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Abstract
We propose Fieller-type methods for inference on generalized entropy inequality indices
in the context of the two-sample problem which covers testing the statistical significance
of the difference in indices, and the construction of a confidence set for this difference. In
addition to irregularities arising from thick distributional tails, standard inference proce-
dures are prone to identification problems because of the ratio transformation that defines the
considered indices. Simulation results show that our proposed method outperforms existing
counterparts including simulation-based permutationmethods and results are robust to differ-
ent assumptions about the shape of the null distributions. Improvements are most notable for
indices that putmoreweight on the right tail of the distribution and for sample sizes thatmatch
macroeconomic type inequality analysis. While irregularities arising from the right tail have
long been documented, we find that left tail irregularities are equally important in explaining
the failure of standard inference methods. We apply our proposed method to analyze income
per-capita inequality across U.S. states and non-OECD countries. Empirical results illustrate
how Fieller-based confidence sets can: (i) differ consequentially from available ones leading
to conflicts in test decisions, and (ii) reveal prohibitive estimation uncertainty in the form
of unbounded outcomes which serve as proper warning against flawed interpretations of
statistical tests.

Keywords Inequality · Generalized entropy · Two samples · Fieller · Identification-robust

1 Introduction

Economic inequality can be broadly defined in terms of the distribution of economic vari-
ables, which include income, consumption or health. Various inequality indices have been
proposed in the literature, and the Generalized Entropy class has featured prominently in
theoretical and empirical studies. Indeed, interest in this family, which includes the Theil
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index as a special case, stems largely from its attractive axiomatic properties.1 This paper
proposes improved measures of estimation uncertainty for GE indices, to address a num-
ber of statistical irregularities that characterize their sampling distributions.2 Our framework
covers the problem of comparing two indices i.e. the so-called two sample problem, which
typically involves: (i) testing the statistical significance of the difference in indices, and (ii)
the construction of a confidence set for this difference. A confidence set provides much more
information than a test, which guards against spurious interpretations of non-rejection when
estimation uncertainty is excessively large.

Statistical inference on inequality indices is an enduring challenge that has recaptured the
attention of econometricians in the last two decades. One reason behind the poor performance
of availablemethods is that underlying distributions often have thick tails, which contaminate
standard asymptotic and bootstrap-based procedures (Davidson and Flachaire 2007; Cowell
and Flachaire 2007). Another reason is that two different distributions can yield an identical
inequality level, which complicates comparisons (Dufour et al. 2019). While problems may
persist in large samples, size distortions are particularly more prominent with samples that
match macro-economic data. Resulting spurious statistical decisions are thus more imminent
with e.g. international inequality analysis, or with dispersion analysis across regions within
a country. While within country income inequality has long engaged interest, there is also
an abundant literature on country and region level inequality (Deaton 2021; McCann 2020;
Young et al. 2008).We provide a constructive solution that is easy to apply, aiming to improve
type I error control particularly in such contexts.

The majority of available inference methods for inequality indices focuses on the one-
sample problem where the interest is in comparing a measure to a given value (Davidson
and Flachaire 2007; Dufour et al. 2018; Cowell and Flachaire 2007). A notable exception is
the permutational approach of Dufour et al. (2019) for the two-sample testing case, which
is shown to outperform other available asymptotic and bootstrap alternatives unless under-
lying distributions differ sizably. More broadly, another difficulty we raise here results from
definitional discontinuities. Indeed, GE indices can be written as ratios of moments. So by
definition, these indices involve transformations that may be ill-defined over some parameter
subspace (for example, as the denominator tends to zero). This yields identification problems,
where identification refers to our ability to recover objects of interest from available models
and data (Dufour and Hsiao 2008). Despite a sizeable literature in econometric theory on the
consequences of such problems, these have escaped formal notice in the case of inequality
indices.3 Addressing identification failures is our objective in this paper.

A brief synopsis of the identification problem is helpful at this stage. For a parameter
transformation that is not identified over the full parameter space, a valid confidence interval
should be unbounded with a non-zero probability (Koschat et al. 1987; Gleser and Hwang
1987; Dufour 1997; Dufour and Taamouti 2005, 2007; Bertanha andMoreira 2020). Validity
here refers to coverage or type I error control. Standard errors for the GE indices are usually
computed using the Delta method which yields a confidence interval with bounded limits
(Cowell and Flachaire, 2015, Chapter 6). The Delta method thus violates the above validity

1 These include scale invariance, the Pigou-Dalton transfer, the symmetry and theDalton population principle.
It is also additively decomposable. See Cowell (2000) for a detailed discussion on these and other properties
of indices.
2 The literature on statistical inference for inequality measures is relatively recent; see Cowell and Flachaire
(2015) for a comprehensive survey.
3 See e.g. Dufour (1997), Andrews and Cheng (2013), Kleibergen (2005), Andrews and Mikusheva (2015),
Beaulieu et al. (2013), Bertanha and Moreira (2020), and references therein; see also Bahadur and Savage
(1956) and Gleser and Hwang (1987).
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requirement. Although lesser-known, an alternative method is available that does not suffer
from this shortcoming: the procedure proposed by Fieller (1954) - for inference on the ratio
of means of two independent normal random variables - can produce a bounded interval,
the complement of a bounded interval or even the real line. In this paper, we propose and
validate Fieller-type methods for set inference on the GE family of inequality indices in the
context of the two-sample problem. Although it seems puzzling for a confidence set to be
unbounded, this is provably inevitable for error control. Effectively, an unbounded outcome
may serve as a proper warning about factual imprecision.

On the above, this paper has several contributions.First,weprovide analytical and tractable
solutions for proposed confidence sets. Second, we show in a simulation study that proposed
solutions are more reliable than Delta-method counterparts. Third, we find that our approach
outperformsmost simulation-based alternatives including the permutation test ofDufour et al.
(2019).Fourth, our solution covers tests for any given value of the difference [i.e. not just zero,
in contrast with Dufour et al. (2019)], allowing the construction of confidence sets through
test inversion.4 Because these sets can be unbounded which signals weak identification, they
prevent misinterpreting insignificant tests to confirm the no change hypothesis, when failing
to reject this hypothesis is due to prohibitive variability. Fifth, we provide useful empirical
evidence supporting the seemingly counter-intuitive bounds that Fieller-type methods can
produce. Taken collectively, our results document the usefulness of the Fieller approach for
international or country based inequality analysis, which covers widely popular active and
policy-relevant research priorities on inequality.

