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defensive purposes by numerous insect species (Euw et al. 
1967; Cohen and Brower 1983; Malcolm 1990; Dobler et 
al. 1998). In a number of these cardenolide-sequestering 
species, convergent amino acid substitutions evolved in the 
Na,K-ATPase, a ubiquitous and essential ion pump, render-
ing this main target site of cardenolides insensitive to the 
toxins (Dobler et al. 2012, 2019; Zhen et al. 2012; Kara-
georgi et al. 2019; Taverner et al. 2019; Yang et al. 2019). 
Another possible way of coping with a cardenolide-contain-
ing diet are epithelial barriers (Dobler et al. 2015) which 
can exclude toxins from susceptible tissues (Petschenka et 
al. 2013; Dermauw and Van Leeuwen 2014). The effectiv-
ity of such barriers strongly depends on the cardenolide’s 
polarity influencing its ability to cross lipid cell membranes, 
and the presence and type of transmembrane carrier proteins 
actively transporting cardenolides (Groen et al. 2017; Kow-
alski et al. 2020).

The Onion Leaf Beetle Lilioceris merdigera (Coleoptera, 
Chrysomelidae) feeds on several different plant species of 
the genera Allium, Convallaria, Lilium and Polygonatum 
(Haye and Kenis 2004), among them the cardenolide-rich 
C. majalis. C. majalis is known to contain a mixture of at 
least 38 different cardenolides derived from nine aglycones 

Introduction

The co-evolutionary arms race between plants developing 
defense mechanisms (Mithöfer et al. 2018) and herbivorous 
insects overcoming them (Caprio and Tabashnik 1992; War 
et al. 2020) has led to many intriguing adaptations in the 
ways how insects deal with potentially toxic plant com-
pounds. Herbivorous insects from different orders utilize 
the plant’s chemical defense as protection against predators 
(Duffey 1980; Scudder et al. 1986; Opitz and Müller 2009). 
Cardenolides, an extensively studied group of specialized 
plant metabolites found in at least 12 different angiosperm 
plant families (Agrawal et al. 2012), are sequestered for 
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Abstract
The brilliant red Lilioceris merdigera (Coleoptera, Chrysomelidae) can spend its entire life cycle on the cardenolide-
containing plant Convallaria majalis (lily of the valley) and forms stable populations on this host. Yet, in contrast to many 
other insects on cardenolide-containing plants L. merdigera does not sequester these plant toxins in the body but rather 
both adult beetles and larvae eliminate ingested cardenolides with the feces. Tracer feeding experiments showed that this 
holds true for radioactively labeled ouabain and digoxin, a highly polar and a rather apolar cardenolide. Both compounds 
or their derivatives are incorporated in the fecal shields of the larvae. The apolar digoxin, but not the polar ouabain, 
showed a deterrent effect on the generalist predatory ant Myrmica rubra, which occurs in the habitat of L. merdigera. The 
deterrent effect was detected for digoxin both in choice and feeding time assays. In a predator choice assay, a fecal shield 
derived from a diet of cardenolide-containing C. majalis offered L. merdigera larvae better protection from M. rubra than 
one derived from non-cardenolide Allium schoenoprasum (chives) or no fecal shield at all. Thus, we here present data 
suggesting a new way how insects may gain protection by feeding on cardenolide-containing plants.
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with the most abundant of them being convallatoxin (Kopp 
and Kubelka 1982). The beetle’s strategy to circumvent the 
toxic effects is yet unknown, as well as the fate of the carde-
nolides ingested by the animals. In this study, we investi-
gated how L. merdigera deals with ingested cardenolides in 
larval and adult stages. Adult L. merdigera produce defen-
sive secretions in glands situated on their pronotum and ely-
tra, as is the case for many other chrysomelids (Deroe and 
Pasteels 1982) while, like other species within the Chrys-
omelidae, L. merdigera larvae carry fecal matter on their 
dorsal surface (Walsh and Riley 1868; Eisner et al. 1967; 
Olmstead 1994; Chaboo et al. 2007).We performed tracer 
feeding studies with both adults and larvae using ³H-labeled 
ouabain and digoxin, two cardenolides that differ in polarity. 
Tracer feeding results show an almost complete excretion 
of ingested cardenolides via the beetles’ feces. Bioassays 
with the co-occurring predatory ant Myrmica rubra were 
performed to test if L. merdigera larvae profit from feed-
ing on cardenolide-containing plants by an increased deter-
rent effect of their fecal shields towards predators. Further 
assays investigated deterrent effects of the two cardenolides 
on the predatory M. rubra.

