Skip to main content
Log in

Porphyrin Metal-organic Framework Sensors for Chemical and Biological Sensing

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Porphyrins and porphyrin derivatives have been intensively explored for a number of applications such as sensing, catalysis, adsorption, and photocatalysis due to their outstanding photophysical properties. Their usage in sensing applications, however, is limited by intrinsic defects such as physiological instability and self-quenching. To reduce self-quenching susceptibility, researchers have developed porphyrin metal-organic frameworks (MOFs). Metal-organic frameworks (MOFs), a unique type of hybrid porous coordination polymers comprised of metal ions linked by organic linkers, are gaining popularity. Porphyrin molecules can be integrated into MOFs or employed as organic linkers in the production of MOFs. Porphyrin-based MOFs are a separate branch of the huge MOF family that combines the distinguishing qualities of porphyrins (e.g., fluorescent nature) and MOFs (e.g., high surface area, high porosity) to enable sensing applications with higher sensitivity, specificity, and extended target range. The key synthesis techniques for porphyrin-based MOFs, such as porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, are outlined in this review article. This review article focuses on current advances and breakthroughs in the field of porphyrin-based MOFs for detecting a variety of targets (for example, metal ions, anions, explosives, biomolecules, pH, and toxins). Finally, the issues and potential future uses of this class of emerging materials for sensing applications are reviewed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Gottfried JM (2015) Surface chemistry of porphyrins and phthalocyanines. Surf Sci Rep 70:259–379

    Article  CAS  Google Scholar 

  2. Adler AD, Longo FR, Kampas F, Kim J (1970) On the preparation of metalloporphyrins. J Inorg Nucl Chem 32:2443–2445

    Article  CAS  Google Scholar 

  3. Chou J-H, Kosal ME, Nalwa HS, Rakow NA, Suslick KS (2000) Applications of porphyrins and metalloporphyrins to materials chemistry. Porphyr Handb 6:43–131

    CAS  Google Scholar 

  4. Mehta P, Kaith BS (2021) Green synthesis of agar/gelatin based superabsorbent (BGCP) through gamma radiation cross-linking polymerization for castoff as sustained drug delivery device and in soil treatment for improved water retention. J Polym Environ 29:647–661

    Article  CAS  Google Scholar 

  5. Rostami M, Rafiee L, Hassanzadeh F, Dadrass AR, Khodarahmi GA (2015) Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy. Res Pharm Sci 10:504

    PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Wasson MC, Shayan M, Berdichevsky EK, Ricardo-Noordberg J, Singh Z, Papazyan EK, Castro AJ, Marino P, Ajoyan Z (2021) A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coord Chem Rev 429:213615

    Article  CAS  PubMed  Google Scholar 

  7. Klyamer D, Shutilov R, Basova T (2022) Recent advances in phthalocyanine and porphyrin-based materials as active layers for nitric oxide chemical sensors. Sensors 22:895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C (2017) Porphyrinoids for chemical sensor applications. Chem Rev 117:2517–2583

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Li H, Deng J, Cao D (2013) Recent advances in porphyrin-derived sensors. Curr Org Chem 17:3078–3091

    Article  CAS  Google Scholar 

  10. Chen L-J, Zhao X, Yan X-P (2023) Porphyrin metal-organic frameworks for biological applications. Adv Sens Energy Mater 2:100045

    Article  Google Scholar 

  11. Wang K, Lv X-L, Feng D, Li J, Chen S, Sun J, Song L, Xie Y, Li J-R, Zhou H-C (2016) Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance. 138:914–919

    CAS  Google Scholar 

  12. Wu H, Yang F, Lv X-L, Wang B, Zhang Y-Z, Zhao M-J, Li J-R (2017) A stable porphyrinic metal-organic framework pore-functionalized by high-density carboxylic groups for proton conduction. J Mater Chem A 28:14525–14529

    Article  Google Scholar 

  13. Du T, Huang L, Wang J, Sun J, Zhang W, Wang J (2021) Luminescent metal-organic frameworks (LMOFs): an emerging sensing platform for food quality and safety control. Trends Food Sci Technol 111:716–730

