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Abstract Chemical communication is the oldest form of
communication, spreading across all forms of life. In insects,
cuticular hydrocarbons (CHC) function as chemical cues for
the recognition of mates, species, and nest-mates in social
insects. Although much is known about the function of indi-
vidual hydrocarbons and their biosynthesis, a phylogenetic
overview is lacking. Here, we review the CHC profiles of
241 species of Hymenoptera, one of the largest and most im-
portant insect orders, which includes the Symphyta (sawflies),
the polyphyletic Parasitica (parasitoid wasps), and the
Aculeata (wasps, bees, and ants). We investigated whether
these taxonomic groups differed in the presence and absence
of CHC classes and whether the sociality of a species (solitar-
ily vs. social) had an effect on CHC profile complexity. We
found that the main CHC classes (i.e., n-alkanes, alkenes, and
methylalkanes) were all present early in the evolutionary his-
tory of the Hymenoptera, as evidenced by their presence in
ancient Symphyta and primitive Parasitica wasps. Throughout
all groups within the Hymenoptera, the more complex a CHC
the fewer species that produce it, which may reflect the
Occam’s razor principle that insects’ only biosynthesize the
most simple compound that fulfil its needs. Surprisingly, there
was no difference in the complexity of CHC profiles between

social and solitary species, with some of the most complex
CHC profiles belonging to the Parasitica. This profile com-
plexity has been maintained in the ants, but some specializa-
tion in biosynthetic pathways has led to a simplification of
profiles in the aculeate wasps and bees. The absence of
CHC classes in some taxa or species may be due to gene
silencing or down-regulation rather than gene loss, as demon-
strated by sister species having highly divergent CHC profiles,
and cannot be predicted by their phylogenetic history. The
presence of highly complex CHC profiles prior to the
vast radiation of the social Hymenoptera indicates a
‘spring-loaded’ system where the diversity of CHC
needed for the complex communication systems of so-
cial insects were already present for natural selection to
act upon, rather than having evolved independently.
This diversity may have aided the multiple independent
evolution of sociality within the Aculeata.
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Introduction

Chemical communication is the oldest form of communica-
tion, spreading across all forms of life (Wilson 1970), and
underlies almost all known behavior from genes to super-or-
ganisms. Pheromones are one of the most important signals
perceived through the chemical sensory channel (Wyatt
2013), and are particularly complex and well studied in insects
(Howard and Blomquist 2005), where 1000s of pheromones
have been described. Short-range contact pheromones are
used by many insects to identify and potentially discriminate
against other individuals of the same or different species

Electronic supplementary material The online version of this article
(doi:10.1007/s10886-015-0631-5) contains supplementary material,
which is available to authorized users.

* Stephen J. Martin
s.j.martin@salford.ac.uk

1 Department of Animal and Plant Sciences, University of Sheffield,
Sheffield S10 2TN, UK

2 School of Environment and Life Sciences, The University of Salford,
Manchester M5 4WT, UK

J Chem Ecol (2015) 41:871–883
DOI 10.1007/s10886-015-0631-5

http://dx.doi.org/10.1007/s10886-015-0631-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10886-015-0631-5&domain=pdf


(Wyatt 2013). The best studied group of compounds are the
cuticular hydrocarbons (CHC) that are embedded in the cutic-
ular lipid layer of all insects and have been extensively
researched over the past 30 years. This has shown that CHC
differ greatly both quantitatively and qualitatively among as
well as within a species. More recently, CHC have been
shown to convey information about an individual’s fertility,
sex, gender, caste, kin, etc. in numerous species (Blomquist
and Bagnères 2010). The majority of CHC studies have con-
centrated on the Hymenoptera, one of the largest and most
diverse insect orders with over 130,000 described species,
including many economically and environmentally important
species, especially among the social bees, wasps and ants
(Wilson 1971). The combined hymenopteran biomass out-
weighs that of all other terrestrial organisms, even the verte-
brates, due to their evolutionary success, which is reflected in
their vast abundance (Wilson 1971). Central to their success is
their chemical ecology.