Fieller’s original solution was extended to multivariate normals (Bennett 1959), general
exponential (Cox 1967) and linear (Zerbe 1978; Dufour 1997) regression models, dynamic
models with possibly persistent covariates (Bernard et al. 2007, 2019) and for simultaneous
inference on multiple ratios (Bolduc et al. 2010). For a good review of inference on ratios,
see Franz (2007). The Fieller method has now gained popularity in the literature on weak
instruments (Andrews et al. 2019), and the macro-economic literature on structural impulse
responses (Olea et al. 2021). Our paper brings in novel insights through the inequality case.
Indeed, our simulation results illustrate the superiority of Fieller-type methods for sample
sizes that are compatible with macro-economic data. Further simulation results can be sum-
marized as follows. (1) size improvements over the Delta method are especially notable for
indices that put moreweight on the right tail of the distribution i.e. as the sensitivity parameter
(denoted γ below) increases; (2) size improvements preserve power; (3) results are robust
to different assumptions on the shape of the null distributions; (4) tests based on the Fieller-
type method outperform available permutation tests when the distributions under the null
hypothesis are different. A permutational approach is not available (to date) for the general
problem we consider here. Overall, while irregularities arising from the right tail have long
been documented, we find that left-tail irregularities are equally important in explaining the
failure of standard inference methods for inequality indices.

To demonstrate the practical relevance of these results, we conduct two empirical studies
on macroeconomic inequality. Early work in this regard can be traced back to Theil (1979),
Ram (1979), and Maasoumi and Jeong (1985). This literature has further developed in the
last two decades due to data availability, the increased level of globalization, and the revived
interest in international and regional policy circles about economic convergence (Milanovic
2011; Barro 2012). Using per-capita income data for 48 U.S. states, we compare cross-state
inequality in the US, between 1946 and 2016.We next compare inequality across non-OECD
countries, between 1960 and 2013. We find that inter-state inequality has declined in the US

4 Inverting a test means collecting the parameter values that are not rejected by this test at a given level.
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over the considered period; both Delta and Fieller based confidence sets for the difference in
the GE2 indices (which we formally define below) are bounded, yet while the former covers
zero, the latter does not. Further consequential conflicts emerge with non-OECD countries.
In this case, the Fieller method for the difference inGE2 indices returns the real line, whereas
the Delta method produces a seemingly precise interval that covers zero. It is tempting to lend
credibility to the latter result, which suggests that inequality remained unchanged. Instead,
it is precisely the Fieller result that is of interest, since it reveals that sampling variability is
too large for us to draw any conclusion from the data.

The rest of the paper is organized as follows. Section 2 derives Fieller-type confidence
sets. Section 3 reports the results of the simulation study. Section 4 contains the inter-state
convergence application, and Section 5 concludes.

2 Fieller-type confidence sets for generalized entropy inequality
indices

An inequality index is a measure of dispersion for the distribution of a random variable.
Many such indices, including the GE class, solely depend on the underlying distribution and
can typically be written as a functional which maps the space of the cumulative distribution
function (CDF) to the nonnegative real line R

0+. Let X be a positive random variable such
that both moments EF (X) and EF (Xγ ) are finite, i.e.

P[X > 0] > 0 , 0 < μX := EF (X) < ∞ , 0 < νX (γ ) := EF (Xγ ) < ∞ . (2.1)

Then the GEγ (X) measure can be expressed as in Shorrocks (1980):

GEγ (X) = 1
γ (γ−1)

[
EF (Xγ )
[EF (X)]γ − 1

]
for γ �= 0, 1 ,

GE0(X) = EF [log(X)] − log[EF (X)]
GE1(X) = EF [X log(X)]

EF (X)
− log[EF (X)] .

(2.2)

This class of indices includes several common ones, including two well-known indices intro-
duced by Theil (1967): the Mean Logarithmic Deviation (MLD), which is the limiting value
of the GEγ (X) as γ approaches zero, and the Theil index, which is the limiting value of the
GEγ (X) as γ approaches 1. When γ = 2, the index is equal to half the squared coefficient
of variation and is related to the Hirschman-Herfindahl (HH) index, used in industrial orga-
nization (Schluter 2012). The Atkinson index can be obtained from the GEγ (X) index using
an appropriate transformation.

Throughout this paper, it will be convenient to focus on income distributions, though our
results also apply to other variables relevant to inequality studies, such as wage, health, and
consumption distributions. Our aim is to make inference on the GEγ measure for a given
γ ∈ (0,2). In particular, we wish to build a confidence set for the difference between two
indices. For presentation ease, the following discussion sets γ �= 1, 0. The Theil index can be
treated along the same lines, beginning from the expressions in Eq. 2.2. The MLD measure
eschews the statistical irregularities we raise here; for further insights, see Cowell et al. (2018)
and the references therein.
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To formalize the considered inference problem and maintaining the above notation, let X
and Y refer to two random variables with distributions FX and FY that satisfy Eq. 2.1. In this
context, our object of interest corresponds to

�GEγ := GEγ (X) − GEγ (Y ) = νX (γ )μ
γ

Y − νY (γ )μ
γ

X

γ (γ − 1)μγ

Yμ
γ

X

, (2.3)

where GEγ (X) and GEγ (Y ) take the Eq. 2.2 form, and μX , νX , μY , and νY denote the
underlying moments. For further reference, let λ denote the vector:

λ = (λ1, λ2, λ3, λ4)
′ = (μX , νX , μY , νY )′. (2.4)

Thus defined, Eq. 2.3 involves a non-linear function of moments that is not continuous
throughout its domain, which implies that �GEγ is not identified throughout the parameter
space. In this case, the (above cited) econometric literature proves that usual “standard errors”
provide a flawed assessment of sampling precision, in the following sense: the confidence
interval of the usual form

[estimator ± critical point × standard error of the estimate]
will fail to cover the true parameter value at the hypothesized level. As a matter of fact, any
confidence set with bounded limits will suffer from the same distortion. Consequently, there
is interest in finding an alternative procedure, whereby a basic requirement is to avoid sets
that are necessarily bounded.

