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Abstract
Plasma disruptions pose an intolerable risk to large tokamaks, such as ITER. If a disruption can no longer be avoided, ITER’s 
last line of defense will be the Shattered Pellet Injection. An experimental test bench was created at ASDEX Upgrade to 
inform the design decisions for controlling the shattering of the pellets and develop the techniques for the generation of 
the fragment distributions necessary for optimal disruption mitigation. In an effort to analyze the videos resulting from the 
more than 1000 tests and determine the impact of different settings on the resulting shard cloud, an analysis pipeline, based 
on traditional computer vision (CV), was created. This pipeline enabled the analysis of 173 of the videos, but at the same 
time showed the limits of traditional CV when applied in applications with a highly heterogeneous dataset such as this. We 
created a machine learning-based (ML) alternative as a drop-in replacement to the original image processing code using a 
semantic segmentation model to exploit the innate adaptability and robustness of deep learning models. This model is capable 
of labeling the entire dataset quickly, accurately and reliably. This contribution details the implementation of the ML model 
and the current state and future plans of the project.

Keywords Machine learning · Deep learning · Computer vision · Disruption mitigation · Fusion research · Shattered Pellet 
Injection

Introduction

One of the primary concerns for ITER are disruptions. These 
are abnormal events in which confinement of the plasma is 
lost and its energy is deposited onto the machine wall and 
other plasma facing components within hundreds of milli-
seconds. Future tokamaks such as ITER are expected to be 
critically damaged by only a small number of unmitigated 

disruptions [1]. The first step to avoiding disruptions is a 
process called disruption avoidance, where the plasma con-
trol system steers the plasma into a non-disruptive part of the 
plasma state space, completely avoiding the disruption. But 
if this fails, the damage caused by the disruption has to be 
mitigated. At ITER, the primary disruption mitigation sys-
tem is the Shattered Pellet Injection (SPI) [2]. This system 
will shoot pellets against shatter heads, which are structures 
designed to shatter pellets into fragments with controlled 
size and velocity distributions. This cloud of fragments is 
injected into the plasma with the goal of isotropic energy 
dissipation, cooling the plasma, raising its density, termi-
nating the discharge, and depositing the energy on a large 
surface area to mitigate structural damage to the device.

To achieve isotropic energy deposition and good material 
deposition the SPI setup parameters leading to the ideal frag-
ment distribution have to be found. To be able to efficiently 
test different pellet parameters (e.g. composition, velocity, 
size), shatter head geometries (e.g. shatter angle, cross sec-
tion shape) and their impact on fragment distribution, differ-
ent test beds were created. One of these is a highly flexible 
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test setup [3] at the Max Planck Institute for Plasma Physics 
in Garching, Germany. An animation visualizing the SPI 
system is provided in the references [4].

At the test setup in Garching, several variables can be 
changed and analyzed, including the size and speed and 
the fraction of neon (Ne) and deuterium (D2 ) of the pel-
let, as well as the geometry of the shatter head. A series of 
test shots consisting of roughly 1100 tests was completed 
in which the parameters of the system were varied, lead-
ing to a large and diverse dataset. Each of these shattering 
tests were filmed at frame rates between 20,000 and 30,000 
frames per second using Phantom v2012 cameras. Since 
the goal is an understanding of the resulting distribution of 
weight and speed of each of the pellets, these videos need to 
be analyzed. The first iteration of this analysis was done by 
Peherstorfer [5], by constructing an analysis pipeline based 
on traditional computer vision (CV) methods.The work of 
Peherstorfer provided an initial insight into the dependence 
of fragment distributions on pellet and shattering param-
eters. This CV pipeline was used for a detailed analysis of 
173 of the experiments but showed some of the downsides to 
using traditional CV on such a variable dataset. Traditional 
CV is particularly sensitive to changes in the videos, such 
as illumination. This limitation meant that only a subset of 
the dataset could be analyzed, since an expert needed to be 
present and fine-tune the settings of the pipeline regularly. 
To automate and improve this process and enable quick, pre-
cise and robust analysis of the entire dataset, the previous 
pipeline was in part replaced by a new machine learning 
based approach.

The purpose of this work is to explain the deep learning 
pipeline and its current state. The tracking in the origi-
nal work is done in two steps. First, the background of 
the image is subtracted. This process ideally results in an 
image, where the fragments are marked as white pixels and 
all other pixels are in black. In the second step, the indi-
vidual fragments are isolated in each frame and an algo-
rithm tries to find the same fragments in two consecutive 
images. Currently, a semantic segmentation model called 
U-Net [6] is used to replace the background subtraction of 
the original pipeline. To function properly, the second step 
in the original pipeline requires images, where the shards 
are white and everything else is black. How well the track-
ing is capable of identifying and tracking shards depends 
primarily of how well the background subtraction is done. 
The background subtraction process of the original pipe-
line is influenced by many different parameters that need 
to be adjusted to work well on a given video. Changes in 
i.e. lighting of a video can strongly impact the quality of 
the background subtraction. The parameters have to be 
fine-tuned by an experienced human operator, who needs 
to validate the accuracy of subtraction across the videos 
it is applied to, each of which has tens to hundreds of 

frames, with up to several thousands of fragments visible 
at the same time on each frame. Traditional CV can be 
highly effective when used in tightly controlled environ-
ments, but in this application the fact that the test setup 
was frequently updated, causes video attributes such as 
lighting and exposure to change regularly. This in turn 
frequently caused settings that worked well on the videos 
produced on one day to become incompatible with videos 
from the next day. Additionally, changes within a given 
video, such as lighting changes introduced by plumes of 
dust can quickly change the lighting of a video. This can 
make the settings that work in the rest of the video inef-
fective on the frames with the dust plumes. Analogously, 
videos with few, large shards are generally brighter than 
those with more, smaller shards. This can lead to settings 
from one experiment not translating to the next. These are 
just some examples of the situations necessitating re-tun-
ing the settings of the pipeline. This sensitivity to changes 
in the videos is a natural limitation of traditional CV. The 
need for manual fine-tuning and validation turned out to 
be the limiting factor on the size of the dataset that could 
be labeled.

