Skip to main content
Log in

Colorimetric Detection of Cu2+ and Ag+ Ions Using Multi-Responsive Schiff Base Chemosensor: A Versatile Approach for Environmental Monitoring

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this study, we have synthesized a novel Schiff base-centered chemosensor, designated as SB, with the chemical name ((E)-1-(((6-methylbenzo[d]thiazol-2-yl) imino)methyl)naphthalen-2-ol). This chemosensor was structurally characterized by FT-IR, 1H NMR, UV-Vis and fluorescence spectroscopy. After structural characterization the chemosensor SB was subsequently employed for the detection of Cu2+ and Ag+, using fluorescence spectroscopy. The chemosensor SB showed excellent ability to recognize the target metal ions, leading to fluorescence enhancement and color change from yellow to yellowish orange for Cu2+ and yellow to radish for Ag+ ions. The detection capabilities of this chemosensor were impressive, showing excellent selectivity and an exceptionally low detection limit of 0.0016 µM for Cu2+ and 0.00389 µM for Ag+. Most notably, our approach enables the quantitative detection both metal ions in different water and soil samples at trace level. This achievement holds great promise for analytical applications and offers significant contributions to the field of chemical sensing and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Chem Draw.

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e04691

  3. Wani AL, Ara A, Usmani JA (2015) Lead toxicity: A review. Interdiscip Toxicol 8:55–64. https://doi.org/10.1515/intox-2015-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu D, Shi Q, Liu C, Sun Q, Zeng X (2023) Effects of endocrine-disrupting heavy metals on human health. Toxics 11. https://doi.org/10.3390/TOXICS11040322

  5. Buccolieri A, Buccolieri G, Dell’Atti A, Perrone MR, Turnone A (2006) Natural sources and heavy metals. Ann Chim 96:167–181. https://doi.org/10.1002/ADIC.200690017

    Article  CAS  PubMed  Google Scholar 

  6. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: A review of sources chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  7. Gan Y, Huang X, Li S, Liu N, Li YC, Freidenreich A, Wang W, Wang R, Dai J (2019) Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. J Clean Prod 221:98–107. https://doi.org/10.1016/J.JCLEPRO.2019.02.157

    Article  CAS  Google Scholar 

  8. Kulkarni SJ (2020) Heavy metal pollution: Sources, effects, and control methods, hazard. Waste Manag Heal Risks 97–112. https://doi.org/10.2174/9789811454745120010008

  9. Sharma N, Sodhi KK, Kumar M, Singh DK (2021) Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ Nanotechnol Monit Manag 15:100388. https://doi.org/10.1016/j.enmm.2020.100388

    Article  CAS  Google Scholar 

  10. Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment

  11. Nagajyoti PC, Lee KD, Sreekanth TV (2010) Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett 83(8):199–216. https://doi.org/10.1007/S10311-010-0297-8

    Article  Google Scholar 

  12. Peter ALJ, Viraraghavan T (2005) Thallium: A review of public health and environmental concerns. Environ Int 31:493–501. https://doi.org/10.1016/j.envint.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  13. Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: Source, impact, and remedies. 1–28. https://doi.org/10.1007/978-94-007-1914-9_1

  14. Fu Z, Xi S (2019) The effects of heavy metals on human metabolism. 30:167–176.https://doi.org/10.1080/15376516.2019.1701594

  15. Reineke W, Schlömann M (2023) Heavy metals and other toxic inorganic ions. 331–348. https://doi.org/10.1007/978-3-662-66547-3_9

  16. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231. https://doi.org/10.1016/j.jtemb.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  17. Isangedighi IA, David GS (2019) Heavy metals contamination in fish: Effects on human health. J Aquat Sci Mar Biol 2

  18. Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037. https://doi.org/10.1016/J.SOILBIO.2009.04.026

    Article  CAS  Google Scholar 

  19. Ramanujam J, Singh UP (2017) Copper indium gallium selenide based solar cells - A review. Energy Environ Sci 10:1306–1319. https://doi.org/10.1039/c7ee00826k

    Article  CAS  Google Scholar 

  20. Kute AD, Gaikwad RP, Warkad IR, Gawande MB (2022) A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chem 24:3502–3573. https://doi.org/10.1039/D1GC04400A