Assumewe have i.i.d. samples X1, . . . , Xn and Y1, . . . ,Ym . Our analysis covers two cases
defined by the following assumptions.

Assumption 2.1 Samples are of unequal sizes and independent.

Assumption 2.2 Samples are of equal sizes and dependent.

With no further parametric assumptions on FX and FY , there is already a well-developed
theory5 for asymptotic inference onGEmeasures through the empirical distribution functions
(EDFs):

F̂X (x) = 1

n

n∑
i=1

1(Xi ≤ x) , F̂Y (y) = 1

m

m∑
j=1

1(Y j ≤ y) , (2.5)

where 1(·) is the indicator function that takes the value 1 if the argument is true, and 0
otherwise. Under standard laws of large numbers, we can consistently estimate the index
GEγ (X) and GEγ (Y ) by

ĜEγ (X) := 1

γ (γ − 1)

[
ν̂X (γ )

μ̂
γ

X

− 1

]
, ĜEγ (Y ) := 1

γ (γ − 1)

[
ν̂Y (γ )

μ̂
γ

Y

− 1

]
, (2.6)

where

μ̂X :=
∫

x d F̂X = 1

n

n∑
i=1

Xi , ν̂X (γ ) :=
∫

xγ d F̂X = 1

n

n∑
i=1

Xγ

i , (2.7)

μ̂Y :=
∫

y d F̂Y = 1

m

m∑
j=1

Y j , ν̂Y (γ ) :=
∫

yγ d F̂Y = 1

m

m∑
j=1

Y γ

j . (2.8)

5 See (Cowell and Flachaire, 2015, Chapter 6) for a review and references.
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�GEγ can then be estimated using estimates of the relevant moments [see Eqs. 2.7 - 2.8]:

�̂GEγ := ĜEγ (X) − ĜEγ (Y ) = ν̂X (γ )μ̂
γ

Y − ν̂Y (γ )μ̂
γ

X

γ (γ − 1)μ̂γ

Y μ̂
γ

X

. (2.9)

Let λ̂ refer to the estimate of λ based on Eqs. 2.7 - 2.8. Assuming that these estimated
moments are asymptotically normal, we have:

T−1/2(λ̂ − λ)
D−→ N (0, �), � := [

σi j
]
i, j=1, ... , 4 (2.10)

where

T : = τ ⊗ I2, τ :=
[
n 0
0 m

]
(2.11)

and I2 is the 2×2 identity matrix. Using these estimates and limiting distributions, we derive
the Wald-type Delta method (DCS) and our proposed Fieller-based alternative confidence
set (FCS) for each of Assumptions 2.1 - 2.2. These cases will actually differ only by the
expression of the variance of the estimator. Thus to avoid redundancy, we will derive the
method in its most general form, and state the restrictions required to obtain the relevant
formulae otherwise.

It is natural to begin the discussion with the standard DCS. To pave the way for the
introduction of its FCS counterpart, we frame our discussion in terms of test inversion,
where it is worth recalling that inverting a test with respect to the parameter tested, means
collecting the values of the parameter for which the underlying null hypothesis is not rejected
at a given significance level α. Presented from such a perspective, the DCS can be obtained
by inverting the square (or the absolute value) of the t-test associated with

HD(�0) : �GEγ = �0 (2.12)

where�0 is any known admissible value of�GEγ , including possibly�0 = 0, for equality.

Given our distributional assumptions, consider the usual statistic of the form (�̂GEγ −
�0)/V̂[�̂GEγ ]1/2, where �̂GEγ = ĜEγ (X) − ĜEγ (Y ) and V̂[�̂GEγ ] is the estimate of

the asymptotic variance. Under Assumption 2.1, the asymptotic variance V (�̂GEγ ) in Eq.
2.16 is given by:

V(�̂GEγ ) = 1

n

2∑
i=1

2∑
j=1

∂�GEγ

∂λi

∂�GEγ

∂λ j
σi j + 1

m

4∑
i=3

4∑
j=3

∂�GEγ

∂λi

∂�GEγ

∂λ j
σi j , (2.13)

whereas under Assumption 2.2, we obtain:

V(�̂GEγ ) = 1

n

4∑
i=1

4∑
j=1

∂�GEγ

∂λi

∂�GEγ

∂λ j
σi j . (2.14)

The estimate V̂(�̂GEγ ) may then be computed by replacing σi j with σ̂i j ,and λi with λ̂i .

In practice, inverting a test based on (�̂GEγ − �0)/V̂[�̂GEγ ]1/2 can be carried out by
solving the following inequality for �0:

(�̂GEγ − �0)
2 ≤ z2α/2V̂[�̂GEγ ] (2.15)
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where zα/2 is the asymptotic two-tailed critical value at the significance level α (i.e., P[Z ≥
zα/2] = α/2 for Z ∼ N [0,1]). The solution of Eq. 2.15 yields the familiar Delta-method set

DCS(�GEγ ; 1 − α) =
[
�̂GEγ ± zα/2 [V̂(�̂GEγ )]1/2

]
, (2.16)

which is an interval with bounded limits, and will thus be subject to the above irregularities.
We next build on the test inversion representation of Eq. 2.16 to describe our alternative
Fieller-type procedure.

Note that the broad approach of test inversion requires a test that can serve to assess a non-
zero�0.Anymethod that can only assess equality of indices (including the permutation test of
Dufour et al. (2019)) cannot be used for our purposes. Yet another fundamental concern stems
from the discontinuities in the definition of �GEγ . One way of dealing with this is to test
a linearized counterpart of HD(�0) rather than Eq. 2.12. Conformably, we thus reformulate
the null hypothesis into the following linear form (without the ratio transformation)

HF (�0) : 
(�0) = 0 where 
(�0) := θ1 − θ2�0 (2.17)

where θ1 and θ2 are the numerator and the denominator in Eq. 2.3

θ1 = νX (γ )μ
γ

Y − νY (γ )μ
γ

X , θ2 = γ (γ − 1)μγ

Yμ
γ

X . (2.18)

We then consider the t-test of HF (�0), with acceptance region:


̂(�0)
2 ≤ z2α/2 V̂[
̂(�0)] (2.19)

where we use the moment-type estimators based on Eqs. 2.7 - 2.8, i.e.