We created a machine learning (ML) pipeline leverag-
ing the 173 previously labeled videos as a training dataset 
to train U-Net [6] models. These models have standardized 
and automated the labeling process. This has also reduced 
the time necessary to label all 1114 videos from what would 
have been multiple months down to only a few hours on a 
single GPU. The models are highly accurate, reliable and 
generalize well to videos created much later than the previ-
ously labeled 173. Many of the later videos were taken after 
substantial upgrades to the test setup, such as changes to the 
illumination and background, which noticeably altered the 
videos. Figure 1 shows this change. The image on the left 
was one of the earlier pellet tests and the image on the right 
was one of the later ones. The ML models currently act as 
an automated drop-in replacement to the image processing 
code of the original pipeline, while tracking is still being 
done using the original methodology [5].

This paper explains the steps taken in dataset generation 
and preprocessing in ch. 2, explaining how the labels from 
the 173 originally labeled videos are transformed into the 
dataset used for training the ML model. The ML model 
and its training and inference strategies are discussed in the 
“Semantic segmentation” section, containing information 
on the model’s implementation such as the architecture 
used, training and inference pipelines and discussing cur-
rent results.

The scope of this paper is the explanation of the technical 
implementation of the semantic segmentation deep learning 
model in its current state. Detailed description of the phys-
ics interpretation of the results and its impact on disruption 
mitigation system design will be discussed elsewhere.
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Dataset

Dataset Structure

Our machine learning model is a semantic segmentation 
model (see “Semantic segmentation” section). The model 
labels all pixels that are within the confines of any of the 
shards in the input image. The dataset structure is the same 
for the training dataset produced by the labeling algorithm 
(see “Labeling algorithm” section) and for the inference 
output of the models (see “Inference” section). The data-
sets are comprised of an input image and a label. The input 
image is an image taken from the SPI videos and can be 
either a complete frame or a cropped partial frame, such 
as a 256 × 256 cutout. The label for the image is a Boolean 
mask of the same dimensions as the input image, with each 
pixel being labeled as true if it is contained in a fragment 
and false for all pixels not within the confines of a frag-
ment. The labels are produced by the labeling algorithm in 
the training dataset and by the trained ML models in their 
output datasets. The masks are then converted, by setting 
all true values to 255 and all false values are kept as 
0. These images are then saved as PNGs to more easily be 
able to work with them. An example of this is shown in 
Fig. 2, where the input image is shown on the left an the 
output mask is shown on the right, the white pixels being 
the true values and black pixels the false values.

Preprocessing and Labeling

Preprocessing

The original dataset provided by T. Peherstorfer [5] needs 
to be converted into a dataset of the structure described in 
“Dataset structure” section. The original labels provide a 
geometric center, an estimated diameter and an ID for each 
detected fragment and each frame it was detected on. The 
position and diameter are given in millimeters (mm) in the 
original dataset. The x and y values are relative to the left and 
lower borders of the frame respectively. The fragment diam-
eter was estimated by using the number of pixels detected as 
belonging to a given fragment in the original pipeline. The 
first step is to convert the x and y positions and the diameter 
into pixel values to be able to directly project them onto the 
images. To get the scaling factor between mm and pixels, 
we scanned the labels to determine the maximum x and y 
values in the labeled original dataset and divided them by 
the width and height of the videos respectively. Both x and 
y gave the same scaling factor, which we took as confirma-
tion that our methodology was sound. We also confirmed 
our scaling factor with the author of the original analysis. 
In the original analysis, the scaling factor was calculated by 
measuring the diameter of a pellet guide tube in the focus 
plane of the camera in the experimental setup and compar-
ing it to the number of pixels it had in the videos. The center 
and diameters of the fragments are then used as input to the 
algorithm, which creates the training dataset, the labeling 

Fig. 1  Example of a frame from an early (pellet #218, left) and late (pellet #1351, right) pellet test

Fig. 2  Image and mask for a frame in the training dataset
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algorithm. The dataset needed for training has to have the 
original video frames and a mask for each of the frames. 
These masks are Boolean matrices of the same dimensions 
as the original video frame, where true corresponds to a 
pixel in a shard and false to any other pixel.

Labeling Algorithm

For each of the fragments and each frame in the original 
dataset the algorithm starts by making a square, centered 
on the center position from the original labels with sides, 
which are a fraction of the reported diameter of the frag-
ment. This area denotes the algorithm’s field of view (FOV). 
The algorithm then returns a Boolean mask of all pixels with 
a pixel value below or equal to the average of all pixels in its 
FOV. Then each of the boundaries is examined to check if 
they are on or outside the fragment’s edge. If not, the FOV 
is extended on this boundary. This edge detection is also 
done very rudimentarily at the moment by just checking if 
the number of pixels the algorithm marked in the Boolean 
mask on a given edge is below a threshold. This means the 
“edge detection” finds edges as well as open spaces outside 

of the shard. For each side of the FOV square where no 
“edge” is found, the side of the initial FOV square is moved 
outwards by a fraction of the maximum reported distance of 
the fragment. If any of the sides were moved and all of them 
are below a maximum distance threshold from the fragment 
center, the algorithm recurs with the new FOV rectangle. 
This functionality is illustrated in Fig. 3.

