Skip to main content
Log in

pH-dependent Synthesis and Interactions of Fluorescent L-Histidine Capped Copper Nanoclusters with Metal Ions

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

This article has been updated

Abstract

In this work, L-Histidine-protected copper nanoclusters synthesized by changing the pH levels of precursor solution have been shown to display different emission wavelengths and intensities. As determined by mass spectrometry, nanoclusters Cu3L2 synthesized at acidic pH have 3 atoms in their core and emit in the greenish-yellow region, and nanoclusters Cu2L2, synthesized in the basic conditions have 2 atoms in their core and emit in the blue-green region. They are expected to have coordination through the carboxylate group and nitrogen of the imidazole ring of histidine ligand, respectively. Metal ions Mg2+, Mn2+, Zn2+, and Pb2+ selectively enhance the interaction between carboxylate – copper metal core and increase the emission intensity of Cu3L2. These metal ions weaken the interaction between imidazole nitrogen and copper metal core and quench the emission intensity of Cu2L2. As synthesized, nanoclusters exhibit good water solubility and photostability, they can act as fluorescent probes to sense the metal ions, therefore, they were utilized for the optical sensing of the mentioned metal ions. Fluorescent nanoclusters were found to sense even a very low concentration of metal ions with a limit of detection (3 σ/slope) in nanomolar range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Change history

  • 26 September 2023

    To correct the placements of the floats of the figures and schemes in the PDF version as well as their corresponding captions. Also, to captured ‘2+’ as superscript of metal ion (Pb, Zn, Hg, Mn) in references number 23, 25, 31, 32 respectively.

References

  1. Kang X, Zhu M (2019) Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev 48:2422–2457. https://doi.org/10.1039/C8CS00800K

    Article  CAS  PubMed  Google Scholar 

  2. Ou G, Zhao J, Chen P et al (2018) Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions. Anal Bioanal Chem 410:2485–2498. https://doi.org/10.1007/s00216-017-0808-6

    Article  CAS  PubMed  Google Scholar 

  3. Mittal R, Gupta N (2023) Towards green synthesis of fluorescent metal nanoclusters. J Fluoresc. https://doi.org/10.1007/s10895-023-03229-9

    Article  PubMed  Google Scholar 

  4. Salvadori MR, Ando RA, Oller Do Nascimento CA, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the brazilian Amazonia. PLOS ONE 9:1–9. https://doi.org/10.1371/journal.pone.0087968

    Article  CAS  Google Scholar 

  5. Chakraborty S, Mukherjee S (2022) Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chem Commun 58:29–47. https://doi.org/10.1039/D1CC05396E

    Article  CAS  Google Scholar 

  6. Liu Z, Zu Y, Fu Y et al (2010) Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic. Colloids Surf B Biointerfaces 76:311–316. https://doi.org/10.1016/j.colsurfb.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  7. Guevel X, Le, Tagit O, Rodríguez CE et al (2014) Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters. Nanoscale 6:8091–8099. https://doi.org/10.1039/c4nr01130a

    Article  CAS  PubMed  Google Scholar 

  8. Feng J, Chen Y, Han Y, Liu J, Ma S, Zhang H, Chen X (2017) pH-Regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission. ACS Omega 2:9109–9117. https://doi.org/10.1021/acsomega.7b01052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21:3508–3515. https://doi.org/10.1002/adfm.201100886

    Article  CAS  Google Scholar 

  10. Kennedy TAC, MacLean JL, Liu J (2012) Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem Commun 48:6845–6847. https://doi.org/10.1039/c2cc32841k

    Article  CAS  Google Scholar 

  11. Yuan X, Luo Z, Yu Y et al (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem - An Asian J 8:858–871. https://doi.org/10.1002/asia.201201236

    Article  CAS  Google Scholar 

  12. Shang L, Xu J, Nienhaus GU (2019) Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28:100767. https://doi.org/10.1016/j.nantod.2019.100767

    Article  Google Scholar 

  13. Rötzschke O, Lau JM, Hofstätter M et al (2002) A pH-sensitive histidine residue as control element for ligand release from HLA-DR molecules. Proc Natl Acad Sci U S A 99:16946–16950. https://doi.org/10.1073/pnas.212643999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu N-N, Chen L-G, Xiao M-Z et al (2023) Determination of trypsin using protamine mediated fluorescent enhancement of DNA templated au nanoclusters. Microchim Acta 190:158. https://doi.org/10.1007/s00604-023-05754-7

    Article  CAS  Google Scholar 

  15. Pandit S, Kundu S (2020) pH-Dependent reversible emission behaviour of lysozyme coated fluorescent copper nanoclusters. J Lumin 228:117607. https://doi.org/10.1016/j.jlumin.2020.117607

    Article  CAS  Google Scholar 

  16. Karimi A, Kirk KA, Andreescu S (2017) Electrochemical investigation of pH-Dependent activity of polyethylenimine-capped silver nanoparticles. ChemElectroChem 4:2801–2806. https://doi.org/10.1002/celc.201700460

