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Abstract
The article presents a new approach to plasma neutron emissivity reconstruction based on the Metropolis–Hastings Monte

Carlo algorithm. The algorithm is based on a biased random walk. A dedicated computer code generates pseudo-random

samples within the domain that contains the solution. The properly chosen objective function ensures convergence to the

desired solution. The method allows to overcome the problem of trapping in local minima by accepting, with some finite

probability, changes in the direction opposite to that indicated by the objective function. The developed method was tested

using a synthetic data set. The results show that the method provides reliable reconstructions and thus can be used as an

alternative or complementary method to the commonly applied ones. The method capabilities were also tested against

noise present in the line-integrated projections.
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Introduction

Tomographic reconstruction of neutron emissivity distri-

bution in a poloidal cross-section of a fusion device such

as tokamak is of great importance for retrieving informa-

tion on spatially resolved fusion rates. Moreover, the

reconstruction of 14.1 MeV neutron emissivity provides an

insight into alpha particle profile birth. Such an inversion is

performed from line-integrated quantities (projections, in

tomography terms) measured by a set of cameras equipped

with neutron detectors. Due to technical and financial

constraints, the total number of neutron cameras as well as

the number of lines of sight (LoS) in most of existing

tokamaks is very limited. The task of tomographic recon-

struction for thermonuclear plasma, as a source of fusion

neutrons, is thus very challenging due to ill-posed nature of

the problem and sparse spatial resolution of the measured

plasma projections. In mathematical terms, the inversion is

a non-trivial, ill-posed problem of the limited angle

tomography. In this case, the standard tomographic

methods, known from medical computed tomography (CT)

field, such as Filtered Back Projection (FBP) or Algebraic

Reconstructed Technique (ART) fail. Thus, several dedi-

cated approaches to the reconstruction of neutron emis-

sivity in magnetic-confinement fusion (MCF) devices have

been developed and applied. Perhaps, the most commonly

used methods are based on Tikhonov regularization (TR)

[1, 2], minimization of Fisher Information (MFI) [3, 4] or

maximization of entropy (ME) or likelihood (ML) [4, 5].

Recently other approaches such as genetic algorithms [6]

or neural networks [7] were successfully applied. In [8] the

authors proposed a Monte Carlo (MC) algorithm for neu-

tron and gamma emissivity reconstruction. The authors

called this method Monte Carlo Back-projection Tech-

nique. It is based on a simple iterative scheme and, for

complex shapes of numerically simulated emissivity dis-

tributions, provides usually poorer results than TR or ML

methods [8].

In this paper, a new approach to plasma neutron emis-

sivity reconstruction based on the Metropolis–Hastings

[9, 10] MC algorithm is presented. Large non-trivial sys-

tems, such as systems involved in the ill-posed problems of

plasma tomographic reconstruction, suffer from the ‘curse

of dimensionality’. This means that the number of possible

configurations is very large with numerous of local
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minima, and therefore a straightforward sampling of these

configurations is impractical. In neutron emission tomog-

raphy from limited data sets measured in tokamak devices,

the applied Metropolis–Hastings MC algorithm can over-

come this problem, avoiding trapping of the random walk

in local minima. In fact, the algorithm offers a possible

method for jumping out of a local minimum by accepting,

with some finite probability, changes in the direction

opposite to indicated by the objective function. Moreover,

in this approach, an additional a priori information e.g.

about the smoothness or non-negativity of the solution can

be easily incorporated by a proper choice of the objective

function.

The primary aim of this work was to develop a new

reconstruction method based on MC approach, to test the

feasibility of its application in a tokamak plasma as well as

to evaluate its accuracy and robustness. The rest of the

article is structured as follows. ‘‘General Definition of

Tomographic Problem’’ section provides the general defi-

nition of the tomographic inversion problem. In ‘‘The

Inversion Method’’ section, details on the developed

reconstruction method are presented. In ‘‘Synthetic Emis-

sivity Models’’ section, a set of synthetic emissivity models

used for the method evaluation is defined. ‘‘Results’’ sec-

tion provides the results of tests obtained with the modelled

neutron emissivity patterns. Finally, ‘‘Conclusions’’ section

contains conclusions and future plans.