Methods and Materials

Collection and Rearing of Animals

Individuals of L. merdigera were collected as larvae or 
adults near Duvenstedt, Hamburg (53.71° N, 10.09° E) on 
Convallaria and near Klein Schmölen (53.13° N, 11.30° 
E) on Allium in May and June. Only every second spotted 
individual was taken to avoid affecting the population. They 
were split in two groups and kept in terraria in the labora-
tory on each of the two plants. Terraria were filled with 4 cm 
wet vermiculite to help sustain a constant level of humid-
ity. C. majalis was collected at University Hamburg (53.57° 
N, 9.97° E); Allium schoenoprasum (chive) was bought in 
“organic” quality presumably free of artificial pesticides. 
Beetles were kept at 20 °C and a 16 L:8D photoperiodic 
regime in a climate chamber. Freshly laid eggs were col-
lected and transferred to fresh leaves in small petri dishes. 
Hatched larvae were again transferred to separated contain-
ers with fresh plant leaves and vermiculite until used in 
experiments.

The ant Myrmica rubra was chosen as a potential preda-
tor of L. merdigera larvae due to its opportunistic prey spec-
trum (Radchenko and Elmes 2010), which includes all kinds 
of insect larvae, and its general abundance in many habitats 
(Wetterer and Radchenko 2011), including at least one of 
the abovementioned collection sites of L. merdigera (Baum 
2016). Three ant colonies were purchased from the web 

shop antstore.net (Berlin, Germany) and kept in a formi-
carium with three identical units at 20 °C under a 16 L:8D 
photoperiodic regime. Each unit had a polyethylene arena 
where food (honey and dead insects) and water were pro-
vided. The arena floors were covered with sand. Ants were 
kept from escaping by a paraffin oil border, applied with a 
brush on the arena’s walls and lid. A 1 cm diameter hose 
connected the arena with the nest, which was carved into an 
aerated concrete block.

Tracer Feeding

Experiments were conducted using 3H-ouabain and 
3H-digoxin (PerkinElmer). To track the fate of ingested 
cardenolides, pieces of Convallaria leaves (~ 2 cm2) 
were coated with 5 µl ethanolic solution of the respective 
3H-labeled cardenolide (stock solution diluted 1:20 and 
spiked with 10 mM unlabeled cardenolide) and offered to 
a second to third instar larva (n = 3 and 7 respectively) or 
an imago (n = 7 and 6 respectively) in a sealed petri dish. 
After 4 days or complete consumption of the leaf, the ani-
mal was offered a piece of non-labeled leaf and the labeled 
one was removed. After feeding two more days on the non-
labeled leaf, the following samples were collected: (1) All 
unconsumed leaf parts including the labeled ones, (2) the 
imago or larva without fecal shield, (3) all feces collected 
in the dish including the fecal shield, and (4) 100 µl MeOH 
used to rinse the dish after all other samples were collected. 
The samples, except the fourth one, were frozen on liq-
uid N2, ground to powder and dissolved in 200 µl MeOH. 
After thorough vortexing, the samples were sonicated in 
an ultrasonic bath (Sonorex RK102, Bandelin) for 5 min 
for increased extraction. After a short spin in a centrifuge 
(< 5,000 x g), the supernatants and the rinse sample (4) 
were transferred to scintillation vials. 3 ml of scintillation 
cocktail (Ultima Gold XR, PerkinElmer, Waltham, USA) 
were added and the samples vortexed. The amount of 3H in 
each sample was determined on a liquid scintillation coun-
ter (Wallac 1409, PerkinElmer). The samples of leaves and 
rinse served as control for the recovery of the total applied 
amount of 3H. The combined amount of 3H recovered 
from the beetle and its feces was regarded as having been 
ingested by the insect during the experiment. The propor-
tions of dpmbeetle/dpmbeetle+feces and dpmfeces/dpmbeetle+feces 
were compared using a paired-sample t-test. Data from one 
treatment was not normally distributed and a non-paramet-
ric Wilcoxon signed-rank test was applied.

