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Abstract
In this paperwe construct a new type of noise of fractional nature that has a strong regularizing
effect on differential equations. We consider an equation driven by a highly irregular vector
field and study the effect of this noise on such dynamical systems. We employ a new method
to prove existence and uniqueness of global strong solutions, where classical methods fail
because of the “roughness” and non-Markovianity of the driving process. In addition, we
prove the rather remarkable property that such solutions are infinitely many times classically
differentiable with respect to the initial condition in spite of the vector field being discontin-
uous. The technique used in this article corresponds, in a certain sense, to the Nash–Moser
iterative scheme in combination with a new concept of “higher order averaging operators
along highly fractal stochastic curves”. This approach may provide a general principle for
the study of regularization by noise effects in connection with important classes of partial
differential equations.
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1 Introduction

1.1 Background andMain Result

Consider the ordinary differential equation (ODE)

d

dt
Xx
t = b(t, Xx

t ), X0 = x, 0 ≤ t ≤ T (1)

for a vector field b : [0, T ] × R
d −→ R

d .
It is well-known that the ODE (1) admits the existence of a unique solution Xt , 0 ≤ t ≤

T , if b is a Lipschitz function of linear growth, uniformly in time. Further, if in addition
b ∈ Ck([0, T ] × R

d ; R
d), k ≥ 1, then the flow associated with the ODE (1) inherits the

regularity from the vector field, that is

(x �−→ Xx
t ) ∈ Ck(Rd ; R

d).

However, well-posedness of the ODE (1) in the sense of existence, uniqueness and the
regularity of solutions or flow may fail, if the driving vector field b lacks regularity, that is if
b e.g. is not Lipschitz or discontinuous.

In this article we aim at studying the restoration of well-posedness of the ODE (1) in the
above sense by perturbing the equation via a specific noise process Bt , 0 ≤ t ≤ T , that is
we are interested to analyze strong solutions to the following stochastic differential equation
(SDE)

Xx
t = x +

∫ t

0
b(t, Xx

s )ds + Bt , 0 ≤ t ≤ T , (2)

where the driving process Bt , 0 ≤ t ≤ T is a stationary Gaussian process with non-Hölder
continuous paths given by

Bt =
∑
n≥1

λn B
Hn ,n
t . (3)

Here BHn ,n· , n ≥ 1 are independent fractional Brownianmotions inR
d with Hurst parameters

Hn ∈ (0, 1
2 ), n ≥ 1 such that

Hn ↘ 0

for n −→ ∞. Further,
∑

n≥1 |λn | < ∞ for λn ∈ R, n ≥ 1.
We recall (for d = 1) that a fractional Brownian motion BH· with Hurst parameter H ∈

(0, 1) is a centered Gaussian process on some probability space with a covariance structure
RH (t, s) given by

RH (t, s) = E
[
BH
t BH

s

]
= 1

2
(s2H + t2H + |t − s|2H ), t, s ≥ 0.

In addition, BH· has a version with Hölder continuous paths with an exponent strictly smaller
than H . The fractional Brownian motion coincides with the Brownian motion for H = 1

2 ,
but is neither a semimartingale nor a Markov process, if H 	= 1

2 . We also recall here that a
fractional Brownian motion BH· has a representation in terms of a stochastic integral as

BH
t =

∫ t

0
KH (t, u)dWu, (4)
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whereW· is a Wiener process and where KH (t, ·) is an integrable kernel. See Sect. 2 and e.g.
[55] and the references therein for more information about fractional Brownian motion.

In fact, on the other hand, the SDE (2) can be also naturally recast for Y x
t := Xx

t − Bt in
terms of the ODE

Y x
t = x +

∫ t

0
b∗(s, Y x

s )ds, (5)

where b∗(t, y) := b(t, y + Bt ) is a “randomization” of the input vector field b.
UsingMalliavin calculus combined with integration-by-parts techniques based on Fourier

analysis, we want to show in this paper the existence of a unique global strong solution Xx·
to (2) with a stochastic flow which is smooth, that is

(x �−→ Xx
t ) ∈ C∞(Rd ; R

d) a.e. for all t, (6)

when the driving vector field b is singular, that is more precisely, when

b ∈ Lq
2,p := Lq([0, T ]; L p(Rd ; R

d)) ∩ L1(Rd ; L∞([0, T ]; R
d))

for p, q ∈ (2,∞]. More precisely, the main result of our paper, whose proof will be given
in Sect. 5, is the following:

Theorem 1.1 Assume that the conditions for λ = {λi }∞i=1 with respect to B· = B
H· in

Theorem 4.16 hold. Suppose that b ∈ Lq
2,p, p, q ∈ (2,∞]. Let U ⊂ R

d be an open and
bounded set and Xt , 0 ≤ t ≤ T the solution of (2). Then for all t ∈ [0, T ] we have that

X ·
t ∈

⋂
k≥1

⋂
α>2

L2(�,Wk,α(U )).

We think that the latter result is rather surprising since it seems to contradict the paradigm
in the theory of (stochastic) dynamical systems that solutions to ODE’s or SDE’s inherit their
regularity from the driving vector fields.

We also mention that Theorem 1.1 is the first result1 in the literature on the C∞-
regularization by noise of singular ODEs in the sense of (6).

1.2 Possible Applications to PDEs and the Theory of Dynamical Systems

We expect that the regularizing effect of the noise in (2) will also pay off dividends in PDE
theory and in the study of dynamical systems with respect to singular SDE’s:

For example, if Xx· is a solution to the ODE (1) on [0,∞), then X : [0,∞)×R
d −→ R

d

may have the interpretation of a flow of a fluid with respect to the velocity field u = b of an
incompressible inviscid fluid, which is described by a solution to an incompressible Euler
equation

ut + (Du)u + �P = 0, � · u = 0, (7)

where P : [0,∞) × R
d −→ R

d is the pressure field.

1 In this context, we would like to point out that related results to ours appeared in the literature about 2 years
after the completion of our paper. See Harang and Perkowski [34], which is partially based on our article, or
Galeati and Gubinelli [27, 28], in which the authors also analyze path-by-path solutions for (distributional)
vector fields in Besov–Hölder spaces and other types of regularizing noise. See also Galeati [26] for an
overview.

123



Journal of Dynamics and Differential Equations

Since solutions to (7) may be singular, a deeper analysis of the regularity of such solutions
also necessitates the study of ODE’s (1) with irregular vector fields. See the seminal works of
DiPerna andLions [22] andAmbrosio [3] in connectionwith the construction of (generalized)
flows associated with singular ODE’s.

In the context of stochastic regularization of the ODE (1) in the sense of (2), however,
the obtained results in this article naturally give rise to the question, whether the constructed
smooth stochastic flow in (6) may be used for the study of regular solutions of a stochastic
version of the Euler equation (7).

Regarding applications to the theory of stochastic dynamical systems one may study the
behaviour of orbitswith respect to solutions to SDE’s (2)with singular vector fields at sections
on a 2-dimensional sphere (Theorem of Poincaré-Bendixson).

Another potential application pertains to amodified (stochastic) version of the Theorem of
Kupka–Smale [62], which may lead to a corresponding result on the residuality of hyperbolic
critical elements, for which pairs of critical elements have transversal invariant manifolds, in
the case of singular SDE‘s on smooth compact manifolds. The proof of the classical Kupka–
Smale theorem (see e.g. [56]) is based on the study of the properties of the differential of the
smooth (time-homogeneous) vector fields. However, in the case of a singular SDE, the proof
may rely on the investigation of the smooth stochastic flow (6) in Theorem 1.1.

Finally, we point out that our method for proving Theorem 1.1 allows for the to study of
dynamical systems associated with (2) in a deterministic sense, that is in the path-by-path
sense of Davie [17]. The latter means that one can find a measurable subset �∗ (depending
on the initial value x) in the space of continuous functions on [0, T ] with probability mass
(i.e. Wiener measure mass) 1 such that for all ω ∈ �∗ the deterministic ODE

f (t, x) = x +
∫ t

0
b(t, f (s, x))ds + Bt (ω), 0 ≤ t ≤ T

has a unique solution f (·, x) in the space of continuous functions on [0, T ].
Moreover, when the vector field b in (2) is essentially bounded and integrable, one can

also show that �∗ can be chosen to be independent of the initial value x and that f (t, ·) ∈
C∞(Rd ; R

d) for all t . See [6] in connection with Theorem 1.1.

1.3 Discussion of Previous Results and Our Approach

Wemention that well-posedness in the sense of existence and uniqueness of strong solutions
to (1) via regularization of noise was first found by Zvonkin [69] in the early 1970s in the one-
dimensional case for a driving process given by the Brownian motion, when the vector field
b is merely bounded and measurable. Subsequently the latter result, which can be considered
a milestone in SDE theory, was extended to the multidimensional case by Veretennikov [65].

Other more recent results on this topic in the case of Brownian motion were e.g. obtained
by Krylov and Röckner [37], where the authors established existence and uniqueness of
strong solutions under some integrability conditions on b. See also the works of Gyöngy
and Krylov [31] and Gyöngy and Martinez [32]. As for a generalization of the result of
Zvonkin [69] to the case of stochastic evolution equations on aHilbert space, we alsomention
the striking paper of Da Prato et al. [18], who constructed strong solutions for bounded and
measurable drift coefficients by employing solutions of infinite-dimensional Kolmogorov
equations in connection with a technique known as the “Itô–Tanaka–Zvonkin trick”.

The common general approach used by the above mentioned authors for the construction
of strong solutions is based on the so-called Yamada–Watanabe principle [67]: The authors
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prove the existence of a weak solution (by means of e.g. Skorokhod’s or Girsanov’s theorem)
and combine it with the property of pathwise uniqueness of solutions, which is shown by
using solutions to (parabolic) PDE’s, to eventually obtain strong uniqueness. As for this
approach in the case of certain classes of Lévy processes the reader may consult Priola [59]
or Zhang [68] and the references therein.

Let us comment on here that themethods of the above authors,which are essentially limited
to equations with Markovian noise, cannot be directly used in connection with our SDE (2).
The reason for this is that the initial noise in (2) is not a Markov process. Furthermore, it is
even not a semimartingale due to the properties of fractional Brownian motion.

In addition, we point out that our approach is diametrically opposed to the Yamada–
Watanabe principle: We first construct a strong solution to (2) by using Mallliavin calculus.
Then we verify uniqueness in law of solutions, which enables us to establish strong unique-
ness, that is we use the following principle:

Strong existence + Uniqueness in law ⇒ Strong uniqueness .

Moreover, our approach for the construction of strong solutions of singular SDE’s (2)
in connection with smooth stochastic flows is not based on techniques from Markov or
semimartingale theory as commonly used in the literature. In fact, our construction method
has its roots in a series of papers [9, 46–48]. See also [33] in the case of SDE’s driven by Lévy
processes, [25, 49] regarding the study of singular stochastic partial differential equations or
[8, 10] in the case of functional SDE’s.

Finally, let us alsomention some results in the literature on the existence and uniqueness of
strong solutions of singular SDE’s driven by a non-Markovian noise in the case of fractional
Brownian motion:

The first results in this direction were obtained by Nualart and Ouknine [53, 54] for
one-dimensional SDE’s with additive noise. For example, using the comparison theorem,
the authors in [53] are able to derive unique strong solutions to such equations for locally
unbounded drift coefficients and Hurst parameters H < 1

2 .
More recently, Catellier and Gubinelli [15] developed a construction method for solutions

of multidimensional singular SDE’s with additive fractional noise and H ∈ (0, 1) for vector
fields b in the Besov–Hölder space Bα+1∞,∞, α ∈ R. Here the solutions obtained are even path-
by-path in the sense of Davie [17], which is a stronger property than that of strong uniqueness,
and the construction technique of the authors relies on the Leray–Schauder–Tychonoff fixed
point theorem and a comparison principle based on an average translation operator. Further,
the drift part of the SDE is given by a non-linear Young type of integral. See also Amine et
al. [6], where the authors use Malliavin calculus to establish path-by-path solutions in the
sense of Davie, when the drift part of the SDE is a classical Lebesgue integral and the vector
field is essentially bounded and integrable. We remark that the approach in Catellier and
Gubinelli [15] fails to work in the latter case, since non-linear Young type of integrals don‘t
necessarily coincide with classical Lebesgue integrals, in general.

In this context let us also mention the recent works by Hu et al. [36], which deals with the
study of the Brox diffusion, and Butkovski and Mytnik [14], where the authors obtain results
on the regularization by (space time white) noise of solutions to a non-Lipschitz stochastic
heat equation and the associated flow. Here path-by-path unique solutions in the sense of
Davie [17] are proved.

Another recent result which is based onMalliavin techniques very similar to our paper can
be found in Baños et al. [9]. Here the authors proved the existence of unique strong solutions
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for coefficients

b ∈ L1,∞∞,∞ := L1(Rd ; L∞([0, T ]; R
d)) ∩ L∞(Rd ; L∞([0, T ]; R

d))

for sufficiently small H ∈ (0, 1
2 ).

The approach in [9] is different from the above mentioned ones and the results for vector
fields b ∈ L1,∞∞,∞ are not in the scope of the techniques in [15]. See also [10] in the case of
fractional noise driven SDE’s with a distributional drift.

Let us now turn to results in the literature on the well-posedness of singular SDE’s under
the aspect of the regularity of stochastic flows:

If we assume that the vector field b in the ODE (1) is not smooth, but merely require that
b ∈ W 1,p and � · b ∈ L∞, then it was shown in [22] the existence of a unique generalized
flow X associated with the ODE (1). See also [3] for a generalization of the latter result to
the case of vector fields of bounded variation.

On the other hand, if b in ODE (1) is less regular than required in [3, 22], then a flow may
even not exist in a generalized sense.

However, the situation changes, if we regularize the ODE (1) by an (additive) noise:
For example, if the driving noise in the SDE (2) is chosen to be a Brownian noise, or more

precisely if we consider the SDE

dXt = u(t, Xt )dt + dBt , s, t ≥ 0, Xs = x ∈ R
d

with the associated stochastic flowϕs,t : R
d → R

d , the authors in [49] could prove formerely
bounded and measurable vector fields b a regularizing effect of the Brownian motion on the
ODE (1), that is they could show that ϕs,t is a stochastic flow of Sobolev diffeomorphisms
with

ϕs,t , ϕ
−1
s,t ∈ L2(�;W 1,p(Rd ;w))

for all s, t and p ∈ (1,∞), where W 1,p(Rd ;w) is a weighted Sobolev space with weight
function w : R

d → [0,∞). Further, as an application of the latter result, which rests on
techniques similar to those used in this paper, the authors also study solutions of a singular
stochastic transport equation with multiplicative noise of Stratonovich type.

Another work in this direction with applications to Navier–Stokes equations, which
invokes similar techniques as introduced in [49], deals with globally integrable u ∈ Lr ,q

for r/d + 2/q < 1 (r stands here for the spatial variable and q for the temporal variable). In
this context, we also mention the paper [24], where the authors present an alternative method
to the above mentioned ones based on solutions to backward Kolmogorov equations. See
also [23]. We also refer to [59, 68] in the case of α-stable processes.

On the other hand if we consider a noise in the SDE (2), which is rougher than a Brownian
motion with respect to the path properties and given by a fractional Brownian motion for
small Hurst parameters, one can even observe a stronger regularization by noise effect on
the ODE (1): For example, using Malliavin techniques very similar to those in our paper,
the authors in [9] are able to show for vector fields b ∈ L1,∞∞,∞ the existence of higher order
Fréchet differentiable stochastic flows

(x �→ Xx
t ) ∈ Ck(Rd) a.e. for all t,

provided H = H(k) is sufficiently small.
Another result related to the regularity of flows in connection with fractional Brownian

motion can be found in Catellier and Gubinelli [15], where the authors under certain condi-
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tions obtain Lipschitz continuity of the associated stochastic flow for drift coefficients b in
the Besov–Hölder space Bα+1∞,∞, α ∈ R.

The method we aim at employing in this paper for the construction of strong solutions
rests on a compactness criterion for square integrable functionals of a cylindrical Brownian
motion fromMalliavin calculus, which is a generalization of that in [19], applied to solutions
Xx,n·

dXx,n
t = bn(t, X

x,n
t )dt + dBt , Xx,n

0 = x, n ≥ 1,

where bn, n ≥ 0 are smooth vector fields converging to b ∈ Lq
2,p . Then using variational

techniques based on Fourier analysis, we prove that Xx
t as a solution to (2) is the strong

L2-limit of Xx,n
t for all t .

To be more specific (in the case of time-homogeneous vector fields), we “linearize” the
problem of finding strong solutions by applying Malliavin derivatives Di in the direction of
Wiener processes Wi with respect to the corresponding representations of BHi ,i· in ( 4) in
connection with (3) and get the linear equation

Di
t X

x,n
u =

∫ u

t
b�

n(X
x,n
s )Di

t X
x,n
s ds + KH (u, t)Id , 0 ≤ t < u, n ≥ 1, (8)

where b�

n denotes the spatial derivative of bn , KH the kernel in (4) and Id ∈ R
d×d the unit

matrix. Picard iteration then yields

Di
t X

x,n
u = KH (u, t)Id +

∑
m≥1

∫
t<s1<···<sm<u

b�

n(X
x,n
sm ) . . . b�

n(X
x,n
s1 )KH (s1, t)Idds1 . . . dsm .

(9)

In a next step, in order to “get rid of” the derivatives of bn in (9), we use Girsanov’s change
of measure in connection with the following “local time variational calculus” argument:∫

0<s1<···<sn<t
κ(s)Dα f (Bs)ds =

∫
R
dn

Dα f (z)Ln
κ (t, z)dz

= (−1)|α|
∫

R
dn

f (z)DαLn
κ (t, z)dz, (10)

for Bs := (Bs1 , . . . , Bsn ) and smooth functions f : R
dn −→ R with compact support,

where Dα stands for a partial derivative of order |α| for a multi-index α). Here, Ln
κ (t, z) is

a spatially differentiable local time of B· on a simplex scaled by a non-negative integrable
function κ(s) = κ1(s) . . . κn(s).

Using the latter enables us to derive upper bounds based onMalliavin derivatives Di of the
solutions in terms of continuous functions of ‖bn‖Lq

2,p
, which we can use in connection with

a compactness criterion for square integrable functionals of a cylindrical Brownian motion
to obtain the strong solution as a L2-limit of approximating solutions.

Based on similar previous arguments we also verify that the flow associated with (2) for
b ∈ Lq

2,p is smooth by using an estimate of the form

sup
t

sup
x∈U

E

[∥∥∥∥ ∂k

∂xk
Xx,n
t

∥∥∥∥
α
]

≤ Cp,q,d,H ,k,α,T

(
‖bn‖Lq

2,p

)
, n ≥ 1

for arbitrary k ≥ 1, where Cp,q,d,H ,k,α,T : [0,∞) → [0,∞) is a continuous function,
depending on p, q, d, H = {Hn}n≥1, k, α, T for α ≥ 1 and U ⊂ R

d a fixed bounded
domain. See Theorem 5.1.
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We also mention that the method used in this article significantly differs from that in [9]
and relatedworks, since the underlying noise ofB· in (2) is of infinite-dimensional nature, that
is a cylindrical Brownian motion. The latter however, requires in this paper the application
of an infinite-dimensional version of the compactness criterion in [19] tailored to the driving
noise B·.

1.4 Discussion of Some General Principles Underlying Our Methodology

It is crucial to note here that the above technique explained in the case of perturbed ODE’s
of the form (2) reveals or strongly hints at a general principle, which could be used to study
important classes of PDE’s in connection with conservation laws or fluid dynamics. In fact,
we believe that the following underlying principles may play a major role in the analysis of
solutions to PDE’s.

1.4.1 Nash–Moser Principle

The idea of this principle, which goes back to Nash [52] and Moser [50], can be (roughly)
explained as follows:

Assume a function 	 of class Ck . Then the Nash–Moser technique pertains to the study
of solutions u to the equation

	(u) = 	(u0) + f , (11)

where u0 ∈ C∞ is given and where f is a “small” perturbation.
In the setting of our paper, the latter equation corresponds to the SDE (2) with a (non-

deterministic) perturbation given by f = B· (or εB· for small ε > 0). Then, using this
principle, the problem of studying solutions to (11) is “linearized” by analyzing solutions to
the linear equation

	�(u)v = g, (12)

where 	� stands for the Fréchet derivative of 	. The study of the latter problem, however,
usually comes along with a “loss of derivatives”, which can be measured by “tame” estimates
based on a (decreasing) family of Banach spaces Es, 0 ≤ s < ∞ with norms |·|s such that
∩s≥0Es = C∞. Typically, Es = Cs (Hölder spaces) or Es = Hs (Sobolev spaces).

