there is an instance, i.e., (4, 6, 9, 14), for which the maximal
distance found by the heuristic has a value that is less than the (conjectured) lower bound
in Proposition 6 (the dotted lines in the figure). For this instance the heuristic finds a maxi-
mal distance of 0.7796, which is smaller than the lower bound of 0.7857 and the maximin
distance d(4, 6, 9, 14) = 0.7923.

5 Conclusions and further research

In this paper we discussed the construction of nested maximin designs. Such designs play
an important role in the design of computer experiments in black-box evaluation and opti-
mization processes. The main reason for using nested designs originates from the area of
training and test sets. A nested maximin design consists of two space-filling sets, say, X1

and X2\X1. The design points in set X1 can be used as a training set for fitting a particular
metamodel. Set X2\X1 can then be used as a test set for validating the obtained metamodel.
Note that by using a nested maximin design there is no overlap between the design points in
the training set and the test set, while the design points remain to be distributed all over the
feasible region. Other reasons for using nested designs are linking parameters and sequen-
tial evaluations. Linking parameters occur when several black-box functions share the same
input parameters, or when uniformity in parameter settings is needed. We speak of sequential
evaluations when an initial set of function evaluations is followed by extra sets of evaluations,
as is often the case in practice.

123

304 J Glob Optim (2010) 46:287–306

0.75 0.80 0.85 0.90 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

H
eu

ri
st

ic
 d

is
ta

nc
e

Maximin distance

++++++
++++++++

+

++++++
+++++++++++++++++++++++++

++++++++
+
++++++++++++++++++++++++

++++++++++++++++
+++++++
+
++++++++++++++++
+++++++++

+

++++++++++++
++++++++++++++++++++++++++++++++++

+

++++++++++++

+

++++++++++++
+++++++++++++++++++
+++++++++++++
++++++++
+++++
+
++++++++++

+

++++++++

+

+
+++++++++++++++++
++
+
++++++++++++++++++++++++++++

++++
+
+++++
+
+++
+
++++++++++++
++++++++++++++++++

+

+++++++
++
++++
+
++++++++++
+
+++++++++++++++++++++++++++

++
++
++
++++
+
+++++++++

+

+++++++++++++++++++
+++++++++++++++++

++++++++
++
+++
+
+
+
++++++++++

++++++++++
+++++++++

++
+
+++++

++++++
++++++

++++++
++++++++

+++++
++++

+++++++
+++++++++++

++++++
+++++++++

++++++++++++
++++++

++++
++++

+

Fig. 8 Maximal distance found by heuristic versus the maximin distance for n4 ≤ 19

Constructing a nested maximin design, which consists of a training set and a test set, or
for two black-box functions that share a single linking parameter, or for two-stage sequen-
tial evaluations, can be considered as constructing a nested maximin design for two nested
sets X1 ⊆ X2 = {x1, . . . , xn2}, with x j ∈ [0, 1]. In this case, the maximin distance equals

d = (
1 + �c2	 +
c2� − c2 − �c2	
c2� 1

c2

)−1, where c2 = n2−1
n1−1 , and a corresponding nested

maximin design is given by (4). It is shown that due to the restriction X1 ⊆ X2 the resulting
designs are at most 14.64% less space-filling than traditional maximin designs, in case of
training and test sets, and linking parameters. For sequential evaluations Fig. 3 shows the net
gain of using nested maximin designs. In all cases, it turns out that using nested maximin
designs instead of traditional maximin designs is very profitable.

Although we lack an explicit formula for the maximin distance of three nested sets it is
proven that this distance is at least 0.807887. Furthermore, for small instances nested maxi-
min designs can be found by mixed integer linear programming. Fortunately, we developed
a fast heuristic that constructs nested designs for larger instances, too. These nested maximin
designs can be downloaded from the website http://www.spacefillingdesigns.nl. Based on
the obtained results, it is conjectured that this heuristic is optimal, i.e., it will yield a nested
maximin design for all instances. An extension of the heuristic to four nested sets often finds
nested maximin designs and is not too far off in most other cases.

To investigate the trade-off between nested sets dominant combinations are introduced.
In case of two nested sets this relation is linear and is given by (5). For three nested sets the
behavior of these dominant combinations is not always that simple, e.g., see Fig. 7. Finally, it
is proven that a lower bound on the maximin distance for the general problem of m nested sets

is given by
(
2m

(
1− m

√
1
2

))−1, under the restriction nm < 2n1. It is conjectured that this lower
bound also holds for all other instances, as is supported by the results for m = 2 and m = 3.