̂(�0) := θ̂1 − θ̂2�0, θ̂1 := ν̂X (γ )μ̂
γ

Y − ν̂Y (γ )μ̂
γ

X , θ2 := γ (γ − 1)μ̂γ

Y μ̂
γ

X (2.20)

and V̂[
̂(�0)] is a consistent estimator of V[
̂(�0), the asymptotic variance of 
̂(�0)

under HF (�0). Note that the latter consistency needs to hold only under the null hypothesis
HF (�0). On using the asymptotic normality assumption Eq. 2.10, the acceptance region Eq.
2.19 yields a confidence set for �GEγ with level 1 − α (asymptotically):

FCS[�GEγ ; 1 − α] = {�0 : 
̂(�0)
2 ≤ z2α/2V̂[
̂(�0)]}. (2.21)

We call FCS[�GEγ ; 1 − α] the level-(1 − α) Fieller-type confidence set for �GEγ . Esti-
mating V[
̂(�0)] will require estimating the asymptotic covariance of θ̂ = (θ̂1, θ̂2)

′. For
future reference, we denote the latter and the corresponding estimator as follows:

V(θ̂) =
[

V(θ̂1) C(θ̂1, θ̂2)

C(θ̂1, θ̂2) V(θ̂2)

]
, V̂(θ̂) =

[
V̂(θ̂1) Ĉ(θ̂1, θ̂2)

Ĉ(θ̂1, θ̂2) V(θ̂2)

]
. (2.22)

The form of the Fieller-type confidence set may not be clear from Eq. 2.21. The following
theorem characterizes FCS[�GEγ ; 1 − α] in an explicit way.

Theorem 2.1 Let V̂(θ̂) be an estimate of V(θ̂ ) in Eq. 2.22. Then the confidence set
FCS[�GEγ ; 1 − α] defined in Eq. 2.21 can be computed as follows:

FCS[�GEγ ; 1 − α] = {�0 : A�2
0 + B�0 + C ≤ 0}
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−B−√
D

2A , −B+√
D

2A

]
if D ≥ 0 and A > 0]

−∞, −B+√
D

2A

]
∪

[−B−√
D

2A , +∞
[
if D ≥ 0 and A < 0]

− ∞, −C
B

]
if A = 0 and B > 0[

− C
B , ∞

[
if A = 0 and B < 0

R if [A = B = 0 and C≤0] or [D<0 and A≤0]
∅ if [A = B = 0 and C>0] or [D<0 and A>0]

(2.23)
where

A := θ̂22 − z2α/2V̂(θ̂2), B := −2[θ̂1θ̂2 − z2α/2Ĉ(θ̂1, θ̂2)], C := θ̂21 − z2α/2V̂(θ̂1) , (2.24)

D := B2 − 4AC = 4z2α/2{[θ̂21 V̂(θ̂2) + θ̂22 V̂(θ̂1) − 2θ̂1θ̂2Ĉ(θ̂1, θ̂2)]
+ z2α/2[Ĉ(θ̂1, θ̂2)

2 − V̂(θ̂1)V̂(θ̂2)]} . (2.25)

If furthermore V̂(θ̂ ) is positive definite, then

D < 0 ⇒ [A < 0 and C < 0] . (2.26)

The proof is available in Appendix A. Theorem 2.1 allows for non-positive definite matrix
V̂(θ̂) [at least, for the specific sample considered]. When V̂(θ̂) is positive definite, Eq.
2.26 implies that FCS[�GEγ ; 1 − α] may be empty only when A = B = 0 and C > 0,
i.e. A�2

0 + B�0 + C = C > 0 [an event with zero probability when (θ̂1, θ̂2)
′ has a Gaus-

sian distribution]. Note that the condition A > 0 means that θ2 is significantly different from
zero [according to the criterion θ̂22 /V̂(θ̂2) > z2α/2], whileC > 0 means that θ1 is significantly

different from zero [according to the criterion θ̂21 /V̂(θ̂1) > z2α/2].
Consistent estimation of these depends on the assumptions made on the observations

[X1, . . . , Xn and Y1, . . . ,Ym]. For the assumptions 2.1 and 2.2, we get (using the Delta
method):

under Assumption 2.1 : V(θ̂1) = 1

n
S11 , V(θ̂2) = 1

m
S22 , C(θ̂1, θ̂2) = 1

n
S12 + 1

m
S21 ,

(2.27)

under Assumption 2.2 : C(θ̂k, θ̂l) = 1

n

4∑
i=1

4∑
j=1

∂θk

∂λi

∂θl

∂λ j
σi j for k = 1, 2, l = 1, 2,

(2.28)

where

S11 :=
4∑

i=1

4∑
j=1

∂θ1

∂λi

∂θ1

∂λ j
σi j , S22 :=

4∑
i=1

4∑
j=1

∂θ2

∂λi

∂θ2

∂λ j
σi j , (2.29)

S12 :=
2∑

i=1

2∑
j=1

∂θ1

∂λi

∂θ2

∂λ j
σi j , S21 :=

4∑
i=3

4∑
j=3

∂θ1

∂λi

∂θ2

∂λ j
σi j . (2.30)

The above presumes asymptotic normality of the underlying criteria. In fact, the considered
indices are known transformations of twomoments the estimators ofwhich are asymptotically
normal under standard regularity assumptions; seeDavidson andFlachaire (2007) andCowell
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and Flachaire (2007). These typically require that the first two moments exist and are finite.
Asymptotic normality of the statistics in Eqs. 2.15 and 2.19 thus follows straightforwardly.
Nevertheless, convergence in this context is known to be slow, especiallywhen the distribution
of the data is heavy-tailed and with indices that are sensitive to the upper tail. Our simulations
confirm these issues, yet the Fieller-based criteria perform better than theDeltamethod-based
counterparts in finite samples because the former eschews problems arising from the ratio.

Extending the above results to other measures is worth considering, and in particular
to the Gini coefficient which also takes a ratio form. However, in this case an estimator
for the covariance term in V̂[
̂(�0)] in Eq. 2.19 is not readily available. The GE class is
based on moments, which allowed us to build on the influence function approach in (Cowell
and Flachaire, 2015, Chapter 6) to derive the underlying covariance terms. Because of its
popularity, extensions of the Fieller method to the Gini index is a worthy objective, however,
it is beyond the scope of this paper.