Within the Hymenoptera, a huge diversity of CHC is pres-
ent with thousands of compounds already having been de-
scribed. This diversity is generated simply by either the inser-
tion of one or more double bonds (olefins) or one or more
methyl groups (methylalkanes) at various positions along a
chain of carbon atoms that typically varies from 21 to around
40 carbons in length. Very rarely do both biosynthetic path-
ways combine to produce methylalkenes, which are
methylalkanes that also contain a double bond/s.
Importantly, these small additions of a double bond or methyl
group cause the molecules to bend via Van der Waals forces,
so giving each CHC a unique conformation (shape).
Furthermore, most methylalkanes contain chiral centers and
perception depends on odorant chirality, although in 20 insect
species from nine orders the methyl-branched hydrocarbons
were in the (R)-configuration (Bello et al. 2015). Likewise the
vast majority of insect olefins are present in the (Z)-configu-
ration. It has been shown that insects detect these small differ-
ences in compound structure, i.e., the position, chirality, or
absence of double bonds or methyl groups, so insects can
distinguish between compounds of the same chain length that
vary in the position of their double bond(s) (Dani et al. 2005)
or methyl group(s) (Châline et al. 2005). However, little is
known about the actual molecular mechanism at the basis of
CHC perception (olfactory or gustatory receptors; involve-
ment of possible carrier proteins etc.), with only a few studies
having investigated antennal electrophysiological responses
to CHC (e.g., Ozaki et al. 2005). So current evidence for
differential perception of CHC with different moieties are
based only on a limited number of behavioral bioassays using
a very small number of species.

The thousands of CHC can be categorized into three main
groups: 1) saturated n-alkanes, 2) olefins that contain one or
more double bonds, and 3) methylalkanes, which contain one
or more methyl groups. Just two main biosynthetic pathways

underlie the production of all these CHC (Howard and
Blomquist 2005; Morgan 2010). Both types of pathways in-
volve the elongation and reduction of fatty acyl-CoAs precur-
sors to aldehydes before oxidative decarbonylation to obtain
the correct carbon chain length (Qiu et al. 2012). The produc-
tion of n-alkanes and alkenes, involves malonyl-CoA and, in
the case of alkenes, a fatty acyl-CoA desaturase inserting a
double-bond into the carbon chain at a precise location; i.e., a
Δ9 desaturase inserts a double bond in the 9th position, aΔ7
desaturase into the 7th position etc. In the production of
methylalkanes, it is methylmalonyl-CoA that helps to insert
a methyl group at various positions along the carbon chain.

There is increasing evidence that compound structure (i.e.,
presence and position of double-bonds or methyl groups) rath-
er than chain length is the key factor when it comes to an
insect’s ability to detect and learn different hydrocarbons
(Châline et al. 2005; Dani et al. 2005; van Wilgenburg et al.
2010). These studies demonstrate that insects can easily dis-
criminate between compounds bearing moieties such as dou-
ble bond and methyl branches, but cannot discriminate linear
alkanes. Furthermore, insects are able to learn and distinguish
between compounds of the same chain length that vary in the
position of their double-bond or methyl group, but are unable
to discriminate between different homologs, i.e., compounds
that share the same structure but differ in chain length (van
Wilgenburg et al. 2010). Hence, we have concentrated on the
divergence of CHC structural isomers among the
Hymenoptera, and have omitted data on chain length in order
to make the analysis of the dataset manageable.

Another factor that makes Hymenoptera a key system is
that the order contains both solitary and social species.
Solitary insects use CHC to identify mates of the correct spe-
cies and gender (e.g., Bartelt et al. 2002; Böröczky et al. 2009;
Steiner et al. 2006), whereas social insects use CHC to distin-
guish individuals of different species, castes, colonies, domi-
nance statuses, developmental stages, kin, etc. (e.g., Bonavita-
Cougourdan et al. 1987; Ferreira-Caliman et al. 2010; Martin
et al. 2008a; Monnin 2006; Wagner et al. 2001). Given that
social insects have a much greater level of chemical commu-
nication than solitary insects, it has long been assumed that
social insects will produce a greater variety of CHC compared
to solitary Hymenoptera; a hypothesis we test.

Here, we provide the first review of all hymenopteran CHC
profiles published to date in a phylogenetic framework, and
we investigate major taxonomic differences in the main CHC
classes: n-alkanes, alkenes, and methylalkanes found across
the order. A number of studies have provided an overview of
hymenoptera CHC profiles at the genus (wasps: Khidr et al.
2013; bees: Hadley et al. 1981; ants: Martin et al. 2008b) or
family level (ants: Martin and Drijfhout 2009; van
Wilgenburg et al. 2011). However, a taxonomic overview of
CHC profiles across the whole order is missing, and will pro-
vide a much needed wider and more insightful perspective
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into the long term evolution of CHC in this important group of
insects.