Bioassays with Ants

Three ant colonies were used in feeding experiments. To 
minimize potential effects of learning or preferences of 

1 3

64



Journal of Chemical Ecology (2024) 50:63–70

one colony, the order of runs was randomized using the 
RAND() function of MS Excel(1), each assay run was ran-
domly assigned to one of the three colonies using the same 
function(2). At the beginning of each run, positioning of the 
sample in the arena was randomized as follows (3): a forag-
ing ant in the arena was arbitrarily selected and followed for 
30 s. The dish was then put at the position where the ant was 
located after 30 s of foraging.

To determine effects of cardenolides on M. rubra feeding, 
three different bioassays were performed: a honey choice 
assay, a feeding time assay and a predator choice assay. 
Prior to the assays, all available food sources were removed 
from the M. rubra colonies’ arenas. In the first two assays, 
ants were offered honey with and without cardenolides in 
two wells on the same clay dish (Online Resource 1a). Oua-
bain and digoxin were used, as they represent hydrophilic 
and rather hydrophobic cardenolides. As digoxin had to 
be dissolved in DMSO, an equivalent amount of the sol-
vent was also added to the cardenolide-free honey on the 
digoxin dishes. Thirty minutes after positioning of the dish, 
the number of ants feeding on each well were counted and 
regarded as a measure of attractiveness of the well for the 
colony. The assay was performed with different concentra-
tions (1 mM and 5 mM) and with 11 to 15 replicates for each 
concentration of each cardenolide. Statistical analysis was 
performed on pooled data from all three colonies. As the 
data were not normally distributed, a non-parametric one-
tailed Wilcoxon signed-rank test with continuity correction 
for paired data was applied.

A feeding time assay was used to investigate possible 
effects of cardenolides on individual ants. After position-
ing the dish with honey and 1mM cardenolide honey in the 
arena, it was filmed for 30 min. Afterwards the films were 
analyzed and feeding duration of individual M. rubra work-
ers were recorded. Feeding duration was defined as the time 
between an ant lowering its head into the honey well and 
the ant walking away from the well. In six 30 min runs, the 
feeding duration of a total number of 130 ants (ouabain) and 
132 ants (digoxin) were recorded. A two-tailed Wilcoxon 
rank-sum test with continuity correction was performed.

The impact of the cardenolide-loaded fecal shield of 
L. merdigera larvae on M. rubra was tested in a predator 
choice assay by offering the ants four differently treated late 
instar larvae on a small petri dish (see Supplementary Mate-
rial 3): two larvae were reared on Allium and were there-
fore regarded devoid of cardenolides; two were reared on 
cardenolide-containing Convallaria before they were killed 
by freezing. One larva of each group had its fecal shield 
removed. The first larva carried away from the dish by ants 
was considered “chosen” and all larvae were removed from 
the arena. If no larva was chosen after 30 min, the dish was 
removed and all larvae considered “not chosen”. After a 

total of 67 runs, the contingency table of the pooled data 
from three ant colonies was analyzed for independence of 
treatment using Fisher’s exact test. The fact that cardeno-
lides were shown to be potentially deterrent in the honey 
choice experiments allowed for one-sided statistical tests, 
ignoring potentially attractant effects of the fecal defense. 
Treatments were compared with one-tailed pairwise Fish-
er’s Exact tests.

Results

Tracer Feeding

The radioactivity ingested by imagines and larvae of L. 
merdigera was to a large extent recovered from the beetles’ 
feces (Fig. 1, additional data in Supplementary Material 
1). In two of the 23 beetles, one ouabain-fed imago and 
one digoxin-fed larva, about half of the radioactivity was 
recovered from their body. In all treatment conditions, tests 
showed significantly more ³H recovered from the feces than 
from the beetles (P < 0.05).

Bioassays

The repellent effect of the two cardenolides on a generalistic 
predatory arthropod was tested in two assays with M. rubra. 
When being offered diluted honey with and without ouabain 
or digoxin, after 30 min more ants were found on average 
feeding on the control solution than on the cardenolide solu-
tion in every setup. The difference was statistically signifi-
cant (P < 0.005) for both concentrations of digoxin, however 
the differences between honey and cardenolide honey were 
not statistically significant (P > 0.05) for both ouabain con-
centrations (Table 1).