3 Simulation evidence

This section describes a simulation study designed to compare the finite-sample properties
of FCS to the standard DCS. This will be done for the two popular inequality indices from
the general entropy family: the Theil Index (GE1), and half of the coefficient of variation
squared (GE2) which is related to the Hirschman-Herfindahl (HH) index. The tables and
figures are in the appendix.

We report the rejection frequencies of the tests underlying the proposed confidence sets,
under both the null hypothesis (level control) and the alternative (power). Under the null
hypothesis, these can also be interpreted as 1 minus the corresponding coverage probability
for the associated confidence set. So we are studying here both the operating characteristics
of tests used and the coverage probabilities of the confidence sets defined above. For further
insight on confidence set properties, we also study the width of the bounded sets.

Since available inference methods perform poorly when the underlying distributions are
heavy-tailed, we designed our simulation experiments to cover such distributions by simu-
lating the data from the Singh-Maddala distribution, which was found to successfully mimic
observed income distributions for developed countries such as Germany (Brachmann et al.
1995). Another reason to use the Singh-Maddala distribution is that it was widely used in
the literature which makes our results directly comparable to previously proposed inference
methods. The CDF of the Singh-Maddala distribution can be written as

FX (x) = 1 −
[
1 +

(
x

bX

)aX ]−qX

(3.1)

where aX , qX and bX are the three parameters defining the distribution. aX influences both
tails,whileqX only affects the right tail.bX is a scale parameter towhichwegive little attention
as the inequality indices considered in this paper are scale-invariant. This distribution is a
member of the five-parameter generalized beta distribution and its upper tail behaves like a
Pareto distribution with a tail index equal to the product of the two shape parameters aX and
qX (ξX = aXqX ). The k-th moment exists for −aX < k < ξX which implies that a sufficient
condition for the mean and the variance to exist is −aX < 2 < ξX .

The moment of order γ of Singh-Maddala distribution have the following closed form:

E(Xγ )=
bγ

X 
(
γ a−1

X + 1
)


(
qX − γ a−1

X

)

 (qX )
(3.2)
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where (·) is the gamma function. For γ = 1, this yields the mean of X [μX = E(X)]
and, for γ = 2, the second moment of X [νX = E(X2)]. Similarly, replacing X by Y in
the above expressions, we can compute μY and νY . Using the values of these moments, we
compute analytical expressions for GEγ (X) and GEγ (Y ). Each experiment involves 10000
replications. The nominal level α is set at 5%.

The hypotheses of interest take the form H0(γ ) : GEγ (X) − GEγ (Y ) = �0, for γ = 1
or 2. Even though we emphasize the important problem of testing equality (�0 = 0), we
also consider the problem of testing nonzero differences (�0 �= 0) to document the coverage
of the confidence sets. Our simulation experiments rely on the following designs.

1. Independent samples of unequal sizes (m �= n):
(a) �0 = 0 with FX = FY ; (b) �0 = 0 with FX �= FY ; and (c) �0 �= 0 (hence
FX �= FY ).

2. Dependent samples of equal sizes (m = n):
(a) �0 = 0 with FX = FY ; (b) �0 = 0 with FX �= FY ; and (c) �0 �= 0 (hence
FX �= FY ).

We consider sample sizes ranging from 50 to 2000 observations which include sizes
that match macroeconomic type inequality analysis. We aim to document the usefulness
of our proposed methodology in such problems, for which corrections are most needed
because of data limitations. We also consider samples as large as 200000 for some designs
as reported below. For most experiments, the simulation results are presented graphically
through plotting the rejection frequencies against the number of observations. When the
number of observations is different between the two samples,we plot the rejection frequencies
against the number of observations of the smallest sample.

For the Delta method, we use the critical region [�̂GEγ −�0]2 > z2α/2V̂[�̂GEγ ], based
on Eq. 2.15; for the Fieller method, we use the critical region 
̂(�0)

2 > z2α/2V̂[
̂(�0)],
as described in Eq. 2.19. Power is investigated by assuming distributions with heavier left
and right tails to draw the first sample, and distributions with less heavy left and right tails
to draw the second sample. We do so by considering DGPs with a lower value of the shape
parameter aX and a higher value of the shape parameter aY . The rejection frequencies under
the alternative are not size-controlled, yet we compare powerwhen bothmethods have similar
sizes.

Our extensive simulation study reveals several important results. First, the Fieller-type
method outperforms the Delta method under most specifications, and when it does not, it
performs as well as the Delta method. Put differently, the Fieller-type method was never
dominated by Delta method. Improvements are most useful with sample sizes that match
macro-economic data. Second, the Fieller-type method is more robust to irregularities arising
from both the left and right tails. Third, the Fieller-type method gains become more sizeable
as the sensitivity parameter γ increases. Fourth, the performance of the Fieller-type method
matches, and for some cases exceeds, the permutation method which is considered one of
the best performing methods proposed in the literature so far for the two-sample problem. In
the remainder of this section we take a closer look at the simulation evidence supporting the
above findings.

Independent samples of unequal sizes Empirically, when comparing inequality levels
spatially or over time, it is unlikely one encounters samples with the same size. Thus, it is
useful to assess the performance of our proposed method when the sample sizes are unequal.
To do so, we set the number of observations of the second sample to be as twice as large as
the first sample. If we denote the size of the first sample by n and that of the second bym, then
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n = 2m.6 The left panels of Figs. 1 and 2 depict the rejection frequencies against the sample
size for GE1 and GE2 respectively. Here the distributions are assumed identical [FX = FY ].
Comparing the two panels, we notice that better size control with the Fieller-type method is
more noticeable for GE2: the size gains are larger when the index used is more sensitive to
the changes in the right tail of the underlying distributions. As the sample size increases the
rejection probabilities of the two methods converge to the same level.