    Article  CAS  Google Scholar 

  14. Kathuria A, El Badawy A, Al Ghamdi S, Hamachi LS, Kivy MB (2023) Environmentally benign bioderived, biocompatible, thermally stable MOFs suitable for food contact applications. Trends Food Sci Technol 138:323–338

  15. Yang Z, Zhang W, Yin Y, Fang W, Xue H (2022) Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 133:108684

    Article  CAS  Google Scholar 

  16. Abrahams B, Hoskins B, Michail D, Robson R (1994) Assembly of porphyrin building blocks into network structures with large channels. Nature 369:727–729

    Article  CAS  Google Scholar 

  17. Pereira CF, Simões MM, Tomé JP, Almeida Paz FA (2016) Porphyrin-based metal-organic frameworks as heterogeneous catalysts in oxidation reactions. Molecules 21:1348

    Article  PubMed  PubMed Central  Google Scholar 

  18. Younis SA, Lim D-K, Kim K-H, Deep A (2020) Metalloporphyrinic metal-organic frameworks: controlled synthesis for catalytic applications in environmental and biological media. Adv Colloid Interface Sci 277:102108

    Article  CAS  PubMed  Google Scholar 

  19. Yu K, Won D-I, Lee WI, Ahn W-S (2021) Porphyrinic zirconium metal-organic frameworks: synthesis and applications for adsorption/catalysis. Korean J Chem Eng 38:653–673

    Article  CAS  Google Scholar 

  20. Yu W, Zhen W, Zhang Q, Li Y, Luo H, He J, Liu Y (2020) Porphyrin-based metal – organic framework compounds as promising nanomedicines in photodynamic therapy. ChemMedChem 15:1766–1775

    Article  CAS  PubMed  Google Scholar 

  21. Han Q, Wang C, Liu P, Zhang G, Song L, Fu Y (2021) Achieving synergistically enhanced dual-mode electrochemiluminescent and electrochemical drug sensors via a multi-effect porphyrin-based metal-organic framework. Sens Actuators B 330:129388

    Article  CAS  Google Scholar 

  22. Qi Z-L, Cheng Y-H, Xu Z, Chen M-L (2020) Recent advances in porphyrin-based materials for metal ions detection. Int J Mol Sci 21:5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadish KM, Guilard R, Smith KM (2010) Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine (Volumes 6–10). World Scientific, p 2

    Book  Google Scholar 

  24. Abrahams BF, Hoskins BF, Robson R (1991) A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks. J Am Chem Soc 113:3606–3607

    Article  CAS  Google Scholar 

  25. Chen J, Zhu Y, Kaskel S (2021) Porphyrin-based metal–organic frameworks for biomedical applications. Angew Chem Int Ed 60:5010–5035

    Article  CAS  Google Scholar 

  26. Biemmi E, Christian S, Stock N, Bein T (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117:111–117

    Article  CAS  Google Scholar 

  27. Nadeem M, Thornton A, Hills M, Stride J (2011) A flexible copper based microporous metal-organic framework displaying selective adsorption of hydrogen over nitrogen. Dalton Trans 40:3398–3401

    Article  CAS  PubMed  Google Scholar 

  28. Volkringer C, Loiseau T, Ferey G, Morais C, Taulelle F, Montouillout V, Massiot D (2007) Synthesis, crystal structure and 71Ga solid state NMR of a MOF-type gallium trimesate (MIL-96) with µ3-oxo bridged trinuclear units and a hexagonal 18-ring network. Microporous Mesoporous Mater 105:111–117

    Article  CAS  Google Scholar 

  29. Liu S, Bai J, Huo Y, Ning B, Peng Y, Li S, Han D, Kang W, Gao Z (2020) A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron 149:111801

    Article  CAS  PubMed  Google Scholar 

  30. Moradi E, Rahimi R, Farahani YD, Safarifard V (2020) Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as a luminescent sensor for highly selective sensing of Cd2+ and Br– ions and THF small molecule. J Solid State Chem 282:121103

    Article  CAS  Google Scholar 

  31. Yang J, Wang Z, Li Y, Zhuang Q, Zhao W, Gu J (2016) Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury (II) ions in aqueous phase. RSC Adv 6:69807–69814

    Article  CAS  Google Scholar 

  32. Cheng C, Zhang R, Wang J, Zhang Y, Wen C, Tan Y, Yang M (2020) An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection. Analyst 145:797–804