Methods and Materials

Data Collection The CHC profiles of 241 hymenopteran spe-
cies (Appendix I) were collated using Web of Science® (http://
thomsonreuters.com/web-of-science/), and were based on a
total of 167 studies (Appendix II) published between 1982
and 2013. To standardize CHC profiles across the 165 social
species, we used only worker CHC profiles since queen data
were reported only in a small minority of studies. Because of
the difficulty in correctly interpreting mass spectra of some
hydrocarbon groups such as dimethylalkanes, there is a small
chance that the data provided in Appendix III are not entirely
free of errors. It does, however, reflect accurately what has been
published. For each species, the presence and absence of a
chemical class and associated isomers were recorded
(Appendix III). In a number of studies, the threshold that
classified a compound as occurring at ‘trace’ amounts was
either missing or differed between studies. Therefore, we
recorded all compounds reported, including those that had
been detected at trace amounts. Species were split into five
main taxonomic groups: the Symphyta ([sawflies] 2 species),
the polyphyletic Parasitica ([parasitoid wasps] 27 species), the

aculeate wasps (39 species), ants (95 species), and bees (78
species). According to Wilson (1971), the Symphyta are the
most ancient of the five taxonomic groups present in our
dataset, together with the primitive Parasitica. Therefore, these
two groups could potentially provide a glimpse of the types of
CHC that were already present in the early evolutionary history
of the order. The more ‘modern’ Aculeata, were divided into
aculeate wasps, ants, and bees, because these groups differ
distinctly in life style (i.e., nest type, feeding behavior, etc.),
and they contain all of the 164 social species.

All analyses were conducted using the statistical software
R (v 2.81) or SPSS v. 20. Since our dataset contained only two
species of Symphyta, these were excluded from the statistical
analysis, but still are included in some of the figures to serve as
a reference to the other four taxonomic groups.

Taxonomic Occurrence of CHC Classes To investigate any
differences in the occurrence of the main CHC classes
(Table 1) among the four taxonomic groups (Parasitica, acu-
leate wasps, ants, and bees), the number of species per group
that produced a given CHC class were calculated, and the
results were analyzed using a Cochran-Mantel-Haenszel
(CMH) χ2- test. To ensure the results of the CMH test had
not been impaired by phylogenetic bias, for example, because
some genera were over-represented in the dataset skewing the
results, we applied a measure of phylogenetic signal strength

Table 1 The occurrence of cuticular hydrocarbon (CHC) classes across four groups of Hymenoptera

atyhpmySssalClacimehC

N=2 

Parasitica 

N=27 

Aculeate 

Wasps 

N=39 

Ants 

N=95 

Bees 

N=78 

n 00199001001001senaklA-

Olefins: 
Alkenes 100 63 82 78 91 

53923191001seneidaklA

Alkatrienes    1  

4seneartetaklA

Methylalkanes:
Monomethylalkanes  50 78 85 98 35 

Dimethylalkanes 50 70 62 83 4 

132803senaklalyhtemirT

103senaklalyhtemarteT

Methylolefins:
333seneklalyhteM

3seneidaklalyhteM

The percentage of species in which a given chemical class was present is shown for each group. The number of species in each group (N) is also given
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(D) as suggested by Fritz and Purvis (2010). D can be used to
test for phylogenetic bias in a binary dataset in which some
species are over-represented. Such over-representation of spe-
cies can lead to statistical bias and false significance values
(Freckleton et al. 2002). In our dataset, a number of genera,
e.g., Bombus, Polistes and Vespa, were over-represented be-
cause they are popular model systems. Therefore, we applied
D to each taxonomic group separately to test for intra-group
phylogenetic bias that would affect the degree to which our
results could be generalized across each taxonomic group.

TheD statistic is equal to 1 if the observed binary trait has a
phylogenetically random distribution across the tips of the
phylogeny, and is equal to 0 if the distribution is clumped.
Increasing clumping in the binary trait is indicated by values
of D decreasing from 1. If the binary trait is extremely
clumped, D falls below 0, whereas over-dispersion of the ob-
served binary trait is indicated by values greater than 1.

To calculate D we combined our binary dataset with a
phylogenetic tree of the Hymenoptera, kindly provided by
Peters et al. (2011) that was constructed from a supermatrix
of 120,000 sequences from 1100 species. When species were
present in our dataset but absent in the phylogenetic tree, we
used the package ‘ape’ (Paradis et al. 2013) in R to build these
missing species into the phylogenetic tree (nexus file). The
UniProt database (www.uniprot.org/taxonomy/) in
combination with the Animal Diversity Web (ADW) database
of the University of Michigan (www.animaldiversity.ummz.
umich.edu/) were used to determine the branch position of
each new species within the tree. The branch length for the
added species was calculated based on the average of the
branch lengths of its sister-species within the same genus or
(sub-) family. We used the statistical package ‘caper’
(Orme 2013) in R to estimate D for each CHC class
(excluding the n-alkanes, as these were universally
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Alkadienes
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Di-methylalkanes
Tri-methylalkanes
Tetra-methylalkanes