    Article  CAS  Google Scholar 

  21. Tuan WH, Lee SK (2014) Eutectic bonding of copper to ceramics for thermal dissipation applications – A review. J Eur Ceram Soc 34:4117–4130. https://doi.org/10.1016/J.JEURCERAMSOC.2014.07.011

    Article  CAS  Google Scholar 

  22. Li X, Wang Y, Yin C, Yin Z (2020) Copper nanowires in recent electronic applications: Progress and perspectives. J Mater Chem C 8:849–872. https://doi.org/10.1039/C9TC04744A

    Article  CAS  Google Scholar 

  23. Festa RA, Thiele DJ (2011) Copper: An essential metal in biology. Curr Biol 21. https://doi.org/10.1016/J.CUB.2011.09.040

  24. Gunturu S, Dharmarajan TS (2020) Copper and zinc. Geriatr Gastroenterol 1–17. https://doi.org/10.1007/978-3-319-90761-1_25-1

  25. Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M (2022) Essential metals in health and disease. Chem Biol Interact 367 https://doi.org/10.1016/J.CBI.2022.110173

  26. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S. https://doi.org/10.1093/ajcn/67.5.952S

    Article  CAS  PubMed  Google Scholar 

  27. Royer A, Sharman T (2021) Copper Toxicity, StatPearls Publishing. http://www.ncbi.nlm.nih.gov/pubmed/32491388. Accessed 17 April 2021

  28. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26:268–298. https://doi.org/10.1016/J.MAM.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  29. Brewer GJ (2012) Copper toxicity in Alzheimer’s disease: Cognitive loss from ingestion of inorganic copper. J Trace Elem Med Biol 26:89–92. https://doi.org/10.1016/j.jtemb.2012.04.019

    Article  CAS  PubMed  Google Scholar 

  30. Barillo DJ, Marx DE (2014) Silver in medicine: A brief history BC 335 to present. Burns 40:S3–S8. https://doi.org/10.1016/J.BURNS.2014.09.009

    Article  PubMed  Google Scholar 

  31. Al-Saidi HM, Khan S (2022) A review on organic fluorimetric and colorimetric chemosensors for the detection of Ag(I) ions. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2022.2133561

    Article  PubMed  Google Scholar 

  32. Miyayama T, Arai Y, Hirano S (2016) Health effects of silver nanoparticles and silver ions. Biol Eff Fibrous Part Subst 137–147. https://doi.org/10.1007/978-4-431-55732-6_7

  33. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver - A review. Regul Toxicol Pharmacol 68:1–7. https://doi.org/10.1016/j.yrtph.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: A review. Ann Occup Hyg 49:575–585. https://doi.org/10.1093/ANNHYG/MEI019

    Article  CAS  PubMed  Google Scholar 

  35. Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: A hazardous threat to the environment and human health? J Appl Biomed 6:117–129. www.zsf.jcu.cz/jab. Accessed 18 May 2021

  36. Qu H, Mudalige TK, Linder SW (2016) Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles. J Chromatogr A 1429:348–353. https://doi.org/10.1016/J.CHROMA.2015.12.033

    Article  CAS  PubMed  Google Scholar 

  37. Tung NH, Chikae M, Ukita Y, Viet PH, Takamura Y (2012) Sensing technique of silver nanoparticles as labels for immunoassay using liquid electrode plasma atomic emission spectrometry. Anal Chem 84:1210–1213. https://doi.org/10.1021/AC202782B/SUPPL_FILE/AC202782B_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  38. Mohammadi SZ, Afzali D, Taher MA, Baghelani YM (2009) Ligandless dispersive liquid–liquid microextraction for the separation of trace amounts of silver ions in water samples and flame atomic absorption spectrometry determination. Talanta 80:875–879. https://doi.org/10.1016/J.TALANTA.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79:4427–4432. https://doi.org/10.1021/AC0621773/SUPPL_FILE/AC0621773SI20070226_071019.PDF

    Article  CAS  PubMed  Google Scholar 

  40. Otero-Romaní J, Moreda-Piñeiro A, Bermejo-Barrera P, Martin-Esteban A (2009) Inductively coupled plasma–optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction. Talanta 79:723–729. https://doi.org/10.1016/J.TALANTA.2009.04.066