    Article  CAS  PubMed  Google Scholar 

  33. Fu C, Sun X, Zhang G, Shi P, Cui P (2021) Porphyrin-based metal–organic framework probe: highly selective and sensitive fluorescent turn-on sensor for M3+ (Al3+, Cr3+, and Fe3+) ions. Inorg Chem 60:1116–1123

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y-Z, Jiang H-L (2016) Porphyrinic metal–organic framework catalyzed heck-reaction: fluorescence turn-on sensing of Cu (II) ion. Chem Mater 28:6698–6704

    Article  CAS  Google Scholar 

  35. Song Y, Lu S, Sun S, Guo W, Su J, Meng G, Hai J, Wang B (2021) A fluorometric and optical signal dual-readout detection of alkaline phosphatase activity in living cells based on ATP-mediated porphyrin MOFs. Sens Actuators B 342:130017

    Article  CAS  Google Scholar 

  36. Guo L, Wang M, Cao D (2018) A novel Zr-MOF as fluorescence turn‐on probe for real‐time detecting H2S gas and fingerprint identification. Small 14:1703822

    Article  Google Scholar 

  37. Wang Q, Ke W, Lou H, Han Y, Wan J (2021) A novel fluorescent metal-organic framework based on porphyrin and AIE for ultra-high sensitivity and selectivity detection of Pb2+ ions in aqueous solution. Dyes Pigm 196:109802

    Article  CAS  Google Scholar 

  38. Yu K, Zhang G, Chai H, Qu L, Shan D, Zhang X (2022) Two-stage ligand exchange in Mn (III)-based porphyrinic metal – organic frameworks for fluorescence water sensing. Sens Actuators B 362:131808

    Article  CAS  Google Scholar 

  39. Wang L, He K, Quan H, Wang X, Wang Q, Xu X (2020) A luminescent method for detection of parathion based on zinc incorporated metal-organic framework. Microchem J 153:104441

    Article  CAS  Google Scholar 

  40. Pang Y, Cao Y, Han J, Xia Y, He Z, Sun L, Liang J (2022) A novel fluorescence sensor based on Zn porphyrin MOFs for the detection of bisphenol A with highly selectivity and sensitivity. Food Control 132:108551

    Article  CAS  Google Scholar 

  41. Pereira CF, Figueira F, Mendes RF, Rocha J, Hupp JT, Farha OK, Simoes MM, Tome JP, Paz FAA (2018) Bifunctional porphyrin-based nano-metal–organic frameworks: catalytic and chemosensing studies. Inorg Chem 57:3855–3864

    Article  CAS  PubMed  Google Scholar 

  42. Hou J, Jia P, Yang K, Bu T, Zhao S, Li L, Wang L (2022) Fluorescence and colorimetric dual-mode ratiometric sensor based on Zr–tetraphenylporphyrin tetrasulfonic acid hydrate metal–organic frameworks for visual detection of copper ions. ACS Appl Mater Interfaces 14:13848–13857

    Article  CAS  PubMed  Google Scholar 

  43. Masih D, Aly SM, Alarousu E, Mohammed OF (2015) Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit. J Mater Chem A 3:6733–6738

    Article  CAS  Google Scholar 

  44. Zhao B, Li Y, Zhao Y, Ma Y, Li F, Han H, Wang N, Wang X (2022) A sensing platform based on zinc-porphyrin derinative in hexadecyl trimethyl ammonium bromide (CTAB) microemulsion for highly sensitive detection of theophylline. Spectrochim Acta Part A Mol Biomol Spectrosc 281:121592

    Article  CAS  Google Scholar 

  45. Du P, Niu Q, Chen J, Chen Y, Zhao J, Lu X (2020) “Switch-on” fluorescence detection of glucose with high specificity and sensitivity based on silver nanoparticles supported on porphyrin metal–organic frameworks. Anal Chem 92:7980–7986

    Article  CAS  PubMed  Google Scholar 

  46. Chakraborty J, Nath I, Verpoort F (2016) Snapshots of encapsulated porphyrins and heme enzymes in metal-organic materials: a prevailing paradigm of heme mimicry. Coord Chem Rev 326:135–163