This labeling algorithm is effective, but can produce 
some false masks, particularly in dark parts of the images 
(see Fig. 4). To counteract this, the dataset was manually 
filtered by looking at overlaid images of the input image 
and masks like in Fig. 4 and removing all images with 
faulty masks. This reduced the effective dataset down to 
about 1/3 of its original size. Notably, a lot of pellets and 
longer series of pellets were disregarded entirely, since 
this algorithm is sensitive to changes in the videos. And 
during different times in the creation of the videos, the 
lighting, etc. was kept similar. So if the labeling algorithm 
has issues with a certain lighting setup, it is likely that a 
majority if not all frames on this lighting setup have to be 
disregarded. This leads to a notable reduction in diver-
sity in the dataset. A large part of the raw dataset was 
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Fig. 3  Visualization of the functionality of the labeling algorithm. 
a, b For each fragment detected in the original analysis, the labeling 
algorithm is given a geometric center and an approximate diameter 
(D). c It starts with a Field of View (FOV) extending 0.3 ⋅ D in all 
directions (green square bottom 2) from the fragment center. c–e In 
each iteration, it marks all pixels that are below the average pixel 
value in its FOV. It then extends all boundaries with i.e. three or more 
marked pixels by 0.2 ⋅ D . It then recurs until all boundaries have at 

most 2 marked pixels or any of the boundaries are more than D away 
from the center point. d Once at least one of these exit conditions is 
reached, the algorithm returns a Boolean mask, where pixels that are 
part of the fragment are set to true (white) and all other pixels are set 
to false (black). The FOV area of the algorithm is then added to the 
Boolean mask of the whole image with an OR operation. The com-
bination of frame image and mask can then be used as the input and 
label respectively when training the ML model on this frame
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also created after the original analysis [5] was done. The 
highest pellet number of the labeled pellets is 740, but 
after this more experiments were conducted up to pellet 
1390. This is important, because in this time new shat-
tering geometries were introduced and the experimental 
setup was optimized. This means that ultimately the train-
ing dataset does not reflect the entirety of the dataset on 
which inference is done.

A majority of masks that had to be excluded in sorting 
was due to the simple labeling algorithm. In many of the 
images, there is a structure in the experiment vacuum cham-
ber on the lower right as seen by the camera, which leads to 
a circular dark area in the images (see Fig. 4). If fragments 
fly into this area, they are still illuminated by the lights of 
the experimental setup, but are now in a dark background. 
Since the labeling algorithm looks for and marks any parts 
of the image around the location of the fragments, where the 
pixel value is less than or equal to the average pixel value of 
the entire partial image, it now marks the parts of the partial 
image around the fragment instead of the fragment itself. 
This behavior along with normal behavior of the labeling 
algorithm is shown in Fig. 4.

But even with these limitations, the ML models trained 
on the resulting datasets are capable of labeling fragments 
extremely accurately and generalizing well to later parts of 
the dataset, where the video settings no longer reflect those 
of the training dataset. Mislabeled shards are exceedingly 
rare, so while improving the diversity of the dataset would 
likely lead to some improvement in the models and therefore 
in the output labels, this improvement would most likely 
be marginal. Improvements to the labeling algorithm are 
ongoing but we are also focusing on improving the areas in 
our dataset creation pipeline with a higher impact on model 

performance, such as the image processing steps discussed 
in the next section.

Processing for Training

The dataset at this point in the processing pipeline consists 
of images and masks of the same dimensions as the high 
speed videos. An example of this can be seen in Fig. 2. This 
is typically a height of 608 and a width of 1280.

Image Scaling

The cameras provide videos with a 12 bit color range. To 
make these videos more easily compatible with many of the 
image processing tools like OpenCV and to retain a man-
ageable size of the dataset, these are downscaled to an 8 bit 
color depth. This process inevitably destroys information, 
so several ways of downcasting were tested. First the naive 
approach of linear casting was used. Here the maximum 
pixel value in each frame is set to 255, the lowest is set to 0 
and all others are scaled between these two values.

In many cases the actual values are not evenly distributed 
in the whole space of available values, but clustered around 
the middle of the value range. This leads to value range 
compression in the “naive” approach, meaning that more 
information is lost than necessary. To avoid this, another 
approach was tested, where a lower and an upper threshold 
based on a percentile of pixel values is calculated. This could 
for example be the 5th and 95th percentile. In this case, the 
value of the 5th percentile is seen as the lower bound, all 
pixel values below this threshold are set to 0. In this example 
the value of the 95th percentile is calculated and all pixel 
values above this threshold are set to 255. The pixel val-
ues between the lower and upper bounds are scaled linearly. 
This approach seems to increase the noise in images and 
the accuracy of models trained on datasets created with this 
approach has suffered as a result in these cases. An example 
of the pixel value distribution of an image typical for the 
dataset and the cutoff values of the 5th and 95th percentiles 
can be seen in Fig. 5.

Currently the “naive” approach is used for training and 
inference, and the percentile scaling approach is used for 
visualization, because the scaled images are easier for 
human analysis, since they are generally brighter and 
therefore easier to understand. In the beginning of some 
of the later videos, large plumes of dust are present. These 
clouds are often opaque in naively scaled images, but can 
be made transparent, when using an aggressive scaling 
policy such as a 50th percentile upper pixel value cutoff 
scaling without lower bound cutoff. These dust clouds are 
not present in the training set, which causes the model 
to identify the cloud as a single contiguous shard. This 
then leads to uncertainty in future downstream statistical 

Fig. 4  Pellet 507, frame 17: Normal and erroneous behavior of the 
labeling algorithm. The fragments are correctly labeled in the bright, 
left part of the image, and their masks are inverted in the dark portion 
of the image
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analyses of these frames, since it not only introduces a 
large, incorrectly labeled fragment, but also precludes the 
model from detecting the actual fragments covered by the 
cloud. An example of this is shown in Fig. 6.

Currently, first tests are being conducted on the viabil-
ity of upscaling the 12 bit to a larger data format such as 
int16 or float32. First results look promising, but the 
dataset pipeline would require major integration work and 
extended testing & comparison with the 8 bit results.

Semantic Segmentation

The current machine learning model is a semantic segmen-
tation model. This task trains the model to label all pixels 
belonging to a specific class, in this case pellet shards.

Model Architecture

The model was chosen to be a U-Net [6] with a EfficientNet 
B0 [7] backbone. U-Net is a medical imaging segmentation 
network, that is notable for its implicit data augmentation 
(see “Training strategy” section). This allows the model to 
be trained effectively on only a small number of training 
samples. The model is also arranged in a U-shape, responsi-
ble for its name, that passes through different cutouts of the 
input image at different resolutions, which makes the model 
well adapted to dealing with features of different sizes in 
the input dataset. This is particularly beneficial in our case 
due to the wide spread of sizes of the fragments after shat-
tering (as a result of different pellet sizes, speeds and shatter 
geometries), and the reason U-Net was chosen for this task.