In the second specification, the indices are identical, but the underlying distributions are
not [�0 = 0 with FX �= FY ]. The left panel of Figs. 3 and 4 plots the FCS and DCS
rejection frequencies for this scenario. Again, the results suggest that the Fieller-type method
outperforms the Delta method in small samples in terms of size, and the gains are most
prominent for GE2. The gains are smaller in this scenario compared to the previous one. As
wewill show later, the Fieller-typemethod will not solve the over-rejection problem under all
scenarios, but it will reduce size distortions in many cases, particularly with small samples,
and when it does not, it performs as well as the Delta method.

We nowmove to the third scenario, wherewe consider different distributions under the null
hypothesis and unequal inequality indices [�0 �= 0]. In this scenario, the difference under
the null hypothesis can take any admissible value (possibly different from zero). Testing a
zero value, although informative, does not always translate into a confidence interval. Hence,
one of our contributions lies in considering the non-zero null hypothesis which allows us to
rely for inference on the more-informative confidence sets approach rather than testing the
equality of the difference between the two indices to one specific value.

The results, as shown in the left panels of Figs. 5 and 6, suggest important improvements.
In both panels, the Fieller-type method leads to size gains and almost achieves correct size.
The improvements are more pronounced for the GE2 index. The right panels of Figs. 1 to 6
illustrate the power of FCS and DCS for both GE1 and GE2 under the three scenarios con-
sidered: [�0 = 0 with FX = FY ], [�0 = 0 with FX �= FY ] and [�0 �= 0] respectively. The
results show that the Fieller-type method is as powerful as the Delta method when compared
at sample sizes where both FCS and DCS have similar empirical rejection frequencies7.

Dependent samples of equal sizes Another interesting case is the one where the samples
are dependent. This occurs mostly when comparing inequality levels before and after a policy
change, such as comparing pre-tax and post-tax income inequality levels, or comparing the
distributional impact of a macroeconomic shock. To accommodate for such dependencies,
we modify the simulation design as follows: the samples are drawn in pairs from the joint
distribution, which we denote FXY , where the correlation between the two marginal distribu-
tions is generated using a Gumbel copula with a high Kendall’s correlation coefficient of 0.8.
For this case, results are in line with the independent cases, in small samples and when larger
γ is used. Size and power plots under this scenario can be found in the online appendix.

Comparing the Fieller-type method with the permutation method As outlined in the
introduction, the permutation-based Monte-Carlo test approach proposed in Dufour et al.
(2019) stands out as one of the best performing nonparametric inference method for testing
the equality of two inequality indices. The authors focus on theGE1 and theGini indices. The
permutation testing approachprovides exact inferencewhen thenull distributions are identical
(FX = FY ) and it leads to a sizeable size distortion reduction when the null distributions are

6 The results presented here are not sensitive to choice of the ratio between n and m
7 The simulation results for the scenario of independent samples with equal size are similar to those obtained
in the first experiment and can be found in the online appendix.
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sufficiently close (FX ≈ FY ). However, as the null distributions differ, the performance of
the method deteriorates.

Figures 7 and 8 plot size and power of the permutation Fieller-type methods against the
tail index of FY . As in Dufour et al. (2019), we fix the tail index of the null distribution FX to
4.76. When the distributions under the null hypothesis are identical, the permutation method
is exact and thus it is important to compare methods when exactness does not hold. For the
GE1 index, as shown in Fig. 7, the Fieller-type method leads to considerable size and power
gains especially when the right tail of the second distribution is much heavier than that of the
first distribution (ξX < ξY ). These gains are more pronounced when considering the GE2

index. The attraction of the Fieller-type method with respect to the permutation approach
goes beyond the superior performance highlighted above. Unlike the Fieller-typemethod, the
permutationmethod applicability is restricted to the null hypothesis of equality (�0 = 0), and
further theoretical developments would be needed to test more general hypotheses. Building
confidence intervals using a permutation-based or another simulation-based method (such
as the bootstrap) would also require a computationally intensive numerical inversion (e.g.,
through a grid search). So another appealing feature of the Fieller-type approach comes from
the fact that it is computationally easy to implement.

Behavior with respect to the tails To better understand under what circumstances does
the Fieller-type method improves level control, we assess the performance of the proposed
method to different tail shapes. The literature has focused on the role of heavy right tails in
the deterioration of the Delta method confidence sets. However, as our results indicate, heavy
left tails also contribute to the under-performance of the standard inference procedures.
The Fieller-type method is less prone to such irregularities arising from both ends of the
distributions and thus it reduces size distortions whether the cause of the under-performance
is arising from the left tail or the right tail. This is supported by the results reported below
in Tables 3 and 4. Table 3 reports the percentage difference of the rejection frequencies as
the right tails of the two distributions become thicker. The right-tail shape is determined by
the tail index (ξX = aXqX ). The smaller the tail index, the thicker is the right tail of the
distribution under consideration. The reliability advantage of the Fieller-type method (over
the Delta method) increases as the right tail of the distributions gets thicker.

To study the impact of the left tail, the parameters of the first distribution are fixed at
aX = 2.8 and qX = 1.7, while aY and qY are varied such that the left tail becomes thicker
and the right tail is left unchanged. This is done by decreasing aY , and increasing qY enough to
keep the tail index fixed (ξX = ξY = 4.76). The last column of Table 4 shows the percentage
difference of the rejection frequencies between the Fieller-type and Delta methods. As the
left tail thickens, the performance of the Delta method deteriorates relative to the Fieller-
type method, and thus the Fieller method better captures irregularities in the left tail. This
conclusion holds regardless of whether the left tail of the second distribution is lighter or
thicker than the left tail of the first distribution.

Fieller-type method and the sensitivity parameter γ A consistent conclusion from our
results is that the Fieller’s-induced size gains are more prominent for GE2 compared to
GE1, that is, when the sensitivity parameter γ increases from 1 to 2. This might suggest
that as γ increases, size gains from the Fieller-type method increase. Such generalization is
indeed supported by simulation evidence illustrated by Fig. 9. The left panel plots rejection
frequencies of DCS and FCS for γ ∈ [0,3.5] for independent samples. The right panel con-
siders dependent samples. As γ becomes larger, FCS outperforms DCS at an increasing rate.
The superiority of the Fieller-type method in this context is unaffected by the independence
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assumption as shown in the right panel where the rejection frequencies are plotted against γ
for dependent samples with Kendall’s correlation of 0.8.