General Definition of Tomographic Problem

In this paper, in order to develop and evaluate the new

method we use a generic experimental setup presented in

Fig. 1. The system consists of two cameras with vertical

and horizontal views. Each camera features 16 neutron

detectors. It is worth noting that the method can be rela-

tively easily adapted and applied to any other tokamak’s

neutron diagnostic geometry. In our approach, the ill-posed

inversion problem is solved in a discrete Cartesian coor-

dinate system (i.e. using a local pixel basis set). Thus, the

emissivity is discretized on a grid as a matrix F of N � N

square elements. Each element is associated with a value of

the emissivity that is assumed to be constant within the

pixel. The grid size N is a parameter that can be tuned and

it should be sensibly chosen as a trade-of between the

number of degrees of freedom of ill-conditioned problem,

the desired resolution of the reconstructed neutron emis-

sivity, and the required computing time (see Sect. 5).

The discrete inverse problem of tomographic recon-

struction is defined by the following set of linear equations:

pk ¼
XNp

i¼1

wkifi; k ¼ 1. . .Nd: ð1Þ

In Eq. (1) fi is the i-th element of the plasma neutron

emissivity represented by N2 � 1 column vector f , i.e. f is

a row-major ordered vector form of emissivity matrix F,

Np ¼ N2 is the total number of elements (pixels) for the

discrete representation of the neutron emissivity, Nd is the

total number of LoS (detectors) and pk is the k-th element

of Nd � 1 column vector p that represents the available

data (projections) along the LoS. The element wki of the

geometrical matrix W represents the contribution of i-th

element of emissivity to the k-th projection. The matrix W

(of size Nd � Np) is constructed based on the geometrical

layout of the LoS.

The Inversion Method

Solving of Eq. (1) by the direct matrix inversion is

impossible due to its ill-posed nature and thus some kind of

regularization is usually applied. In the current approach,

we take advantage of stochastic MC approach, instead of

solving the problem by Tikhonov Regularization (TR) with

Fig. 1 Geometrical layout of LoS of the generic neutron tomographic

system. The neutron imaging system consists of two cameras with 32

LoS in total
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Singular Value Decomposition (SVD) as it was proposed in

[2] and other reports. The proposed method is based on an

iterative approach. The workflow of the reconstruction

method is presented in Fig. 2. The reconstruction starts

with the initialization phase. In this step, an initial guess of

the solution f 0ð Þ is created. In the developed code, a Np � 1

null vector is taken as the initial guess. In the subsequent

step, an element fi of the solution is selected randomly in

order to be modified. The probability distribution for

selecting the random element is defined according to pro-

jections p, similarly as proposed in [8]. Such an approach

ensures that the modifications are more frequently intro-

duced in regions where greater values of the reconstructed

emissivity function are expected and less frequent modifi-

cations are performed in region where lower values are

expected. The value of the selected element is then modi-

fied by adding a random number r drawn from a uniform

distribution in the interval a; bð Þ: The lower a and upper b

limits of the interval are determined experimentally and in

this work were set as - 0.001 and 0.001, respectively.

In general, the smaller steps of modifications the better

reconstruction accuracy can be achieved, however, at the

same time, more iterations are needed to obtain the

convergence. In each iteration, the unmodified solution f kð Þ

and the modified solution f trialð Þ are evaluated using the

Tikhonov-like objective function given as:

E f kð Þ
� �

¼ kWf kð Þ � p2k þ kkLf kð Þk2: ð2Þ

In Eq. (2), L is a matrix representation of the second-

order derivative operator that imposes a smoothness con-

straint on the reconstructed solutions, k is the regularization

parameter and the superscript (k) denotes the iteration

number.