Mono-methylalkenes
Mono-methylalkadienes

Fig. 1 A cladogram of the Hymenoptera contained in our dataset. The
phylogenetic relationships shown are based on Brothers (1999), Davis
et al. (2010), and Peters et al. (2011). Hymenoptera families were split
(based on their life style) into five main taxonomic groups: the Symphyta,
Parasitica, aculeate wasps, ants, and bees. The Parasitica are polyphyletic
and are highlighted with an asterisk (*) to show which families were
classed as belonging to this group of parasitoid wasps. The same is
applied to the aculeate wasps, which were marked with a number (1).
The pie chart next to each taxonomic group gives an overview of the

proportions of the six major cuticular hydrocarbon (CHC) class (see leg-
end) produced by each group. The Symphyta are shown here to demon-
strate that the main CHC classes found in the Hymenoptera are already
present in these ‘ancient’ species of Hymenoptera. Only the bees have
specialized on diversification of olefins, while the rest (ants, aculeate
wasps, and parasitica) have proceeded mainly down a methyl diversifi-
cation path. As our dataset contained only two species of Symphyta, the
pie chart is unlikely to be a representation of the Symphyta
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present throughout the Hymenoptera) across the
Hymenoptera as a whole, and for each taxonomic group
separately. The following very rare chemical classes
(a lkat r ienes , a lkate t raenes , te t ramethyla lkanes ,
methylalkenes, and methylalkadienes) were excluded
from the above analyses because they were produced
only by a handful of species and, thus, sample size
was too low for these to be reliably analyzed.

To investigate the phylogenetic history on CHC production
we extracted all our study species from the phylogenetic tree
of the Hymenoptera (Peters et al. 2011), after it had been
supplemented with our binary dataset (see above). This
represents a phylogenetic tree for all our study species.

The branch lengths were not shown for clarity. The
final branch then was color coded depending on the
class of CHC that species produced.

Finally a cladogram was produced using the binary
dataset (Appendix III) of all CHC using a Hierarchical
cluster analysis in SPSS v. 20, using Squared Euclidean
distances with average linked (between group) functions.
Again each taxonomic group was color coded to help
with identifying any patterns.

Isomer Diversity To test for differences in positional isomer
diversity across the four taxonomic groups, the average num-
ber of isomers (per CHC class) produced by each taxonomic
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Fig. 2 Abundance of positional
isomers a) alkenes, b) dienes, c)
monomethylalkanes, d)
dimethylalkanes, e)
trimethylalkanes, and f)
tetramethylalkanes, produced by
the Hymenoptera surveyed in this
study. The numbers above the
bars indicate the number of
positional isomers that group
together (i.e., three
dimethylalkanes such as 9,15;
9,17; and 9,19, would result in a 3
above the 9, x bar). The figure
illustrates some universal
properties of hymenopteran
cuticular hydrocarbons (CHC),
such as odd positions are always
more common than even
positional isomers, the number of
compounds reduced with
compound complexity, except in
the vast radiation of the
dimethylalkanes, although there
are strong similarities in the
patterns of abundance between
the odd chained alkenes and
dienes and also between the
mono-, di-, and trimethylalkanes.
However, these patterns are less
obvious in the even chained
isomers. It could be derived that
the Z9- double bond is the ances-
tral state as it is present through-
out the entire Hymenoptera as are
all many monomethylalkanes. So
the diversification of positional
isomers had already occurred in
the most ancestral species and has
been maintained throughout the
entire order
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group was compared using a generalized linear model
(Poisson error structure; followed by a χ2test) to account for
the variation in sample size between the taxonomic groups.
For the rarer CHC classes (e.g., alkadienes, alkatrienes,
alkatetraenes, tetramethylalkanes, methylalkenes, and
methylalkadienes) isomer information was reported only in a
small number of species and, therefore, these classes again
were excluded from the analysis. When the data were too
skewed to be transformed, we used a non-parametric
Kruskal-Wallis test instead.

Is Sociality Driving CHC Diversity? To investigate differ-
ences in CHC diversity (i.e., the number of CHC classes pres-
ent in the chemical profile, as well as the number of isomers
produced) based on sociality, species were split into two
groups: solitary or social species. Out of the five taxonomic
groups (this time including the Symphyta), the bees and the
aculeate wasps are the only two groups that contain a mixture
of social and solitary life styles. The social status of each bee
species was based on Michener (2007), whereas the social
status of the aculeate wasps was described in the respective
papers from which their CHC profile had been taken. Two
generalized linear models (Poisson error structure; followed
by a χ2 test) were run to test for sociality-specific differences
in CHC complexity. The first analysis was run on the number
of chemical classes that were produced by social and solitary
species, whereas the second analysis assessed the total number
of isomers (again divided by CHC class) found in the CHC
profiles of the two groups. A species was included only in the
latter analysis, when isomer data had been reported for all
CHC classes present in that species, which resulted in a total
of 40 solitary and 93 social species being included in this
particular dataset.