    Article  CAS  Google Scholar 

  47. Sun Y, Sun L, Feng D, Zhou HC (2016) An in situ one-pot synthetic approach towards multivariate zirconium MOFs. Angew Chem 128:6581–6585

    Article  Google Scholar 

  48. Gu Y, Xie D, Ma Y, Qin W, Zhang H, Wang G, Zhang Y, Zhao H (2017) Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation. ACS Appl Mater Interfaces 9:32151–32160

    Article  CAS  PubMed  Google Scholar 

  49. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22:6632–6640

    Article  CAS  Google Scholar 

  50. Liu X, Demir NK, Wu Z, Li K (2015) Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 137:6999–7002

    Article  CAS  PubMed  Google Scholar 

  51. Morris W, Wang S, Cho D, Auyeung E, Li P, Farha OK, Mirkin CA (2017) Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal–organic framework. ACS Appl Mater Interfaces 9:33413–33418

    Article  CAS  PubMed  Google Scholar 

  52. Jia X, Zhang Y, Zou Y, Wang Y, Niu D, He Q, Huang Z, Zhu W, Tian H, Shi J (2018) Dual intratumoral redox/enzyme-responsive NO‐releasing nanomedicine for the specific, high‐efficacy, and low‐toxic cancer therapy. Adv Mater 30:1704490

    Article  Google Scholar 

  53. Wang N, Yu X, Zhang K, Mirkin CA, Li J (2017) Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J Am Chem Soc 139:12354–12357

    Article  CAS  PubMed  Google Scholar 

  54. Zhao D, Yu S, Jiang W-J, Cai Z-H, Li D-L, Liu Y-L, Chen Z-Z (2022) Recent progress in metal-organic framework based fluorescent sensors for hazardous materials detection. Molecules 27:2226

    Google Scholar 

  55. Cai H, Huang Y-L, Li D (2019) Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord Chem Rev 378:207–221

    Article  CAS  Google Scholar 

  56. Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Mater Technol 13:18–23

    Article  CAS  Google Scholar 

  57. Wu S, Kong X-J, Cen Y, Yuan J, Yu R-Q, Chu X (2016) Fabrication of a LRET-based upconverting hybrid nanocomposite for turn-on sensing of H2O2 and glucose. Nanoscale 8:8939–8946

    Article  CAS  PubMed  Google Scholar 

  58. Yang X, Yu Y, Gao Z (2014) A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nano 8:4902–4907

    Article  CAS  PubMed  Google Scholar 

  59. Moradi E, Rahimi R, Safarifard V (2020) Porphyrinic zirconium-based MOF with exposed pyrrole Lewis base site as an efficient fluorescence sensing for Hg2+ ions, DMF small molecule, and adsorption of Hg2+ ions from water solution. J Solid State Chem 286:121277

    Article  CAS  Google Scholar 

  60. Burger T, Hernández MV, Carbonell C, Rattenberger J, Wiltsche H, Falcaro P, Slugovc C, Borisov SM (2022) Luminescent porphyrinic metal-organic frameworks for oxygen sensing: correlation of nanostructure and sensitivity. ACS Appl Nano Mater 6(1):248–260

    Article  Google Scholar 

  61. Yang J, Wang Z, Hu K, Li Y, Feng J, Shi J, Gu J (2015) Rapid and specific aqueous-phase detection of nitroaromatic explosives with inherent porphyrin recognition sites in metal–organic frameworks. ACS Appl Mater Interfaces 7:11956–11964

    Article  PubMed  Google Scholar 

  62. Li L, Shen S, Lin R, Bai Y, Liu H (2017) Rapid and specific luminescence sensing of Cu (II) ions with a porphyrinic metal–organic framework. Chem Commun 53:9986–9989

    Article  CAS  Google Scholar 

  63. Chen J, Chen H, Wang T, Li J, Wang J, Lu X (2019) Copper ion fluorescent probe based on Zr-MOFs composite material. Anal Chem 91:4331–4336

    Article  CAS  PubMed  Google Scholar 

  64. Hibbard HA, Burnley MJ, Rubin HN, Miera JA, Reynolds MM (2020) Porphyrin-based metal-organic framework and polyvinylchloride composites for fluorescence sensing of divalent cadmium ions in water. Inorg Chem Commun 115:107861