The backbone is an EfficientNet B0 pretrained on the 
ImageNet [8] dataset. The goal of the backbone network 
is to extract and mark pertinent features for the U-Net. An 

Fig. 5  Pixel value distribution of a typical image. The values of the 5th and 95th percentile of the pixel values are marked in red

Fig. 6  Pellet 1314, frame 6: naive linear scaling (left), scaling with upper cutoff at 50th percentile (right). Large dust plume is opaque with naive 
scaling and transparent with 50th percentile cutoff scaling, but fragments in the bright part of the image to the right are lost
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example of this would be a network that marks the whisk-
ers for a network tasked with finding cats on images. Fine-
tuning a pre-trained model improves the precision of the 
trained model while reducing the computational cost for 
training substantially and allows for training on a compara-
tively small dataset. EfficientNet B0 was used as a backbone, 
which is the smallest model in the original EfficientNet fam-
ily, since labeling fragments is a comparatively simple task 
for computer vision deep learning. Since the accuracy of the 
models is limited by the quality of the training dataset, there 
is currently no need to increase the complexity of the model. 
But as discussed in “Labeling algorithm” section the impact 
of the dataset limitations on the models’ accuracy is minute, 
with the models performing well above our expectations in 
their current state. So it is unlikely that a more complex 
model is needed as a feature extractor, but in later iterations, 
this will be tested again, to ensure that the backbone com-
plexity is not the limiting factor for model accuracy.

In testing, the models perform well and generalize reli-
ably to unknown situations and parts of the dataset that are 
different than the training dataset.

Loss Function

The training process of ML models works by trying to find 
the global minimum of a loss function, which is a func-
tion describing the error of a given task. This means that 
by choosing a loss function, the operator training the model 
directly chooses the goal the model will be trained towards, 
making this choice one of, if not the most important choices 
while training the model. If the loss is not representative 
of the error of a given task, the model will be trained to 
solve a different task altogether. Because of the impact of 
the loss function, this section will explain our reasoning for 
choosing our loss function, which is a sum of the focal and 
Jaccard losses:

One of the primary motivations for this choice was the class 
imbalance inherent in many semantic segmentation tasks, 
which can also be seen in our dataset. The goal of semantic 
segmentation is to label the pixels belonging to a certain 
class. This means that each pixel is assigned a class. In our 
case two classes exist. Pixels within the confines of any of 
the fragments are assigned the target class y = 1 . All other 
pixels are given the label y = 0 denoting them as belonging 
to the background class. This assignment is first done by the 
labeling algorithm as discussed in the “Labeling algorithm” 
section to create the training dataset and later by the trained 
ML model in inference. The large class imbalance comes 
from the fact that even in images with a large number of 
shards, the overwhelming majority of pixels are part of the 

(1)L = LFocal + LJaccard.

background class with only a small number of target pixels. 
Many commonly used loss functions such as 1 − accuracy 
are based on the assumption that the classes are somewhat 
equally represented. The number of target pixels make up 
roughly 0.4% of the total pixels in our training dataset. So if 
for example we were to use accuracy as our metric, meaning 
1 − accuracy as our loss function, a model that exclusively 
marked all pixels as y = 0 would be 99.6% accurate and have 
a loss of 0.04. This solution is more accurate than any solu-
tion where the model actually learns to recognize the frag-
ments. So a loss function needs to be used that prioritizes the 
precision of predicting the target class y = 1 to train a model 
capable of identifying shards. The primary loss function we 
chose for this purpose was the Jaccard or Intersection over 
Union (IoU) loss:

where

is the Jaccard index between the set of target pixels of the 
Ground Truth (GT) and the Prediction (Pred). The ground 
truth target set is the pixels set to y = 1 by the labeling algo-
rithm and the prediction set is the set of pixels set to y = 1 
by the ML model. The Jaccard index divides the number 
of pixels that are in both the ground truth ( NGT ) set and the 
prediction ( NPred ) set (the intersection of the two sets) by 
the number of pixels that are in either or in both sets (the 
union of the sets). This makes Jaccard loss independent of 
background pixels, making it a well suited and common loss 
function in this type of application. But this is not only a 
benefit, since the Jaccard coefficient will become infinite in 
cases where the two sets have no union or 0 in cases where 
there is no intersection. The second case is particularly com-
mon at the beginning of training, where the model’s weights 
are randomly initialized. In practice, this often causes the 
model to either predict all or no pixels, causing an intersec-
tion that is 0 or one that will be rounded to 0 due to datatype 
constraints. This causes a model that is highly volatile with 
quickly changing weights or one that does not converge at 
all. To address these stability issues in early epochs of train-
ing, a second cost function was added to the Jaccard loss. 
The focal loss [9] (FL) was chosen:

where

(2)LJaccard = 1 − J(GT ,Pred)

(3)J(GT ,Pred) =
N
Pred

∩ N
GT

N
Pred

∪ N
GT

(4)LFocal = −(1 − pt)
� log(pt),

(5)pt =

{

p if y = 1,

1 − p otherwise,
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and where p ∈ [0, 1] is the probability the ML model assigns 
to a given pixel belonging to the target class y = 1 . And 
where y in the condition refers to the ground truth label of 
the pixel, not the label predicted by the model.

FL is a version of the Binary Cross Entropy (BCE), or 
Log loss, LBCE = log(pt) tailored for use on unbalanced data-
sets. The additional term in the focal loss is used to suppress 
the impact of background samples on the overall calculated 
loss. � was set to 2 in our training.