In our situation, Eq. (12) has its analogon in (8) with respect to the (stochastic Sobolev)
derivative Di (or the Fréchet derivative D in connection with flows).

Roughly speaking, in the case of Hölder spaces, assume that

	�(u)ψ(u) = I d

for a linear mapping ψ(u), which satisfies the “tame” estimate:

|ψ(u)g|α ≤ C(|g|α+λ + |g|λ (1 + |u|α+r ))

for numbers λ, r ≥ 0 and α ≥ 0. In addition, require a similar estimate with respect to	��(u).
Then, there exists in a certain neighbourhood W of the origin such that for f ∈ W Eq. (11)
has a solution u( f ) ∈ Cα . Solution here means that there exists a sequence u j , j ≥ 1 in
C∞ such that for all ε > 0, u j −→ u in Cα−ε and 	(u j ) −→ 	(u0) + f in Cα+λ−ε for
j −→ ∞. The proof of the latter result rests on a Newton approximation scheme and results
from Littlewood-Paley theory. See also [1] and the references therein.
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1.4.2 Signature of Higher Order Averaging Operators Along a Highly Fractal Stochastic
Curve

In fact another, but to the best of our knowledge new principle, which comes into play
in connection with our technique for the study of perturbed ODE’s, is the “extraction” of
information from “signatures” of higher order averaging operators along a highly irregular
or fractal stochastic curve γt = Bt of the form

(T 0,γ,l1,...,lk
t (b)(x), T 1,γ,l1,...,lk

t (b)(x), T 2,γ,l1,...,lk
t (b)(x), . . .)

= (Id ,
∫

R
d
b(x (1) + z1)

1,l1,...,lk
κ (z1)dz1,

∫
R
2d
b⊗2(x (2) + z2)

2,l1,...,lk
κ (z2)dz2,

∫
R
3d
b⊗3(x (3) + z3)

3,l1,...,lk
κ (z3)dz3, . . .)

∈ R
d×d × R

d × R
d×d × · · · (13)

where b : R
d −→ R

d is a “rough”, that is a merely (locally integrable) Borel measurable
vector field and

n,l1,...,lk
κ (zn) = (Dα j1,..., jn−1, j,l1,...,lk Ln

κ (t, zn))1≤ j1,..., jn−1, j≤d

for multi-indices α j1,..., jn−1, j,l1,...,lk ∈ N
nd
0 of order

∣∣α j1,..., jn−1, j,l1,...,lk
∣∣ = n + k − 1 for all

(fixed) l1, . . . , lk ∈ {1, . . . , d}, k ≥ 0 and x (n) := (x, . . . , x) ∈ R
nd . Here Ln

κ is the local
time from (10) and the multiplication of b⊗n(zn) and 

n,l1,...,lk
κ (zn) in the above signature is

defined via tensor contraction as

(b⊗n(zn)
n,l1,...,lk
κ (zn))i j =

d∑
j1,..., jn−1=1

(b⊗n(zn))i j1,..., jn−1(
n,l1,...,lk
κ (zn)) j1,..., jn−1 j , n ≥ 2.

If k = 0, we simply set

T n,γ,l1,...,lk
t (b)(x) = T n,γ

t (b)(x) =
∫

R
d
b(z)L1

κ (t, z)dz

for all n ≥ 1.
The motivation for the concept (13) for rough vector fields b comes from the integration

by parts formula (10) applied to each summand of (9) (under a change of measure), which
can be written in terms of T n,γ,l1,...,lk

u (b)(x) for k = 1.
Higher order derivatives (Di )k (or alternatively Fréchet derivatives Dk of order k) in

connection with (9) give rise to the definition of operators T n,γ,l1,...,lk
u (b)(x) for general

k ≥ 1 (see Sect. 5).
For example, if n = 1, k = 2, κ ≡ 1, then we have for (smooth) b that

∫ t

0
b��(x + γs)ds =

∫ t

0
b��(x + Bs)ds

=
(∫

R
d
b(x (1) + z1)(D

2L1
κ (t, z1))l1,l2dz1

)
1≤l1,l2≤d

=
(∫

R
d
b(x (1) + z1)

1,l1,l2
κ (z1)dz1

)
1≤l1,l2≤d

=
(
T 1,γ,l1,l2
t (b)(x)

)
1≤l1,l2≤d

∈ R
d ⊗ R

d . (14)
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In the case, when n = 1, k = 0, κ ≡ 1 and γt = BH
t a fractional Brownian motion for

H < 1
2 , the first order averaging operator T

1,γ
t along the curve γt in (13) coincides with that

in Catellier and Gubinelli [15] given by

T γ
t (b)(x) =

∫ t

0
b
(
x + BH

s

)
ds,

which was used by the authors- as mentioned before- to study the regularization effect of γt
on ODE’s perturbed by such curves. For example, if b ∈ Bα+1∞,∞ (Besov–Hölder space) with
α > 2− 1

2H , then the corresponding SDE (2) driven by BH· admits a unique Lipschitz flow.
The reason why the latter authors “only” obtain Lipschitz flows and not higher regularity
may be that they do not take into account in their analysis information coming from higher
order averaging operators T n,γ,l1,...,lk

t for n > 1, k ≥ 1. Here in this article, we rely in
fact on the information based on such higher order averaging operators to be able to study
C∞-regularization effects with respect to flows.

Let us also mention here that Tao and Wright [64] actually studied averaging operators of
the type T γ

t along (smooth) deterministic curves γt and the improvement in bounds of such
operators on L p along such curves. See also [35, 51] and the recent work of [30] and the
references therein.

On the other hand, in view of the possibility of a geometric study of the regularity of
solutions to ODE’s or PDE’s, it would be (motivated by (14) natural to replace the signatures
in (13) by the following family of signatures for rough vector fields b:

Snt (b)(x) :=
(
1, T n,γ

t (b)(x),
(
T n,γ,l1
t (b)(x)

)
1≤l1≤d

,
(
T n,γ,l1,l2
t (b)(x)

)
1≤l1,l2≤d

, . . .

)

∈ T (Rd) :=
∏
k≥0

(⊗k
i=1R

d), n ≥ 1,

where we use the convention⊗0
i=1R

d = R. The space T (Rd) becomes an associative algebra
under tensor multiplication. Then the regularity of solutions to ODE’s or PDE’s can be
analyzed by means of such signatures in connection with Lie groups G ⊂ T1(Rd) :=
{(g0, g1, . . .) ∈ T (Rd) : g0 = 1}.

In this context, it would be conceivable to derive a Chen-Strichartz type of formula [63]
by means of Snt (b) in connection with a sub-Riemannian geometry for the study of flows.
See [11] and the references therein.

1.4.3 Removal of a “thin” Set of “worst case” Input Data via Noisy Perturbation

As explained before well-posedness of the ODE (1 ) can be restored by “randomization” or
perturbation of the input vector field b in (5). The latter suggests that this procedure leads to
a removal of a “thin” set of “worst case” input data, which do not allow for regularization
or the restoration of well-posedness. It would be interesting here to develop methods for the
measurement of the size of such “thin” sets

The organization of our article is as follows: In Sect. 2 we discuss the mathematical
framework of this paper. Further, in Sect. 3 we derive important estimates via variational
techniques based on Fourier analysis, which are needed later on for the proofs of the main
results of this paper. Section4 is devoted to the construction of unique strong solutions to the
SDE (2). Finally, in Sect. 5 we show C∞-regularization by noise B· of the singular ODE (1).
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1.5 Notation

Throughout the article, we will usually denote by C a generic constant. If π is a collection
of parameters then Cπ will denote a collection of constants depending only on the collection
π . Given differential structures M and N , we denote by C∞

c (M; N ) the space of infinitely
many times continuously differentiable function from M to N with compact support. For a
complex number z ∈ C, z denotes the conjugate of z and i the imaginary unit. Let E be a
vector space, we denote by |x |, x ∈ E the Euclidean norm. For a matrix A, we denote |A| its
determinant and ‖A‖∞ its maximum norm.

2 Framework and Setting

In this section we recollect some specifics on Fourier analysis, shuffle products, fractional
calculus and fractional Brownian motion which will be extensively used throughout the
article. The reader might consult [43, 44] or [21] for a general theory on Malliavin calculus
for Brownianmotion and [55, Chapter 5] for fractional Brownianmotion. For a more detailed
theory on harmonic analysis and Fourier transform the reader is referred to [29].

2.1 Fourier Transform

In the course of the paper we will make use of the Fourier transform. There are several
definitions in the literature. In the present article we have taken the following: let f ∈ L1(Rd)

then we define its Fourier tranform, denoted it by f̂ , by

f̂ (ξ) =
∫

R
d
f (x)e−2π i〈x,ξ〉

Rd dx, ξ ∈ R
d . (15)

The above definition can be actually extended to functions in L2(Rd) and it makes the
operator L2(Rd) � f �→ f̂ ∈ L2(Rd) a linear isometry which, by polarization, implies

〈 f̂ , ĝ〉L2(Rd ) = 〈 f , g〉L2(Rd ), f , g ∈ L2(Rd),

where

〈 f , g〉L2(Rd ) =
∫

R
d
f (z)g(z)dz, f , g ∈ L2(Rd).

2.2 Shuffles

Let k ∈ N. For given m1, . . . ,mk ∈ N, denote

m1: j :=
j∑

i=1

mi ,

e.g.m1:k = m1+· · ·+mk and setm0 := 0. Denote by Sm = {σ : {1, . . . ,m} → {1, . . . ,m}}
the set of permutations of length m ∈ N. Define the set of shuffle permutations of length
m1:k = m1 + · · ·mk as

S(m1, . . . ,mk) := {σ ∈ Sm1:k : σ(m1:i + 1) < · · · < σ(m1:i+1), i = 0, . . . , k − 1},
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and the m-dimensional simplex in [0, T ]m as

�m
t0,t := {(s1, . . . , sm) ∈ [0, T ]m : t0 < s1 < · · · < sm < t}, t0, t ∈ [0, T ], t0 < t .

Let fi : [0, T ] → [0,∞), i = 1, . . . ,m1:k be integrable functions. Then, we have
k−1∏
i=0

∫
�

mi
t0,t

fm1:i+1(sm1:i+1) · · · fm1:i+1(sm1:i+1)dsm1:i+1 · · · dsm1:i+1

=
∑

σ−1∈S(m1,...,mk )

∫
�

m1:k
t0,t

m1:k∏
i=1

fσ(i)(wi )dw1 · · · dwm1:k .

(16)

The above is a trivial generalisation of the case k = 2 where

∫
t0<s1···<sm1<t

t0<sm1+1<···<sm1+m2<t

m1+m2∏
i=1

fi (si ) ds1 · · · dsm1+m2

=
∑

σ−1∈S(m1,m2)

∫
t0<w1<···<wm1+m2<t

m1+m2∏
i=1

fσ(i)(wi )dw1 · · · dwm1+m2 ,

(17)

which can be for instance found in [42].
We will also need the following formula. Given indices j0, j1, . . . , jk−1 ∈ N such

that 1 ≤ ji ≤ mi+1, i = 1, . . . , k − 1 and we set j0 := m1 + 1. Introduce the subset
S j1,..., jk−1(m1, . . . ,mk) of S(m1, . . . ,mk) defined as

S j1,..., jk−1(m1, . . . ,mk) :=
{
σ ∈ S(m1, . . . ,mk) : σ(m1:i + 1) < · · · < σ(m1:i + ji − 1),

σ (l) = l, m1:i + ji ≤ l ≤ m1:i+1, i = 0, . . . , k − 1
}
.

We have
∫

�
mk
t0,t×�

mk−1
t0,sm1:k−1+ jk−1

×···×�
m1
t0,sm1+ j1

m1:k∏
i=1

fi (si ) ds1 · · · dsm1:k

=
∫

t0<s1<···<sm1<sm1+ j1
t0<sm1+m2+1<···<sm1+m2<sm1+m2+ j2

...
t0<sm1+···mk−1+1<···<sm1+···+mk <t

m1:k∏
i=1

fi (si ) ds1 · · · dsm1:k

=
∑

σ−1∈S j1,..., jk−1 (m1,...,mk )

∫
t0<w1<···<wm1:k <t

m1:k∏
i=1

fσ(i)(wi ) dw1 · · · dwm1:k . (18)

#S(m1, . . . ,mk) = (m1 + · · · + mk)!
m1! · · ·mk ! ,

where # denotes the number of elements in the given set. Then by using Stirling’s approxi-
mation, one can show that

#S(m1, . . . ,mk) ≤ Cm1+···+mk

for a large enough constant C > 0. Moreover,

#S j1,..., jk−1(m1, . . . ,mk) ≤ #S(m1, . . . ,mk).
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2.3 Fractional Calculus

We pass in review here some basic definitions and properties on fractional calculus. The
reader may consult [41, 61] for more information about this subject.

Suppose a, b ∈ R with a < b. Further, let f ∈ L p([a, b]) with p ≥ 1 and α > 0.
Introduce the left- and right-sided Riemann–Liouville fractional integrals by

Iα
a+ f (x) = 1

(α)

∫ x

a
(x − y)α−1 f (y)dy

and

Iα
b− f (x) = 1

(α)

∫ b

x
(y − x)α−1 f (y)dy

for almost all x ∈ [a, b], where  stands for the Gamma function.
Furthermore, for an integer p ≥ 1, denote by I α

a+(L p) (resp. Iα
b−(L p)) the image of

L p([a, b]) of the operator I α
a+ (resp. Iα

b− ). If f ∈ I α
a+(L p) (resp. f ∈ Iα

b−(L p)) and 0 < α < 1
then we define the left- and right-sided Riemann–Liouville fractional derivatives by

Dα
a+ f (x) = 1

(1 − α)

d

dx

∫ x

a

f (y)

(x − y)α
dy

and

Dα
b− f (x) = 1

(1 − α)

d

dx

∫ b

x

f (y)

(y − x)α
dy.

The above left- and right-sided derivatives of f can be represented as follows:

Dα
a+ f (x) = 1

(1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1 dy

)
,

Dα
b− f (x) = 1

(1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1 dy

)
.

By construction one also finds the relations

Iα
a+(Dα

a+ f ) = f

for all f ∈ I α
a+(L p) and

Dα
a+(Iα

a+ f ) = f

for all f ∈ L p([a, b]) and similarly for I α
b− and Dα

b− .

2.4 Fractional BrownianMotion

Consider a d-dimensional fractional Brownian motion BH
t = (BH ,(1)

t , . . . , BH ,(d)
t ), 0 ≤

t ≤ T with Hurst parameter H ∈ (0, 1/2). So BH· is a centered Gaussian process with
covariance structure

(RH (t, s))i, j := E[BH ,(i)
t BH ,( j)

s ] = δi, j
1

2

(
t2H + s2H − |t − s|2H

)
, i, j = 1, . . . , d,

where δi, j = 1 if i = j and δi, j = 0 otherwise.
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One finds that E[|BH
t − BH

s |2] = d|t − s|2H . The latter implies that BH· has stationary
increments and Hölder continuous trajectories of index H − ε for all ε ∈ (0, H). In addition,
one also checks that the increments of BH· , H ∈ (0, 1/2) are not independent. This fact
however, complicates the study of e.g. SDE’s driven by the such processes compared to the
Wiener setting. Another difficulty one is faced with in connection with such processes is that
they are not semimartingales, see e.g. [55, Proposition 5.1.1].

In what follows let us briefly discuss the construction of fractional Brownianmotion via an
isometry. In fact, this construction can be done componentwise. Therefore, for convenience
we confine ourselves to the one-dimensional case. We refer to [55] for further details.

Let us denote by E the set of step functions on [0, T ] and by H the Hilbert space, which
is obtained by the closure of E with respect to the inner product

〈1[0,t], 1[0,s]〉H = RH (t, s).

The mapping 1[0,t] �→ BH
t has an extension to an isometry between H and the Gaussian

subspace of L2(�) associated with BH . We denote the isometry by ϕ �→ BH (ϕ).
The following result, which can be found in (see [55, Proposition 5.1.3]), provides an

integral representation of RH (t, s), when H < 1/2:

Proposition 2.1 Let H < 1/2. The kernel

KH (t, s) = cH

[(
t

s

)H− 1
2

(t − s)H− 1
2 +

(
1

2
− H

)
s
1
2−H

∫ t

s
uH− 3

2 (u − s)H− 1
2 du

]
,

where cH =
√

2H
(1−2H)β(1−2H ,H+1/2) being β the Beta function, satisfies

RH (t, s) =
∫ t∧s

0
KH (t, u)KH (s, u)du. (19)

The kernel KH also has a representation in terms of a fractional derivative as follows

KH (t, s) = cH

(
H + 1

2

)
s
1
2−H

(
D

1
2−H
t− uH− 1

2

)
(s).

Let us now introduce a linear operator K ∗
H : E → L2([0, T ]) by

(K ∗
Hϕ)(s) = KH (T , s)ϕ(s) +

∫ T

s
(ϕ(t) − ϕ(s))

∂KH

∂t
(t, s)dt

for every ϕ ∈ E . We see that (K ∗
H1[0,t])(s) = KH (t, s)1[0,t](s). From this and (19) we obtain

that K ∗
H is an isometry between E and L2([0, T ])which has an extension to the Hilbert space

H.
For a ϕ ∈ H one proves the following representations for K ∗

H :

(K ∗
Hϕ)(s) = cH

(
H + 1

2

)
s
1
2−H

(
D

1
2−H
T− uH− 1

2 ϕ(u)

)
(s),

(K ∗
Hϕ)(s) = cH

(
H + 1

2

)(
D

1
2−H
T− ϕ(s)

)
(s)

+cH

(
1

2
− H

)∫ T

s
ϕ(t)(t − s)H− 3

2

(
1 −

(
t

s

)H− 1
2
)
dt .
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On the other hand one also gets the relationH = I
1
2−H
T− (L2) (see [20] and [2, Proposition

6]).
Using the fact that K ∗

H is an isometry fromH into L2([0, T ]), the d-dimensional process
W = {Wt , t ∈ [0, T ]} given by

Wt := BH ((K ∗
H )−1(1[0,t]))

is a Wiener process and the process BH can be represented as

BH
t =

∫ t

0
KH (t, s)dWs . (20)

See [2].
In the sequel, we denote by W· a standard Wiener process on a given probability space

endowed with the natural filtration generated by W augmented by all P-null sets. Further,
B· := BH· stands for the fractional Brownian motion with Hurst parameter H ∈ (0, 1/2)
given by the representation (20).

In the following, we need a version of Girsanov’s theorem for fractional Brownian motion
which goes back to [20, Theorem 4.9]. Here we state the version given in [53, Theorem 3.1].

In preparation of this, we introduce an isomorphism KH from L2([0, T ]) onto I
H+ 1

2
0+ (L2)

associated with the kernel KH (t, s) in terms of the fractional integrals as follows, see [20,
Theorem 2.1]

(KHϕ)(s) = I 2H0+ s
1
2−H I

1
2−H
0+ sH− 1

2 ϕ, ϕ ∈ L2([0, T ]).
Using the latter and the properties of the Riemann–Liouville fractional integrals and

derivatives, one finds that the inverse of KH is given by

(K−1
H ϕ)(s) = s

1
2−H D

1
2−H
0+ sH− 1

2 D2H
0+ ϕ(s), ϕ ∈ I

H+ 1
2

0+ (L2). (21)

Hence, if ϕ is absolutely continuous, see [53], one can prove that

(K−1
H ϕ)(s) = sH− 1

2 I
1
2−H
0+ s

1
2−Hϕ′(s), a.e. (22)

Theorem 2.2 (Girsanov’s theorem for fBm) Let u = {ut , t ∈ [0, T ]} be an F-adapted
process with integrable trajectories and set B̃H

t = BH
t + ∫ t0 usds, t ∈ [0, T ]. Assume that

(i)
∫ ·
0 usds ∈ I

H+ 1
2

0+ (L2([0, T ])), P-a.s.
(ii) E[ξT ] = 1 where

ξT := exp

{
−
∫ T

0
K−1

H

(∫ ·

0
urdr

)
(s)dWs − 1

2

∫ T

0
K−1

H

(∫ ·

0
urdr

)2

(s)ds

}
.