Biosynthetic Patterns In the ants, a more ‘complex’ CHC
(e.g., a compound with two methyl groups) appeared to be
correlated to the compound class of the next simpler structure
(e.g., with one methyl group), suggesting that ‘simpler’ com-
pounds are precursors of more ‘complex’ CHC (Martin and
Drijfhout 2009; Van Wilgenburg et al. 2011). Therefore, we
also investigated whether and how strongly CHC classes were
correlated across the Hymenoptera by applying a Kendall’s τ
correlation analysis test on the presence/absence of CHC

classes, as well as on the number of CHC isomers found per
CHC class. Again compounds that were produced only by a
handful of species (see above) were excluded from the
analysis.

Results

Taxonomic Occurrence of CHC Classes The published
CHC profiles of the 241 species of Hymenoptera contained
11 CHC classes (Fig. 1, Table 1) and 237 different structural
isomers, which could be further classified into 14 alkene, 29
alkadiene, 20 monomethylalkane, 116 dimethylalkane, 53
trimethylalkane, and 5 tetramethylalkane isomers (Fig. 2).
Since each structural isomer normally occurs as a homolog
series (i.e., at several carbon chain-lengths), the estimated
number of CHC identified within the Hymenoptera will ex-
ceed 2000.

All major olefin and methylalkane classes were already
present in the CHC profiles of the basal Symphyta and
Parasitica (Figs. 1 and 3). It appears that the olefin biochem-
ical pathway may have preceded the methyl pathway in the
Hymenoptera (see Fig. 3), even though this is based on a very
small number of species. However, in these ancient groups,
we already have species specializing in either olefin or methyl
production, while the majority exploit both pathways.
Surprisingly, the diversity among the Parasitica, which pro-
duced all but three chemical classes (alkatrienes,
methylalkenes, and methylalkadienes), was greater only in
the ants, as these produced all chemical classes bar one
(tetraenes). The CHC profiles from Parasitica were unusual
in that they contained a great diversity of tetramethylalkanes
(absent from the other four taxonomic groups, including the
Symphyta).

There was a significant difference in the presence and ab-
sence of alkenes (CMH test: CMH=16.81, d.f. = 1, P<0.001),
monomethylalkanes (CMH test: CMH=117.024, d.f. = 1,
P<0.001), dimethylalkanes (CMH test: CMH=172.12, d.f. =
1, P<0.001), and trimethylalkanes (CMH test: CMH=45.91,
d.f. = 1, P<0.001) between the Parasitica, wasps, ants, and
bees. This was confirmed by the D statistic applied to the
whole order, which indicated that the presence of CHC classes
was clumped particularly with regards to the alkenes (D=
0.48, P<0.001) and the methylalkanes (monomethylalkanes:
D=0.19; dimethylalkanes: D=0.03; trimethylalkanes: D=
0.39: P<0.001 for all three). This clumping of CHC classes
across the hymenopteran tree occurred because some genera/
families specialized in producing olefins (62 species) or
methylalkanes (38 species) (Figs. 3 and 4; Table 2), whereas
other species used a mixed hydrocarbon approach, producing
a combination of olefins and methylalkanes (124 species), as
well as methylolefins (8 species) (Fig. 3).

�Fig. 3 Phylogenetic tree based on 238 of the study species arranged with
the each color indicating which of the four major classes of cuticular
hydrocarbon (CHC) is produced by that species (the alkane only
species has been excluded). The phylogenetic relationships are based on
the tree by Peters et al. (2011), but the branch lengths have been ignored
for the purpose of clarity. Each sub-tree represents a taxonomic group a)
Symphyta+Parasitica; b) bees; c) ants, and d) aculeate wasps. The grey
background indicates the solitarily species. This figure indicates
specialization of olefins in the bees and methylated compounds in the
wasps
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This specialization in a family or class of CHC differed
among the taxonomic groups, even though there was some
intra-group variation in the presence and absence of a CHC
class; even within a single genus (Fig. 5). The CHC profiles of
bees were dominated by olefins (62 % species) (Fig. 3), and
generally lacked methylalkanes (especially dimethylalkanes
and trimethylalkanes) compared to the other three taxonomic
groups (Fig. 3; Table 1). Most species of aculeate wasps
(64 %) and ants (72 %), however, adopted a mixed-
hydrocarbon approach by producing both olefins and
methylalkanes (Fig. 3). As mentioned, the Parasitica mainly
produced methylalkanes-only profiles (55 % species). This
general specialization is seen in the CHC cladogram (Fig. 4),
as are the many exceptions to these general rules.