In principle, the regularization parameter k can be

chosen using one of the standard methods, e.g. the Gen-

eralized Cross Validation technique [11], L-curve method

[12] or Morozov’s Discrepancy Principle [13].

Generalized Cross Validation is based on the idea that if

arbitrary element of the projection vector p is left out then

the corresponding solution should reflect this observation.

The mean-square error of the predicted k-th projection

from the estimated emissivity function, reconstructed using

the regularization parameter, can be used to find the opti-

mal regularization parameter. However, due to the fact that

problem of tomographic inversion from only 32 detectors

is highly ill-posed, this technique seems not to be a reliable

Fig. 2 Workflow diagram of the developed tomographic inversion method
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tool for choosing of the regularization parameter. The

L-curve method relies on a plot, for all valid regularization

parameters, of the magnitude of the regularized solution

versus the magnitude of the corresponding residual. The

L-curve plotted in log–log scale should have a character-

istic L-shaped appearance with a distinct corner separating

the vertical and horizontal parts of the curve. The optimal

choice of the regularization parameter corresponds to the

L-curve’s corner [14]. Unfortunately, in the case of the

plasma tomography with such a limited number of LoS, the

highly ill-posed character of the problem causes the

L-curve to be very often concave, and consequently, its

L-vertex cannot be reliably defined. Similar conclusions

have been also drawn by Craciunescu et al. [8] and Jardin

et al. [15]. Finally, the Morozov’s Discrepancy Principle

states that if we know an estimate on the magnitude of error

in the input data, then any solution that produces a mea-

surement with error of the same magnitude is acceptable.

From the three above mentioned methods, only the last

one can be successfully applied. However, its application

would additionally increase the computational cost of the

method. Thus, in the presented approach, a simple alterna-

tive heuristic method of finding approximated optimum of k
was applied. At first, two Gaussian functions are fitted to the

projection data set (one for the vertical view, another for the

horizontal view) as shown in Fig. 3. The regularization

parameter k is then taken as a function of the variations

r2
regð Þ1

and r2
regð Þ2

of the two Gaussian distributions:

k r2
regð Þ1

; r2
regð Þ2

� �
¼

r2
regð Þ1

þ r2
regð Þ2

l
; ð3Þ

where l is a constant that has been determined experi-

mentally, based on scans for several test phantoms (in this

study l ¼ 1:4). Dynamic selection of k, based on the widths

of the projection functions, ensures increased smoothness

for a wider emissivity function and prevents from over-

smoothing when the emissivity function is more peaked.

Let Eðf kð ÞÞ denotes the value of the objective function

before introducing the modification and Eðf trialð ÞÞ be the

value of the objective function when the modification of

selected element fi is considered (i.e. f
trialð Þ

i ¼ f
kð Þ

i þ r).

Then, the modification is accepted only if:

exp �
E f trialð Þ
� �

� E f kð Þ
� �

c

0

@

1

A[ d; ð4Þ

where d is a uniformly distributed random number in the

interval (0,1) and c is a small constant parameter

(c ¼ 0:001 taken in this study). If condition 4 is fulfilled,

the modified solution f trialð Þ is taken for the next iteration

(i.e. f kþ1ð Þ ¼ f trialð Þ). Otherwise, the unmodified solution is

used in the next iteration (i.e. f kþ1ð Þ ¼ f kð Þ). In order to

prevent from unphysical solutions containing negative

elements, every s[ 0 iterations (s ¼ 100, in this study) the

negative values of f kð Þ, if exist, are penalized by taking the

absolute value of the solution. The iteration procedure

continues until the objective function Eðf kð ÞÞ is lower than

a given threshold value T .