    Article  PubMed  Google Scholar 

  41. Ghaedi M, Mortazavi K, Montazerozohori M, Shokrollahi A, Soylak M (2013) Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761. Mater Sci Eng C 33:2338–2344. https://doi.org/10.1016/J.MSEC.2013.01.062

    Article  CAS  Google Scholar 

  42. Sardans J, Montes F, Peñuelas J (2010) Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry, Spectrochim. Acta - Part B Spectrosc 65:97–112. https://doi.org/10.1016/J.SAB.2009.11.009

    Article  Google Scholar 

  43. Yang GY, Li Z, Shi HL, Wang J (2005) Study on the determination of heavy-metal ions in tobacco and tobacco additives by microwave digestion and HPLC with PAD detection. J Anal Chem 605(60):480–485. https://doi.org/10.1007/S10809-005-0123-9

    Article  Google Scholar 

  44. Stojanović Z, Koudelkova Z, Sedlackova E, Hynek D, Richtera L, Adam V (2018) Determination of chromium(VI) by anodic stripping voltammetry using a silver-plated glassy carbon electrode. Anal Methods 10:2917–2923. https://doi.org/10.1039/C8AY01047A

    Article  Google Scholar 

  45. Alhamami MAM, Algethami JS, Khan S (2023) A review on thiazole based colorimetric and fluorimetric chemosensors for the detection of heavy metal ions. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2023.2197073

    Article  PubMed  Google Scholar 

  46. Algethami JS (2022) A review on recent progress in organic fluorimetric and colorimetric chemosensors for the detection of Cr 3+/6+ Ions. Crit Rev Anal Chem 1–21. https://doi.org/10.1080/10408347.2022.2082242

  47. Khan S, Chen X, Almahri A, Allehyani ES, Alhumaydhi FA, Ibrahim MM, Ali S (2021) Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review. J Environ Chem Eng 9. https://doi.org/10.1016/J.JECE.2021.106381

  48. Berhanu AL, Gaurav I, Mohiuddin AK, Malik JS, Aulakh V, Kumar KH, Kim A (2019) Review of the applications of Schiff bases as optical chemical sensors. TrAC - Trends Anal Chem 116:74–91. https://doi.org/10.1016/j.trac.2019.04.025

    Article  CAS  Google Scholar 

  49. Hussain Z, Yousif E, Ahmed A, Altaie A (2014) Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Org Med Chem Lett 41(4):1–4. https://doi.org/10.1186/2191-2858-4-1

    Article  CAS  Google Scholar 

  50. Kaya I, Solak E, Kamaci M (2021) Synthesis and multicolor, photophysical, thermal, and conductivity properties of poly(imine)s. J Taiwan Inst Chem Eng 123:328–337. https://doi.org/10.1016/J.JTICE.2021.05.010

    Article  CAS  Google Scholar 

  51. Saydam S (2007) Synthesis and characterisation of the new thiazole schiff base 2-(2-hydroxy)naphthylideneamino-benzothiazole and its complexes with Co(II), Cu(II), AND Ni(II) ions. 32:437–447. https://doi.org/10.1081/SIM-120003787

  52. Hassan AM, Said AO, Heakal BH, Younis A, Aboulthana WM, Mady MF (2022) Green synthesis, characterization, antimicrobial and anticancer screening of new metal complexes incorporating schiff base, ACS. Omega 7:32418–32431. https://doi.org/10.1021/ACSOMEGA.2C03911/ASSET/IMAGES/LARGE/AO2C03911_0009.JPEG

    Article  CAS  Google Scholar 

  53. Al-Harbi S, Al-Harbi SA, Bashandy MS, Al-Saidi HM, Emara AAA, El-Gilil SMA (2016) Spectroscopic properties, anti-colon cancer, antimicrobial and molecular docking studies of silver(I), manganese(II), cobalt(II) and nickel(II) complexes for 2-amino-4-phenylthiazole derivative. Eur J Chem 7:421–430. https://doi.org/10.5155/eurjchem.7.4.421-430.1490

    Article  CAS  Google Scholar 

  54. Mergu N, Gupta VK (2015) A novel colorimetric detection probe for copper(II) ions based on a Schiff base. Sens Actuators B Chem 210:408–417. https://doi.org/10.1016/J.SNB.2014.12.130