Then the shifted process B̃H is an F-fractional Brownian motion with Hurst parameter
H under the new probability P̃ defined by d P̃

d P = ξT .

Remark 2.3 For the multidimensional case, define

(KHϕ)(s) := ((KHϕ(1))(s), . . . , (KHϕ(d))(s))∗, ϕ ∈ L2([0, T ]; R
d),

where ∗ denotes transposition. Similarly for K−1
H and K ∗

H .
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Finally, we mention a crucial property of the fractional Brownian motion which was
proven by [57] for general Gaussian vector fields.

Let m ∈ N and 0 =: t0 < t1 < · · · < tm < T . Then for every ξ1, . . . , ξm ∈ R
d there

exists a positive finite constant C > 0 (depending on m) such that

Var

⎡
⎣ m∑

j=1

〈
ξ j , B

H
t j − BH

t j−1

〉
R
d

⎤
⎦ ≥ C

m∑
j=1

|ξ j |2E
[∣∣∣BH

t j − BH
t j−1

∣∣∣2
]

. (23)

The above property is known as the local non-determinism property of the fractional
Brownian motion. A stronger version of the local non-determinism, which we want to make
use of in this paper and which is referred to as two sided strong local non-determinism in the
literature, is also satisfied by the fractional Brownian motion: There exists a constant K > 0,
depending only on H and T , such that for any t ∈ [0, T ], 0 < r < t ,

Var
[
BH
t |

{
BH
s : |t − s| ≥ r

}]
≥ Kr2H . (24)

The reader may e.g. consult [57] or [66] for more information on this property.

3 A New Regularizing Process

Throughout this article we operate on a probability space (�,A, P) equippedwith a filtration
F := {Ft }t∈[0,T ] where T > 0 is fixed, generated by a process B· = B

H· = {BH
t , t ∈ [0, T ]}

to be defined later and here A := FT .
Let H = {Hn}n≥1 ⊂ (0, 1/2) be a sequence of numbers such that Hn ↘ 0 for n −→ ∞.

Also, consider λ = {λn}n≥1 ⊂ R a sequence of real numbers such that there exists a bijection

{n : λn 	= 0} → N (25)

and

∞∑
n=1

|λn | ∈ (0,∞). (26)

Let {Wn· }n≥1 be a sequence of independent d -dimensional standard Brownian motions
taking values in R

d and define for every n ≥ 1,

BHn ,n
t =

∫ t

0
KHn (t, s)dW

n
s =

(∫ t

0
KHn (t, s)dW

n,1
s , . . . ,

∫ t

0
KHn (t, s)dW

n,d
s

)∗
. (27)

By construction, BHn ,n· , n ≥ 1 are pairwise independent d-dimensional fractional Brow-
nian motions with Hurst parameters Hn . Observe that Wn· and BHn ,n· generate the same
filtrations, see [55, Chapter 5, p. 280]. We will be interested in the following stochastic
process

B
H
t =

∞∑
n=1

λn B
Hn ,n
t , t ∈ [0, T ]. (28)
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Finally, we need another technical condition on the sequence λ = {λn}n≥1, which is used
to ensure continuity of the sample paths of B

H· :

∞∑
n=1

|λn |E
[

sup
0≤s≤1

|BHn ,n
s |

]
< ∞, (29)

where sup0≤s≤1

∣∣∣BHn ,n
s

∣∣∣ ∈ L1(�) indeed, see e.g. [12].

The following theorem gives a precise definition of the processB
H· and some of its relevant

properties.

Theorem 3.1 Let H = {Hn}n≥1 ⊂ (0, 1/2) be a sequence of real numbers such that Hn ↘ 0
for n −→ ∞ and λ = {λn}n≥1 ⊂ R satisfying (25), (26) and (29). Let {BHn ,n· }∞n=1 be a
sequence of d-dimensional independent fractional Brownian motions with Hurst parameters
Hn, n ≥ 1, defined as in (27). Define the process

B
H
t :=

∞∑
n=1

λn B
Hn ,n
t , t ∈ [0, T ],

where the convergence is P-a.s. andB
H
t is a well defined object in L2(�) for every t ∈ [0, T ].

Moreover, B
H
t is normally distributed with zero mean and covariance given by

E
[
B
H
t (BH

s )∗
]

=
∞∑
n=1

λ2n RHn (t, s)Id ,

where ∗ denotes transposition, Id is the d-dimensional identity matrix and RHn (t, s) :=
1
2

(
s2Hn + t2Hn − |t − s|2Hn

)
denotes the covariance function of the components of the frac-

tional Brownian motions BHn ,n
t .

The process B
H· has stationary increments. It does not admit any version with Hölder

continuous paths of any order. BH· has no finite p-variation for any order p > 0, hence B
H·

is not a semimartingale. It is not a Markov process and hence it does not possess independent
increments.

Finally, under condition (29), B
H· has P -a.s. continuous sample paths.

Proof One can verify, employing Kolmogorov’s three series theorem, that the series con-
verges P-a.s. and we easily see that

E[|BH
t |2] = d

∞∑
n=1

λ2nt
2Hn ≤ d(1 + t)

∞∑
n=1

λ2n < ∞,

where we used that xα ≤ 1 + x for all x ≥ 0 and any α ∈ [0, 1].
The Gaussianity of B

H
t follows simply by observing that for every θ ∈ R

d ,

E
[
exp

{
i〈θ, B

H
t 〉

R
d

}]
= e− 1

2

∑∞
n=1

∑d
j=1 λ2n t

2Hn θ2j ,

where we used the independence of BHn ,n
t for every n ≥ 1. The covariance formula follows

easily again by independence of BHn ,n
t .

The stationarity follows by the fact that BHn ,n are independent and stationary for all n ≥ 1.
The process B

H· could a priori be very irregular. Since B
H· is a stochastically continu-

ous separable process with stationary increments, we know by [45, Theorem 5.3.10 ] that
either B

H has P-a.s. continuous sample paths on all open subsets of [0, T ] or B
H is P-a.s.
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unbounded on all open subsets on [0, T ]. Under condition (29) and using the self-similarity
of the fractional Brownian motions we see that

E

[
sup

s∈[0,T ]
|BH

s |
]

≤
∞∑
n=1

|λn |T Hn E

[
sup

s∈[0,1]
|BHn ,n

s |
]

≤ (1 + T )

∞∑
n=1

|λn |E
[

sup
s∈[0,1]

|BHn ,n
s |

]
< ∞

and hence by Belyaev’s dichotomy for separable stochastically continuous processes with
stationary increments (see e.g. [45, Theorem 5.3.10]) there exists a version of B

H· with
continuous sample paths.

Trivially, B
H· is never Hölder continuous since for arbitrary small α > 0 there is always

n0 ≥ 1 such that Hn < α for all n ≥ n0 and since the sequence λ satisfies (25) cancellations
are not possible. Further, one also argues that B

H· is neither Markov nor has finite variation
of any order p > 0 which then implies that B

H· is not a semimartingale. ��

We will refer to (28) as a regularizing cylindrical fractional Brownian motion with asso-
ciated Hurst sequence H or simply a regularizing fBm.

Next, we state a version of Girsanov’s theorem which actually shows that Eq. (31) admits
a weak solution. Its proof is mainly based on the classical Girsanov theorem for a standard
Brownian motion in Theorem 2.2.

Theorem 3.2 (Girsanov) Let u : [0, T ] × � → R
d be a (jointly measurable) F-adapted

process with integrable trajectories such that t �→ ∫ t
0 usds belongs to the domain of the

operator K−1
Hn0

from (21) for some n0 ≥ 1.

Define the R
d -valued process

B̃
H
t := B

H
t +

∫ t

0
usds.

Define the probability P̃n0 in terms of the Radon–Nikodym derivative

d P̃n0
dPn0

:= ξT ,

where

ξ
n0
T := exp

{
−
∫ T

0
K−1

Hn0

(
1

λn0

∫ ·

0
usds

)
(s)dWn0

s − 1

2

∫ T

0

∣∣∣∣K−1
Hn0

(
1

λn0

∫ ·

0
usds

)
(s)

∣∣∣∣
2

ds

}
.

If E[ξn0T ] = 1, then B̃·
H

is a regularizing R
d -valued cylindrical fractional Brownian

motion with respect to F under the new measure P̃n0 with Hurst sequence H.
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Proof Indeed, write

B̃
H
t =

∫ t

0
usds + λn0 B

Hn0 ,n0
t +

∞∑
n 	=n0

λn B
Hn ,n
t

= λn0

(
1

λn0

∫ t

0
usds + B

Hn0 ,n0
t

)
+

∞∑
n 	=n0

λn B
Hn ,n
t

= λn0

(
1

λn0

∫ t

0
usds +

∫ t

0
KHn0

(t, s)dWn0
s

)
+

∞∑
n 	=n0

λn B
Hn ,n
t

= λn0

(∫ t

0
KHn0

(t, s)dW̃ n0
s

)
+

∞∑
n 	=n0

λn B
Hn ,n
t ,

where

W̃ n0
t := Wn0

t +
∫ t

0
K−1

Hn0

(
1

λn0

∫ ·

0
urdr

)
(s)ds.

Then it follows from Theorem 2.2 or [54, Theorem 3.1] that

B̃
Hn0 ,n0
t :=

∫ t

0
KHn0

(t, s)dW̃ n0
s

is a fractional Brownian motion with Hurst parameter Hn0 under the measure

d P̃n0
dPn0

= exp

{
−
∫ T

0
K−1

Hn0

(
1

λn0

∫ ·

0
usds

)
(s)dWn0

s

−1

2

∫ T

0

∣∣∣∣K−1
Hn0

(
1

λn0

∫ ·

0
usds

)
(s)

∣∣∣∣
2

ds

}
.

Hence,

B̃
H
t =

∞∑
n=1

λn B̃
Hn ,n
t ,

where

B̃Hn ,n
t =

{
BHn ,n
t if n 	= n0,

B̃
Hn0 ,n0
t if n = n0

,

defines a regularizing R
d -valued cylindrical fractional Brownian motion under P̃n0 . ��

Remark 3.3 In the above Girsanov theorem we just modify the law of the drift plus one
selected fractional Brownian motion with Hurst parameter Hn0 . In our proof later, we show
that actually t �→ ∫ t

0 b(s, B
H
s )ds belongs to the domain of the operators K−1

Hn
for anyn ≥ 1but

only large n ≥ 1 satisfy Novikov’s condition for arbitrary selected values of p, q ∈ (2,∞].
Consider now the following stochastic differential equation with the driving noise B

H· ,
introduced earlier:

Xt = x +
∫ t

0
b(s, Xs)ds + B

H
t , t ∈ [0, T ], (30)
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where x ∈ R
d and b is regular.

The following result summarises the classical existence and uniqueness theorem and
some of the properties of the solution. Existence and uniqueness can be conducted using the
classical arguments of L2([0, T ] × �)-completeness in connection with a Picard iteration
argument.

Theorem 3.4 Let b : [0, T ] × R
d → R

d be continuously differentiable in R
d with bounded

derivative uniformly in t ∈ [0, T ] and such that there exists a finite constant C > 0 inde-
pendent of t such that |b(t, x)| ≤ C(1 + |x |) for every (t, x) ∈ [0, T ] × R

d . Then Eq. (30)
admits a unique global strong solution which is P -a.s. continuously differentiable in x and
Malliavin differentiable in each direction Wi , i ≥ 1 of B

H· . Moreover, the space derivative
and Malliavin derivatives of X satisfy the following linear equations

∂

∂x
Xt = Id +

∫ t

0
b′(s, Xs)

∂

∂x
Xsds, t ∈ [0, T ]

and

Di
t0 Xt = λi KHi (t, t0)Id +

∫ t

t0
b′(s, Xs)D

i
t0 Xsds, i ≥ 1, t0, t ∈ [0, T ], t0 < t,

where b′ denotes the space Jacobian matrix of b, Id the d -dimensional identity matrix and
Di
t0 the Malliavin derivative along Wi , i ≥ 1. Here, the last identity is meant in the L p -sense

[0, T ].

4 Construction of the Solution

We aim at constructing a Malliavin differentiable unique global F -strong solution to the
following equation

dXt = b(t, Xt )dt + dB
H
t , X0 = x ∈ R

d , t ∈ [0, T ], (31)

where the differential is interpreted formally in such a way that if (31) admits a solution X ·,
then

Xt = x +
∫ t

0
b(s, Xs)ds + B

H
t , t ∈ [0, T ],

whenever it makes sense. Denote by Lq
p := Lq([0, T ]; L p(Rd ; R

d)), p, q ∈ [1,∞] the
Banach space of integrable functions such that

‖ f ‖Lq
p

:=
(∫ T

0

(∫
R
d
| f (t, z)|pdz

)q/p

dt

)1/q

< ∞,

where we take the essential supremum’s norm in the cases p = ∞ and q = ∞.
In this paper,wewant to reach the class of discontinuous coefficientsb : [0, T ]×R

d → R
d

in the Banach space

Lq
2,p := Lq([0, T ]; L p(Rd ; R

d)) ∩ L1(Rd ; L∞([0, T ]; R
d)), p, q ∈ (2,∞],

of functions f : [0, T ] × R
d → R

d with the norm

‖ f ‖Lq
2,p

= ‖ f ‖Lq
p
+ ‖ f ‖L1∞
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for chosen p, q ∈ (2,∞], where
L1∞ := L1(Rd ; L∞([0, T ]; R

d)).

We will show existence and uniqueness of strong solutions of Eq. (31) driven by a
d-dimensional regularizing fractional Brownian motion with Hurst sequence H with coeffi-
cients b belonging to the classLq

2,p .Moreover, wewill prove that such solutions areMalliavin
differentiable and infinitelymany times differentiablewith respect to the initial value x , where
d ≥ 1, p, q ∈ (2,∞] are arbitrary.
Remark 4.1 We would like to remark that with the method employed in the present article,
the existence of weak solutions and the uniqueness in law, holds for drift coefficients in the
space Lq

p . In fact, as we will see later on, we need the additional space L1∞ to obtain unique
strong solutions.

This solution is neither a semimartingale, nor a Markov process, and it has very irregular
paths. We show in this paper that the process B

H· is a right noise to use in order to produce
infinitely classically differentiable flows of (31) for highly irregular coefficients.

To construct a solution themain key is to approximate b by a sequence of smooth functions
bn a.e. and denoting by Xn = {Xn

t , t ∈ [0, T ]} the approximating solutions, we aim at
using an ad hoc compactness argument to conclude that the set {Xn

t }n≥1 ⊂ L2(�) for fixed
t ∈ [0, T ] is relatively compact.

As for the regularity of the mapping x �→ Xx
t , we are interested in proving that it is

infinitely many times differentiable. It is known that the SDE dXt = b(t, Xt )dt + dBH
t ,

X0 = x ∈ R
d admits a unique strong solution for irregular vector fields b ∈ L1,∞∞,∞ and that

the mapping x �→ Xx
t belongs, P-a.s., to Ck if H = H(k, d) < 1/2 is small enough. Hence,

by adding the noise B
H· , we should expect the solution of (31) to have a smooth flow.

Hereunder, we establish the following main result, which will be stated later on in this
Section in a more precise form (see Theorem 4.16):

Let b ∈ Lq
2,p, p, q ∈ (2,∞] and assume that λ = {λi }i≥1 in (28) satisfies certain

growth conditions to be specified later on. Then there exists a unique (global) strong solution
X = {Xt , t ∈ [0, T ]} of equation (31). Moreover, for every t ∈ [0, T ], Xt is Malliavin
differentiable in each direction of the Brownian motions Wn, n ≥ 1 in (27).

The proof of Theorem 4.16 consists of the following steps:

(1) First, we give the construction of a weak solution X · to (31) by means of Girsanov’s
theorem for the processB

H· , that is we introduce a probability space (�,A, P), on which
a regularizing fractional Brownian motion B

H· and a process X · are defined, satisfying
the SDE (31). However, a priori X · is not adapted to the natural filtrationF = {Ft }t∈[0,T ]
with respect to B

H· .
(2) In the next step, consider an approximation of the drift coefficient b by a sequence of

compactly supported and infinitely continuously differentiable functions (which always
exists by standard approximation results) bn : [0, T ] × R

d → R
d , n ≥ 0 such that

bn(t, x) → b(t, x) for a.e. (t, x) ∈ [0, T ] × R
d and such that supn≥0 ‖bn‖Lq

2,p
≤ M for

some finite constant M > 0. Then by the previous Section we know that for each smooth
coefficient bn , n ≥ 0, there exists unique strong solution Xn = {Xn

t , t ∈ [0, T ]} to the
SDE

dXn
t = bn(t, X

n
t )du + dB

H
t , 0 ≤ t ≤ T , Xn

0 = x ∈ R
d . (32)

Then we prove that for each t ∈ [0, T ] the sequence Xn
t converges weakly to the condi-

tional expectation E[Xt |Ft ] in the space L2(�) of square integrable random variables.
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(3) By the previous Section we have that for each t ∈ [0, T ] the strong solution Xn
t , n ≥ 0,

is Malliavin differentiable, and that the Malliavin derivatives Di
s X

n
t , i ≥ 1, 0 ≤ s ≤ t ,

with respect to Wi in (27) satisfy

Di
s X

n
t = λi KHi (t, s)Id +

∫ t

s
b′
n(u, Xn

u )D
i
s X

n
udu,

for every i ≥ 1where b′
n is the Jacobian of bn and Id the identitymatrix inR

d×d . Then,we
apply an infinite-dimensional compactness criterion for square integrable functionals of a
cylindrical Wiener process based on Malliavin calculus to show that for every t ∈ [0, T ]
the set of random variables {Xn

t }n≥0 is relatively compact in L2(�). The latter, however,
enables us to prove that Xn

t converges strongly in L2(�) to E[Xt |Ft ]. Further we find
that E[Xt |Ft ] is Malliavin differentiable as a consequence of the compactness criterion.

(4) We verify that E[Xt |Ft ] = Xt . So it follows that Xt is Ft -measurable and thus a strong
solution on our specific probability space.

(5) Uniqueness in law is enough to guarantee pathwise uniqueness.

In view of the above scheme, we go aheadwith step (1) by first providing some preparatory
lemmas in order to verify Novikov’s condition for B

H· . Consequently, a weak solution can
be constructed via a change of measure.

Lemma 4.2 Let B
H· be a d-dimensional regularizing fBm and p, q ∈ [1,∞]. Then for every

Borel measurable function h : [0, T ] × R
d → [0,∞) we have

E

[∫ T

0
h
(
t, B

H
t

)
dt

]
≤ C‖h‖Lq

p
, (33)

where C > 0 is a constant depending on p, q, d and H. Also,

E

[
exp

{∫ T

0
h
(
t, B

H
t

)
dt

}]
≤ A(‖h‖Lq

p
), (34)

where A is an analytic function depending on p, q, d and H.

Proof Let B
H· be a d-dimensional regularizing fBm. By a conditioning argument and by the

independence of increments of the Brownian motion it is easy to see that for every Borel
measurable function h we have

E

[∫ T

t0
h(t1, B

H
t1 )dt1

∣∣∣∣Ft0

]

≤
∫ T

t0

∫
R
d
h(t1, Y + z)(2π)−d/2σ−d

t0,t1 exp

(
− |z|2
2σ 2

t0,t1

)
dz

∣∣∣∣
Y=∑∞

n=1 λn
∫ t0
0 KHn (t1,s)dWn

s

dt1.

Here

σ 2
t0,t1 := Var

⎡
⎣∑
n≥1

λn

∫ t1

t0
KHn (t1, s)dW

n
s

⎤
⎦

=
∑
n≥1

λ2n

∫ t1

t0
(KHn (t1, s))

2ds.

