Skip to main content
Log in

Sensitivity Analysis of the Film-Cooling Effectiveness of an Upstream Crescent-Shaped Vortex Generator to Geometric Parameters

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This study numerically investigates the flow field and cooling effectiveness of a cylindrical flat-plate film-cooling hole with an upstream crescent-shaped vortex generator (CSVG) at the blowing ratio 0.5 and 1.5. With the aid of a new antikidney-shaped vortex pair, this CSVG can markedly improve the cooling effectiveness in comparison to a cylindrical hole. The effects of five geometric parameters completely depicting the CSVG shape are investigated by a four-level and five-parameter Taguchi approach. It is shown that the ranking order of each geometric parameter is improved at both blowing ratios. The preliminary recommended upstream CSVGs with higher area-averaged cooling effectiveness are given for both used ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Bunker, Film cooling: Breaking the limits of diffusion shaped holes, Heat Transf. Res., 41, No. 6, 627–650 (2010).

    Article  Google Scholar 

  2. K. Kusterer, D. Bohn, T. Sugimoto, and R. Tanaka, Double-jet ejection of cooling air for improved film cooling, J. Turbomach., 129, No. 4, 809–815 (2006).

    Article  Google Scholar 

  3. J. D. Heidmann and S. Ekkad, A novel antivortex turbine film-cooling hole concept, J. Turbomach., 130, No. 3, 031020-3 (2008).

    Article  Google Scholar 

  4. M. J. Ely and B. A. Jubran, Film cooling from short holes with sister hole influence, ASME Paper, No. GT2012-68081 (2012).

  5. R. S. Bunker, Film cooling effectiveness due to discrete holes with a transverse surface slot, ASME Paper, No. GT2002-30178 (2002).

  6. A. A. Khalatov, N. A. Panchenko, I. I. Borisov, and V. V. Severina, Numerical simulation of fi lm cooling with a coolant supplied through holes in a trench, J. Eng. Phys. Thermophys., 90, No. 3, 637–643 (2017).

    Article  Google Scholar 

  7. Z. Wang, C. Zhang, W. J. Du, and S. J. Li, Multi-field coupling analysis on the fi lm cooling with transverse and arched trenches, J. Therm. Sci. Technol., 14, No. 1, JTST0012 (2019).

  8. A. A. Khalatov, N. A. Panchenko, and T. V. Donik, Film cooling with a plate-length-distributed supply of the cooling agent into hemispherical depressions in rotation, J. Eng. Phys. Thermophys., 93, No. 2, 459–465 (2020).

    Article  Google Scholar 

  9. T. Fric and R. Campbell, Method for Improving the Cooling Effectiveness of a Gaseous Coolant Stream which Flows through a Substrate and Related Articles of Manufacture, US Patent No. 6383602 (2002).

  10. B. T. An, J. J. Liu, X. D. Zhang, S. J. Zhou, and C. Zhang, Film cooling effectiveness measurements of a near-surface streamwise diffusion hole, Int. J. Heat Mass Transf., 103, 1–13 (2016).

    Article  Google Scholar 

  11. A. A. Khalatov, N. A. Panchenko, and S. D. Severin, Flat plate film cooling at the coolant supply into triangular and cylindrical craters, MATEC Web Conf., 115, 09003 (2017).

    Article  Google Scholar 

  12. A. F. Shinn and S. P. Vanka, Large eddy simulations of film-cooling flows with a micro-ramp vortex generator, J. Turbomach., 135, No. 1, 011004 (2013).

  13. L. M. Song, C. Zhang, Y. J. Song, J. Li, and Z. P. Feng, Experimental investigations on the effects of inclination angle and blowing ratio on the flat-plate film cooling enhancement using the vortex generator downstream, Appl. Therm. Eng., 119, 573–584 (2017).

    Article  Google Scholar 

  14. H. Khamane and A. Azzi, Numerical investigation of film-cooling effectiveness downstream a microramp, Comput. Therm. Sci., 10, No. 2, 151–165 (2018).

    Article  Google Scholar 

  15. B. T. An, J. J. Liu, C. Zhang, and S. J. Zhou, Film cooling of cylindrical hole with downstream short crescent-shaped block, J. Heat Transf., 135, No. 3, 0317 02 (2013).

  16. A. Khorsi, A. Guelailia, and M. K. Hamidou, Improvement of film cooling effectiveness with a small downstream block body, J. Appl. Mech. Tech. Phys., 57, No. 4, 666–671 (2016).

    Article  Google Scholar 

  17. C. Zhang and Z. Wang, Effect of the downstream crescent-shaped block height on the flat-plate fi lm flow and cooling performance, J. Appl. Mech. Tech. Phys., 59, No. 5, 951–961 (2018).

    Article  Google Scholar 

  18. C. Zhang and Z. Wang, Influence of streamwise position of crescent-shaped block on flat-plate film cooling characteristics, J. Braz. Soc. Mech. Sci. Eng., 41, 499 (2019).

    Article  Google Scholar 

  19. W. W. Zhou and H. Hu, Improvements of film cooling effectiveness by using barchan dune-shaped ramps, Int. J. Heat Mass Transf., 103, 443–456 (2016).

    Article  Google Scholar 

  20. S. Na and T. I.-P. Shih, Increasing adiabatic film-cooling effectiveness by using an upstream ramp, J. Heat Transf., 129, No. 4, 464–471 (2007).

    Article  Google Scholar 

  21. D. R. Zheng, X. J. Wang, F. Zhang, an d Q. Yuan, Numerical investigation on the effects of the divided steps on film cooling performance, Appl. Therm. Eng., 124, 652–662 (2017).

  22. D. Zheng, X. Wang, and Q. Yuan, Numerical investigation on the effect of vortex generator shapes on film cooling performance, Thermophys. Aeromech., 26, No. 3, 1489–1500 (2019).

    Article  Google Scholar 

  23. D. R. Zheng, X. J. Wang, F. Zhang, and Q. Yuan, Numerical investigation of the dual effect of upstream steps and transverse trenches on film cooling performance, J. Aerospace Eng., 32, No. 4, 04019028 (2019).

  24. H. Kawabata, K. Funazaki, R. Nakata, and D. Takahashi, Experimental and numerical investigations of effects of flow control devices upon flat-plate film cooling performance, J. Turbomach., 136, No. 6, 0610 21 (2014).

  25. H. Kawabata, K. Funazaki, Y. Suzuki, H. Tagawa, and Y. Horiuchi, Improvement of turbine vane film cooling performance by double flow-control devices, J. Turbomach., 138, No. 11, 1110 05 (2016).

  26. S. Sarkar and G. Ranakoti, Effect of vortex generators on film cooling effectiveness, J. Turbomach., 139, No. 6, 0610 09 (2017).

  27. W. W. Zhou and H. Hu, A novel sand-dune-inspired design for improved film cooling performance, Int. J. Heat Mass Transf., 110, 908–920 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zhang.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 5, pp. 1161–1171, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Bai, L.C. & Zhang, P.F. Sensitivity Analysis of the Film-Cooling Effectiveness of an Upstream Crescent-Shaped Vortex Generator to Geometric Parameters. J Eng Phys Thermophy 94, 1137–1146 (2021). https://doi.org/10.1007/s10891-021-02394-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02394-7

Keywords

Navigation