Figure 4a shows the evolution of objective function

value as a function of the iteration number. After � 8 �
104 iterations the convergence criterion (Eðf kð ÞÞ\TÞ was

met. Globally, the objective function decreases with the

iteration number, however, locally the objective function

can increase as it is shown in Fig. 4b. Figure 4c shows the

change in the objective function value DE ¼ E f trialð Þ
� �

�

Eðf kð ÞÞ as a function of the iteration number. Figure 4d

presents the rejected trials (i.e. those trials for which the

condition in Eq. (4) has not been fulfilled) as a function of

the iteration number. It can be clearly seen, that number of

the rejected events increases when the iterative process

converges to the desired solution. This is quite obvious,

since when the current solution becomes more similar to

the final solution, there is much less possibilities to

implement random changes that would decrease the

objective function.

Synthetic Emissivity Models

The developed method was tested using a set of synthetic

emissivity models. Analytic neutron emissivity models

were used to produce input projections for the recon-

struction algorithm. After performing the reconstruction,

the model and the reconstruction results were comparedFig. 3 Illustration of the regularization parameter selection procedure

based on the widths of Gaussian functions fitted to the projections
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using root mean square error of the reconstructed

emissivity:

RMSem ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X

i

f
modð Þ

i � f
recð Þ

i

� �2
s

; ð5Þ

as a figure of merit. In Eq. (4), denotes the emissivity in the

i-th element of the model, f
recð Þ

i is the emissivity in the i-th

element of the reconstruction result.

Three phantom models were used to mimic the most

commonly observed neutron emissivity distributions in

tokamak plasma. The phantom models include: Gaussian,

hollow, and banana shapes. The simple Gaussian model is

given by the following formula:

S R; Zð Þ ¼ exp � R� DRð Þ2

2r2
� Z � DZð Þ2

2r2

 !
; ð6Þ

where DR;DZð Þ are the plasma center coordinates and r
represents the standard deviation of the Gaussian. The

hollow model is obtained by subtracting two Gaussian

phantoms with the same emissivity center but different

variances r2
1 [ r2

2:

H R; Zð Þ ¼ S1 R; Zð Þ �S2 R; Zð Þ: ð7Þ

Then, the banana model is derived from the hollow

model by introducing a High-Field Side (HFS) poloidal

asymmetry as follows:

B R; Zð Þ ¼ H R; Zð Þ exp � R� DRasð Þ2

2r2
as

� Z � DZasð Þ2

2r2
as

 !
;

ð8Þ

where the point DRas;DZasð Þ denotes the center of the

asymmetry chosen on the corona of the corresponding

hollow profile, and ras represents the asymmetry spatial

extent. The phantom shapes were selected to model, in

relatively realistic way, the commonly observed distribu-

tions of neutron emissivity. While the simple Gaussian

iteration number

iteration number

O
b

je
ct

iv
e 

fu
nc

tio
n 
E(
f(k
) )

re
je

ct
ed

 t
ria

ls
∆E

threshold T

(a)

(b)

O
b

je
ct

iv
e 

fu
nc

tio
n 
E(
f(k
) )

(c)

(d)

iteration number

iteration number

Fig. 4 Convergence of the solution in developed reconstruction

method: a the objective function value as a function of the iteration

number, b zoom of plot a to show that the objective function value

can locally increase, c the change in the objective function value DE
as a function of the iteration number, d rejected trials (black vertical

lines) as a function of the iteration number
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shape represents neutron emission of thermal plasma, the

hollow and banana phantoms reflect more complicated

cases of the neutron emissivity. The intention of the banana

phantom was to model profile shapes of 14.1 MeV neutron

emission observed in the ohmic deuterium discharge dur-

ing tritium gas puffing (trace tritium experiments) [16, 17].

Emissivity profiles are normalized, such that RMSem equal

to one represents 100% of global reconstruction error while

zero represents a perfect reconstruction.