On the other hand, one finds that∫ t1

t0
(KHn (t1, s))

2ds ≥ CHn |t1 − t0|2Hn
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for a constant CHn > 0 which depends on Hn .
So

σ 2
t0,t1 ≥

∑
n≥1

λ2nCHn |t1 − t0|2Hn .

Applying Hölder’s inequality, first w.r.t. z and then w.r.t. t1 we arrive at

E

[∫ T

t0
h(t1, B

H
t1 )dt1

∣∣∣∣Ft0

]

≤ C

(∫ T

t0

(∫
R
d
h(t1, x1)

pdx1

)q/p

dt1

)1/q (∫ T

t0

(
σ 2
t0,t1

)−dq ′(p′−1)/2p′
dt1

)1/q ′

,

for some finite constant C > 0. The time integral is finite for arbitrary values of d, q ′ and p′.
To see this, use the bound

∑
n an ≥ an0 for an ≥ 0 and for all n0 ≥ 1. Hence,

∫ T

t0

( ∞∑
n=1

λ2nCn(t1 − t0)
2Hn

)−dq ′(p′−1)/2p′

dt1

≤ (
λ2n0Cn0

)−dq ′(p′−1)/2p′ ∫ T

t0
(t1 − t0)

−Hn0dq
′(p′−1)/p′

dt1,

then for fixed d, q ′ and p′ choose n0 so that Hn0dq
′(p′ − 1)/p′ < 1. Actually, the above

estimate already implies that all exponential moments are finite by [58, Lemma 1.1]. Here,
though we need to derive the explicit dependence on the norm of h.

Altogether,

E

[∫ T

t0
h(t1, B

H
t1 )dt1

∣∣∣∣Ft0

]
≤ C

(∫ T

t0

(∫
R
d
h(t1, x1)

pdx1

)q/p

dt1

)1/q

, (35)

and setting t0 = 0 this proves (33).
In order to prove (34), Taylor’s expansion yields

E

[
exp

{∫ T

0
h(t, B

H
t )dt

}]
= 1 +

∞∑
m=1

E

⎡
⎣
∫ T

0

∫ T

t1
· · ·
∫ T

tm−1

m∏
j=1

h(t j , B
H
t j )dtm · · · dt1

⎤
⎦ .

Using (35) iteratively we have

E

[
exp

{∫ T

0
h(t, B

H
t )dt

}]
≤ Cm

(m!)1/q
(∫ T

0

(∫
R
d
h(t, x)pdx

)q/p

dt

)m/q

=
Cm‖h‖m

Lq
p

(m!)1/q ,

and the result follows with A(x) := ∑∞
m=1

Cm

(m!)1/q x
m . ��

Lemma 4.3 LetBH· be a d-dimensional regularizing fBm and assume b ∈ Lq
p, p, q ∈ [2,∞].

Then for every n ≥ 1,

t �→
∫ t

0
b(s, B

H
s )ds ∈ I

Hn+ 1
2

0+ (L2([0, T ])), P − a.s.,

i.e. the process t �→ ∫ t
0 b(s, B

H
s )ds belongs to the domain of the operator K−1

Hn
for every

n ≥ 1, P-a.s.
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Proof Using the property that D
H+ 1

2
0+ I

H+ 1
2

0+ ( f ) = f for f ∈ L2([0, T ]) we need to show
that for every n ≥ 1,

D
Hn+ 1

2
0+

∫ ·

0
|b(s, B

H
s )|ds ∈ L2([0, T ]), P − a.s.

Indeed,∣∣∣∣DHn+ 1
2

0+

(∫ ·

0
|b(s, B

H
s )|ds

)
(t)

∣∣∣∣ = 1


( 1
2 − Hn

)
(

1

t Hn+ 1
2

∫ t

0
|b(u, B

H
u )|du

+
(
H + 1

2

)∫ t

0
(t − s)−Hn− 3

2

∫ t

s
|b(u, B

H
u )|duds

)

≤ 1


( 1
2 − Hn

)
(

1

t Hn+ 1
2

+
(
H + 1

2

)∫ t

0
(t − s)−Hn− 3

2 ds

)

∫ t

0
|b(u, B

H
u )|du.

Hence, for some finite constant CH ,T > 0 we have
∣∣∣∣DH+ 1

2
0+

(∫ ·

0
|b(s, B̃

H
s )|ds

)
(t)

∣∣∣∣
2

≤ CH ,T

∫ T

0
|b(u, B

H
u )|2du

and taking expectation the result follows by Lemma 4.2 applied to |b|2. ��
We are now in a position to show that Novikov’s condition is met if n is large enough.

Proposition 4.4 Let B
H
t be a d-dimensional regularizing fractional Brownian motion with

Hurst sequence H. Assume b ∈ Lq
p, p, q ∈ (2,∞]. Then for every μ ∈ R, there exists n0

with Hn < 1
2 − 1

p for every n ≥ n0 and such that for every n ≥ n0 we have

E

[
exp

{
μ

∫ T

0

∣∣∣∣K−1
Hn

(
1

λn

∫ ·

0
b(r , B

H
r )dr

)
(s)

∣∣∣∣
2

ds

}]
≤ Cλn ,Hn ,d,μ,T (‖b‖Lq

p
)

for some real analytic function Cλn ,Hn ,d,μ,T depending only on λn, Hn, d, T and μ.
In particular, there is also some real analytic function C̃λn ,Hn ,d,μ,T depending only on λn,

Hn, d, T and μ such that

E

[
E
(∫ T

0
K−1

Hn

(
1

λn

∫ ·

0
b(r , B

H
r )dr

)∗
(s)dWn

s

)μ
]

≤ C̃H ,d,μ,T (‖b‖Lq
p
),

for every μ ∈ R.

Proof By Lemma 4.3 both random variables appearing in the statement are well defined.

Then, fix n ≥ n0 and denote θns := K−1
Hn

(
1
λn

∫ ·
0 |b(r , B

H
r )|dr

)
(s). Then using relation (22)

we have

|θns | =
∣∣∣∣ 1λn s

Hn− 1
2 I

1
2−Hn

0+ s
1
2−Hn |b(s, B

H
s )|
∣∣∣∣

= 1/|λn |

( 1
2 − Hn

) sHn− 1
2

∫ s

0
(s − r)−

1
2−Hnr

1
2−Hn |b(r , B

H
r )|dr . (36)
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Observe that since Hn < 1
2 − 1

p , p ∈ (2,∞]we may take ε ∈ [0, 1) such that Hn < 1
1+ε

− 1
2

and applyHölder’s inequalitywith exponents 1+ε and 1+ε
ε
, where the case ε = 0 corresponds

to the case where b is bounded. Then we get

|θns | ≤ Cε,λn ,Hn s
1

1+ε
−Hn− 1

2

(∫ s

0
|b(r , B

H
r )| 1+ε

ε dr

) ε
1+ε

, (37)

where

Cε,λn ,Hn :=  (1 − (1 + ε)(Hn + 1/2))
1

1+ε  (1 + (1 + ε)(1/2 − Hn))
1

1+ε

λn
( 1
2 − Hn

)
 (2(1 − (1 + ε)Hn))

1
1+ε

.

Squaring both sides and using the fact that |b| ≥ 0 we have the following estimate

|θns |2 ≤ C2
ε,λn ,Hn

s
2

1+ε
−2Hn−1

(∫ T

0
|b(r , B

H
r )| 1+ε

ε dr

) 2ε
1+ε

, P − a.s.

Since 0 < 2ε
1+ε

< 1 and |x |α ≤ max{α, 1 − α}(1 + |x |) for any x ∈ R and α ∈ (0, 1) we
have

∫ T

0
|θns |2ds ≤ Cε,λn ,Hn ,T

(
1 +

∫ T

0
|b(r , B

H
r )| 1+ε

ε dr

)
, P − a.s. (38)

for some constant Cε,λn ,Hn ,T > 0. Then estimate (34) from Lemma 4.2 with h =
Cε,λn ,Hn ,T μ b

1+ε
ε with ε ∈ [0, 1) arbitrarily close to one yields the result for p, q ∈ (2,∞].

��

Let (�,A, P̃) be some given probability space which carries a regularizing fractional

Brownian motion B̃·
H
with Hurst sequence H = {Hn}n≥1 and set Xt := x + B̃

H
t , t ∈ [0, T ],

x ∈ R
d . Set θ

n0
t :=

(
K−1

Hn0

(
1

λn0

∫ ·
0 b(r , Xr )dr

))
(t) for some fixed n0 ≥ 1 such that

Proposition 4.4 can be applied and consider the new measure defined by

dPn0
d P̃n0

= Zn0
T ,

where

Zn0
t :=

∞∏
n=1

E (θn0·
)
t := exp

{∫ t

0

(
θn0s
)∗

dWn0
s − 1

2

∫ t

0
|θn0s |2ds

}
, t ∈ [0, T ].

In view of Proposition 4.4 the above random variable defines a new probability measure
and by Girsanov’s theorem, see Theorem 3.2, the process

B
H
t := Xt − x −

∫ t

0
b(s, Xs)ds, t ∈ [0, T ] (39)

is a regularizing fractional Brownian motion on (�,A, Pn0) with Hurst sequence H . Hence,
because of (39), the couple (X , B

H· ) is a weak solution of (31) on (�,A, Pn0). Since n0 ≥ 1
is fixed we will omit the notation Pn0 and simply write P .

Henceforth, we confine ourselves to the filtered probability space (�,A, P), F =
{Ft }t∈[0,T ] which carries the weak solution (X , B

H· ) of (31).
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Remark 4.5 In order to establish existence of a strong solution, the main difficulty here is
to show that X · is F -adapted. In fact, in this case Xt = Ft (BH· ) for some progressively
measurable functional Ft , t ∈ [0, T ] on C([0, T ]; R

d) and for any other stochastic basis
(�̂, Â, P̂, B̂) one gets that Xt := Ft (B̂·), t ∈ [0, T ], is a solution to SDE (31), which is
adapted with respect to the natural filtration of B̂·. But this exactly gives the existence of a
strong solution to SDE (31).

We take a weak solution X · of (31) and consider E[Xt |Ft ]. The next result corresponds
to step (2) of our program.

Lemma 4.6 Let bn : [0, T ] × R
d → R

d , n ≥ 1, be a sequence of compactly supported
smooth functions converging a.e. to b such that supn≥1 ‖bn‖Lq

p
< ∞. Let t ∈ [0, T ] and

Xn
t denote the solution of (31) when we replace b by bn. Then for every t ∈ [0, T ] and

continuous function ϕ : R
d → R of at most linear growth we have that

ϕ(Xn
t )

n→∞−−−→ E [ϕ(Xt )|Ft ] ,

weakly in L2(�).

Proof Let us assume, without loss of generality, that x = 0. In the course of the proof we
always assume that for fixed p, q ∈ (2,∞] then n0 ≥ 1 is such that Hn0 < 1

2 − 1
p and hence

Proposition 4.4 can be applied.
First we show that

E
(

1

λn0

∫ t

0
K−1

Hn0

(∫ ·

0
bn(r , B

H
r )dr

)∗
(s)dWn0

s

)

→ E
(∫ t

0
K−1

Hn0

(
1

λn0

∫ ·

0
b(r , B

H
r )dr

)∗
(s)dWn0

s

)
(40)

in L p(�) for all p ≥ 1. To see this, note that

K−1
Hn0

(
1

λn0

∫ ·

0
bn(r , B

H
r )dr

)
(s) → K−1

Hn0

(
1

λn0

∫ ·

0
b(r , B

H
r )dr

)
(s)

in probability for all s. Indeed, from (37) we have a constant Cε,λn0 ,Hn0
> 0 such that

E

[∣∣∣K−1
Hn0

(
1

λn0

∫ ·

0
bn(r , B

H
r )dr

)
(s) − K−1

Hn0

(
1

λn0

∫ ·

0
b(r , B

H
r )dr

)
(s)
∣∣∣
]

≤ Cε,,λn0 ,Hn0
s

1
1+ε

−Hn0− 1
2

(∫ s

0
|bn(r , B

H
r ) − b(r , B

H
r )| 1+ε

ε dr

) ε
1+ε → 0

as n → ∞ by Lemma 4.2.

Moreover,
{
K−1

Hn0
( 1
λn0

∫ ·
0 bn(r , B

H
r )dr)

}
n≥0

is bounded in L2([0, t] × �; R
d). This is

directly seen from (38) in Proposition 4.4.
Consequently

∫ t

0
K−1

Hn0

(
1

λn0

∫ ·

0
bn(r , B

H
r )dr

)∗
(s)dWn0

s →
∫ t

0
K−1

Hn0

(
1

λn0

∫ ·

0
b(r , B

H
r )dr

)∗
(s)dWn0

s

and∫ t

0

∣∣∣∣K−1
Hn0

(
1

λn0

∫ ·

0
bn(r , B

H
r )dr

)
(s)

∣∣∣∣
2

ds →
∫ t

0

∣∣∣∣K−1
Hn0

(
1

λn0

∫ ·

0
b(r , B

H
r )dr

)
(s)

∣∣∣∣
2

ds
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in L2(�) since the latter is bounded L p(�) for any p ≥ 1, see Proposition 4.4.
By applying the estimate |ex − ey | ≤ ex+y |x − y|, Hölder’s inequality and the bounds in

Proposition 4.4 in connection with Lemma 4.2 we see that (40) holds.
Similarly, one finds that

exp

{〈
α,

∫ t

s
bn(r , B

H
r )dr

〉}
→ exp

{〈
α,

∫ t

s
b(r , B

H
r )dr

〉}

in L p(�) for all p ≥ 1, 0 ≤ s ≤ t ≤ T , α ∈ R
d .

In order to complete the proof, we note that the set

�t :=
⎧⎨
⎩exp

⎧⎨
⎩

k∑
j=1

〈α j , B
H
t j − B

H
t j−1

〉
⎫⎬
⎭ : {α j }kj=1 ⊂ R

d , 0 = t0 < · · · < tk = t, k ≥ 1

⎫⎬
⎭

is a total subspace of L2(�,Ft , P) and therefore it is sufficient to prove the convergence

lim
n→∞ E

[(
ϕ(Xn

t ) − E[ϕ(Xt )|Ft ]
)
ξ
] = 0

for all ξ ∈ �t . In doing so, we notice that ϕ is of linear growth and hence ϕ(BH
t ) has all

moments. Thus, we obtain the following convergence

E

⎡
⎣ϕ(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B

H
t j − B

H
t j−1

〉⎫⎬
⎭
⎤
⎦

= E

⎡
⎣ϕ(Xn

t ) exp

⎧⎨
⎩

k∑
j=1

〈α j , X
n
t j − Xn

t j−1
−
∫ t j

t j−1

bn(s, X
n
s )ds〉

⎫⎬
⎭
⎤
⎦

= E

⎡
⎣ϕ(BH

t ) exp

⎧⎨
⎩

k∑
j=1

〈α j , B
H
t j − B

H
t j−1

−
∫ t j

t j−1

bn(s, B
H
s )ds〉

}
E
(∫ t

0
K−1

Hn0

(
1

λn0

∫ ·

0
bn(r , B

H
r )dr

)∗
(s)dWn0

s

)]

→ E

⎡
⎣ϕ(BH

t ) exp

⎧⎨
⎩

k∑
j=1

〈α j , B
H
t j − B

H
t j−1

−
∫ t j

t j−1

b(s, B
H
s )ds〉

}
E
(∫ t

0
K−1

Hn0

(
1

λn0

∫ ·

0
b(r , B

H
r )dr

)∗
(s)dWn0

s

)]

= E

⎡
⎣ϕ(Xt ) exp

⎧⎨
⎩

k∑
j=1

〈
α j , B

H
t j − B

H
t j−1

〉⎫⎬
⎭
⎤
⎦

= E

⎡
⎣E[ϕ(Xt )|Ft ] exp

⎧⎨
⎩

k∑
j=1

〈
α j , B

H
t j − B

H
t j−1

〉⎫⎬
⎭
⎤
⎦ .

��
We now turn to step (3) of our program. For its completion we need to derive some crucial

estimates.
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In preparation of those estimates, we introduce some notation and definitions:
Let m be an integer and let the function f : [0, T ]m × (Rd)m → R be of the form

f (s, z) =
m∏
j=1

f j (s j , z j ), s = (s1, . . . , sm) ∈ [0, T ]m, z = (z1, . . . , zm) ∈ (Rd)m,

(41)

where f j : [0, T ] × R
d → R, j = 1, . . . ,m are smooth functions with compact support.

Further, let κ : [0, T ]m → R a function of the form

κ(s) =
m∏
j=1

κ j (s j ), s ∈ [0, T ]m, (42)

where κ j : [0, T ] → R, j = 1, . . . ,m are integrable functions.
Let α j be a multi-index and denote by Dα j its corresponding differential operator. For

α = (α1, . . . , αm) viewed as an element of N
d×m
0 we define |α| = ∑m

j=1
∑d

l=1 α
(l)
j and

write

Dα f (s, z) =
m∏
j=1

Dα j f j (s j , z j ).

The objective of this section is to establish an integration by parts formula of the form∫
�m

θ,t

Dα f (s, Bs)ds =
∫

(Rd )m
� f

α (θ, t, z)dz, (43)

where B := B
H· , for a random field �

f
α . In fact, we can choose �

f
α to be

� f
α (θ, t, z) = (2π)−dm

∫
(Rd )m

∫
�m

θ,t

m∏
j=1

f j (s j , z j )(−iu j )
α j exp{−i〈u j , Bs j − z j 〉}dsdu.

(44)

Let us start by defining �
f
α (θ, t, z) as above and show that it is a well-defined element of

L2(�).
We also need the following notation: Given (s, z) = (s1, . . . , sm, z1 . . . , zm) ∈ [0, T ]m ×

(Rd)m and a shuffle σ ∈ S(m,m) we define

fσ (s, z) :=
2m∏
j=1

f[σ( j)](s j , z[σ( j)])

and

κσ (s) :=
2m∏
j=1

κ[σ( j)](s j ),

where [ j] is equal to j if 1 ≤ j ≤ m and j − m if m + 1 ≤ j ≤ 2m.
For a multiindex α, define

� f
α (θ, t, z, Hr )

:=
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

| fσ (s, z)|
2m∏
j=1

1
∣∣s j − s j−1

∣∣Hr (d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m
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respectively,

�κ

α (θ, t, Hr )

:=
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

|κσ (s)|
2m∏
j=1

1
∣∣s j − s j−1

∣∣Hr (d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m .

Theorem 4.7 Suppose that �
f
α (θ, t, z, Hr ),�

κ

α (θ, t, Hr ) < ∞ for some r ≥ r0. Then,

�
f
α (θ, t, z) as in (44) is a random variable in L2(�). Further, there exists a universal constant

Cr = C(T , Hr , d) > 0 such that

E[
∣∣∣� f

α (θ, t, z)
∣∣∣2] ≤ 1

λ2md
r

Cm+|α|
r � f

α (θ, t, z, Hr ). (45)

Moreover, we have
∣∣∣∣E[
∫

(Rd )m
� f

α (θ, t, z)dz]
∣∣∣∣ ≤ 1

λmd
r

Cm/2+|α|/2
r

m∏
j=1

∥∥ f j∥∥L1(Rd ;L∞([0,T ])) (�κ

α (θ, t, Hr ))
1/2.

(46)

Proof For notational simplicity we consider θ = 0 and setB· = B
H· ,� f

α (t, z) = �
f
α (0, t, z).

For an integrable function g : (Rd)m −→ C we get that
∣∣∣∣
∫

(Rd )m
g(u1, . . . , um)du1 . . . dum

∣∣∣∣
2

=
∫

(Rd )m
g(u1, . . . , um)du1 . . . dum

∫
(Rd )m

g(um+1, . . . , u2m)dum+1 . . . du2m

=
∫

(Rd )m
g(u1, . . . , um)du1 . . . dum(−1)dm

∫
(Rd )m

g(−um+1, . . . ,−u2m)dum+1 . . . du2m,

where we employed the change of variables (um+1, . . . , u2m) �−→ (−um+1, . . . ,−u2m) in
the last equality.