    Article  CAS  Google Scholar 

  55. Zhu Wan-Yu, Liu Kai, Zhang Xuan (2023) A benzimidazole-derived fluorescent chemosensor for Cu( ii )-selective turn-off and Zn( ii )-selective ratiometric turn-on detection in aqueous solutions. Sens Diagnos 2:665–675. https://doi.org/10.1039/D3SD00020F

    Article  CAS  Google Scholar 

  56. Wang L, Bing Q, Li J, Wang G (2018) A new “ON-OFF” fluorescent and colorimetric chemosensor based on 1,3,4-oxadiazole derivative for the detection of Cu2+ ions. J Photochem Photobiol A Chem 360:86–94. https://doi.org/10.1016/J.JPHOTOCHEM.2018.04.015

    Article  Google Scholar 

  57. Affrose A, Parveen SDS, Kumar BS, Pitchumani K (2015) Selective sensing of silver ion using berberine, a naturally occurring plant alkaloid. Sens Actuators B Chem 206:170–175. https://doi.org/10.1016/J.SNB.2014.09.042

    Article  CAS  Google Scholar 

  58. Bhuvanesh N, Suresh S, Kumar PR, Mothi EM, Kannan K, Kannan VR, Nandhakumar R (2018) Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging. J Photochem Photobiol A Chem 360:6–12. https://doi.org/10.1016/J.JPHOTOCHEM.2018.04.027

    Article  CAS  Google Scholar 

  59. Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK (2019) Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu 2+ and Pb 2+: Application to living cell imaging and molecular logic gates. RSC Adv 9:25919–25931. https://doi.org/10.1039/C9RA03341F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu Y, Jiang B, Zhao L, Zhao L, Wang Q, Wang C, Xu B (2021) A dansyl-based fluorescent probe for sensing Cu2+ in aqueous solution. Spectrochim Acta Part A Mol Biomol Spectrosc 261. https://doi.org/10.1016/J.SAA.2021.120009

  61. Wu YC, Jiang K, Luo SH, Cao L, Wu HQ, Wang ZY (2019) Novel dual-functional fluorescent sensors based on bis(5,6-dimethylbenzimidazole) derivatives for distinguishing of Ag+ and Fe3+ in semi-aqueous medium. Spectrochim Acta Part A Mol Biomol Spectrosc 206:632–641. https://doi.org/10.1016/J.SAA.2018.05.069

    Article  CAS  Google Scholar 

  62. Zhang Y, Wang D, Sun C, Feng H, Zhao D, Bi Y (2017) A simple 2,6-diphenylpyridine-based fluorescence “turn-on” chemosensor for Ag+ with a high luminescence quantum yield. Dye Pigment 141:202–208. https://doi.org/10.1016/J.DYEPIG.2017.02.028

    Article  CAS  Google Scholar 

  63. Karkosik A, Moro AJ (2022) An NIR emissive donor-π-acceptor dicyanomethylene-4h-pyran derivative as a fluorescent chemosensor system towards copper (II) detection. Chemosensors 10:343. https://doi.org/10.3390/CHEMOSENSORS10080343/S1

    Article  CAS  Google Scholar 

  64. Lin Q, Yang Q, Sun B, Wei T, Zhang Y (2014) A novel highly selective “Turn-On” fluorescence sensor for silver ions based on Schiff base. Chin J Chem 32:1255–1258. https://doi.org/10.1002/cjoc.201400601

    Article  CAS  Google Scholar 

  65. Yang JY, Gao WY, Wang JH, Dong ZM, Wang Y, Shuang SM (2023) A new NBD-based probe for specific colorimetric and turn-on fluorescence sensing of Cu2+ and bio-imaging applications. J Lumin 254. https://doi.org/10.1016/J.JLUMIN.2022.119549

  66. Zhang S, Wu X, Niu Q, Guo Z, Li T, Liu H (2005) Highly selective and sensitive colorimetric and fluorescent chemosensor for rapid detection of Ag +, Cu 2+ and Hg 2+ based on a simple Schiff base. Springer 27:729–737. https://doi.org/10.1007/s10895-016-2005-y