Recall that the parameter γ characterizes the sensitivity of the index to changes at the
tails of the distribution. For instance, the index becomes more sensitive to changes at the
upper tails as γ increases (assuming positive γ ). Thus, relative to the Delta method, the
performance of the Fieller-type method in the two-sample problem improves as the right tail
of the underlying distributions becomes heavier. This conclusion, as we saw from the results
above, is robust to the assumptions about the independence of the samples and to the distance
between the two null distributions.

The identical performance of the Fieller-type method and Delta method at γ = 0 is
expected as the underlying t-tests inverted in the process of building FCS and DCS are
identical since the null hypothesis is no longer a ratio. To see that, recall that the limiting
solution for GEγ (·) at γ = 0 is equal to EF [log(X)]− log[EF (X)]. Graphically, we can see
that both methods start off at the same rejection frequencies when γ = 0, and then diverge
as γ increases.

Robustness to the shapes of the null distributions So far, our simulation experiments
have focused on comparing the finite-sample performance of FCS and DCS by studying
their behavior as the number of observation increases, holding the parameters of the two
underlying null distributions constant. Here we try to check the robustness of our results by
fixing the number of observations at 50 and allowing the parameters (aX ,qX , aY and qY )

to vary. This type of analysis highlights the (in)sensitivity of our conclusions regarding the
Fieller-type method to the shape of the null distributions. In left panel of Fig. 10, we plot
the rejection frequencies of both methods against the sensitivity parameter ξX for the GE1

index. We set ξX equal to 4.76 and allow ξY to vary between 2.89 and 6.357. In the right
panel, we focus on the GE2 index. Here ξX is fixed at 4.76 again and the parameter ξY ranges
between 2.89 and 6.357.

For small samples, the gains of the Fieller-type method are maintained regardless the
shape of the distribution. The gains are more pronounced for GE2 compared to GE1. These
two graphs show that the gains attained by the Fieller-type method are not arbitrary and that
they hold for various parametric assumptions of the underlying distributions.

Slow convergence Inequality estimates are characterized by slow convergence when under-
lying distributions are heavy-tailed. This problem has in fact motivated most of the proposed
asymptotic refinements in this literature [see Davidson and Flachaire (2007); Cowell and
Flachaire (2007)]. Our results in Table 5 corroborate this fact, as over-rejections remain even
with samples as large as 200000, particularly with the GE2 which puts more weight on the
upper tail of the distribution. On balance, our main finding is the superiority of the Fieller
method in samples of sizes compatible with macroeconomic data.

Widths of the confidence sets The last two columns of Table 5 show the average widths of
the FCS and the DCS for the two sample problem. Since the Fieller’s method can produce
unbounded confidence sets, we take the average of the widths based on the bounded confi-
dence sets. In general, compared to the FCS widths, the DCS widths are shorter with small
samples, i.e. they are shorter when the Delta method rejection frequencies are higher than
those of Fieller. This suggest that the DCS are too short and thus they tend to undercover the
true difference between the indices. As the sample size increases, the two methods exhibit
similar performance and the widths coincides.
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4 Application: income inequality across US states and non-OECD
countries

In this section, we present empirical evidence on the relevance of our theoretical results
to applied economic work. In view of our simulation results, we focus on a macro-type
problem, specifically the analysis of: (i) income per-capita inequality across U.S. states
between 1946 and 2016, and (ii) per-capita inequality across non-OECD countries between
1960 and 2013. Empirically, policy-makers are interested in learning about the dynamics of
income dispersion across regions/states to plan or assess redistributive policies. Following the
terminology proposed by Milanovic (2011), one can differentiate between three approaches
to international or regional inequality. The first relies on income per-capita; the second also
uses income per-capita but accounts for population differences; the third is a microeconomic
approach based on cross-country household surveys. In this paper, we follow the first popular
approach. In particular, we aim to illustrate our methodology with standard and publicly
available data.

Macro-inequality is typically analysed within the neoclassical growth model, which pre-
dicts that income per-capita of less developed countries/regions is expected catch-up with the
developed ones in the long run. In contrast, endogenous growth models postulate that once
knowledge differentials are factored in, incomes may diverge and the gap might widen in the
long run (Romer 1994;Rebelo 1991).Among the variousmeasures of convergence/dispersion
provided in the literature, two definitions appear to dominate the work on this topic: β-
convergence and σ -convergence (Barro 2012; Barro and Sala-i Martin 1992; Quah 1996;
Sala-i Martin 1996; Higgins et al. 2006). Although related, these two measures might lead
to different conclusions as they capture different dimensions of economic convergence. For
an analytical treatment of the relationship between the two measures, see Higgins et al.
(2006). The σ -convergence concept focuses on the dispersion of the income distribution
which is typically measured in this literature by the variance of the logs. The variance of
logs is scale-independent and thus multiplying the per-capita incomes by a scale k has no
impact on the dispersion level. Alternative scale-independent measures of dispersion such
as inequality indices have generally not been utilized in convergence analysis. Exceptions
include Young et al. (2008) and Evans(1996) who used the Gini coefficient and the variance
of logs respectively.

Inequality indices respect the Pigou-Dalton principle, which states that a rank preserving
transfer from a richer individual/state to a poorer individual/state shouldmake the distribution
at least as equitable. In the context of economic convergence, this principle is particularly
relevant. For instance, if the US government makes a transfer from a richer state to a poorer
one, one would expect dispersion between states to decline. The Gini and GE indices would
capture this decline, whereas the variance of logsmight indicate no change or even an increase
in dispersion. The fact that the variance of logs violates the Pigou-Dalton principle is usually
neglected in the literature on the grounds that the problem occurs only at the extreme right
tail of the distribution. However, Foster and Ok (1999) shows that disagreement between the
variance of logs and inequality indices can result from changes in incomes in other parts of
the distribution including the left tail. The following example (Foster and Ok 1999) under-
scores the importance of the Pigou-Dalton principle and its implications for convergence.
Consider two income distributions defined by the following incomes (2,5, 10,28, 40) and
(2,5, 10, 34, 34) where the latter is associated with a transfer from the richest [40 to 34]
incomes to poorer ones [28 to 34]. The resulting change in the variance of logs, from 1.5125
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Table 1 Estimates and confidence intervals of the change in inequality across U.S. states between 1946 and
2016

GE1 GE2

First sample - 1946 0.02743 0.02679

Second sample -2016 0.0144 0.01516

GEγ (2016) − GEγ (1946) −0.01303 −0.01163

Delta C.I. [−0.02486,−0.001204] [−0.02349,0.00024]
Inequality decreases No change in Inequality

Fieller′s C.I. [−0.02531,−0.00155] [−0.02456,−0.00043]
Inequality decreases Inequality decreases

Permutation test p − Value 0.014 0.014

Inequality decreases Inequality decreases

Number of states 48 48

to 1.5154, suggests an increase of inequality. In contrast, theGE2 index declines from 0.3696
to 0.3446, thereby capturing the expected distributional impact of such a transfer.