In a second honey feeding assay, the time individual 
ants spend feeding on diluted honey with and without 1mM 
ouabain or digoxin was measured. Ants were frequently 
observed cleaning their antennae after contact with digoxin. 
Significant differences in feeding time between cardenolide 
and control honey were found when digoxin was offered, 
but not when ouabain was offered (Fig. 2).

In a predator choice assay, ants were offered beetle larvae 
reared on Allium or Convallaria. Independence of the pred-
ators’ choice from treatment of the larvae was rejected. Lar-
vae reared on A. schoenoprasum and larvae without fecal 
shield were chosen significantly more often than larvae with 
an intact C. majalis-derived fecal shield (Fig. 3).
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Discussion

The brilliant red L. merdigera can spend its entire life cycle 
on the cardenolide-containing plant C. majalis and forms 
stable populations on this host. Yet, it does not have any 
of the well-known resistance-conferring substitutions in 
its Na,K-ATPase that repeatedly evolved in other chryso-
melid species (Agrawal et al. in prep.). As we show here, 
L. merdigera does not sequester plant-derived cardenolides 
in its body but rather both adult beetles and larvae elimi-
nate ingested cardenolides with the feces. This holds true 
for ouabain and digoxin, a highly polar and a rather apolar 
cardenolide. Adult L. merdigera therefore do not seem to 
sequester host plant cardenolides into their defensive secre-
tory glands, as other chrysomelids do (Dobler et al. 1998). 
In addition, the secretions of several chrysomeline leaf bee-
tle species contain endogenously produced cardenolides, 
while those of the criocerine Lilioceris lilii contains phe-
nylalanine derivatives. (Pasteels et al. 1989). Similar amino 
acid-derived defensive compounds are assumed to occur in 
the secretions of adult L. merdigera. Yet, both tested carde-
nolides or their derivatives are incorporated in the fecal 
shield of the larvae.

Fecal shields in chrysomelid larvae are known from 
several groups (Cassidinae, Clytrinae, Criocerinae, Cryp-
tocephalinae) and have repeatedly shown to contain plant 
derived compounds (Olmstead and Denno 1992; Morton 
and Vencl 1998; Gómez et al. 1999; Keefover-Ring 2013). 
As sequestration has been defined as “the selective uptake, 
transport, modification, storage and deployment of plant 

Table 1 Food choice assay with Myrmica rubra and honey water 
enriched with cardenolides or just the solvent; feeding ants were 
counted at each well (control/cardenolide) 30 min after honey was 
offered
cardenolide ccardenolide

[mM]
Nants ± SE
(control)

Nants ± SE
(cardenolide)

n P

ouabain 1 2.85 ± 0.18 2.77 ± 0.14 13 0.543
5 2.36 ± 0.25 1.55 ± 0.14 11 0.117

digoxin 1 2.33 ± 0.16 1.07 ± 0.13 15 0.002**
5 2.00 ± 0.21 0.42 ± 0.16 12 0.004**

**marks P < 0.005

Fig. 2 Feeding time assay with M. rubra and honey water enriched 
with 1mM cardenolides (red) or just the solvent (blue) in a simultane-
ous choice test; bars represent means with bootstrapped 95% confi-
dence intervals; violin plots show frequency distributions of observed 
feeding times; N is number of ants; *** marks P < 0.001

 

Fig. 1 Recovery of orally administered 
³H-labeled cardenolides from feces or bodies 
of L. merdigera imagines and larvae; animals 
were fed unlabeled leaves for 2 days prior 
to extraction; * marks P < 0.05; (Picture of 
imago courtesy of Samuel Waldron)
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hydrophilic compounds (Freeman et al. 2014). Malcolm 
(1991) reports that ouabain can be tasted by humans only 
at concentrations 40 times higher than the less polar carde-
nolide digitoxin. The polarity differences are also believed 
to account for the different toxic effects of orally ingested 
cardenolides on cats, where ouabain only showed emetic 
effects at a dose six times higher than the lethal dose of 
digoxin (Malcolm 1991).