    Article  CAS  Google Scholar 

  67. Liu L, Liu X, Guo C, Fang M, Li C, Zhu W (2021) Carbazole-based dual-functional chemosensor: Colorimetric sensor for Co2+ and fluorescent sensor for Cu2+ and its application. J Chin Chem Soc 68:2368–2377. https://doi.org/10.1002/JCCS.202100343

    Article  CAS  Google Scholar 

  68. Tümay SO (2021) A novel selective “Turn-On” fluorescent chemosensor based on thiophene appended cyclotriphosphazene Schiff base for detection of Ag+ ions. Chem Select 6:10561–10572. https://doi.org/10.1002/SLCT.202102052

    Article  Google Scholar 

  69. Khan S, Muhammad M, Kamran AW, Al-Saidi HM, Alharthi SS, Algethami JS (2023) An ultrasensitive colorimetric and fluorescent “turn-on” chemosensor based on Schiff base for the detection of Cu2+ in the aqueous medium. Environ Monit Assess 195. https://doi.org/10.1007/S10661-023-11260-3

  70. Chen C, Liu H, Zhang B, Wang Y, Cai K, Tan Y, Gao C, Liu H, Tan C, Jiang Y (2016) A simple benzimidazole quinoline-conjugate fluorescent chemosensor for highly selective detection of Ag+. Tetrahedron 72:3980–3985. https://doi.org/10.1016/J.TET.2016.05.020

    Article  CAS  Google Scholar 

  71. Slassi S, Aarjane M, Amine A (2021) A novel imidazole-derived Schiff base as selective and sensitive colorimetric chemosensor for fluorescent detection of Cu2+ in methanol with mixed aqueous medium. Appl Organomet Chem 35. https://doi.org/10.1002/AOC.6408

  72. Wang L, Zhang C, He H, Zhu H, Guo W, Zhou S, Wang S, Zhao JR, Zhang J (2020) Cellulose-based colorimetric sensor with N, S sites for Ag+ detection. Int J Biol Macromol 163:593–602. https://doi.org/10.1016/j.ijbiomac.2020.07.018

    Article  CAS  PubMed  Google Scholar 

  73. Dongare PR, Gore AH, Kolekar GB, Ajalkar BD (2020) A Phenazine based colorimetric and fluorescent chemosensor for sequential detection of Ag+ and I− in aqueous media. Luminescence 35:231–242. https://doi.org/10.1002/BIO.3718

    Article  CAS  PubMed  Google Scholar 

  74. Rahimi H, Hosseinzadeh R, Tajbakhsh M (2021) A new and efficient pyridine-2,6-dicarboxamide-based fluorescent and colorimetric chemosensor for sensitive and selective recognition of Pb2+ and Cu2+. J Photochem Photobiol A Chem 407. https://doi.org/10.1016/J.JPHOTOCHEM.2020.113049

  75. Nagarajan R, Ryoo HI, Vanjare BD, Choi NG, Lee KH (2021) Novel phenylalanine derivative-based turn-off fluorescent chemosensor for selective Cu2+ detection in physiological pH. J Photochem Photobiol A Chem 418:113435. https://doi.org/10.1016/J.JPHOTOCHEM.2021.113435

    Article  CAS  Google Scholar 

  76. Anand T, Sivaraman G, Anandh P, Chellappa D, Govindarajan S (2014) Colorimetric and turn-on fluorescence detection of Ag(I) ion. Tetrahedron Lett 55:671–675. https://doi.org/10.1016/J.TETLET.2013.11.104

    Article  CAS  Google Scholar 

  77. Cui W, Wang L, Xiang G, Zhou L, An X, Cao D (2015) A colorimetric and fluorescence “turn-off” chemosensor for the detection of silver ion based on a conjugated polymer containing 2,3-di(pyridin-2-yl)quinoxaline. Sensors Actuators B Chem 207:281–290. https://doi.org/10.1016/J.SNB.2014.10.072

    Article  CAS  Google Scholar 

  78. Mani KS, Rajamanikandan R, Murugesapandian B, Shankar R, Sivaraman G, Ilanchelian M, Rajendran SP (2019) Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2+ ions and the application in HeLa cells. Spectrochim Acta Part A Mol Biomol Spectrosc 214:170–176. https://doi.org/10.1016/J.SAA.2019.02.020