Both a version of the model using LFocal + LJaccard and 
LBCE + LJaccard were trained and tested and the version using 
LFocal produced slightly more accurate segmentation masks, 
although the impact on model accuracy, verified through 
visual inspection of the outputs, was functionally negligible. 
Additionally other loss functions such as Sørensen dice loss 
were tested both with and without the addition of a LBCE 
and LFocal terms. The models all performed worse than, or 
indistinguishably from, those trained using the cost function 
that was ultimately chosen. This result is expected since the 
Sørensen dice coefficient and Jaccard loss serve very similar 
purposes.

The Sørensen dice coefficient was also calculated for all 
models, to have an independent metric to be able to directly 
compare the training results of different models (see “Meta 
analysis” section).

Training

General Explanation of Training and Definition of Terms

Deep learning models are generalized function approxima-
tors. The function we are trying to approximate is a function 
that can map inputs, in our case images generated from the 
SPI videos, to outputs. In our case the outputs are masks (see 
“Dataset structure” section). To judge how good a model 
is at mapping the inputs to the output, a loss function is 
defined, which is a description of the error of the model on 
a given application (see “Training Stack” section). The goal 
of training is to adjust the parameters of the model in such a 
way that the loss becomes minimal over the training dataset.

To achieve this, the model is first randomly instantiated 
according to its definition, meaning how many parameters 
and in what configuration should be contained within the 
model. Computer vision deep learning models of the type we 
are using, convolutional neural networks, typically contain 
tens of millions to hundreds of millions of parameters. This 
high amount of parameters allows the model to “memorize 
the dataset” instead of learning a generalized representation 
for the input to output mapping in a process called over-
fitting, causing the model to become functionally useless 
when applied to data it has not seen in training. In our case, 
the model has roughly 10 million parameters. The steps we 
take to mitigate overfitting are discussed in the “Overfitting 

Mitigation” section. The parameters are randomly instanti-
ated at the beginning of training and adjusted over several 
epochs, meaning a single pass where the model is shown 
every training sample in the dataset once. In our case this 
could mean, the model being adjusted on all frames of 75% 
of the 173 labeled videos, the training dataset.

An epoch works by the training dataset being split up 
into mini-batches (from now on referred to as “batches”) of 
samples. These are groups of images. In our case this could 
mean a group of 64 256 × 256 pixel cutouts of images from 
the dataset. For each of these batches the model undergoes 
one training step. This step is split into two separate sub 
steps: 

1. The Forward Pass in which the e.g. 64 samples of the 
batch are passed to 64 copies of the model with the cur-
rent sets of parameters and the models are used to pre-
dict the outputs,

2. Backpropagation here the predictions of the models are 
compared to the ground truth, which in our case would 
be masks labeled by the labeling algorithm (see “Pre-
processing and labeling” section). The predictions of 
the model are compared to the ground truths and an 
algorithm called an optimizer (in our case we use Adam 
[10]) is used to determine how much each of the param-
eters needs to be adjusted for the loss to be minimal on 
this batch. These gradients are then scaled with a factor 
called the learning rate (lr) to ensure the model learns 
iteratively instead of completely overwriting changes of 
previous training steps.

After all batches are used once, the training is completed 
for the current epoch. Before the training for the next epoch 
is started the model has to undergo validation. This means 
using the model with the current weights after the train-
ing of the epoch to make predictions on a dataset it has not 
seen before. In our example this would be all frames of the 
remaining 25 % of videos not used in training. Validation is 
also done by passing the model batches of samples until all 
samples in the validation set are used up. The average loss 
and optionally other metrics are calculated for the model 
on the entire validation dataset. The model’s performance 
on the validation set compared to the training set is particu-
larly important for overfitting mitigation strategies where the 
hyperparameters, such as the lr are adjusted after validation 
and before the next epoch (see “Mixed precision Training 
and Benchmark” and “Training strategy” sections).

After validation and any inter-epoch adjustments are 
made, the next epoch is started. This is continued until some 
criterion is met. Often this means that training is stopped 
once a preset number of epochs is reached. In our case, train-
ing is stopped once the validation loss has not improved for 
a pre-set time, e.g. 10 epochs.
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Training Stack

The model was trained on GPU using the TensorFlow [11] 
framework, with the Keras [12] API. The segmenta-
tion_models [13] python module was used for the U-Net 
implementation.

Mixed Precision Training and Benchmark

Mixed precision training is a training strategy, where cal-
culations such as matrix multiplication are done in FP16 
or half precision, but outputs are still saved in full precision 
(FP32). This process, in our case, enables the use of tensor 
cores in modern NVIDIA GPUs. Depending on the genera-
tion of GPU, this can massively speed up training times. 
This is particularly important when using Turing generation 
GPUs, since TensorFloat32 (TF32) functionality was intro-
duced in the following Ampere generation. TF32 translates 
certain operations to FP16 automatically without needing 
any explicit implementation. Another benefit of mixed preci-
sion is halving the size of training samples and the param-
eters of the model and optimizer copies loaded onto GPU 
memory during training, typically doubling the batch size 
possible on the same hardware, further speeding up training.

We altered the segmentation_models code slightly, 
by forcing FP32 as the data type for the output layer. With-
out this change models trained in mixed-precision training, 
were not numerically stable and as a result did not converge.

Table 1 shows the results of a short benchmark, where the 
effect of mixed precision on our application was tested. All 
GPUs followed the same training code and trained models 
on roughly 10,000 images of the size of 608 × 1024 pixels. 
The benchmark started with the largest possible batch size 
when not using mixed precision. This means the RTX 2080ti 
trained the models in FP32 mode and all other cards trained 
in TF32 mode. The second test switched to mixed preci-
sion, while still using the same batch size as the non-mixed 
precision training run. Finally on the last run, the batch sizes 
were doubled. The results show a large speed up of all cards 
when going from non-mixed precision to mixed precision. 
The 2080ti also shows a large increase in speed when dou-
bling the batch size, but this is most likely due to the fact 
that it is the card with the lowest amount of VRAM, which 

means that FP32 training has to be done with a batch size 
of 2. Going to 4 increases the GPU usage significantly. The 
A4000 shows a relatively small benefit when going from a 
batch size of 4 to 8. The other two cards would actually have 
been capable of a TF32 batch size of 8, but they brought 
our current version of the data loader to its limits at higher 
batch sizes. This can be seen by the increasing training time 
of the 3090 and especially the 4090 when going from a batch 
size of 4 to 8. Both GPUs, but specifically the 4090 showed 
a low GPU usage or about 60–80% in training, with none 
of the CPU cores being at a high usage either. This means 
that we need to transition our dataset away from what are 
currently PNG images to something like TensorFlow Record 
(TFRec) files to use these GPUs effectively when train-
ing with large images, like in the benchmark. The TFRec 
format was developed by the TensorFlow [11] project for 
high throughput applications such as inference with Tensor 
Processing Units (TPUs). They enable easily parallelizable 
data streams from multiple files.