This yields
∣∣∣� f

α (t, z)
∣∣∣2

= (2π)−2dm(−1)dm
∫

(Rd )2m

∫
�m

0,t

m∏
j=1

f j (s j , z j )(−iu j )
α j e

−i
〈
u j ,Bs j −z j

〉
ds1 . . . dsm

×
∫

�m
0,t

2m∏
j=m+1

f[ j](s j , z[ j])(−iu j )
α[ j]e

−i
〈
u j ,Bs j −z[ j]

〉
dsm+1 . . . ds2mdu1 . . . du2m

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j+u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j) exp

⎧⎨
⎩−

2m∑
j=1

〈
uσ( j), Bs j

〉
⎫⎬
⎭ ds1 . . . ds2mdu1 . . . du2m,

where we applied shuffling in connection with Sect. 2.2 in the last step.
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By taking the expectation on both sides in connection with the assumption that the frac-
tional Brownian motions Bi,Hi· , i ≥ 1 are independent we find that

E

[∣∣∣� f
α (t, z)

∣∣∣2
]

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j+u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j) exp

⎧⎨
⎩− 1

2
Var

⎡
⎣ 2m∑

j=1

〈
uσ( j), Bs j

〉
⎤
⎦
⎫⎬
⎭ ds1 . . . ds2mdu1 . . . du2m

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j+u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j)

exp

⎧⎨
⎩− 1

2

∑
n≥1

λ2n

d∑
l=1

Var

⎡
⎣ 2m∑

j=1

u(l)
σ ( j)B

(l),n,Hn
s j

⎤
⎦
⎫⎬
⎭ ds1 . . . ds2mdu

(1)
1 . . . du(1)

2m

. . . du(d)
1 . . . du(d)

2m

= (2π)−2dm(−1)dm
∑

σ∈S(m,m)

∫
(Rd )2m

⎛
⎝ m∏

j=1

e−i〈z j ,u j+u j+m〉
⎞
⎠

×
∫

�2m
0,t

fσ (s, z)
2m∏
j=1

u
α[σ( j)]
σ( j)

∏
n≥1

d∏
l=1

exp

{
− 1

2
λ2n((u

(l)
σ ( j))1≤ j≤2m)∗Qn((u

(l)
σ ( j))1≤ j≤2m)

}
ds1 . . . ds2m

du(1)
σ (1) . . . du(1)

σ (2m) . . . du(d)
σ (1) . . . du(d)

σ (2m),

(47)

where ∗ stands for transposition and where

Qn = Qn(s) := (E[B(1)
si B(1)

s j ])1≤i, j≤2m .

Further, we get that

∫
�2m

0,t

| fσ (s, z)|
∫

(Rd )2m

2m∏
j=1

d∏
l=1

∣∣∣u(l)
σ ( j)

∣∣∣α
(l)
[σ( j)] ∏

n≥1

d∏
l=1

exp

{
− 1

2
λ2n((u

(l)
σ ( j))1≤ j≤2m)∗Qn((u

(l)
σ ( j))1≤ j≤2m)

}

du(1)
σ (1) . . . du(1)

σ (2m) . . . du(d)
σ (1) . . . du(d)

σ (2m)ds1 . . . ds2m

≤
∫

�2m
0,t

| fσ (s, z)|
∫

(Rd )2m

2m∏
j=1

d∏
l=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

×
d∏

l=1

exp

{
− 1

2
λ2r

〈
Qru

(l), u(l)
〉}

du(1)
1 . . . du(1)

2m . . . du(d)
1 . . . du(d)

2mds1 . . . ds2m

=
∫

�2m
0,t

| fσ (s, z)|
d∏

l=1

∫
R
2m

⎛
⎝ 2m∏

j=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
− 1

2
λ2r

〈
Qru

(l), u(l)
〉}

du(l)
1 . . . du(l)

2mds1 . . . ds2m ,

(48)
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where

u(l) := (u(l)
j )1≤ j≤2m .

We obtain that

∫
R
2m

⎛
⎝ 2m∏

j=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

⎞
⎠ exp

{
−1

2
λ2r

〈
Qru

(l), u(l)
〉}

du(l)
1 . . . du(l)

2m

= 1

λ2mr

1

(det Qr )1/2

∫
R
2m

⎛
⎝ 2m∏

j=1

∣∣∣
〈
Q−1/2

r u(l), e j
〉∣∣∣α

(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
u(l), u(l)

〉}
du(l)

1 . . . du(l)
2m,

where ei , i = 1, . . . , 2m is the standard ONB of R
2m .

We also have that

∫
R
2m

⎛
⎝ 2m∏

j=1

∣∣∣
〈
Q−1/2

r u(l), e j
〉∣∣∣α

(l)
[σ( j)]

⎞
⎠ exp

{
−1

2

〈
u(l), u(l)

〉}
du(l)

1 . . . du(l)
2m

= (2π)mE

⎡
⎣ 2m∏

j=1

∣∣∣
〈
Q−1/2

r Z , e j
〉∣∣∣α

(l)
[σ( j)]

⎤
⎦ ,

where

Z ∼ N (O, I2m×2m).

On the other hand, it follows from Lemma B.6, which is a type of Brascamp–Lieb inequality,
that

E

⎡
⎣ 2m∏

j=1

∣∣∣
〈
Q−1/2

r Z , e j
〉∣∣∣α

(l)
[σ( j)]

⎤
⎦

≤
√
perm

(∑)
=

√√√√√√
∑

π∈S2|α(l)|

2|α(l)|∏
i=1

aiπ(i),

where perm(
∑

) is the permanent of the covariance matrix
∑ = (ai j ) of the Gaussian

random vector

(
〈
Q−1/2Z , e1

〉
, . . . ,

〈
Q−1/2Z , e1

〉
︸ ︷︷ ︸

α
(l)
[σ(1)] times

,
〈
Q−1/2Z , e2

〉
, . . . ,

〈
Q−1/2Z , e2

〉
︸ ︷︷ ︸

α
(l)
[σ(2)] times

, . . . ,
〈
Q−1/2Z , e2m

〉
, . . . ,

〈
Q−1/2Z , e2m

〉
︸ ︷︷ ︸

α
(l)
[σ(2m)] times

),

∣∣α(l)
∣∣ := ∑m

j=1 α
(l)
j and where Sn denotes the permutation group of size n.

Furthermore, using an upper bound for the permanent of positive semidefinite matrices
(see [7]) or direct computations, we find that

perm
(∑)

=
∑

π∈S2|α(l)|

2
∣∣α(l)

∣∣∏
i=1

aiπ(i) ≤
(
2
∣∣∣α(l)

∣∣∣
)
!
2
∣∣α(l)

∣∣∏
i=1

aii . (49)
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Let now i ∈ [∑ j−1
k=1 α

(l)
[σ(k)] + 1,

∑ j
k=1 α

(l)
[σ(k)]] for some arbitrary fixed j ∈ {1, . . . , 2m}.

Then

aii = E
[〈
Q−1/2

r Z , e j
〉 〈
Q−1/2

r Z , e j
〉]

.

Further, substitution yields

E
[〈
Q−1/2

r Z , e j
〉 〈
Q−1/2

r Z , e j
〉]

= (det Qr )
1/2 1

(2π)m

∫
R
2m

〈
u, e j

〉2 exp
(

−1

2
〈Qru, u〉

)
du1 . . . du2m

= (det Qr )
1/2 1

(2π)m

∫
R
2m

u2j exp

(
−1

2
〈Qru, u〉

)
du1 . . . du2m

In the next step, we want to apply Lemma B.7. Then we obtain that

∫
R
2m

u2j exp

(
−1

2
〈Qru, u〉

)
du1 . . . dum

= (2π)(2m−1)/2

(det Qr )1/2

∫
R

v2 exp

(
−1

2
v2
)
dv

1

σ 2
j

= (2π)m

(det Qr )1/2

1

σ 2
j

,

where σ 2
j := Var [BHr

s j

∣∣∣BHr
s1 , . . . , BHr

s2m without BHr
s j

]
.

Wenowaimat using strong local non-determinismof the form (see (24)): For all t ∈ [0, T ],
0 < r < t :

Var [BHr
t

∣∣∣BHr
s , |t − s| ≥ r

]
≥ Kr2Hr

for a constant K depending on Hr and T .
The latter entails that

(det Qr (s))
1/2 ≥ K (2m−1)/2 |s1|Hr |s2 − s1|Hr . . . |s2m − s2m−1|Hr

as well as

σ 2
j ≥ K min{∣∣s j − s j−1

∣∣2Hr ,
∣∣s j+1 − s j

∣∣2Hr }.

Hence

2m∏
j=1

σ
−2α(l)

[σ( j)]
j ≤ K−2m

2m∏
j=1

1

min{∣∣s j − s j−1
∣∣2Hrα

(l)
[σ( j)] ,

∣∣s j+1 − s j
∣∣2Hrα

(l)
[σ( j)] }

≤ Cm+∣∣α(l)
∣∣ 2m∏
j=1

1
∣∣s j − s j−1

∣∣4Hrα
(l)
[σ( j)]

for a constant C only depending on Hr and T .
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So we conclude from (49) that

perm
(∑)

≤
(
2
∣∣∣α(l)

∣∣∣
)
!
2
∣∣α(l)

∣∣∏
i=1

aii

≤
(
2
∣∣∣α(l)

∣∣∣
)
!
2m∏
j=1

(
(det Qr )

1/2 1

(2π)m

(2π)m

(det Qr )1/2

1

σ 2
j

)α
(l)
[σ( j)]

≤
(
2
∣∣∣α(l)

∣∣∣
)
!Cm+∣∣α(l)

∣∣ 2m∏
j=1

1
∣∣s j − s j−1

∣∣4Hrα
(l)
[σ( j)]

.

Thus

E

⎡
⎣ 2m∏

j=1

∣∣∣
〈
Q−1/2

r Z , e j
〉∣∣∣α

(l)
[σ( j)]

⎤
⎦ ≤

√
perm

(∑)

≤
√

(2
∣∣α(l)

∣∣)!Cm+∣∣α(l)
∣∣ 2m∏
j=1

1
∣∣s j − s j−1

∣∣2Hrα
(l)
[σ( j)]

.

Therefore we see from (47) and (48) that

E

[∣∣∣� f
α (θ, t, z)

∣∣∣2
]

≤ Cm
∑

σ∈S(m,m)

∫
�2m

0,t

| fσ (s, z)|
d∏

l=1

∫
R
2m

⎛
⎝ 2m∏

j=1

∣∣∣u(l)
j

∣∣∣α
(l)
[σ( j)]

⎞
⎠

exp

{
−1

2

〈
Qru

(l), u(l)
〉}

du(l)
1 . . . du(l)

2mds1 . . . ds2m

≤ Mm
∑

σ∈S(m,m)

∫
�2m

0,t

| fσ (s, z)| 1

λ2md
r

1

(det Q(s))d/2

d∏
l=1

√
(2
∣∣α(l)

∣∣)!Cm+∣∣α(l)
∣∣ 2m∏
j=1

1
∣∣s j − s j−1

∣∣2Hrα
(l)
[σ( j)]

ds1 . . . ds2m

= 1

λ2md
r

MmCmd+|α|
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

| fσ (s, z)|

2m∏
j=1

1
∣∣s j − s j−1

∣∣Hr (d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m

for a constant M depending on d .
In the final step, we want to prove estimate (46). Using the inequality (45), we get that∣∣∣∣E
[∫

(Rd )m
�κ f

α (θ, t, z)dz

]∣∣∣∣
≤
∫

(Rd )m

(
E
∣∣∣�κ f

α (θ, t, z)
∣∣∣2
)1/2

dz ≤ 1

λmd
r

Cm/2+|α|/2
∫

(Rd )m
(�κ f

α (θ, t, z, Hr ))
1/2dz.
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By taking the supremum over [0, T ] with respect to each function f j , i.e.∣∣ f[σ( j)](s j , z[σ( j)])
∣∣ ≤ sup

s j∈[0,T ]
∣∣ f[σ( j)](s j , z[σ( j)])

∣∣ , j = 1, . . . , 2m

we find that∣∣∣∣E
[∫

(Rd )m
�κ f

α (θ, t, z)dz

]∣∣∣∣

≤ 1

λmd
r

Cm/2+|α|/2 max
σ∈S(m,m)

∫
(Rd )m

(
2m∏
l=1

∥∥ f[σ(l)](·, z[σ(l)])
∥∥
L∞([0,T ])

)1/2

dz

×
⎛
⎝ d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

|κσ (s)|
2m∏
j=1

1
∣∣s j − s j−1

∣∣H(d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m

⎞
⎠

1/2

= 1

λmd
r

Cm/2+|α|/2 max
σ∈S(m,m)

∫
(Rd )m

(
2m∏
l=1

∥∥ f[σ(l)](·, z[σ(l)])
∥∥
L∞([0,T ])

)1/2

dz · (�κ

α (θ, t, Hr ))
1/2

= 1

λmd
r

Cm/2+|α|/2
∫

(Rd )m

m∏
j=1

∥∥ f j (·, z j )∥∥L∞([0,T ]) dz · (�κ

α (θ, t, Hr ))
1/2

= 1

λmd
r

Cm/2+|α|/2
m∏
j=1

∥∥ f j (·, z j )∥∥L1(Rd ;L∞([0,T ])) · (�κ

α (θ, t, Hr ))
1/2.

��
Using Theorem 4.7 we obtain the following crucial estimate (compare [4, 5, 9, 10]):

Proposition 4.8 Let the functions f and κ be as in (62), respectively as in (42). Further, let
θ, θ ′, t ∈ [0, T ], θ ′ < θ < t and

κ j (s) = (KHr0
(s, θ) − KHr0

(s, θ ′))ε j , θ < s < t

for every j = 1, . . . ,m with (ε1, . . . , εm) ∈ {0, 1}m for θ, θ ′ ∈ [0, T ] with θ ′ < θ. Let
α ∈ (Nd

0)
m be a multi-index. If for some r ≥ r0

Hr <

1
2 − γr0

(d − 1 + 2
∑d

l=1 α
(l)
j )

holds for all j , where γr0 ∈ (0, Hr0) is sufficiently small, then there exists a universal constant
Cr0 (depending on Hr0 , T and d, but independent of m, { fi }i=1,...,m and α) such that for any
θ, t ∈ [0, T ] with θ < t we have∣∣∣∣∣∣E

∫
�m

θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , Bs j )κ j (s j )

⎞
⎠ ds

∣∣∣∣∣∣

≤ 1

λmd
r

Cm+|α|
r0

m∏
j=1

∥∥ f j (·, z j )∥∥L1(Rd ;L∞([0,T ]))

(
θ − θ ′
θθ ′

)γr0

∑m
j=1 ε j

θ
(Hr0− 1

2−γr0 )
∑m

j=1 ε j

×
(∏d

l=1(2
∣∣α(l)

∣∣)!)1/4 (t − θ)
−Hr (md+2|α|)+(Hr0− 1

2−γr0 )
∑m

j=1 ε j+m


(
−Hr (2md + 4 |α|) + 2

(
Hr0 − 1

2 − γr0
)∑m

j=1 ε j + 2m
)1/2 .
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Proof From the definition of �
κ f
α (44) we see that the integral in our proposition can be

expressed as

∫
�m

θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , B
H
s j )κ j (s j )

⎞
⎠ ds =

∫
R
dm

�κ f
α (θ, t, z)dz.

By taking expectation and using Theorem 4.7 we get that

∣∣∣∣∣∣E
∫

�m
θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , B
H
s j )κ j (s j )

⎞
⎠ ds

∣∣∣∣∣∣
≤ 1

λmd
r

Cm/2+|α|/2
r

m∏
j=1

∥∥ f j (·, z j )∥∥L1(Rd ;L∞([0,T ])) · (�κ

α (θ, t, Hr ))
1/2,

where in this case

�κ

k (θ, t, Hr )

:=
d∏

l=1

√
(2
∣∣α(l)

∣∣)! ∑
σ∈S(m,m)

∫
�2m

0,t

2m∏
j=1

(KHr (s j , θ) − KHr (s j , θ ′))ε[σ( j)]

1
∣∣s j − s j−1

∣∣Hr (d+2
∑d

l=1 α
(l)
[σ( j)])

ds1 . . . ds2m .

We wish to use Lemma B.2. For this purpose, we need that −Hr (d + 2
∑d

l=1 α
(l)
[σ( j)]) +

(Hr0 − 1
2 − γr0)ε[σ( j)] > −1 for all j = 1, . . . , 2m. The worst case is, when ε[σ( j)] = 1 for

all j . So Hr <
1
2−γr

(d−1+2
∑d

l=1 α
(l)
[σ( j)])

for all j , since Hr0 ≥ Hr . Therfore, we get that

�κ

α (θ, t, Hr ) ≤ C2m
r0

∑
σ∈S(m,m)

(
θ − θ ′
θθ ′

)γr0

∑2m
j=1 ε[σ( j)]

θ
(Hr0− 1

2−γr0 )
∑2m

j=1 ε[σ( j)]

×
d∏

l=1

√
(2
∣∣α(l)

∣∣)!�γ (2m)(t − θ)
−Hr (2md+4|α|)+(Hr− 1

2−γr )
∑2m

j=1 ε[σ( j)]+2m
,

where �γ (m) is defined as in Lemma B.2 and where Cr0 is a constant, which only depends
on Hr0 and T . The factor �γ (m) has the following upper bound:

�γ (2m) ≤
∏2m

j=1 
(
1 − Hr

(
d + 2

∑d
l=1 α

(l)
[σ( j)]

))


(
−Hr (2md + 4 |α|) + (

Hr0 − 1
2 − γr0

)∑2m
j=1 ε[σ( j)] + 2m

) .

123



Journal of Dynamics and Differential Equations

Note that
∑2m

j=1 ε[σ( j)] = 2
∑m

j=1 ε j . Hence, it follows that

(�κ

k (θ, t, Hr ))
1/2

≤ Cm
r0

(
θ − θ ′
θθ ′

)γr0

∑m
j=1 ε j

θ
(Hr− 1

2−γr0 )
∑m

j=1 ε j

×
(∏d

l=1(2
∣∣α(l)

∣∣)!)1/4 (t − θ)
−Hr (md+2|α|)−(Hr0− 1

2−γr0 )
∑m

j=1 ε j+m


(
−Hr (2md + 4 |α|) + 2

(
Hr0 − 1

2 − γr0
)∑m

j=1 ε j + 2m
)1/2 ,

where we used
∏2m

j=1 (1 − Hr (d + 2
∑d

l=1 α
(l)
[σ( j)]) ≤ Km for a constant K = K (γr0) > 0

and
√
a1 + . . . + am ≤ √

a1 + . . .
√
am for arbitrary non-negative numbers a1, . . . , am . ��

Proposition 4.9 Let the functions f and κ be as in (62), respectively as in (42). Let θ, t ∈
[0, T ] with θ < t and

κ j (s) = (KHr0
(s, θ))ε j , θ < s < t

for every j = 1, . . . ,m with (ε1, . . . , εm) ∈ {0, 1}m. Let α ∈ (Nd
0)

m be a multi-index. If for
some r ≥ r0

Hr <

1
2 − γr0(

d − 1 + 2
∑d

l=1 α
(l)
j

)

holds for all j , where γr0 ∈ (0, Hr0) is sufficiently small, then there exists a universal constant
Cr0 (depending on Hr0 , T and d, but independent of m, { fi }i=1,...,m and α) such that for any
θ, t ∈ [0, T ] with θ < t we have∣∣∣∣∣∣E

∫
�m

θ,t

⎛
⎝ m∏

j=1

Dα j f j (s j , Bs j )κ j (s j )

⎞
⎠ ds

∣∣∣∣∣∣
≤ 1

λmd
r

Cm+|α|
r0

m∏
j=1

∥∥ f j (·, z j )∥∥L1(Rd ;L∞([0,T ])) θ
(Hr0− 1

2 )
∑m

j=1 ε j

×
(∏d

l=1(2
∣∣α(l)

∣∣)!)1/4 (t − θ)
−Hr (md+2|α|)+(Hr0− 1

2−γr0 )
∑m

j=1 ε j+m


(
−Hr (2md + 4 |α|) + 2

(
Hr0 − 1

2 − γr0
)∑m

j=1 ε j + 2m
)1/2 .