Results

The presented method was tested with the set of plasma

neutron emissivity phantom models defined in the previous

section. Test reconstructions were performed for

two different phantom sizes: small (S) (i:e:r ¼ 0:15a;

DR; DZð Þ ¼ 0; 0ð Þ; r2 ¼ r; r1 ¼
ffiffiffi
2

p
r; ras ¼

ffiffiffi
3

p
r;

DRas; DZasð Þ ¼
ffiffiffi
2

p
r; 0

� �
) and large (L) (i:e:r ¼

0:21a; DR; DZð Þ ¼ 0; 0ð Þ; r2 ¼ r; r1 ¼
ffiffiffi
2

p
r; ras ¼ffiffiffi

3
p

r; DRas; DZasð Þ ¼
ffiffiffi
2

p
r; 0

� �
, where a is the system

minor radius). Figures 5 and 6 show the reconstruction

results of the modelled neutron emissivity, along with the

relative errors, for small and large phantoms size, respec-

tively. Figures 7a–f summarize the reconstruction quality,

in terms of RMSem, as a function of the reconstruction grid

size, for all the considered models. Since the presented

method is of a stochastic nature, the presented results are

the average values from 10 independent reconstructions.

Error bars representing the standard deviation are also

plotted in the figure, but often they are too small to be

visible. For comparison, also the RMSem values for the

results obtained with TR method as implemented in [2]

have been included in the figure.

It can be noted that, in most cases, grid size of 24 or 26

is optimal and further increase of the grid resolution does

not lead to better quality (i.e. lower RMSem) of the obtained

results. In general, the developed MC method provides

slightly better results of reconstruction than TR for more

complex models (banana and hollow). However, RMSem is

higher for MC method (* 0.06) than for TR method

(* 0.02) when large Gaussian model is considered. Both

methods give almost equal RMSem values for small Gaus-

sian model. In general, TR method seems to better recon-

struct larger phantoms while in case of the MC method

slightly lower RMSem is obtained for the small phantoms

set. For both sizes of hollow and banana models, regions

with the highest relative reconstruction error are located in

the central part of the model. In these regions, the modelled

emissivity drops to zero, however, due to the smoothness

constraint implemented in the objective function, the

reconstructed emissivity has small non-zero value in these

regions. This leads to the situation that the relative error

locally reaches * 0.35, in the central part of the recon-

structed emissivity (see Figs. 5 and 6).

Since the proposed approach to k selection is based on

the heuristic method, it gives a rough estimation of k rather

than the exact optimal value. Therefore, additional tests

have been performed in order to verify the accuracy of k
selection and its influence on the method accuracy. For all

the phantoms, optimal k parameters were found by scan-

ning and then compared with the k values selected by the

developed method. The results showed that
kOPT�kSELj j

kOPT
can

reach up to * 0.9, where kOPT is the value of k that

minimizes RMSem and kSEL is the value selected by the

developed method. The discrepancy between kOPT and kSEL
can increase RMSem by up to * 0.2%.

Tokamak plasma diagnostics and associated data

acquisition systems usually work in noisy environment due

to the operation of high-power Neutral Beam Injection and

Radio Frequency Heating systems. Thus, in the next step,

the resilience of the developed method against noise was

checked. For this purpose, the small hollow phantom

model was used. The line-integrated projection data set p

was constructed using the phantom and random noise was

intentionally added to the projection data. It was assumed

that each detector acquired a signal with an addition of

relative noise. In principle, the neutron detector signals

exhibit noise resulting from statistical fluctuations in the

finite number of neutrons detected, described by the Pois-

son distribution. In practice, however the noise can be

modelled using the Gaussian distribution since for small

neutron counts, the noise is generally dominated by other

signal-independent sources of noise (e.g. electronics-

noise), and for larger counts, the central limit theorem

ensures that the Poisson distribution approaches the

Gaussian distribution. Thus, the simulated noise had the

Gaussian distribution with standard deviation equal to a

fraction nl of the signal pk in a particular projection

channel. The noise level was varied from 0.01 to 0.1. For

each noise level, the reconstruction accuracy, in terms of

RMSem, was evaluated by performing 10 reconstructions of

the small hollow phantom (grid size N ¼ 24) using syn-

thetic projections affected by the noise. The results of this

test are shown in Fig. 8, where RMSem is plotted as a

function of the noise level nl. As a reference, the results

from TR method are also included in the figure. The

developed MC method features almost linear dependence

of RMSem with increasing noise level nl. The resilience to

noise present in the input data for the developed method is

comparable to the resilience of TR method. For nl[ 0:05

significant distortions of the emissivity shape were

observed. Additionally, since the developed MC method is

of a stochastic nature, the significant deviations from the
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mean RMSem values were observed, as indicated by the

error bars.