The benchmark shows that mixed precision training leads 
to a substantial improvement to the training times. Addition-
ally, in current versions of the most popular deep learning 
frameworks, mixed precision can generally be implemented 
with minimal effort. Our observation, however, is that in ML 
applications in the physics community specifically, this step 
is often skipped, so this benchmark is meant to show the 
benefits to another audience.

Training Strategy

The models were trained starting with a high lr, chosen to 
be about one fifth to one half of the highest lr at which the 
models still reproducibly converged. This could conceivably 
somewhat counteracts the advantages of using pre-trained 
feature extractor networks, since the pre-trained parameters 
are changed in large steps per training step. Models were also 
trained using a lower starting lr, but showed worse accuracy 
with a longer convergence time. To counteract model over-
fitting, aggressive lr reduction and early stopping policies 
were adapted. The lr was reduced every time the validation 
loss stagnated for 5 epochs to 0.2 times the previous lr. This 
was done up to a minimum lr of 1e-7. And if the validation 
loss stagnated for 10 epochs, the training was stopped. The 

Table 1  Result of benchmark 
with and without mixed-
precision training

The GPUs were tested in mixed precision both with the same batch size they had when training without 
mixed precision (BS) and with a doubled batch size

Architecture GPU BS tfp32 ∕ tTF32 1 ⋅ BS tfp16 1 ⋅ BS tfp16 2 ⋅ BS

Turing RTX 2080 ti 2 522 s (100%) 365 s (70%) 289 s (55%)
Ampere RTX A4000 4 559 s (100%) 345 s (62%) 327 s (58%)
Ampere RTX 3090 4 292 s (100%) 168 s (58%) 176 s (60%)
Ada Lovelace RTX 4090 4 187 s (100%) 111 s (59%) 148 s (79%)
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model used in inference is the one with the minimum valida-
tion loss, not the model after the final epoch of training. This 
was done to reduce the effect of overfitting. The maximum 
training epochs were capped at 50, although this number was 
never reached. Vanilla Adam [10] was used as the optimizer. 
The dataset was split into a training dataset containing the 
frames of 75% of the pellets and a validation set, containing 
25% of the pellets. The dataset was split by pellet and not by 
frame to avoid the model seeing different frames of the same 
pellet during training, leading to a data leak, although this 
increases the reduction to dataset diversity incurred from 
removing all frames from individual videos.

Overfitting Mitigation

Due to the limited size and diversity of the training data-
set, coupled with the large number of parameters, even in 
a small computer vision deep learning model like the one 
used in this application, overfitting is a significant concern. 
Overfitting is the process in which the model “memorizes” 
the dataset instead of learning the rules governing the data, 
causing the model to become incapable of generalizing 
to unknown data. This is particularly problematic in deep 
learning models, that can easily have millions of trainable 
parameters, enabling them to encode even large datasets in 
those parameters. ML models are trained by finding the set 
of parameters, which minimize error, represented by the 
loss function (see “Loss function” section), on the training 
dataset. But the optimal solution is one in which the model 
has encoded all points from the dataset in its parameters, 
because this solution has a loss of 0. This type of model is, 
however, useless, since it only works on the training data 
and not on new data. To combat this and to force the model 
to generalize, several approaches are used here:

• Shuffling Possibly the most basic overfitting mitigation 
strategy is making sure the model does not see the training 
samples in the same order when it is repeatedly exposed 
to them in subsequent epochs of training. Although shuf-
fling is omnipresent as an overfitting mitigation strategy, 
the finer details of how the dataset is shuffled influence 
how effective it is. To ensure that shuffling has the high-
est positive impact, our shuffling strategy is to randomly 
assemble all batches completely from scratch in each 
epoch, ensuring that the model sees the images in a dif-
ferent order and as part of different batches.

• Data Augmentation Data augmentation is a process in 
which the data used for training is adjusted at train time, 
to increase the effective size of the dataset. Examples of 
this are flipping images, changing focus etc. An example 
of this is shown in Fig. 7. Currently the infrastructure for 
more complex data augmentation has been implemented 
in that the models are trained on cropped partial images 

(e.g. 256 × 256 pixels) instead of the whole image. Some 
data augmentation has been implemented into the train-
ing pipeline in addition to the inherent data augmentation 
of U-Net, but this will likely be expanded in the future.

• Early Stopping If the model’s validation loss does not 
improve for 10 epochs above a threshold, training is 
stopped.

• Checkpoint Saving The model is only saved if its valida-
tion loss improves above a certain threshold. This means 
that the model that is ultimately used for inference on the 
dataset, the production model, is the one before the final 
epochs in which the model’s stagnation caused the early 
stopping callback to trigger.

Our mitigation strategies can be divided into two groups, 
based on their objectives. The first group consisting of shuf-
fling and data augmentation tries to make overfitting more 
complicated and on average make the loss improvements 
the models gain by overfitting lower than those they gain 
by understanding the dataset’s governing principles for as 
long as possible. The second group consisting of early stop-
ping and checkpoint saving try to limit the amount of impact 
overfitting has on the production model after that point.