Our empirical analysis of per-capita income dispersion across the US is motivated by
comparably peculiar statistics. Consider the publicly available per-capita income at the state
level for 48 out of the 50 states (the data for Alaska and Hawaii is not available). The variance
of logs between the years 2000 and 2016 indicates a 3% increase in dispersion, whereasGE2

indicates a decline in dispersion by 0.3%. This provides a compelling basis for the more
comprehensive inferential analysis reported next.

Using the same data source, we first compute the GE1 index for the per-capita income
distributions of 1946 and 2016. Thenwe construct theDelta and Fieller confidence sets for the
difference between the two indices. A standard interpretation of differences between the two
confidence intervals (at the considered level) implies that one will reject the null hypothesis
�GEγ = �0 for a given �0 while the other fails to reject it. Special attention should be
paid to the �0 = 0 case, as decisions might reverse the conclusion on whether convergence
holds or not. In what follows tests and confidence sets are at the 5% level.

Based on the GE1 index, our results in the first column of Table 1 indicate that per-
capita income inequality across states has declined between 1946 and 2016. The decline
in inequality implies convergence. This is compatible with the general convergence trend
reported in the literature (Barro and Sala-i Martin 1992; Bernat Jr 2001; Higgins et al. 2006).
Although the Fieller and Delta-method confidence sets are not identical, they still lead to the
same conclusion which is that the decline of inequality is statistically different from zero at
the level used.

In the second column of Table 1, we consider the same problem using GE2 index which
puts more weight on the right tail of the distribution. In this case, the results also indicate a
decline of inequality across states. Inequality in 1946 was 0.02679 and declined by 0.01163
in 2016. The confidence sets based on the Delta and Fieller-type methods lead to opposite
conclusions about the statistical significance of the decline in inequality:the former suggests
that the decline is insignificant whereas the latter indicates it is significant.
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Table 2 Estimates and confidence intervals of the change in inequality across non-OECD countries

GE1 GE2

First sample - 1960 0.717621 1.46631

Second sample -2013 0.78726 1.45076

GEγ (2013) − GEγ (1960) 0.06964 −0.01554

Delta C.I. [−0.35694,0.49623] [−1.15143,1.120337]
Fieller′s C.I. [−0.40436,0.63075] R

Permutation test p − value 0.886 0.992

Number of countries 72 72

In addition to the DCS and FCS, we report the permutational p-values. For the GE2,
the p-value is less than 5% which entails the rejection of the null hypothesis of no change
in inequality contradicting the conclusion based on the Delta method. This constitutes an
empirical evidence supporting the findings of Dufour et al. (2019).

Two conclusions can be drawn from our findings. First, the Fieller-type and the Delta
methods can lead to different confidence sets in practice which documents the empirical rel-
evance of our theoretical findings. Second, disparities between both sets can lead to spurious
conclusions about inequality changes if one set includes zero while the other does not. From
a policy point of view, this disparity is crucial, especially if important policy actions are
motivated by the underlying analysis.

We next turn to non-OECD countries between 1960 and 2013. Table 2 presents estimates
and confidence sets for the difference of inequality indices between the two periods. The
main finding here is that the Fieller-type confidence set based on the GE2 index is the whole
real line R. These results confirm that decisions based on Delta-method are spurious, and
that a no-change conclusion is flawed: data and indices are, instead, uninformative.

The permutational method leads to results similar to Delta and the Fieller-type methods
for non-OECD countries. Available permutation tests although preferable size-wise to their
standard counterparts, are difficult to invert to build confidence sets. Instead, the confidence
sets proposed here can be unbounded and thus avoid misleading statistical inferences and
policy decisions, in particular from seemingly insignificant tests. The econometric literature
on inequality has long emphasized the need to avoid over-sized tests. Rightfully, spurious
rejections are misleading. Our results document a different, although related, problem: even
with adequately sized no-change tests, weak identification can undercut the reliability of
policy advice resulting form insignificant no-change test outcomes. Far more attention needs
to be paid to confidence sets. Moreover, sets that can be unbounded, although might seems
counter-intuitive at first, make empirical and policy work far more credible than it can be
using bounded alternatives or no-change tests that cannot be inverted.

5 Conclusion

This paper introduces a Fieller-type method for two-sample inference problem on the GE
class of inequality indices. Simulation results confirm that the proposed method outperforms
standard counterparts including the permutation test. Improvements are most notable for
indices that putmoreweight on the right tail of the distribution and for sample sizes thatmatch
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macroeconomic type inequality analysis. Results are robust to different assumptions about the
shape of the null distributions. While irregularities arising from the right tail have long been
documented, we find that left tail irregularities are equally important in explaining the failure
of standard inference methods. On recalling that permutation tests are difficult to invert, our
results underscore the usefulness of the Fieller-type method for evidence-based policy. An
empirical analysis of regional and international income per capita inequality reinforces this
result, and casts a new light on traditional controversies in the growth literature.

Fieller’s approach is frequently applied inmedical research and to a lesser extent in applied
economics despite its solid theoretical foundations (Srivastava 1986; Willan and O’Brien
1996; Johannesson et al. 1996; Laska et al. 1997). This could be due to the seemingly
counter-intuitive non-standard confidence sets it produces which economists often find hard
to interpret. Consequently, many applied researchers encountering the estimation of ratios
avoid using it and opt to use methods that yield closed intervals regardless of theoretical
validity. This paper illustrates serious empirical and policy flaws that may result from such
practices in inequality analysis.
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