    Article  CAS  Google Scholar 

  17. Liu Y, Bryantsev VS, Diallo MS, Goddard WA III (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799. https://doi.org/10.1021/ja8100227

    Article  CAS  PubMed  Google Scholar 

  18. Wang HB, Li Y, Bai HY, Liu YM (2018) DNA-templated Au nanoclusters and MnO2 sheets: a label-free and universal fluorescence biosensing platform. Sens Actuators B Chem 259:204–210. https://doi.org/10.1016/j.snb.2017.12.048

    Article  CAS  Google Scholar 

  19. Saurabh S, Kalonia C, Li Z et al (2022) Understanding the stabilizing effect of histidine on mAb aggregation: a Molecular Dynamics Study. Mol Pharm 19:3288–3303. https://doi.org/10.1021/acs.molpharmaceut.2c00453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. An Y, Ren Y, Bick M et al (2020) Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 154:112078. https://doi.org/10.1016/j.bios.2020.112078.

  21. Das NK, Ghosh S, Priya A et al (2015) Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C 119:24657–24664. https://doi.org/10.1021/acs.jpcc.5b08123

    Article  CAS  Google Scholar 

  22. Deibert BJ, Li J (2014) A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem Commun 50:9636–9639. https://doi.org/10.1039/C4CC01938E

    Article  CAS  Google Scholar 

  23. Das S, Rakshit S, Datta A (2021) Mechanistic insights into selective sensing of Pb2+ in water by photoluminescent CdS quantum dots. J Phys Chem C 125:15396–15404. https://doi.org/10.1021/acs.jpcc.1c02357

    Article  CAS  Google Scholar 

  24. Wang H-B, Tao B-B, Wu N-N et al (2022) Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity. Spectrochim Acta Part A Mol Biomol Spectrosc 271:120948. https://doi.org/10.1016/j.saa.2022.120948

    Article  CAS  Google Scholar 

  25. Kotha S, Goyal D, Banerjee S, Datta A (2012) A novel di-triazole based peptide as a highly sensitive and selective fluorescent chemosensor for Zn2+ ions. Analyst 137:2871–2875. https://doi.org/10.1039/c2an35222b

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39:2120–2135. https://doi.org/10.1039/B925092A

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Yang C, Yang S, Li G (2012) Fiber-optical sensors: basics and applications in multiphase reactors. Sens 12:12519–12544. https://doi.org/10.3390/s120912519

    Article  CAS  Google Scholar 

  28. Lin SM, Geng S, Li N et al (2017) L-Histidine-protected copper nanoparticles as a fluorescent probe for sensing ferric ions. Sens Actuators B Chem 252:912–918. https://doi.org/10.1016/j.snb.2017.06.079

    Article  CAS  Google Scholar 

  29. Guévela XL, Trouilletb V, Spiesc C, Lia K, Laaksonend T, Auerbachc D, Gregor Jungc MS (2012) High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale 4:7624–7631. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  30. Mott D, Galkowski J, Wang L et al (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745. https://doi.org/10.1021/la0635092

    Article  CAS  PubMed  Google Scholar 

  31. Zhong Y, Deng C, He Y et al (2015) Glutathione-protected silver nanoclusters for sensing trace-level Hg2+ in a wide pH range. Anal Methods 7:1558–1562. https://doi.org/10.1039/c4ay02561j

    Article  CAS  Google Scholar 

  32. Han B, Xiang R, Hou X et al (2017) One-step rapid synthesis of single thymine-templated fluorescent copper nanoclusters for turn on detection of Mn2+. Anal Methods 9:2590–2595. https://doi.org/10.1039/c7ay00625j

    Article  CAS  Google Scholar 

  33. Ding W, Huang S, Guan L et al (2015) Furthering the chemosensing of silver nanoclusters for ion detection. RSC Adv 5:64138–64145. https://doi.org/10.1039/c5ra11124b

    Article  CAS  Google Scholar 

  34. Naaz S, Chowdhury P (2017) Sunlight and ultrasound-assisted synthesis of photoluminescent silver nanoclusters: a unique ‘Knock out’ sensor for thiophilic metal ions. Sens Actuators B Chem 241:840–848. https://doi.org/10.1016/j.snb.2016.10.116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For the stipend R.M. thank the Council of Scientific & Industrial Research (CSIR), India. R. M. and N. G. thank the Department of Chemistry at Netaji Subash University of Technology (NSUT) for providing the facilities.

Funding

Author R.M. has received research support from the Council of Scientific & Industrial Research (CSIR), India (Grant number -CSIRAWARD/JRF-NET2021/113630). The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ritika Mittal has performed the literature search, experimental, data analysis, drafted and critically revised the work. Nancy Gupta has contributed to the conceptualization and critical revision of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nancy Gupta.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, R., Gupta, N. pH-dependent Synthesis and Interactions of Fluorescent L-Histidine Capped Copper Nanoclusters with Metal Ions. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03433-7

Keywords

Navigation