Proof The proof is similar to the previous proposition. ��
Remark 4.10 We mention that

d∏
l=1

(
2
∣∣∣α(l)

∣∣∣
)
! ≤ (2 |α|)!C |α|

for a constant C depending on d . Later on in the paper, when we deal with the existence of
strong solutions, we will consider the case

α
(l)
j ∈ {0, 1} for all j, l

with

|α| = m.
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Thenext proposition is a verification of the sufficient condition needed to guarantee relative
compactness of the approximating sequence {Xn

t }n≥1.

Proposition 4.11 Let bn : [0, T ] × R
d → R

d , n ≥ 1, be a sequence of compactly supported
smooth functions converging a.e. to b such that supn≥1 ‖bn‖Lq

2,p
< ∞, p, q ∈ (2,∞]. Let

Xn· denote the solution of (31) when we replace b by bn. Further, let Ci for r0 = i be
the (same) constant (depending only on Hi , T and d) in the estimates of Proposition 4.8
and 4.9. Then there exist sequences {αi }∞i=1, β = {βi }∞i=1 (depending only on {Hi }∞i=1) with
0 < αi < βi < 1

2 , δ = {δi }∞i=1 as in Theorem A.3 and λ = {λi }∞i=1 in (28), which satisfies
(25), (26), (29) and which is of the form λi = ϕi · ϕ(Ci ) being independent of the size of
supn≥1 ‖bn‖Lq

2,p
for a sequence {ϕi }∞i=1 and a bounded function ϕ, such that

∞∑
i=1

|ϕi |2
1 − 2−2(βi−αi )δ2i

< ∞, (50)

sup
n≥1

E[‖Xn
t ‖2] < ∞,

sup
n≥1

∞∑
i=1

1

δ2i

∫ t

0
E[‖Di

t0 X
n
t ‖2]dt0 ≤ C1

(
sup
n≥1

‖bn‖Lq
2,p

)
< ∞,

and

sup
n≥1

∞∑
i=1

1

(1 − 2−2(βi−αi ))δ2i

∫ t

0

∫ t

0

E[‖Di
t0 X

n
t − Di

t ′0
Xn
t ‖2]

|t0 − t ′0|1+2βi
dt0dt

′
0

≤ C2

(
sup
n≥1

‖bn‖Lq
2,p

)
< ∞

for all t ∈ [0, T ], where C j : [0,∞) −→ [0,∞), j = 1, 2 are continuous functions
depending on {Hi }∞i=1, p, q, d, T and where Di denotes the Malliavin derivative in the
direction of the standard Brownian motion Wi , i ≥ 1. Here, ‖ · ‖ denotes any matrix norm.

Remark 4.12 The proof of Proposition 4.11 shows that one may for example choose λi =
ϕi · ϕ(Ci ) in (28) for ϕ(x) = exp(−x100) and {ϕi }∞i=1 satisfying (50).

Proof The most challenging estimate is the last one, the two others can be proven easily.
Take t0, t ′0 > 0 such that 0 < t ′0 < t0 < t . Using the chain rule for the Malliavin derivative,
see [55, Proposition 1.2.3], we have

Di
t0 X

n
t = λi KHi (t, t0)Id +

∫ t

t0
b′
n(t1, X

n
t1)Dt0 X

n
t1dt1

123



Journal of Dynamics and Differential Equations

P-a.s. for all 0 ≤ t0 ≤ t where b′
n(t, z) =

(
∂

∂z j
b(i)
n (t, z)

)
i, j=1,...,d

denotes the Jacobian

matrix of bn at a point (t, z) and Id the identity matrix in R
d×d . Thus we have

Di
t0 X

n
t − Di

t ′0
Xn
t

= λi (KHi (t, t0)Id − KHi (t, t
′
0)Id)

+
∫ t

t0
b′
n(t1, X

n
t1)D

i
t0 X

n
t1dt1 −

∫ t

t ′0
b′
n(t1, X

n
t1)D

i
t ′0
Xn
t1dt1

= λi (KHi (t, t0)Id − KHi (t, t
′
0)Id)

−
∫ t0

t ′0
b′
n(t1, X

n
t1)D

i
t ′0
Xn
t1dt1 +

∫ t

t0
b′
n(t1, X

n
t1)(D

i
t0 X

n
t1 − Di

t ′0
Xn
t1)dt1

= λiKHi
t0,t ′0

(t)Id − (Di
t ′0
Xn
t0 − λi KHi (t0, t

′
0)Id)

+
∫ t

t0
b′
n(t1, X

n
t1)(D

i
t0 X

n
t1 − Di

t ′0
Xn
t1)dt1,

where as in Proposition 4.8 we define

KHi
t0,t ′0

(t) = KHi (t, t0) − KHi (t, t
′
0).

Iterating the above equation we arrive at

Di
t0 X

n
t − Di

t ′0
Xn
t = λiKHi

t0,t ′0
(t)Id

+ λi

∞∑
m=1

∫
�m

t0,t

m∏
j=1

b′
n(t j , X

n
t j )K

Hi
t0,t ′0

(tm)Iddtm · · · dt1

−
⎛
⎝Id +

∞∑
m=1

∫
�m

t0,t

m∏
j=1

b′
n(t j , X

n
t j )dtm · · · dt1

⎞
⎠(Di

t ′0
Xn
t0 − λi KHi (t0, t

′
0)Id

)
.

On the other hand, observe that one may again write

Di
t ′0
Xn
t0 − λi KHi (t0, t

′
0)Id = λi

∞∑
m=1

∫
�m

t ′0,t0

m∏
j=1

b′
n(t j , X

n
t j )(KHi (tm, t ′0)Id) dtm · · · dt1.

In summary,

Di
t0 X

n
t − Di

t ′0
Xn
t = λi I1(t

′
0, t0) + λi I

n
2 (t ′0, t0) + λi I

n
3 (t ′0, t0),
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where

I1(t
′
0, t0) := KHi

t0,t ′0
(t)Id = KHi (t, t0)Id − KHi (t, t

′
0)Id

I n2 (t ′0, t0) :=
∞∑

m=1

∫
�m

t0,t

m∏
j=1

b′
n(t j , X

n
t j )K

Hi
t0,t ′0

(tm)Id dtm · · · dt1

I n3 (t ′0, t0) := −
⎛
⎝Id +

∞∑
m=1

∫
�m

t0,t

m∏
j=1

b′
n(t j , X

n
t j )dtm · · · dt1

⎞
⎠

×
⎛
⎝ ∞∑

m=1

∫
�m

t ′0,t0

m∏
j=1

b′
n(t j , X

n
t j )(KHi (tm, t ′0)Id)dtm · · · dt1.

⎞
⎠ .

Hence,

E[‖Di
t0 X

n
t − Di

t ′0
Xn
t ‖2] ≤ Cλ2i

(
E[‖I1(t ′0, t0)‖2] + E[‖I n2 (t ′0, t0)‖2] + E[‖I n3 (t ′0, t0)‖2]

)
.

It follows from Lemma B.1 and condition (50) that

∞∑
i=1

λ2i

1 − 2−2(βi−αi )δ2i

∫ t

0

∫ t

0

‖I1(t ′0, t0)‖2L2(�)

|t0 − t ′0|1+2βi
dt0dt

′
0

≤
∞∑
i=1

λ2i

1 − 2−2(βi−αi )δ2i
t4Hi−6γi−2βi−1 < ∞

for a suitable choice of sequence {βi }i≥1 ⊂ (0, 1/2).
Let us continue with the term I n2 (t ′0, t0). Then Theorem 3.2, Cauchy–Schwarz inequality

and Lemma 4.4 imply

E[‖I n2 (t ′0, t0)‖2]

≤ C(‖bn‖Lq
p
)E

⎡
⎢⎣
∥∥∥∥∥∥

∞∑
m=1

∫
�m

t0,t

m∏
j=1

b′
n(t j , x + B

H
t j )K

Hi
t0,t ′0

(tm)Id dtm · · · dt1
∥∥∥∥∥∥
4
⎤
⎥⎦
1/2

,

where C : [0,∞) → [0,∞) is the function from Lemma 4.4. Taking the supremum over n
we have

sup
n≥0

C(‖bn‖Lq
p
) =: C1 < ∞.

Let ‖ · ‖ from now on denote the matrix norm in R
d×d such that ‖A‖ = ∑d

i, j=1 |ai j | for
a matrix A = {ai j }i, j=1,...,d , then we have

E[‖I n2 (t ′0, t0)‖2]

≤ C1

⎛
⎝ ∞∑

m=1

d∑
j,k=1

d∑
l1,...,lm−1=1

∥∥∥∥
∫

�m
t0,t

∂

∂xl1
b( j)
n

(
t1, x + B

H
t1

)

× ∂

∂xl2
b(l1)
n

(
t2, x + B

H
t2

)
· · · ∂

∂xk
b(lm−1)
n

(
tm, x + B

H
tm

)
KHi
t0,t ′0

(tm)dtm · · · dt1
∥∥∥∥
L4(�,R)

)2

.

(51)
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Now, the aim is to shuffle the four integrals above. Denote

Jn2 (t ′0, t0) :=
∫

�m
t0,t

∂

∂xl1
b( j)
n

(
t1, x + B

H
t1

)
· · · ∂

∂xk
b(lm−1)
n

(
tm, x + B

H
tm

)
KHi
t0,t ′0

(tm)dt .

(52)

Then, shuffling Jn2 (t ′0, t0) as shown in (17), one can write (Jn2 (t ′0, t0))2 as a sum of at most
22m summands of length 2m of the form

∫
�2m

t0,t

gn1

(
t1, x + B

H
t1

)
· · · gn2m

(
t2m, x + B

H
t2m

)
dt2m · · · dt1,

where for each l = 1, . . . , 2m,

gnl (·, x + B
H· ) ∈

{
∂

∂xk
b( j)
n (·, x + B

H· ),
∂

∂xk
b( j)
n (·, x + B

H· )KHi
t0,t ′0

(·), j, k = 1, . . . , d

}
.

Repeating this argument once again, we find that Jn2 (t ′0, t0)4 can be expressed as a sum
of, at most, 28m summands of length 4m of the form

∫
�4m

t0,t

gn1

(
t1, x + B

H
t1

)
· · · gn4m

(
t4m, x + B

H
t4m

)
dt4m · · · dt1, (53)

where for each l = 1, . . . , 4m,

gnl (·, x + B
H· ) ∈

{
∂

∂xk
b( j)
n (·, x + B

H· ),
∂

∂xk
b( j)
n (·, x + B

H· )KHi
t0,t ′0

(·), j, k = 1, . . . , d

}
.

It is important to note that the function KHi
t0,t ′0

(·) appears only once in term (52) and hence

only four times in term (53). So there are indices j1, . . . , j4 ∈ {1, . . . , 4m} such that we can
write (53) as

∫
�4m

t0,t

⎛
⎝ 4m∏

j=1

bnj (t j , x + B
H
t j )

⎞
⎠ 4∏

l=1

KHi
t0,t ′0

(t jl )dt4m · · · dt1,

where

bnl (·, x + B
H· ) ∈

{
∂

∂xk
b( j)
n (·, x + B

H· ), j, k = 1, . . . , d

}
, l = 1, . . . , 4m.

The latter enables us to use the estimate from Proposition 4.8 for
∑4m

r=1 εr = 4, |α| = 4m,∑d
l=1 α

(l)
j = 1 for all l, Hr < 1

2(d+2) for some r ≥ i combined with Remark 4.10. Thus we
obtain that

(
E(Jn2 (t ′0, t0))4

)1/4

≤ 1

λmd
r

C2m
i ‖bn‖mL1(Rd ;L∞([0,T ]))

∣∣∣∣ t0 − t ′0
t0t ′0

∣∣∣∣
γi

t
(Hi− 1

2−γi )

0

× C(d)m((8m)!)1/16 |t − t0|−Hr (md+2m)+(Hi− 1
2−γi )+m

(−Hr (2 · 4md + 4 · 4m) + 2(Hi − 1
2 − γi ) + 8m)1/8

for a constant C(d) depending only on d.
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Then the series in (51) is summable over j, k, l1, . . . , lm−1 and m. Hence, we just need
to verify that the double integral is finite for suitable γi ’s and βi ’s. Indeed,

∫ t

0

∫ t

0

∣∣t0 − t ′0
∣∣2γi−1−2βi

∣∣t0t ′0
∣∣2γi t

2
(
Hi− 1

2−γi

)
0 |t − t0|−2

(
Hi− 1

2−γi

)
dt0dt

′
0 < ∞,

whenever 2
(
Hi − 1

2 − γi
)

> −1, 2γi − 1 − 2βi > −1 and 2
(
Hi − 1

2 − γi
) − 2γi > −1

which is fulfilled if for instance γi < Hi/4 and 0 < βi < γi .
Now we may choose for example a function ϕ with ϕ(x) = exp(−x100). In this case, we

find that

C2m
i λi = ϕiC

2m
i ϕ(Ci ) ≤ ϕi

(
1

50

) m
50

m
m
50

So, finally, if Hr for a fixed r ≥ i is sufficiently small, the sums over i ≥ 1 also converge
since we have ϕi satisfying (50).

For the term I n3 we may use Theorem 3.2, Cauchy–Schwarz inequality twice and observe
that the first factor of I n3 is bounded uniformly in t0, t ∈ [0, T ] by a simple application of
Proposition 4.9 with ε j = 0 for all j . Then, the remaining estimate is fairly similar to the
case of I n2 by using Proposition 4.9 again. As for the estimate for the Malliavin derivative
the reader may agree that the arguments are analogous. ��

The following is a consequence of combining Lemma 4.6 and Proposition 4.11.

Corollary 4.13 For every t ∈ [0, T ] and continuous function ϕ : R
d → Rwith at most linear

growth we have

ϕ(Xn
t )

n→∞−−−→ ϕ(E[Xt |Ft ])
strongly in L2(�). In addition, E[Xt |Ft ] is Malliavin differentiable along any direction Wi ,
i ≥ 1 of B

H· . Moreover, the solution X is F-adapted, thus being a strong solution.

Proof This is a direct consequence of the relative compactness from Theorem A.3 combined
with Proposition 4.11 and by Lemma 4.6, we can identify the limit as E[Xt |Ft ]. Then the
convergence holds for any bounded continuous functions as well. The Malliavin differentia-
bility of E[Xt |Ft ] is verified by taking ϕ = Id and the second estimate in Proposition 4.11
in connection with [55, Proposition 1.2.3]. ��

Finally, we can complete step (4) of our scheme.

Corollary 4.14 The constructed solution X · of (31) is strong.

Proof We have to show that Xt is Ft -measurable for every t ∈ [0, T ] and by Remark 4.5 we
see that there exists a strong solution in the usual sense, which is Malliavin differentiable.
In proving this, let ϕ be a globally Lipschitz continuous function. Then it follows from
Corollary 4.13 that there exists a subsequence nk , k ≥ 0, that

ϕ(Xnk
t ) → ϕ(E[Xt |Ft ]), P − a.s.

as k → ∞.
Further, by Lemma 4.6 we also know that

ϕ(Xn
t ) → E [ϕ(Xt )|Ft ]
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weakly in L2(�). By the uniqueness of the limit we immediately obtain that

ϕ (E[Xt |Ft ]) = E [ϕ(Xt )|Ft ] , P − a.s.

which implies that Xt is Ft -measurable for every t ∈ [0, T ]. ��
Finally, we turn to step (5) and complete this Section by showing pathwise uniqueness.

Following the same argument as in [60, Chapter IX, Exercise (1.20)] we see that strong
existence and uniqueness in law implies pathwise uniqueness. The argument does not rely
on the process being a semimartingale. Hence, uniqueness in law is enough. The following
Lemma actually implies the desired uniqueness by estimate (37) in connection with [40,
Theorem 7.7].

Lemma 4.15 Let X be a strong solution of (31) where b ∈ Lq
p, p, q ∈ (2,∞]. Then the

estimates (33) and (34) hold for X in place of B
H· . As a consequence, uniqueness in law

holds for Eq. (31) and since X strong, pathwise uniqueness follows.

Proof Assume first that b is bounded. Fix any n ≥ 1 and set

ηns = K−1
Hn

(
1

λn

∫ ·

0
b(r , Xr )dr

)
(s).

Since b is bounded it is easy to see from (36) by changing B
H· with X and bounding b that

for every κ ∈ R,

EP̃

[
exp

{
−2κ

∫ T

0
(ηns )

∗dWn
s − 2κ2

∫ T

0
|ηns |2ds

}]
= 1, (54)

where

d P̃

d P
= exp

{
−
∫ T

0
(ηns )

∗dWn
s − 1

2

∫ T

0
|ηns |2ds

}
.

Hence, Xt − x is a regularizing fractional Brownian motion with Hurst sequence H under
P̃ . Define

ξκ
T := exp

{
−κ

∫ T

0
(ηns )

∗dWn
s − κ

2

∫ T

0
|ηns |2ds

}
.

Then,

EP̃

[
ξκ
T

] = EP̃

[
exp

{
−κ

∫ T

0
(ηns )

∗dWn
s − κ

2

∫ T

0
|ηns |2ds

}]

= EP̃

[
exp

{
−κ

∫ T

0
(ηns )

∗dWn
s − κ2

∫ T

0
|ηns |2ds

}
exp

{(
κ2 + κ

2

) ∫ T

0
|ηns |2ds

}]

≤
(
EP̃

[
exp

{
2
∣∣∣κ2 + κ

2

∣∣∣
∫ T

0
|ηns |2ds

}])1/2

in view of (54).
On the other hand, using (38) with X in place of B

H· we have

∫ T

0
|ηs |2ds ≤ Cε,λn ,Hn ,T

(
1 +

∫ T

0
|b(r , Xr )| 1+ε

ε dr

)
, P − a.s.
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for any ε ∈ (0, 1). Hence, applying Lemma 4.2 we get

EP̃

[
ξκ
T

] ≤ e
∣∣κ2+ κ

2

∣∣Cε,λn ,Hn ,T
(
A
(
Cε,λn ,Hn ,T

∣∣∣κ2 + κ

2

∣∣∣ ‖|b| 1+ε
ε ‖Lq

p

))1/2
,

where A is the analytic function from Lemma 4.2.
Furthermore, observe that for every κ ∈ R we have

EP [ξκ
T ] = EP̃ [ξκ−1

T ]. (55)

In fact, (55) holds for any b ∈ Lq
p by considering bn := b1{|b|≤n}, n ≥ 1 and then letting

n → ∞.
Finally, let δ ∈ (0, 1) and apply Hölder’s inequality in order to get

EP

[∫ T

0
h(t, Xt )dt

]
≤ T δ

(
EP̃

[
(ξ1T )

1+δ
δ

]) δ
1+δ

(
EP̃

[∫ T

0
h(t, Xt )

1+δdt

]) 1
1+δ

,

and

EP

[
exp

{∫ T

0
h(t, Xt )dt

}]
≤ T δ

(
EP̃

[
(ξ1T )

1+δ
δ

]) δ
1+δ

(
EP̃

[
exp

{
(1 + δ)

∫ T

0
h(t, Xt )dt

}]) 1
1+δ

,

for every Borel measurable function. Since we know that Xt − x is a regularizing fractional
Brownian motion with Hurst sequence H under P̃ , the result follows by Lemma 4.2 by
choosing δ close enough to 0. ��

Using all the previous intermediate results, we are now able to state the main result of this
Section:

Theorem 4.16 Retain the conditions for λ = {λi }i≥1 with respect toB
H· in Theorem 4.11. Let

b ∈ Lq
2,p , p, q ∈ (2,∞]. Then there exists a unique (global) strong solution Xt , 0 ≤ t ≤ T

of Eq. (31). Moreover, for every t ∈ [0, T ], Xt is Malliavin differentiable in each direction
of the Brownian motions Wn , n ≥ 1 in (27).

5 Infinitely Differentiable Flows for Irregular Vector Fields

From now on, we denote by Xs,x
t the solution to the following SDE driven by a regularizing

fractional Brownian motion B
H· with Hurst sequence H :

dXs,x
t = b(t, Xs,x

t )dt + dB
H
t , s, t ∈ [0, T ], s ≤ t, Xs,x

s = x ∈ R
d .