Our models show strong generalization capabilities and 
low levels of overfitting behavior. This can be attributed to 
both the mitigation strategies introduced in this section, but 
also to the U-Net [6] architecture itself. One primary goal 
of the development of the U-Net architecture was to enable 

Fig. 7  Example of data augmentation [14]. Input image to the model 
with ground truth overlaid as the green rectangles. This image is a 
composition of multiple other images, each with different data aug-
mentation. some sub-images have changed saturation levels, others 
have black squares added to obscure part of the image. The ground 
truth needs to be adjusted to reflect the visible features in the aug-
mented input image
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training medical segmentation models on the small datasets 
available in these applications, so U-Net is designed with 
inherent data augmentation. This resistance to overfitting 
makes U-Net well-suited to our application.

Reproducibility

In many cases it can be necessary to reproduce an earlier 
model when analyzing results, for example. The model 
checkpoints of computer vision deep learning models are 
often hundreds of megabytes to gigabytes in size and in the 
process of a single project such as this, often hundreds of 
different models are trained on different workstations. To 
enable sensible tracking and analysis of the models, it is 
therefore necessary to be able to reproduce them from code 
files alone if the need arises. For this reason several steps 
were taken to ensure reproducibility:

• git Repository The code files are saved in a git repository 
as is standard. But often, especially when training multiple 
models in a single day, only small changes to the code are 
made, such as changing the learning rate in between runs. 
Committing every single small change to the repository is 
unreasonable, so the decision was made to have a feature-
based commit policy for the repository and create an auto-
mated backup pipeline to track model-based changes.

• The Model Directory At the beginning of training, the 
model is automatically given a unique model version 
number and a directory is created for it. This directory is 
then filled with both the model checkpoint at the epoch 
with the lowest validation loss and all necessary files 
and settings needed to recreate the model. How the file 
backup works is explained in the automatic backup point 
of this list. The settings backup is explained in the next 
point about the PARAMS class.

• The PARAMS Class At the top of the training notebook, a 
PARAMS class containing important settings for training 
and the hyper parameters for the model is defined. These 
settings include all the relevant values such as the version 
number, starting learning rate, random seed, the archi-
tecture, cost function and optimizer of the model, a field 
for describing the change made for training this model 
and more. At the end of the training notebook some of 
these values are corrected. For example models generally 
stagnate before the set amount of epochs is reached, the 
early_stopping() callback then stops training. At 
the end of the training notebook PARAMS["epochs"] 
is set to the number of epochs after which training was 
stopped. Finally, the PARAMS class is saved into a JSON 
file in the model’s directory. These settings can then later 
be used to compare or recreate models later.

• Seeding To improve reproducibility of the trained models, 
some processes that involve random number generation 

are seeded. Currently the random state of NumPy, Ten-
sorFlow and random, as well as the PYTHONHASH-
SEED environment variable are set to the random seed 
set in the PARAMS class at the beginning of the training 
notebook. This also influences the train/test split, which 
is important for being able to test models later on only 
their respective test set. Notably TensorFlow is not set to 
be deterministic as this would impact performance and 
only slightly change the resulting models. This means 
that for example samples can be loaded in different orders 
when retraining a model, since multiple instances of the 
data loader class are used and depending on which pro-
cessor core a given worker was instantiated in a given 
run, processor temperature, different processors in dif-
ferent machines etc. can impact which of the workers 
finishes data loading first, changing the order of samples 
as they are loaded in training.

• Automatic Backup When a model finishes training, all of 
the scripts used in the training pipeline to arrive at this 
specific model are backed up. To ensure that none of 
these scripts were changed, this process works by recur-
sively propagating through the entire training pipeline. 
This means that when a dataset is created, all of the files 
that are used to create this exact dataset are saved in a 
backup directory of the dataset directory. When the train-
ing script finishes training the model, it automatically 
copies all of the backup files from the backup directory 
of the dataset it loads its images from for training into the 
model’s backup directory. This ensures, that every line of 
code needed to recreate the model is saved.

• Containerization Another important aspect of reproduc-
ibility is the environment in which the scripts are run. An 
example would be if the same model is re-run on a later 
installation of the same modules, this would likely lead 
to it being trained on a different version of TensorFlow 
and CUDA [15], possibly influencing the result. For this 
reason training, as well as all other scripts are run in a 
Docker [16] container, whose Dockerfile as well as 
a Bash file with run instructions is included in the git 
repository, to be able to reproduce the environment at the 
time a given model was trained.

Inference

Inference Stack

Inference was implemented using the TensorRT [17] back-
end in TensorFlow [11], which uses TensorRT inference for 
all operations with native TensorRT implementations, but 
falls back to TensorFlow for all others to reduce inference 
time compared to inference using only TensorFlow. This 
reduces the inference time per image from roughly 20 ms 
to 1 ms.
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Output Encoding

Since dozens of models are trained currently and the num-
ber might increase to hundreds of models in the future; and 
even in an optimized state, inference typically takes on the 
order of 1 to 10 GPUhrs, depending on what GPU is used, 
it is beneficial to save the inference results. Unfortunately, a 
single labeled version of the entire dataset is roughly 50 GB 
in size if saved as images. Being able to compare the output 
of different models would quickly become unreasonable. 
To enable comparison and save on storage space, we made 
the decision to save the model output in the form of run-
length encodings (RLEs). Each of these encodings is a string 
for each image of the type "beg_0 len_0, beg_1, 
len_1,..., beg_N len_N", where beg_n is the 
index of the first pixel in cluster n of true values (repre-
senting detected fragment pixels) on the output mask of the 
model and len_n the number of pixels in that cluster. While 
this reduced the size of a labeled dataset from 50 GB to 
roughly 500 MB, the typical algorithm to encode the masks 
into RLEs took roughly 1 s per image, putting the time to 
convert the entire dataset at roughly 30 h without inference. 
Since this was unacceptable, we developed a new encoding 
algorithm using a single 1D convolutional layer to easily 
parallelize the encoding process and outsource the computa-
tion to the GPU. This causes a speedup of around 200x of the 
encoding process when compared to the traditional encoding 
algorithm, when used as a separate layer and an even more 
substantial speedup when the layer is directly attached to 
the neural network during inference. This layer has a single 
kernel of the size 2 with the kernel values [1,2]. If this 
kernel is applied to a mask, where pixels within the confines 
of a shard in the corresponding image are labeled with 255 
and all other pixels are labeled as 0, only 4 possible values 
emerge. For a pixel at the beginning of a cluster of labeled 
pixels, the output will be 0 ⋅ 1 + 255 ⋅ 2 = 510 , analogously, 
a pixel at the end of a cluster will have 255 ⋅ 1 + 0 ⋅ 2 = 255 , 
a pixel on the inside of a cluster 255 ⋅ 1 + 255 ⋅ 2 = 762 and 
a pixel outside of any cluster will have 0 ⋅ 1 + 0 ⋅ 2 = 0 . The 
output is another mask, which is padded to have the same 
length as the input mask. The output filtering can then easily 
be vectorized. The benefit of this method is that it can easily 
be used on a GPU, which results in a reduction of time from 
roughly 1 s to around 5 ms per image if the encoding is done 
as a separate step after inference (Fig. 8). The layer can also 
be added as the final layer to the model during inference and 
thereby included into the network graph, which increases the 
performance gain even further, but this application is limited 
to networks that infer over whole images instead of partial 
images, like the 256 × 256 cutouts discussed as an example 
in “Training strategy” section.