When the D statistic was repeated for each taxonomic
group to test whether the presence or absence of CHC classes
per group was skewed by some genera being over-represent-
ed, no such phylogenetic bias was found, which means that
the patterns described above can be generalized across all
species of that respective taxonomic group.

Isomer Diversity The four taxonomic groups differed in the
number of monomethylalkane (Generalized linear model:
χ2=40.34, d.f. = 3, P<0.001), dimethylalkane (Kruskal-
Wallis Test: χ2=8.75 d.f. = 3, P=0.033) and alkene
(Kruskal-Wallis Test: χ2=21.40, d.f. = 3, P<0.001) isomers
(Fig. 5). However, the difference in alkene isomers was driven
only by the difference between ants and bees, as all other two-
way comparisons were not significant (Multiple comparison
after Kruskal-Wallis) (Fig. 4). Furthermore, when bees pro-
duced monomethylalkanes, they produced fewer
dimethylalkanes compared to the other three taxonomic
groups (P<0.02), whereas the Parasitica and ants produced
higher numbers of dimethylalkanes compared to the aculeate
wasps and bees (P< 0.05). The highest number of
trimethylalkanes was produced by the Parasitica (P<0.001).

Is Sociality Driving CHC Diversity? Surprisingly, sociality
had no effect on the number of chemical classes (Generalized
linear model: χ=2.66, d.f. = 1, P=0.1), nor the number of
CHC isomers (Generalized linear model: χ=0.38, d.f. = 1,
P=0.54) produced by a species. CHC profiles associated with
social species consisted of a similar number of CHC classes (4
±1), as well as an almost identical number of isomers (14±11)
compared to solitary species (average number of CHC classes:
3±1; average number of CHC isomers: 15±15). This is fur-
ther supported by the finding that no relationship between
taxonomic cladogram (Fig. 3) nor the CHC cladogram
(Fig. 4) could be observed. Isomer number did not consider
different carbon chain lengths.

Biosynthetic Patterns The more structurally complex (i.e.,
increasing number of double-bonds or methyl groups) a

CHC was, the fewer species produced it (Table 1). For exam-
ple, the most basic CHC are the n-alkanes, and they are almost
universally produced among the Hymenoptera (99.6 %),
whereas the structurally complex methylolefins are produced
by only three species in any group. This property occurred
universally across all taxonomic groups (Table 1). That is a
chemical class with high structural complexity and was almost
always present in conjunction with the chemical class of the
next lower structural complexity (Fig. 1; Table 2). It was sup-
ported by the correlation analysis, which showed that the ole-
fins (in this case alkenes and alkadienes) were positively cor-
related (Kendall’s τ for CHC class: τ=0.457, z=3.87,
P<0.001; Kendall’s τ for CHC isomers: τ=0.25, z=3.68,
P<0.001), and so were the methylalkanes (Kendall’s τ: τ>
0.2, P<0.001). Olefins and methylalkanes were negatively
correlated (P<0.01), because many species that produced ole-
fins did not produce methylalkanes (e.g., many bees), whereas
species that producedmanymethylalkanes (e.g., many species
of Parasitica and ants) often had fewer olefins in their CHC
profiles (as described above).

Discussion

Evolution of CHC Classes Our review revealed distinct dif-
ferences in the CHC profiles found among the Hymenoptera.
Both the ancient Symphyta and the primitive Parasitica pro-
duced almost all types of olefins and methylalkanes, which
suggest that the majority of CHC classes and their associated
biochemical pathways were already present early in
Hymenoptera evolutionary history. Such pre-existence of the
major biosynthetic pathways could explain the great diversity
of CHC compounds found within the Hymenoptera, because
it is likely that sister-species were able to evolve new structural
isomers based on small changes in the biosynthetic pathways
(Baker 2002; Symonds and Elgar 2008). The rare
methylolefins were present only in the Aculeata, which indi-
cates that the ability to combine biosynthetic pathways to pro-
duce these CHC evolved later in the Hymenoptera. However,
the ability to produce methylolefins is found in the primitive
ant species (Nothomyrmecia macrops) (Brown et al. 1990)
and Pachycondyla villosa (D’Ettorre et al. 2005; Lucas et al.
2004), indicating that this trait was probably present prior to
the evolution of bees and wasps, since these rare CHC also are
produced by two solitarily bees and one social wasp species
(Fig. 3). Methylolefins may be under-represented in the liter-
ature, since the interpretation of their spectra is more compli-
cated; both because double bond positions cannot be deter-
mined from electronic ionization spectra, and because little
information about the fragmentation of these molecules is cur-
rently available.