When confronted with larvae of L. merdigera wear-
ing plant-derived fecal shields or having their fecal shield 
removed, M. rubra chose the unshielded and Allium-reared 
shielded larvae considerably more often than the ones with 
cardenolide-containing Convallaria-derived fecal shields. 
Future experiments may consider possible confounding 
factors of the ants’ choice like size of the larva or their 
fecal shield. Chemical protection by fecal defenses was 
repeatedly shown to be based on host-derived compounds 
(Morton and Vencl 1998; Vencl et al. 2005) and M. rubra 
was also deterred by those in Eurypedus’ defense derived 
from Cordia curassavica (Gómez et al. 1999). None of the 
reports known to us includes host plant cardenolides or their 
metabolites as deterrent fecal compounds.

Fecal shields of chrysomelid larvae were, in other 
instances, reported to attract predatory and parasitic insects 
rather than deterring them (Schaffner and Müller 2001; 
Müller and Hilker 2004). In our assays five larvae with 
Convallaria-derived fecal shield were chosen by the ants, 
which may be explained by the fluctuating cardenolide con-
tent of C. majalis leaves (Schrutka-Rechtenstamm et al. 
1985), potentially leading to diminished deterrent effects in 
individual fecal shields. Adding the findings of the honey 
choice experiments, we suggest that rather apolar cardeno-
lides from C. majalis or their derivatives in the fecal shield 
of L. merdigera larvae reduce predation by M. rubra.

Surprisingly, no statistical difference in predator choice 
was discovered between Allium-reared larvae with and 

secondary chemicals for the insect’s own defense” (Heckel 
2018), a recycling of plant compounds in fecal shields can-
not per se be called sequestration as long as no modification 
or selectivity has been shown. Our tracer feeding studies 
show that ingested cardenolides or their metabolized deriva-
tives are in large part found in the feces of larval and adult 
L. merdigera. The radioactivity recovered from the body of 
a small number of individual beetles might represent rem-
nants of frass not yet discarded from the gut. During gut 
transit, ingested cardenolides can undergo metabolisation 
leading to altered chemical properties. Such metabolic reac-
tions are described for cardenolides in the guts of adapted 
butterflies (Marty and Krieger 1984; Abe et al. 1996) and 
the accumulation of compounds in the midgut is generally 
suspected to be a necessary precondition for sequestration 
(Petschenka and Agrawal 2015). While we do not know 
whether the radioactively labeled ouabain and digoxin were 
metabolically altered during the gut passage or if an active 
accumulation in the midgut takes place, our predator choice 
assays support that ingested cardenolides or their derivatives 
are excreted in deterrent forms in the feces of L. merdigera.

Of the two cardenolides tested on the predatory ant M. 
rubra, the ants did not discriminate significantly between 
honey plus ouabain and pure honey. Digoxin, on the other 
hand, clearly had a deterrent effect on M. rubra. Ants were 
frequently observed cleaning their mandibles and anten-
nae after contact with digoxin, a reaction well-known to be 
caused in ants by chemical deterrents (Eisner and Meinwald 
1966; Nogueira-de-Sá and Trigo 2005). The difference in 
the effect of both cardenolides is supposedly determined 
by their chemical properties, namely their polarity and thus 
their differing ability to penetrate cell membranes and epi-
thelia. This may have an influence on their propensity to 
get in contact with ants’ receptor proteins. Though insect 
odor receptors generally detect hydrophobic substances 
(Leal 2013), gustatory receptors are also known to detect 

Fig. 3 Predator choice assay with M. rubra and L. merdigera 
larvae; four larvae reared on A. schoenoprasum with fecal 
shield removed (A) or intact (B) and reared on C. majalis 
with fecal shield removed (C) or intact (D) were offered to 
M. rubra colonies; first larvae carried away by the ants was 
considered “chosen”; * and ** mark P < 0.05 and P < 0.005 
respectively
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possible attraction of parasites and certain predators (Mül-
ler and Hilker 2004) such that fecal defense was described 
as a “double-edged sword” (Huang et al. 2023). Due to its 
ability to live on plants with strongly differing specialized 
metabolites, L. merdigera may pose a future model to better 
investigate this “evolutionary dilemma” (Müller and Hilker 
2000) in combination with host plant preferences.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10886-
023-01465-8.
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