At the development stage the presented method has been

implemented into a MATLAB code. A standard notebook

computer (Mid 2011 Macbook Air) equipped with a dual

core 1.7 GHz CPU (Intel i5-2557M) and 4 GB of DDR3

RAM memory was used for the development and tests. In

general, the computation time required for reconstructions

depends on many factors such as implementation (e.g.

programing language, numerical libraries, sequential or

parallel computing), and machine used (e.g. CPU, GPU,

FPGA). Moreover, the computation time depends also on

selection of the parameters that can be tuned in the method

e.g. c constant, reconstruction grid size N, convergence

criterion T , etc. Finally, the method is of a stochastic nature

itself, thus slightly different computation time can be

required for different runs of the same code, even if the

same input data and parameters were used. However, in

order to provide at least a rough estimate on the compu-

tational demands, tests with all three phantom models (L

size) were carried out. Figure 9 shows the number of

iterations required to achieve the convergence and the time

spent on the computations for all the modelled emissivity

patterns. The presented results are the average from 10

independent runs (error bars are of the size of the symbols).

In the investigated range of the grid size parameter N, the

presented implementation of the algorithm is almost of

linear time complexity O nð Þ. For comparison, the maximal

reconstruction time of the phantoms when using TR

method as implemented in [2] was 78 s. In general, the

reconstruction time is roughly an order of magnitude

lower for TR than for the developed method.

Fig. 5 Three phantom models (small size) reconstructed using the developed MC method and the relative error in reconstruction
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Conclusions

The method of neutron emissivity reconstruction based on

Metropolis–Hastings MC algorithm has been developed.

The algorithm is based on a biased random walk and has

been implemented using MATLAB programing language.

The code generates pseudo-random samples within the

domain that contains the solution. The properly chosen

objective function ensures convergence to the desired

solution and allows to incorporate a priori knowledge about

the solution (i.e. smoothness condition). The method allows

to overcome the problem of trapping in local minima by

accepting, with some finite probability, changes in the

direction opposite to indicated by the objective function.

The developed method was tested using a set of emis-

sivity patterns that are commonly observed in a tokamak

plasma. The results show that the method provides reliable

reconstructions and thus can be used as an alternative or

complementary method to the commonly applied ones. The

root mean square difference between the modelled and

reconstructed emissivities RMSem varies from * 0.06, for

the simple Gaussian model, to * 0.13, for the more com-

plicated hollow model. It must be however clearly stressed

that the presented tests were performed in somewhat ideal

and simplified conditions i.e. perfect models of neutron

emissivity were used, input projections were not affected by

noise, the full knowledge of geometrical layout of LoS was

assumed, etc. In the real situation, the error estimation is

much more difficult. The presented results however give at

least the lower limit of the expected reconstruction errors.

The conducted tests show also that the developed

method performs well when the additive noise present in

the input projections nl is below * 5%. After the

promising results obtained at this development and testing

Fig. 6 Three phantom models (large size) reconstructed using the developed MC method and the relative error in reconstruction
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Fig. 7 RMSem as a function of the grid size for the developed MC method (in red) and TR (in blue). a small Gaussian model, b large Gaussian

model, c small banana model, d large banana model, e small hollow model, f large hollow model (Color figure online)
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stage, in the next step, a faster implementation of the

method and its application with experimental data from a

real tokamak diagnostic system is foreseen.
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