    Article  CAS  Google Scholar 

  65. Masih D, Chernikova V, Shekhah O, Eddaoudi M, Mohammed OF (2018) Zeolite-like metal–organic framework (MOF) encaged pt (II)-porphyrin for anion-selective sensing. ACS Appl Mater Interfaces 10:11399–11405

    Article  CAS  PubMed  Google Scholar 

  66. Ye Y, Liu H, Li Y, Zhuang Q, Liu P, Gu J (2019) One-pot doping platinum porphyrin recognition centers in Zr-based MOFs for ratiometric luminescent monitoring of nitric oxide in living cells. Talanta 200:472–479

    Article  CAS  PubMed  Google Scholar 

  67. Zhao B, Wang M, Wang X, Yu P, Wang N, Li F (2019) Synthesis and characterization of novel porphyrin-cinnamic acid conjugates. Spectrochim Acta Part A Mol Biomol Spectrosc 223:117314

    Article  CAS  Google Scholar 

  68. He J, Wu X, Long Z, Hou X (2019) Fast and sensitive fluorescent and visual sensing of cysteine using Hg-metalated PCN-222. Microchem J 145:68–73

    Article  CAS  Google Scholar 

  69. Cheng C, Zhang R, Wang J, Zhang Y, Xiong S, Huang Y, Yang M (2020) Porphyrinic metal–organic framework nanorod-based dual-modal nanoprobe for sensing and bioimaging of phosphate. ACS Appl Mater Interfaces 12:26391–26398

    Article  CAS  PubMed  Google Scholar 

  70. Guo X, Zhu N, Lou Y, Ren S, Pang S, He Y, Chen X-B, Shi Z, Feng S (2020) A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chem Commun 56:5389–5392

    Article  CAS  Google Scholar 

  71. Jiang H-L, Feng D, Wang K, Gu Z-Y, Wei Z, Chen Y-P, Zhou H-C (2013) An exceptionally stable, porphyrinic zr metal–organic framework exhibiting pH-dependent fluorescence. J Am Chem Soc 135:13934–13938

    Article  CAS  PubMed  Google Scholar 

  72. Chen H, Wang J, Shan D, Chen J, Zhang S, Lu X (2018) Dual-emitting fluorescent metal–organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging. Anal Chem 90:7056–7063

    Article  CAS  PubMed  Google Scholar 

  73. Deibert BJ, Li J (2014) A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem Commun 50:9636–9639

    Article  CAS  Google Scholar 

  74. Xu R, Wang Y, Duan X, Lu K, Micheroni D, Hu A, Lin W (2016) Nanoscale metal–organic frameworks for ratiometric oxygen sensing in live cells. J Am Chem Soc 138:2158–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gao W-Y, Chrzanowski M, Ma S (2014) Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43:5841–5866

    Article  CAS  PubMed  Google Scholar 

  76. Guo Z, Chen B (2015) Recent developments in metal–metalloporphyrin frameworks. Dalton Trans 44:14574–14583

    Article  CAS  PubMed  Google Scholar 

  77. Zou C, Wu C-D (2012) Functional porphyrinic metal–organic frameworks: crystal engineering and applications. Dalton Trans 41:3879–3888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Chemistry Department at Punjabi University, Patiala, India, Chemistry Department at GSSDGS Khalsa College, Patiala, India, Department of Applied Sciences Chandigarh group of Colleges, Landran.

Funding

No Funding available to support this work.

Author information

Authors and Affiliations

Authors

Contributions

R.D. and M.K. wrote the main manuscript text, prepare figures and tables, bibliography. A.K.M. gave the main idea of the review paper and guided the manuscript development. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ashok Kumar Malik.

Ethics declarations

Ethical Approval

There is no ethical approval required.

Consent to Participate

All authors give consent to participate in the revision of the manuscript.

Consent to Publish

All authors give consent to publish the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Porphyrin MOF sensors showed exceptional framework stability.

• Porphyrin MOF sensors exhibit enhanced sensitivity and specificity for broad range of target analytes.

• Recent advances in the field of porphyrin MOF sensors are briefly reviewed.

• Future research ideas that might aid in advancing the field are discussed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhir, R., Kaur, M. & Malik, A.K. Porphyrin Metal-organic Framework Sensors for Chemical and Biological Sensing. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03674-0

Keywords

Navigation