We will then assume the hypotheses from Theorem 4.16 on b and H .
The next estimate essentially tells us that the stochastic mapping x �→ Xs,x

t is P-a.s.
infinitely many times continuously differentiable. In particular, it shows that the strong solu-
tion constructed in the former section, in addition to being Malliavin differentiable, is also
smooth in x and, although we will not prove it explicitly here, it is also smooth in the Malli-
avin sense, and since Hörmander’s condition is met then implies that the densities of the
marginals are also smooth.

Theorem 5.1 Let b ∈ C∞
c ((0, T )×R

d). Fix integers p ≥ 2 and k ≥ 1. Choose a r such that
Hr < 1

(d−1+2k) . Then there exists a continuous functionCk,d,Hr ,p,p,q,T : [0,∞)2 → [0,∞),
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depending on k, d, Hr , p, p, q and T .

sup
s,t∈[0,T ]

sup
x∈R

d
E

[∥∥∥∥ ∂k

∂xk
Xs,x
t

∥∥∥∥
p
]

≤ Ck,d,Hr ,p,p,q,T

(
‖b‖

Lq
p
, ‖b‖L1∞

)
.

Proof For notational simplicity, let s = 0, B· = B
H· and let Xx

t , 0 ≤ t ≤ T be the solution
with respect to the vector field b ∈ C∞

c ((0, T ) × R
d). We know that the stochastic flow

associated with the smooth vector field b is smooth, too (compare to e.g. [38]). Hence, we
get that

∂

∂x
Xx
t = Id +

∫ t

s
Db(u, Xx

u ) · ∂

∂x
Xx
udu, (56)

where Db(u, )̇ : R
d −→ L(Rd , R

d) is the derivative of b with respect to the space variable.
By using Picard iteration, we see that

∂

∂x
Xx
t = Id +

∑
m≥1

∫
�m

0,t

Db(u, Xx
u1) . . . Db(u, Xx

um )dum . . . du1, (57)

where

�m
s,t = {(um, . . . u1) ∈ [0, T ]m : θ < um < · · · < u1 < t}.

By applying dominated convergence, we can differentiate both sides with respect to x and
find that

∂2

∂x2
Xx
t =

∑
m≥1

∫
�m

0,t

∂

∂x

[
Db(u, Xx

u1) . . . Db(u, Xx
um )
]
dum . . . du1.

Further, the Leibniz and chain rule yield

∂

∂x

[
Db(u1, X

x
u1) . . . Db(um, Xx

um )
]

=
m∑

r=1

Db(u1, X
x
u1) . . . D2b(ur , X

x
ur )

∂

∂x
Xx
ur . . . Db(um, Xx

um ),

where D2b(u, ·) = D(Db(u, ·)) : R
d −→ L(Rd , L(Rd , R

d)).
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Therefore (57) entails

∂2

∂x2
Xx
t =

∑
m1≥1

∫
�

m1
0,t

m1∑
r=1

Db(u1, X
x
u1) . . . D2b(ur , X

x
ur )

×
⎛
⎝Id +

∑
m2≥1

∫
�

m2
0,ur

Db(v1, X
x
v1

) . . . Db(vm2 , X
x
vm2

)dvm2 . . . dv1

⎞
⎠

× Db(ur+1, X
x
ur+1

) . . . Db(um1 , X
x
um1

)dum1 . . . du1

=
∑
m1≥1

m1∑
r=1

∫
�

m1
0,t

Db(u1, X
x
u1) . . . D2b(ur , X

x
ur ) . . . Db(um1 , X

x
um1

)dum1 . . . du1

+
∑
m1≥1

m1∑
r=1

∑
m2≥1

∫
�

m1
0,t

∫
�

m2
0,ur

Db(u1, X
x
u1) . . . D2b(ur , X

x
ur )

× Db(v1, X
x
v1

) . . . Db(vm2 X
x
vm2

)Db(ur+1, X
x
ur+1

) . . . Db(um1 , X
x
um1

)

dvm2 . . . dv1dum1 . . . du1

=: I1 + I2. (58)

In the next step, we wish to employ Lemma B.8 (in connection with shuffling in Sect. 2.2)
to the term I2 in (58) and get that

I2 =
∑
m1≥1

m1∑
r=1

∑
m2≥1

∫
�

m1+m2
0,t

HX
m1+m2

(u)dum1+m2 . . . du1 (59)

for u = (u1, . . . , um1+m2), where the integrand HX
m1+m2

(u) ∈ R
d ⊗ R

d ⊗ R
d has entries

given by sums of atmostC(d)m1+m2 terms,which are products of lengthm1+m2 of functions
being elements of the set

{
∂γ (1)+...+γ (d)

∂γ (1) x1 . . . ∂γ (d) xd
b(r)(u, Xx

u ), r = 1, . . . , d, γ (1) + · · · + γ (d) ≤ 2, γ (l) ∈ N0, l = 1, . . . , d

}
.

Here it is important to mention that second order derivatives of functions in those products
of functions on �

m1+m2
0,t in (59 ) only occur once. Hence the total order of derivatives |α| of

those products of functions in connection with Lemma B.8 in the Appendix is

|α| = m1 + m2 + 1. (60)

Let us now choose p, c, r ∈ [1,∞) such that cp = 2q for some integer q and 1
r + 1

c = 1.Then
we can employ Hö lder’s inequality and Girsanov’s theorem (see Theorem 2.2) combined
with Lemma 4.4 and obtain that

E[‖I2‖p]

≤ C(‖b‖
Lq
p
)

⎛
⎝∑

m1≥1

m1∑
r=1

∑
m2≥1

∑
i∈I

∥∥∥∥∥
∫

�
m1+m2
0,t

HB

i (u)dum1+m2 . . . du1

∥∥∥∥∥
L2q (�;R)

⎞
⎠

p

,(61)
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where C : [0,∞) −→ [0,∞) is a continuous function depending on p, p and q . Here
#I ≤ Km1+m2 for a constant K = K (d) and the integrands HB

i (u) are of the form

HBH

i (u) =
m1+m2∏
l=1

hl(ul), hl ∈ �, l = 1, . . . ,m1 + m2

where

� :=
{

∂γ (1)+···+γ (d)

∂γ (1) x1...∂γ (d) xd
b(r)(u, x + Bu), r = 1, . . . , d,

γ (1) + · · · + γ (d) ≤ 2, γ (l) ∈ N0, l = 1, · · · , d

}
.

As above we observe that functions with second order derivatives only occur once in those
products.

Let

J =
(∫

�
m1+m2
0,t

HB

i (u)dum1+m2 . . . du1

)2q

.

By using shuffling (see Sect. 2.2) once more, successively, we find that J has a reprsentation
as a sum of, at most of length K (q)m1+m2 with summands of the form

∫
�

2q (m1+m2)

0,t

2q (m1+m2)∏
l=1

fl(ul)du2q (m1+m2) . . . du1, (62)

where fl ∈ � for all l.
Note that the number of factors fl in the above product, which have a second order

derivative, is exactly 2q . Hence the total order of the derivatives in (62) in connection with
Lemma B.8 (where one in that Lemma formally replaces Xx

u by x +Bu in the corresponding
terms) is

|α| = 2q(m1 + m2 + 1). (63)

We now aim at using Theorem 4.9 for m = 2q(m1 + m2) and ε j = 0 and find that
∣∣∣∣∣∣E
⎡
⎣
∫

�
2q (m1+m2)

0,t

2q (m1+m2)∏
l=1

fl(ul)du2q (m1+m2) . . . du1

⎤
⎦
∣∣∣∣∣∣

≤ Cm1+m2(‖b‖L1∞)2
q (m1+m2)

× ((2(2q(m1 + m2 + 1))!)1/4
(−Hr (2d2q(m1 + m2) + 42q(m1 + m2 + 1)) + 22q(m1 + m2))1/2

for a constant C depending on Hr , T , d and q .
Therefore the latter combined with (61) implies that

E[‖I2‖p]

≤ C(‖b‖
Lq
p
)

⎛
⎝∑

m1≥1

∑
m2≥1

Km1+m2(‖b‖L1∞)2
q (m1+m2)

× ((2(2q(m1 + m2 + 1))!)1/4
(−Hr (2d2q(m1 + m2) + 42q(m1 + m2 + 1)) + 22q(m1 + m2))1/2

)1/2
q
)p
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for a constant K depending on Hr , T , d, p and q .
Since 1

2(d+3) ≤ 1
2(d+2m1+m2+1

m1+m2
)
for m1, m2 ≥ 1, one concludes that the above sum con-

verges, whenever Hr < 1
2(d+3) .

Further, one gets an estimate for E[‖I1‖p] by using similar reasonings as above. In sum-
mary, we obtain the proof for k = 2.

We now give an explanation how we can generalize the previous line of reasoning to the
case k ≥ 2: In this case, we we have that

∂k

∂xk
Xx
t = I1 + · · · + I2k−1 , (64)

where each Ii , i = 1, . . . , 2k−1 is a sum of iterated integrals over simplices of the form�
m j
0,u,

0 < u < t, j = 1, . . . , k with integrands having at most one product factor Dkb, while the
other factors are of the form D jb, j ≤ k − 1.

In the following we need the following notation: For multi-indices m. = (m1, . . . ,mk)

and r := (r1, . . . , rk−1), set

m−
j :=

j∑
i=1

mi

and

∑
m≥1
rl≤m−

l
l=1,...,k−1

:=
∑
m1≥1

m1∑
r1=1

∑
m2≥1

m−
2∑

r2=1

. . .

m−
k−1∑

rk−1=1

∑
mk≥1

.

In what follows, without loss of generality we confine ourselves to deriving an estimate with
respect to the summand I2k−1 in (64). Just as in the case k = 2, we obtain by employing
Lemma B.8 (in connection with shuffling in Sect. 2.2) that

I2k−1 =
∑
m≥1
rl≤m−

l
l=1,...,k−1

∫
�

m1+...+mk
0,t

HX
m1+...+mk

(u)dum1+m2 . . . du1 (65)

for u = (um1+...+mk , . . . , u1), where the integrand HX
m1+...+mk

(u) ∈ ⊗k+1
j=1R

d has entries,
which are given by sums of at most C(d)m1+...+mk terms. Those terms are given by products
of length m1 + . . .mk of functions, which are elements of the set

{
∂γ (1)+···+γ (d)

∂γ (1) x1...∂γ (d) xd
b(r)(u, Xx

u ), r = 1, . . . , d,

γ (1) + · · · + γ (d) ≤ k, γ (l) ∈ N0, l = 1, . . . , d

}
.

Exactly as in the case k = 2 we can invoke Lemma B.8 in the Appendix and get that the total
order of derivatives |α| of those products of functions is

|α| = m1 + . . . + mk + k − 1. (66)

Then we can adopt the line of reasoning as before and choose p, c, r ∈ [1,∞) such that
cp = 2q for some integer q and 1

r + 1
c = 1 and find by applying Hölder’s inequality and
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Girsanov’s theorem (see Theorem 2.2) combined with Lemma 4.4 that

E[∥∥I2k−1

∥∥p]

≤ C(‖b‖
Lq
p
)

⎛
⎜⎜⎜⎜⎜⎝

∑
m≥1
rl≤m−

l
l=1,...,k−1

∑
i∈I

∥∥∥∥∥
∫

�
m1+m2
0,t

HB

i (u)dum1+···+mk . . . du1

∥∥∥∥∥
L2q (�;R)

⎞
⎟⎟⎟⎟⎟⎠

p

,(67)

where C : [0,∞) −→ [0,∞) is a continuous function depending on p, p and q . Here
#I ≤ Km1+...+mk for a constant K = K (d) and the integrands HB

i (u) take the form

HB

i (u) =
m1+···+mk∏

l=1

hl(ul), hl ∈ �, l = 1, . . . ,m1 + · · · + mk,

where

� :=
{

∂γ (1)+···+γ (d)

∂γ (1) x1...∂γ (d) xd
b(r)(u, x + Bu), r = 1, . . . , d,

γ (1) + · · · + γ (d) ≤ k, γ (l) ∈ N0, l = 1, . . . , d

}
.

Define

J =
(∫

�
m1+...+mk
0,t

HB

i (u)dum1+···+mk . . . du1

)2q

.

Once more, repeated shuffling (see Sect. 2.2) shows that J can be represented as a sum of, at
most of length K (q)m1+....mk with summands of the form

∫
�

2q (m1+···+mk )

0,t

2q (m1+···+mk )∏
l=1

fl(ul)du2q (m1+···+mk ) . . . du1, (68)

where fl ∈ � for all l.
By applying LemmaB.8 again (where one in that Lemma formally replaces Xx

u by x+BH
u

in the corresponding expressions) we obtain that the total order of the derivatives in the
products of functions in (68) is given by

|α| = 2q(m1 + · · · + mk + k − 1). (69)

Then Proposition 4.9 for m = 2q(m1 + . . . + mk) and ε j = 0 yields that
∣∣∣∣∣∣E
⎡
⎣
∫

�
2q (m1+···+mk )

0,t

2q (m1+···+mk )∏
l=1

fl (ul )du2q (m1+···+mk ) . . . du1

⎤
⎦
∣∣∣∣∣∣

≤ Cm1+···+mk (‖b‖L1∞ )2
q (m1+···+mk )

× ((2(2q (m1 + . . . + mk + k − 1))!)1/4
(−Hr (2d2q (m1 + · · · + mk) + 42q (m1 + · · · + mk + k − 1)) + 22q (m1 + · · · + mk))1/2

for a constant C depending on Hr , T , d and q .
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Thus we can conclude from (67) that

E[∥∥I2k−1
∥∥p] ≤ C(‖b‖

Lqp
)

⎛
⎝ ∑
m1≥1

. . .
∑
mk≥1

Km1+···+mk (‖b‖L1∞ )2
q (m1+···+mk )

× ((2(2q (m1 + · · · + mk + k − 1))!)1/4
(−Hr (2d2q (m1 + · · · + mk ) + 42q (m1 + · · · + mk + k − 1)) + 22q (m1 + · · · + mk ))

1/2 )1/2
q
)p

≤ C(‖b‖
Lqp

⎛
⎜⎜⎜⎝
∑
m≥1

∑
l1,...,lk≥0:
l1+···+lk=m

Km (‖b‖L1∞ )2
qm

× ((2(2q (m + k − 1))!)1/4
(−Hr (2d2qm + 42q (m + k − 1)) + 22qm)1/2

)1/2
q
)p

for a constant K depending on Hr , T , d, p and q .
Since Hr < 1

2(d−1+2k) by assumption, we see that the above sum converges. Hence the
proof follows. ��

Finally, we are coming to the proof of the main result of this paper (Theorem 1.1), which
shows that the regularizing fractional Brownian motion B

H· “produces” an infinitely con-
tinuously differentiable stochastic flow x �→ Xx

t , when b merely belongs to Lq
2,p for any

p, q ∈ (2,∞].

Proof of Theorem 1.1 First, we approximate the irregular drift vector field b by a sequence of
functions bn : [0, T ] × R

d → R
d , n ≥ 0 in C∞

c ((0, T ) × R
d , R

d) in the sense of (32). Let
Xn,x = {Xn,x

t , t ∈ [0, T ]} be the solution to (31) with initial value x ∈ R
d associated with

bn .
We find that for any test function ϕ ∈ C∞

c (U , R
d) and fixed t ∈ [0, T ] the set of random

variables

〈Xn,·
t , ϕ〉 :=

∫
U

〈Xn,x
t , ϕ(x)〉

R
d dx, n ≥ 0

is relatively compact in L2(�). In proving this, we want to apply the compactness criterion
TheoremA.3 in terms of theMalliavin derivative in theAppendix. Using the sequence {δi }∞i=1
in Proposition 4.11, we get that

∞∑
i=1

1

δ2i
E[
∫ T

0
|Di,( j)

s 〈Xn,·
t , ϕ〉|2ds]

=
∞∑
i=1

1

δ2i
E[
∫ T

0

(∫
U

d∑
l=1

Di,( j)
s Xn,x,(l)

t ϕl(x)dx

)2

ds]

≤ 2d−1‖ϕ‖2L2(Rd ,Rd )
λ{supp (ϕ)} sup

x∈U

∞∑
i=1

1

δ2i
E

[∫ T

0
‖Di

s X
n,x
t ‖2ds

]
,

where Di,( j) denotes the Malliavin derivative in the direction of Wi,( j) where Wi is the
d-dimensional standard Brownian motion defining BHi ,i and Wi,( j) its j-th component, λ

the Lebesgue measure on R
d , supp (ϕ) the support of ϕ and ‖ · ‖ a matrix norm. So it follows
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from the estimates in Proposition 4.11 that

sup
n≥0

∞∑
i=1

1

δ2i
‖Di· 〈Xn,·

t , ϕ〉‖2L2(�×[0,T ]) ≤ C‖ϕ‖2L2(Rd ,Rd )
λ{supp (ϕ)}.

Similarly, we get that

sup
n≥0

∞∑
i=1

1

(1 − 2−2(βi−αi ))δ2i

∫ T

0

∫ T

0

E[‖Di
s′ 〈Xn,·

t , ϕ〉 − Di
s〈Xn,·

t , ϕ〉‖2]
|s′ − s|1+2βi

< ∞

for some sequences {αi }∞i=1, {βi }∞i=1 as in Proposition 4.11. Hence 〈Xn,·
t , ϕ〉, n ≥ 0 is rela-

tively compact in L2(�). Denote by Yt (ϕ) its limit after taking (if necessary) a subsequence.
By adopting the same reasoning as in Lemma 4.6 one proves that

〈Xn,·
t , ϕ〉 n→∞−−−→ 〈X ·

t , ϕ〉
weakly in L2(�). Then by uniqueness of the limit we see that

〈Xn,·
t , ϕ〉 −→

n−→∞ Yt (ϕ) = 〈X ·
t , ϕ〉

in L2(�) for all t (without using a subsequence).
We observe that Xn,·

t , n ≥ 0 is bounded in the Sobolev norm L2(�,Wk,α(U )) for each
n ≥ 0 and k ≥ 1. Indeed, from Proposition 5.1 it follows that

sup
n≥0

‖Xn,·
t ‖2L2(�,Wk,α(U ))

= sup
n≥0

k∑
i=0

E

[∥∥∥∥ ∂ i

∂xi
Xn,·
t

∥∥∥∥
2

Lα(U )

]

≤
k∑

i=0

∫
U
sup
n≥0

E

[∥∥∥∥ ∂ i

∂xi
Xn,x
t

∥∥∥∥
α
] 2

α

dx

< ∞.

The space L2(�,Wk,α(U )), α ∈ (1,∞) is reflexive. So the set {Xn,x
t }n≥0 is (relatively)

weakly compact in L2(�,Wk,α(U )) for every k ≥ 1. Hence, there exists a subsequence
n( j), j ≥ 0 such that

Xn( j),·
t

w−−−→
j→∞ Y ∈ L2(�,Wk,α(U )).

We als know that Xn,x
t → Xx

t strongly in L2(�) for all t .
So for all A ∈ F and ϕ ∈ C∞

0 (Rd , R
d) we have for all multi-indices γ with |γ | ≤ k that

E[1A〈X ·
t , D

γ ϕ〉] = lim
j→∞ E[1A〈Xn( j),·

t , Dγ ϕ〉]

= lim
j→∞(−1)|γ |E[1A〈Dγ Xn( j),·

t , ϕ〉] = (−1)|γ |E[1A〈Dγ Y , ϕ〉]

Using the latter, we can conclude that

X ·
t ∈ L2(�,Wk,α(U )), P − a.s.

Since k ≥ 1 is arbitrary, the proof follows. ��
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Appendix A: A Compactness Criterion for Subsets of L2(Ä)

The following result which is originally due to [19] in the finite dimensional case and which
can be e.g. found in [13], provides a compactness criterion of square integrable functionals
of cylindrical Wiener processes on a Hilbert space:

Theorem A.1 Let Bt , 0 ≤ t ≤ T be a cylindrical Wiener process on a separable Hilbert
space H with respect to a complete probability space (�,F, μ), where F is generated by
Bt , 0 ≤ t ≤ T . Further, let LHS(H , R) be the space of Hilbert-Schmidt operators from H
to R and let D : D

1,2 −→ L2(�; L2([0, T ]) ⊗ LHS(H , R)) be the Malliavin derivative in
the direction of Bt , 0 ≤ t ≤ T , where D

1,2 is the space of Malliavin differentiable random
variables in L2(�).