123

http://www.spacefillingdesigns.nl

J Glob Optim (2010) 46:287–306 305

Besides considering the maximin criterion, the concept of nested designs could also be
applied to other distance measures, like minimax, IMSE, and maximum entropy. Furthermore,
the one-dimensional results in this paper could be extended to more dimensions, thereby con-
structing multi-dimensional nested maximin designs. Rennen et al. (2009), for example, apply
some of the ideas in this paper to the case of such multi-dimensional nested maximin designs.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for
optimization of expensive functions by surrogates. Struct. Optim. 17(1), 1–13 (1999)

Cherkassky, V., Mulier, F.: Learning from Data: Concepts, Theory, and Methods. Wiley-Interscience
Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control. Wiley,
Chichester (1998)

den Hertog, D., Stehouwer, H.P.: Optimizing color picture tubes by high-cost nonlinear programming. Euro.
J. Oper. Res. 140(2), 197–211 (2002)

Du, D.-Z., Pardalos, P.M. (eds.): Minimax and Applications. Kluwer, Dordrecht (1995)
Gensane, Th.: Dense packings of equal spheres in a cube. Elect. J. Comb. 11, R33 (2004)
Hurrion, R.D.: An example of simulation optimisation using a neural network metamodel: finding the optimum

number of kanbans in a manufacturing system. J. Oper. Res. Soc. 48(11), 1105–1112 (1997)
Husslage, B.G.M., van Dam, E.R., Den Hertog, D., Stehouwer, H.P., Stinstra, E.D.: Collaborative metamod-

eling: coordinating simulation-based product design. Concurr. Eng. Res. Appli. 11(4), 267–278 (2003)
Husslage, B.G.M., Rennen, G., van Dam, E.R., Den Hertog, D.: Space-filling Latin hypercube designs. CentER

Discussion Paper 2008-104. Tilburg University, Tilburg (2008)
Jones, D., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob.

Optim. 13, 455–492 (1998)
Kleijnen, J.P.C., van Beers, W.C.M.: Application-driven sequential designs for simulation experiments: Kri-

ging metamodelling. J. Oper. Res. Soc. 55(8), 876–883 (2004)
Maranas, C., Floudas, C., Pardalos, P.M.: New results in the packing of equal circles in a square. Discret.

Math. 142, 287–293 (1995)
Montgomery, D.C.: Design and Analysis of Axperiments. 2nd edn. Wiley, New York (1984)
Morris, M.D., Mitchell, T.J.: Exploratory designs for computer experiments. J. Stat. Plan. Inference 43,

381–402 (1995)
Myers, R.H.: Response surface methodology—current status and future directions. J. Qual. Technol. 31,

30–74 (1999)
Nurmela, K.J., Östergård, P.R.J.: Packing up to 50 equal circles in a square. Discret. Comput. Geom. 18,

111–120 (1997)
Nurmela, K.J., Östergård, P.R.J.: More optimal packings of equal circles in a square. Discret. Comput.

Geom. 22, 439–547 (1999)
Pintér J.D.: LGO: A Model Development and Solver System for Continuous Global Optimization. Pintér

Consulting Services Inc., Halifax (1995)
Pintér, J.D.: Globally optimized spherical point arrangements: model variants and illustrative results. Ann.

Oper. Res. 104, 213–230 (2001)
Pintér, J.D., Kampas, F.J., Castillo, I.: Solving circle packing problems by global optimization: numerical

results and industrial applications. Euro. J. Oper. Res. 191, 786–802 (2008)
Rennen, G., Husslage, B.G.M., van Dam, E.R., den Hertog, D.: Nested maximin Latin hypercube designs.

Struct. Multidiscip. Optim. (2009) (submitted)
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat.

Sci. 4, 409–435 (1989)
Santner, Th.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer Series

in Statistics. Springer, New York (2003)
Stortelder, W.J.H., de Swart, J.J.B., Pintér, J.D.: Finding elliptic Fekete points sets: two numerical solution

approaches. Comput. Appl. Math. 130(1–2), 205–216 (2001)
Su, C.T., Chen, M.C., Chan, H.L.: Applying neural network and scatter search to optimize parameter design

with dynamic characteristics. J. Oper. Res. Soc. 56(10), 1132–1140 (2005)

123

306 J Glob Optim (2010) 46:287–306

van Dam, E.R., Husslage, B.G.M., den Hertog, D., Melissen, J.B.M.: Maximin Latin hypercube designs in
two dimensions. Oper. Res. 55, 158–169 (2007)

van Dam, E.R., Husslage, B.G.M., Rennen, G.: Bounds for maximin Latin hypercube designs. Oper. Res. 57
(2009) (to appear)

123

	One-dimensional nested maximin designs
	Abstract
	1 Introduction
	2 Two nested sets
	2.1 Maximin distance
	2.2 Dominance

	3 Three nested sets
	3.1 Maximin distance
	3.2 Dominance
	3.3 Heuristic

	4 Four or more nested sets
	5 Conclusions and further research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