    Article  CAS  Google Scholar 

  79. Tharmaraj V, Devi S, Pitchumani K (2012) An intramolecular charge transfer (ICT) based chemosensor for silver ion using 4-methoxy-N-((thiophen-2-yl)methyl)benzenamine. Analyst 137:5320–5324. https://doi.org/10.1039/C2AN35721F

    Article  CAS  PubMed  Google Scholar 

  80. Warrier SB, Kharkar PS (2018) A coumarin based chemosensor for selective determination of Cu (II) ions based on fluorescence quenching. J Lumin 199:407–415. https://doi.org/10.1016/J.JLUMIN.2018.03.073

    Article  CAS  Google Scholar 

  81. Velmurugan K, Suresh S, Santhoshkumar S, Saranya M, Nandhakumar R (2016) A simple chalcone-based ratiometric chemosensor for silver ion. Luminescence 31:722–727. https://doi.org/10.1002/BIO.3016

    Article  CAS  PubMed  Google Scholar 

  82. Wang J, Niu Q, Wei T, Li T, Hu T, Chen J, Qin X, Yang Q, Yang L (2020) Novel phenothiazine-based fast-responsive colori/fluorimetric sensor for highly sensitive, selective and reversible detection of Cu2+ in real water samples and its application as an efficient solid-state sensor. Microchem J 157. https://doi.org/10.1016/J.MICROC.2020.104990

  83. Bhuvanesh N, Suresh S, Prabhu J, Kannan K, Kannan VR, Nandhakumar R (2018) Ratiometric fluorescent chemosensor for silver ion and its bacterial cell imaging. Opt Mater (Amst) 82:123–129. https://doi.org/10.1016/J.OPTMAT.2018.05.053

    Article  CAS  Google Scholar 

  84. Zhang Y, Li H, Pu S (2020) A colorimetric and fluorescent probe based on diarylethene for dual recognition of Cu2+ and CO32- and its application. J Photoch Photobiol A Chem 400. https://doi.org/10.1016/J.JPHOTOCHEM.2020.112721

  85. Zhao H, Ding H, Kang H, Fan C, Liu G, Pu S (2019) A solvent-dependent chemosensor for fluorimetric detection of Hg 2+ and colorimetric detection of Cu 2+ based on a new diarylethene with a rhodamine B unit. RSC Adv 9:42155–42162. https://doi.org/10.1039/C9RA08557B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li WT, Wu GY, Qu WJ, Li Q, Lou JC, Lin Q, Yao H, Zhang YM, Wei TB (2017) A colorimetric and reversible fluorescent chemosensor for Ag+ in aqueous solution and its application in IMPLICATION logic gate. Sens Actuators B Chem 239:671–678. https://doi.org/10.1016/J.SNB.2016.08.016

    Article  CAS  Google Scholar 

  87. Bao Z, Qin C, Wang JJ, Sun J, Dai L, Chen G, Mei F (2018) A sensitive and selective probe for visual detection of Cu2+ based on 1, 8-naphthalimidederivative. Sens Actuators B Chem 265:234–241. https://doi.org/10.1016/J.SNB.2018.03.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Research Groups Funding program grant code (NU/RG/SERC/12/5).

Funding

This research was funded by the Deanship of Scientific Research at Najran University, grant code (NU/RG/SERC/12/5).

Author information

Authors and Affiliations

Authors

Contributions

Gasem Mohammad Abu-Taweel: Writing Original Draft-Equal, Conceptualization-Equal, Hamed M. Al-Saidi: Data Curation-Equal, Formal analysis-Equal, Mubark Alshareef: Visualization-Equal, Editing-Equal, Mohsen A. M. Alhamami: Data Curation-Equal, Conceptualization-Equal, Jari S. Algethami: Supervision-Equal, Editing-Equal, Salman S. Alharthi: Data Curation-Equal, Editing-Equal.

Corresponding author

Correspondence to Jari S. Algethami.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals, clinical trial registration, or plant reproducibility performed by any authors.

Consent to Publish

The authors have approved the paper and agree with its publication.

Consent to Participate

No applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Taweel, G.M., Al-Saidi, H.M., Alshareef, M. et al. Colorimetric Detection of Cu2+ and Ag+ Ions Using Multi-Responsive Schiff Base Chemosensor: A Versatile Approach for Environmental Monitoring. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03512-9

Keywords

Navigation