The largest diversity both with respect to number of chem-
ical classes (Table 1) and CHC isomers (Fig. 5) were present
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Fig. 4 A cladogram constructed from the binary dataset of all cuticular
hydrocarbons (CHC). This indicates no clear phylogenetic signal as all
five taxonomic groups are dispersed throughout the entire cladogram,
although the diversity of dimethylalkanes in the ants and olefins in the

bees can be seen. All names of solitarily species are given in bold and
again can be found throughout the cladogram indicating no clear
phylogenetic chemical signal associated with the evolution of sociality
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in the primitive Parasitica and younger Formicidae (ants), both of
which produce almost all CHC classes found in the
Hymenoptera, indicating no loss of ability to produce the various
CHC over evolutionary time. A simplification in CHC profiles
was seen in the aculeate wasps, which only produced
monomethylalkanes and very few dimethylalkanes and
trimethylalkanes compared with their ant sister-family, which
have specialized in dimethylalkane production (Figs. 4 and 5;
Appendix III; Martin and Drijfhout 2009; Martin et al. 2008c)
as have the Parasitica. Likewise, the bees have diversified olefin
production (Figs. 4 and 5; Martin et al. 2010) and down-
regulation of themethylalkane pathway over time in these clades.
However, it appears that no group has lost the ability to produce

any class of CHC despite apparent diversification into certain
CHC groups. Even at the species-level the down-regulation of
individual compounds or whole chemical classes is not uncom-
mon. Intra-species variation in the occurrence of CHC classes
has been recorded for several species of bees. For example in
Apis mellifera, the CHC profile of the brood contains
monomethylalkanes that are then almost absent at the adult stage
(Kather et al. 2015; Nation et al. 1992). Such dimorphism in
methylalkane production also has been observed when compar-
ing the CHC of queens and their (sister) workers, for example in
Melipona bicolor (Abdalla et al. 2003) and Friesella schrottkyi
(Nunes et al. 2010). In both these species, queens produce
methylalkanes even though these are absent or occur at very
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Fig. 5 Average number of isomers across the five hymenopteran groups
(Symphyta, Parasitica, aculeate wasps, ants, and bees). The number of
species (per chemical class) that the isomer analysis was based on is

provided next to the bars. The Symphyta are shown as a reference to
the other four taxonomic groups, but were not included in the data
analysis due to their low sample size

Table 2 Types of cuticular hydrocarbon (CHC) profiles found among the Hymenoptera

CHC Class n-Alkanes 3 species Olefins
62
species

Methylalkanes
38 species

Olefins+Methylalkanes 124
species

Methylolefins 8
species

Exceptions 6
species

n-Alkanes X X X X X X X X X X X X X X X X X X X X X X X X X

Olefins:

Alkenes X X X X X X X X X X X X X X X X X

Alkadienes X X X X X X X X X X X

Alkatrienes X

Alkatetraenes X

Methylalkanes:

Monomethylalkanes X X X X X X X X X X X X X X X X X X X X X X

Dimethylalkanes X X X X X X X X X X X X X X X X X

Trimethylalkanes X X X X X X X X X

Tetramethylalkanes X X X

Methylolefins:

Methylalkenes X X X X

Methylalkadienes X X

CHC profiles, in terms of the presence and absence of CHC classes, could be divided into five main types: Species that only produced 1) n-alkanes (n-
Alkanes-only species), 2) olefins (Olefins-only species), or 3) methylalkanes (Methylalkanes-only species), and species that produced 4) a mixture of
olefins and methylalkanes (Olefins+Methylalkanes-only species), as well as those that produced 5) methylolefins (Methylolefins species). Within each
profile type, sub-types are shown to demonstrate the co-occurrence of ‘complex’ compounds (i.e., compounds with more than one double-bond or
methyl group) and ‘simpler’ compounds (i.e., compounds with one less double-bond or methyl group). Exceptions to this pattern of correlation are
shown in the final column. The number of hymenopteran species that express a given profile type are also given in the first row of the table
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low concentrations in the workers. In the parasitic wasp,
Lariophagus distinguendus, males deactivate the production of
3-methylheptacosane 32 h after emergence so that they are no
longer mistaken for females (Steiner et al. 2007). Such evidence
of intra-species CHC variation suggests that entire groups of
genes may be silenced or down-regulated rather than lost
completely, as is often assumed. The silencing of genes over very
long periods of evolutionary time helps explain the intra-genus
variation in the presence and absence of certain CHC classes that
was observed in several genera within our dataset (e.g., in the bee
genus Perdita, the aculeate wasp genus Polistes, and the ant
genus Formica) (Fig. 3). Despite this, throughout the
Hymenoptera there seems to exist the universal rule that themore
complex a CHC the fewer the species produce it. This may
reflect the Occam’s razor principle that insect’s only
biosynthesize the simplest CHC to perform the required task
and only produce more complex compounds when under strong
selection pressure to do so.