Suppose that C is a self-adjoint compact operator on L2([0, T ])⊗LHS(H , R)with dense
image. Then for any c > 0 the set

G =
{
G ∈ D

1,2 : ‖G‖L2(�) + ∥∥C−1DG
∥∥
L2(�;L2([0,T ])⊗LHS(H ,R))

≤ c
}

is relatively compact in L2(�).

In this paper we aim at using a special case of the the previous theorem, which is more
suitable for explicit estimations. To this end we need the following auxiliary result from [19].

Lemma A.2 Denote by vs ,s ≥ 0 with v0 = 1 the Haar basis of L2([0, 1]). Define for any
0 < α < 1

2 the operator Aα on L2([0, 1]) by
Aαvs = 2kαvs, if s = 2k + j, k ≥ 0, 0 ≤ j ≤ 2k

and

Aα1 = 1.

Then for α < β < 1
2 we have that

‖Aα f ‖2L2([0,1]) ≤ 2

(
‖ f ‖2L2([0,1]) + 1

1 − 2−2(β−α)

∫ 1

0

∫ 1

0

| f (t) − f (u)|2
|t − u|1+2β dtdu

)
.

Theorem A.3 Let Di be the Malliavin derivative in the direction of the i-th component of Bt ,
0 ≤ t ≤ 1, i ≥ 1. In addition, let 0 < αi < βi < 1

2 and δi > 0 for all i ≥ 1. Define the
sequence λs,i = 2−kαi δi , if s = 2k + j , k ≥ 0, 0 ≤ j ≤ 2k, i ≥ 1. Assume that λs,i −→ 0
for s, i −→ ∞. Let c > 0 and G the collection of all G ∈ D

1,2 such that

‖G‖L2(�) ≤ c,
∑
i≥1

δ−2
i

∥∥∥DiG
∥∥∥2
L2(�;L2([0,1])) ≤ c
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and

∑
i≥1

1

(1 − 2−2(βi−αi ))δ2i

∫ 1

0

∫ 1

0

∥∥Di
t G − Di

uG
∥∥2
L2(�)

|t − u|1+2βi
dtdu ≤ c.

Then G is relatively compact in L2(�).

Proof As before denote by vs , s ≥ 0 with v0 = 1 the Haar basis of L2([0, 1]) and by
e∗
i = 〈ei , ·〉H , i ≥ 1 an orthonormal basis of LHS(H , R) (∼= H∗ ) where ei , i ≥ 1 is an
orthonormal basis of H . Define a self-adjoint compact operatorC on L2([0, 1])⊗LHS(H , R)

with dense image by

C(vs ⊗ e∗
i ) = λs,ivs ⊗ e∗

i , s ≥ 0, i ≥ 1.

Then it follows for G ∈ D
1,2 from Lemma A.2 that∥∥C−1DG

∥∥2
L2(�;L2([0,1])⊗LHS(H ,R))

=
∑
i≥1

∑
s≥0

λ−2
s,i E

[〈
DG, vs ⊗ e∗

i

〉2
L2([0,1])⊗LHS(H ,R))

]

=
∑
i≥1

δ−2
i

∥∥∥Aαi D
iG
∥∥∥2
L2(�;L2([0,1]))

≤ 2
∑
i≥1

δ−2
i

∥∥∥DiG
∥∥∥2
L2(�;L2([0,1]))

+ 2
∑
i≥1

1

(1 − 2−2(βi−αi ))δ2i

∫ 1

0

∫ 1

0

∥∥Di
t G − Di

uG
∥∥2
L2(�)

|t − u|1+2βi
dtdu

≤ M

for a constant M < ∞. So using Theorem A.1 we obtain the result. ��

Appendix B: Technical Estimates

The following technical estimate is used in the course of the paper.

Lemma B.1 Let H ∈ (0, 1/2) and t ∈ [0, T ] be fixed. Then, there exists a β ∈ (0, 1/2) such
that ∫ t

0

∫ t

0

|KH (t, t ′0) − KH (t, t0)|2
|t ′0 − t0|1+2β dt0dt

′
0 < ∞. (70)

Proof Let t0, t ′0 ∈ [0, t], t ′0 < t0 be fixed. Write

KH (t, t0) − KH (t, t ′0) = cH

[
ft (t0) − ft (t

′
0) +

(
1

2
− H

) (
gt (t0) − gt (t

′
0)
)]

,

where ft (t0) :=
(

t
t0

)H− 1
2
(t − t0)H− 1

2 and gt (t0) := ∫ t
t0

fu (t0)
u du, t0 ∈ [0, t].

We will proceed to estimating KH (t, t0) − KH (t, t ′0). First, observe the following fact,

y−α − x−α

(x − y)γ
≤ Cy−α−γ
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for every 0 < y < x < ∞ and α := ( 12 − H) ∈ (0, 1/2) and γ < 1
2 − α. This implies

ft (t0) − ft (t
′
0) =

(
t

t0
(t − t0)

)H− 1
2 −

(
t

t ′0
(t − t ′0)

)H− 1
2

≤ C

(
t

t0
(t − t0)

)H− 1
2−γ

t2γ
(t0 − t ′0)γ

(t0t ′0)γ

≤ C
(t0 − t ′0)γ

(t0t ′0)γ
(t − t0)

H− 1
2−γ

≤ C
(t0 − t ′0)γ

(t0t ′0)γ
t
H− 1

2−γ

0 (t − t0)
H− 1

2−γ .

Further,

gt (t0) − gt (t
′
0) =

∫ t

t0

fu(t0) − fu(t ′0)
u

du −
∫ t0

t ′0

fu(t ′0)
u

du

≤
∫ t

t0

fu(t0) − fu(t ′0)
u

du

≤ C
(t0 − t ′0)γ

(t0t ′0)γ

∫ t

t0

(u − t0)H− 1
2−γ

u
du

≤ C
(t0 − t ′0)γ

(t0t ′0)γ
t
H− 1

2−γ

0

∫ ∞

1

(u − 1)H− 1
2−γ

u
du

≤ C
(t0 − t ′0)γ

(t0t ′0)γ
t
H− 1

2−γ

0

≤ C
(t0 − t ′0)γ

(t0t ′0)γ
t
H− 1

2−γ

0 (t − t0)
H− 1

2−γ .

As a result, we have for every γ ∈ (0, H), 0 < t ′0 < t0 < t < T ,

KH (t, t0) − KH (t, t ′0) ≤ CH ,T
(t0 − t ′0)γ

(t0t ′0)γ
t
H− 1

2−γ

0 (t − t0)
H− 1

2−γ , (71)

for some constant CH ,T > 0 depending only on H and T .
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Thus ∫ t

0

∫ t0

0

(KH (t, t0) − KH (t, t ′0))2

|t0 − t ′0|1+2β dt ′0dt0

≤ C
∫ t

0

∫ t0

0

|t0 − t ′0|−1−2β+2γ

(t0t ′0)2γ
t2H−1−2γ
0 (t − t0)

2H−1−2γ dt ′0dt0

= C
∫ t

0
t2H−1−4γ
0 (t − t0)

2H−1−2γ
∫ t0

0
|t0 − t ′0|−1−2β+2γ (t ′0)−2γ dt ′0dt0

= C
∫ t

0
t2H−1−4γ
0 (t − t0)

2H−1−2γ (−2β + 2γ )(−2γ + 1)

(−2β + 1)
t−2β
0 dt0

≤ C
∫ t

0
t2H−1−4γ−2β
0 (t − t0)

2H−1−2γ dt0

= C
(2H − 2γ )(2H − 4γ − 2β)

(4H − 6γ − 2β)
t4H−6γ−2β−1 < ∞,

for appropriately chosen small γ and β.
On the other hand, we have that∫ t

0

∫ t

t0

(KH (t, t0) − KH (t, t ′0))2

|t0 − t ′0|1+2β dt ′0dt0

≤ C
∫ t

0
t2H−1−4γ
0 (t − t0)

2H−1−2γ
∫ t

t0

|t0 − t ′0|−1−2β+2γ

(t ′0)2γ
dt ′0dt0

≤ C
∫ t

0
t2H−1−6γ
0 (t − t0)

2H−1−2γ
∫ t

t0
|t0 − t ′0|−1−2β+2γ dt ′0dt0

= C
∫ t

0
t2H−1−6γ
0 (t − t0)

2H−1−2βdt0

≤ Ct4H−6γ−2β−1.

Hence ∫ t

0

∫ t

0

(KH (t, t0) − KH (t, t ′0))2

|t0 − t ′0|1+2β dt ′0dt0 < ∞.

��
Lemma B.2 Let H ∈ (0, 1/2), θ, t ∈ [0, T ], θ < t and (ε1, . . . , εm) ∈ {0, 1}m be fixed.
Assume w j + (

H − 1
2 − γ

)
ε j > −1 for all j = 1, . . . ,m. Then exists a finite constant

C = C(H , T ) > 0 such that
∫

�m
θ,t

m∏
j=1

(KH (s j , θ) − KH (s j , θ
′))ε j |s j − s j−1|w j ds

≤ Cm
(

θ − θ ′

θθ ′

)γ
∑m

j=1 ε j

θ

(
H− 1

2−γ
)∑m

j=1 ε j
�γ (m) (t − θ)

∑m
j=1 w j+

(
H− 1

2−γ
)∑m

j=1 ε j+m

for γ ∈ (0, H), where

�γ (m) :=
m−1∏
j=1


(∑ j

l=1 wl + (
H − 1

2 − γ
)∑ j

l=1 εl + j
)


(
w j+1 + 1

)


(∑ j+1

l=1 wl + (
H − 1

2 − γ
)∑ j

l=1 εl + j + 1
) . (72)
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Observe that if ε j = 0 for all j = 1, . . . ,m we obtain the classical formula.

Remark B.3 Observe that

�γ (m) ≤
∏m

j=1 (w j + 1)


(∑m

j=1 w j + (
H − 1

2 − γ
)∑m−1

j=1 ε j + m
)

≤
∏m

j=1 (w j + 1)


(∑m

j=1 w j + (
H − 1

2 − γ
)∑m

j=1 ε j + m
) ,

since the function  is increasing on (1,∞).

Proof First, we recall the following well-known formula: for given exponents a, b > −1 and
some fixed s j+1 > s j we have∫ s j+1

θ

(s j+1 − s j )
a(s j − θ)bds j =  (a + 1)  (b + 1)

 (a + b + 2)
(s j+1 − θ)a+b+1.

We recall from Lemma 70 that for every γ ∈ (0, H), 0 < θ ′ < θ < s j < T ,

KH (s j , θ) − KH (s j , θ
′) ≤ CH ,T

(θ − θ ′)γ

(θθ ′)γ
θH− 1

2−γ (s j − θ)H− 1
2−γ ,

for some constant CH ,T > 0 depending only on H and T . In view of the above arguments
we have∫ s2

θ

|KH (s1, θ) − KH (s1, θ
′)|ε1 |s2 − s1|w2 |s1 − θ |w1ds1

≤ Cε1
H ,T

(θ − θ ′)γ ε1

(θθ ′)γ ε1
θ

(
H− 1

2−γ
)
ε1

∫ s2

θ

|s2 − s1|w2 |s1 − θ |w1+
(
H− 1

2−γ
)
ε1ds1

= Cε1
H ,T

(θ − θ ′)γ ε1

(θθ ′)γ ε1
θ

(
H− 1

2−γ
)
ε1 

(
ŵ1
)

(
ŵ2
)


(
ŵ1 + ŵ2

) (s2 − θ)
w1+w2+

(
H− 1

2−γ
)
ε1+1

,

where

ŵ1 := w1 +
(
H − 1

2
− γ

)
ε1 + 1, ŵ2 := w2 + 1.

Integrating iteratively we obtain the desired formula. ��
Finally, we give a similar estimate to the previous one.

Lemma B.4 Let H ∈ (0, 1/2), θ, t ∈ [0, T ], θ < t and (ε1, . . . , εm) ∈ {0, 1}m be fixed.
Assume w j + (

H − 1
2

)
ε j > −1 for all j = 1, . . . ,m. Then exists a finite constant C > 0

such that
∫

�m
θ,t

m∏
j=1

(KH (s j , θ))ε j |s j − s j−1|w j ds

≤ Cmθ

(
H− 1

2

)∑m
j=1 ε j

�0(m) (t − θ)

∑m
j=1 w j+

(
H− 1

2

)∑m
j=1 ε j+m

for γ ∈ (0, H), where �0 is given as in (72). Observe that if ε j = 0 for all j = 1, . . . ,m
we obtain the classical formula.
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Remark B.5 Observe that

�0(m) ≤
∏m

j=1 (w j + 1)


(∑m

j=1 w j + (
H − 1

2

)∑m
j=1 ε j + m

) ,

due to the fact that  is increasing on (1,∞).

Proof By similar arguments as in the proof of Lemma 70 it is easy to derive the following
estimate

|KH (s j , θ)| ≤ CH ,T |s j − θ |H− 1
2 θH− 1

2

for every 0 < θ < s j < T and some constant CH ,T > 0. This implies
∫ s2

θ

(KH (s1, θ))ε1 |s2 − s1|w2 |s1 − θ |w1ds1

≤ Cε1
H ,T θ

(
H− 1

2

)
ε1

∫ s2

θ

|s2 − s1|w2 |s1 − θ |w1+
(
H− 1

2

)
ε1ds1

= Cε1
H ,T θ

(
H− 1

2

)
ε1 

(
w1 + w2 + (

H − 1
2

)
ε1 + 1

)
 (w2 + 1)


(
w1 + w2 + (

H − 1
2

)
ε1 + 2

) (s2 − θ)
w1+w2+

(
H− 1

2

)
ε1+1

Integrating iteratively one obtains the desired estimate. ��

The next auxiliary result can be found in [39].

Lemma B.6 Assume that X1, . . . , Xn are real centered jointly Gaussian random variables,
and � = (E[X j Xk])1≤ j,k≤n is the covariance matrix, then

E[|X1| . . . |Xn |] ≤ √
perm(�),

where perm(A) is the permanent of a matrix A = (ai j )1≤i, j≤n defined by

perm(A) =
∑
π∈Sn

n∏
j=1

a j,π( j)

for the symmetric group Sn.

The next result corresponds to Lemma 3.19 in [16]:

Lemma B.7 Let Z1, . . . , Zn bemean zeroGaussian variableswhich are linearly independent.
Then for any measurable function g : R −→ R+ we have that

∫
R
n
g(v1) exp

⎛
⎝−1

2
Var

⎡
⎣ n∑

j=1

v j Z j

⎤
⎦
⎞
⎠ dv1 . . . dvn

= (2π)(n−1)/2

(detCov(Z1, . . . , Zn))1/2

∫
R

g

(
v

σ1

)
exp

(
−1

2
v2
)
dv,

where σ 2
1 := Var [Z1 |Z2, . . . , Zn].
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Lemma B.8 Let n, p and k be non-negative integers, k ≤ n. Assume we have functions
f j : [0, T ] → R, j = 1, . . . , n and gi : [0, T ] → R, i = 1, . . . , p such that

f j ∈
⎧⎨
⎩

∂
α

(1)
j +...+α

(d)
j

∂
α

(1)
j x1 . . . ∂

α
(d)
j xd

b(r)(u, Xx
u ), r = 1, . . . , d

⎫⎬
⎭ , j = 1, . . . , n

and

gi ∈
{

∂β
(1)
i +...+β

(d)
i

∂β
(1)
i x1 . . . ∂β

(d)
i xd

b(r)(u, Xx
u ), r = 1, . . . , d

}
, i = 1, . . . , p

for α := (α
(l)
j ) ∈ N

d×n
0 and β := (β

(l)
i ) ∈ N

d×p
0 , where Xx· is the strong solution to

Xx
t = x +

∫ t

0
b(u, Xx

u )du + BH
t , 0 ≤ t ≤ T

for b = (b(1), . . . , b(d)) with b(r) ∈ Cc([0, T ] × R
d) for all r = 1, . . . , d. So (as we

shall say in the sequel) the product g1(r1) · · · · · gp(rp) has a total order of derivatives

|β| = ∑d
l=1
∑p

i=1 β
(l)
i . We know from Sect.2.2 that∫

�n
θ,t

f1(s1) . . . fk(sk)
∫

�
p
θ,sk

g1(r1) . . . gp(rp)drp . . . dr1 fk+1(sk+1) . . . fn(sn)dsn . . . ds1

=
∑

σ∈An,p

∫
�

n+p
θ,t

hσ
1 (w1) . . . hσ

n+p(wn+p)dwn+p . . . dw1, (73)

where hσ
l ∈ { f j , gi : 1 ≤ j ≤ n, 1 ≤ i ≤ p}, An,p is a subset of permutations of

{1, . . . , n + p} such that #An,p ≤ Cn+p for an appropriate constant C ≥ 1, and s0 = θ .
Then the products

hσ
1 (w1) · · · · · hσ

n+p(wn+p)

have a total order of derivatives given by |α| + |β| .
Proof The result is proved by induction on n. For n = 1 and k = 0 the result is trivial. For
k = 1 we have ∫ t

θ

f1(s1)
∫

�
p
θ,s1

g1(r1) . . . gp(rp)drp . . . dr1ds1

=
∫

�
p+1
θ,t

f1(w1)g1(w2) . . . gp(wp+1)dwp+1 . . . dw1,

where we have put w1 = s1, w2 = r1, . . . , wp+1 = rp . Hence the total order of derivatives

involved in the product of the last integral is given by
∑d

l=1 α
(l)
1 + ∑d

l=1
∑p

i=1 β
(l)
i =

|α| + |β| .
Assume the result holds for n and let us show that this implies that the result is true for

n + 1. Either k = 0, 1 or 2 ≤ k ≤ n + 1. For k = 0 the result is trivial. For k = 1 we have∫
�n+1

θ,t

f1(s1)
∫

�
p
θ,s1

g1(r1) . . . gp(rp)drp . . . dr1 f2(s2) . . . fn+1(sn+1)dsn+1 . . . ds1

=
∫ t

θ

f1(s1)

(∫
�n

θ,s1

∫
�

p
θ,s1

g1(r1) . . . gp(rp)drp . . . dr1 f2(s2) . . . fn+1(sn+1)dsn+1 . . . ds2

)
ds1.
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Using Sect. 2.2 we obtain by employing the shuffle permutations that the latter inner double
integral on diagonals can be written as a sum of integrals on diagonals of length p + n with
products having a total order of derivatives given by

∑
l=1
∑n+1

j=2 α
(l)
j + ∑d

l=1
∑p

i=1 β
(l)
i .

Hence we obtain a sum of products, whose total order of derivatives is
∑d

l=1
∑n+1

j=2 α
(l)
j +∑d

l=1
∑p

i=1 β
(l)
i +∑d

l=1 α
(l)
1 = |α| + |β| .

For k ≥ 2 we have (in connection with Sect. 2.2) from the induction hypothesis that
∫

�n+1
θ,t

f1(s1) . . . fk(sk)
∫

�
p
θ,sk

g1(r1) . . . gp(rp)drp . . . dr1 fk+1(sk+1) . . . fn+1(sn+1)dsn+1 . . . ds1

=
∫ t

θ

f1(s1)
∫

�n
θ,s1

f2(s2) . . . fk(sk)
∫

�
p
θ,sk

g1(r1) . . . gp(rp)drp . . . dr1

× fk+1(sk+1) . . . fn+1(sn+1)dsn+1 . . . ds2ds1

=
∑

σ∈An,p

∫ t

θ

f1(s1)
∫

�
n+p
θ,s1

hσ
1 (w1) . . . hσ

n+p(wn+p)dwn+p . . . dw1ds1,

where each of the products hσ
1 (w1)·· · ··hσ

n+p(wn+p) have a total order of derivatives given by∑
l=1
∑n+1

j=2 α
(l)
j +∑d

l=1
∑p

i=1 β
(l)
i . Thus we get a sum with respect to a set of permutations

An+1,p with products having a total order of derivatives which is

d∑
l=1

n+1∑
j=2

α
(l)
j +

d∑
l=1

p∑
i=1

β
(l)
i +

d∑
l=1

α
(l)
1 = |α| + |β| .
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