Inference Time

In total using these methods, the inference time for the whole 
dataset containing 100,000 images down to about 1 h on an 
Nvidia RTX 4090 or 4 h on an RTX A4000 Ampere genera-
tion and the output of each of these runs is roughly 500 MB. 
Turning the RLE CSV file back into the Boolean mask PNGs 
for visual analysis takes roughly 15 s on a 16 core processor.

Meta Analysis

It is important to have a robust meta analysis tool to allow 
quick iteration and prototyping of new models, and effec-
tively compare their capabilities and possible issues, or to see 
if a given change to a model has had a positive or negative 
impact on its performance, or to compare all models using 
a given architecture against all models using another one. 
To enable such a tool, it is necessary to save all pertinent 
training information for each model trained. In the case of 
the SPI tracking project, the training progress of each model 
is saved as a history.json file into the model directory 
after training is complete. This file contains the learning rate, 
training and validation loss, and dice coefficient, as a stand-
ard metric for comparing different models, for each epoch 
of training. Additionally within the root model directory a 
results.csv file is updated when training is completed 
for a new model. This file contains all the notable settings of 
that model’s PARAMS class and its training results, making 
it easy to compare models. It, together with the PARAMS.
json files of the models can be used to filter models and 
load their respective history.json files to compare their 
training results. To quickly analyze model performance of 
different models, we created a meta analysis tool to easily 
filter models and plot their training curves against each other.

Semantic Segmentation Results

Although many of the parameters of the training pipe-
line are still being optimized, the models already perform 
accurately and reliably on most of the dataset. How well 
models perform is judged primarily by human analysis. 
Although metrics such as the Sørensen dice can be help-
ful when directly comparing multiple models trained on 
the same dataset with trusted labels, we have seen, that 
directly looking at the resulting model output is the quick-
est and most holistic way of identifying issues with a 
model and comparing its performance to other models. In 
this instance, there are unfortunately no perfectly labeled 
ground truths available. One could conceivably label pix-
els by hand, but that requires a prohibitively large work-
force investment. Therefore, there is no purely objective 
metric to use to analyze the accuracy of the models. In 
our experience, working with the data, the ML models’ 
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labels are more accurate than the training dataset labels. 
This analysis typically takes around 15–30 min after infer-
ence is complete and is meant more to get an overview 
over a model’s capabilities than fine-grained analysis of 
individual samples.

At this time, the models allow us to label the entire 
dataset, which was previously not feasible. The complete 

inference process takes a few hours for each iteration, 
which is fast enough to allow for quick iterative improve-
ments to the models.

The models are generally accurate and adaptable to 
later parts of the dataset. A representative example of 
a labeled frame of our semantic segmentation model is 
shown in Fig. 9. The ultimate goal of the project is to find 
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Fig. 8  Visualization of the steps of the inference process. a The input 
for an inference step is one (partial) frame of a video. a, b The model 
predicts the Boolean mask of this frame, and true values are set to 
255, false values are kept as 0. b, c This mask is then flattened into 
a 1D array and padded by a leading 0. c–e The 1D convolutional 
encoding layer with kernel d) is then applied to mask vector c. This 
results in the output shown in e. Only four unique values remain: 0, 

765: pixel is in the middle of false or true group respectively, 510: 
pixel is first pixel in group of true values and 255: pixel is first pixel 
in group of false values. g shows a 2D projection of e to visualize the 
values’ position in the image. e, f vector e can then easily be searched 
for values of 510 and 255 and the resulting indices are used to create 
the Run-Length-Encoding f, which is the output to the inference pro-
cess of frame a 

Fig. 9  Pellet 441, frame 15: 
Frame labeled by the seman-
tic segmentation model. The 
Boolean mask output by the 
model is projected onto the 
input image in green
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an accurate distribution of the size and speed of the indi-
vidual shards. To achieve this, the same shards will have 
to be identified throughout the entire video.

Summary and Outlook

In this paper, we discussed the current state of our imple-
mentation of a deep learning-based shard tracking pipe-
line. The results from a previous analysis by T. Peherstor-
fer [5] were used to create a training dataset, which was 
then used to train U-Net [6] models to locate shards in 
video frames. These models are capable of automatically 
labeling the entire dataset of roughly 1100 videos within 
only a few hours, expanding the number of labeled videos 
from 173. Visual analysis confirms a high level of accu-
racy in the labels of the dataset.

In the next step, the focus will be on improving or replac-
ing the existing tracking algorithm to produce accurate size 
and speed distributions for the fragments of the dataset. 
These distributions are planned for use in validating the 
predictions of theoretical models on how different setup 
parameters in the SPI system impact these distributions and 
ultimately inform design decisions of the ITER SPI system.
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