As expected, diversification of a particular group of CHC in
the bees (olefins) or Parasitica and aculeate wasps
(methylalkanes) is reflected in their role in communication. For
example, nest mate recognition is associated with alkenes in
Trigona fulviventris (Buchwald and Breed 2005) and Apis
mellifera (Dani et al. 2005; Pradella et al. 2015), while in other
bees, alkenes serve as sex pheromones and initiate mating in
Colletes cunicularis (Mant et al. 2005), Andrena nigroaenea
(Schiestl et al. 1999), Habropoda pallida (Saul-Gershenz and
Millar 2006), and Megachile rotundata (Paulmier et al. 1999).
In Frieseomelitta varia, olefins appear to act as queen phero-
mones (Nunes et al. 2009). Whereas, in the Parasitica, such as
Nasonia vitripennis (Steiner et al. 2007), Eupelmus vuilleti
(Darrouzet et al. 2010), Dibrachys cavus (Ruther et al. 2011),
Roptrocerus xylophagorum (Sullivan 2002) and Lariophagus
distinguendus (Steiner et al. 2007), mono- and dimethylalkanes
act as short-range sex pheromones. In the aculeate wasps
(Polistes, Ropalidia and Vespa), monomethylalkanes are linked
to nest mate recognition (Dani et al. 1996; Dapporto et al. 2006;
Espelie et al. 1994; Layton et al. 1994; Lorenzi et al. 1997, 2004;
Ruther et al. 2002; Tannure-Nascimento et al. 2007). In the few
wasp species where methylalkanes were absent but olefins pres-
ent, such as Cardiochiles nigripes (Syvertsen et al. 1995) and
Cephus cinctus (Bartelt et al. 2002), sexes of these species differ
in their alkene and diene quantities, and these may function as a
contact sex pheromones.

Trying to use lifestyle to explain the major diversification of
certain CHC groups, such as olefin diversification in the bees,
currently fails to produce a coherent story. Social wasps and bees
both live and forage in the same environment, but have diversi-
fied in methylalkane and olefin production, respectively.
However, one possible avenue of further research is that the
production of methylalkanes requires the use of essential amino
acids such as valine and methionine. These amino acids can be
obtained only via the ingestion of proteinaceous foods such as

meat in wasps and ants. Bees obtain their essential amino acids
by feeding on pollen. Therefore, there could be a relationship
between diet, in respect to the availability of protein and
methylalkane production.

Is Sociality Driving CHC Diversity? Our analysis rejected
the long standing assumption that CHC complexity is linked
to sociality, since no sociality-based differences in CHC pro-
files were found. In fact, surprisingly both the solitary
Parasitica and the social ants produced the most complex
CHC profiles across the Hymenoptera. Many other solitary
insects such as flies (Diptera) can have relatively simple
CHC profiles (Carlson and Yocom 2005; Ferveur 2005), al-
though exceptions do exist (Nelson et al. 1981). Parasitica are
known to have complex courtship behaviors, in which chem-
ical signals play a greater role than visual or tactile cues
(Sullivan 2002). In many parasitoid species, CHC play a cru-
cial part in locating, recognizing and assessing potential mates
(Ayasse et al. 2001; Johansson and Jones 2007; Matthews
1975; Singer 1998; Sullivan 2002). They also facilitate the
coordination of courtship behavior (Ruther et al. 2011;
Steiner et al. 2006). Intense host competition also has led to
parasitoids using CHC tomark hosts to reduce intra-host com-
petition (Van Alphen and Visser 1990). Such factors could
contribute to the selection of complex CHC profiles.
Whatever the reason, this study reveals that the high CHC
diversity required by all social species was already present
prior to the evolution of sociality. Therefore, the primitive
Parasitica represent a Bspring-loaded^ system (Nowak et al.
2010). This is where the ability to produce a diverse range of
CHC needed for the evolution of a communication system as
complex as that used by social insects, was already present for
natural selection to act upon, rather than having to evolve it
independently. This is evidenced by the 225 odorant receptors
(Ors) present in the solitary Nasonia wasp (Robertson et al.
2010), relative to the 174 Ors present in honeybees, both
which greatly exceed the number found in flies Drosophila
melanogaster (62 Ors) and Anopheles gambiae (79 Ors)
(Robertson and Wanner 2006). This type of spring-loaded
pre-adaptation may be a key factor in aiding the evolution of
sociality in many different groups within the Aculeata.
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