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Abstract
Let N be an n-dimensional compact riemannianmanifold, with n ≥ 2. In this paper, we prove
that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper
metric mean dimensions equal to α is dense in Hom(N ). More generally, given α, β ∈ [0, n],
with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean
dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N ).
Furthermore, we also give a proof that the set of homeomorphisms with upper metric mean
dimension equal to n is residual in Hom(N ).

Keywords Mean dimension · Metric mean dimension · Topological entropy · Genericity

1 Introduction

In the late 1990’s, M. Gromov introduced the notion of mean topological dimension for a
continuous map φ : X → X , which is denoted by mdim(X , φ), where X is a compact
topological space. The mean topological dimension is an invariant under conjugacy. Further-
more, this is a useful tool in order to characterize dynamical systems that can be embedded
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in (([0, 1]m)Z, σ ), where σ is the left shift map on ([0, 1]m)Z (see [12], [13]). In [8], Lin-
denstrauss and Weiss proved that any homeomorphism φ : X → X that can be embedded in
(([0, 1]m)Z, σ ) must satisfy that mdim(X , φ) ≤ m. In [6], Gutman and Tsukamoto showed
that, if (X , φ) is a minimal system with mdim(X , φ) < m/2, then we can embed it in
(([0, 1]m)Z, σ ). In [11], Lindenstrauss and Tsukamoto presented an example of a mini-
mal system with mean topological dimension equal to m/2 that cannot be embedded into
(([0, 1]m)Z, σ ), which show the constant m/2 is optimal. Some applications in information
theory can be found in [10] and [9].

The mean topological dimension is difficult to calculate. Therefore, Lindenstrauss and
Weiss in [8] introduced the notion of metric mean dimension, which is an upper bound for
the mean topological dimension. The metric mean dimension is a metric-dependent quantity
(this dependence is not continuous, as we can see in [3]), therefore, it is not an invariant under
topological conjugacy.

1.1 Metric mean dimension

Let X be a compact metric space endowed with a metric d . For any n ∈ N, we define
dn : X × X → [0,∞) by

dn(x, y) = max{d(x, y), d(φ(x), φ(y)), . . . , d(φn−1(x), φn−1(y))}.
Fix ε > 0. We say that A ⊂ X is an (n, φ, ε)-separated set if dn(x, y) > ε, for any two
distinct points x, y ∈ A. We denote by sep(n, φ, ε) the maximal cardinality of any (n, φ, ε)-
separated subset of X . Set

sep(φ, ε) = lim sup
n→∞

1

n
log sep(n, φ, ε).

We say that E ⊂ X is an (n, φ, ε)-spanning set for X if for any x ∈ X there exists
y ∈ E such that dn(x, y) < ε. Let span(n, φ, ε) be the minimum cardinality of any (n, φ, ε)-
spanning subset of X . Set

span(φ, ε) = lim sup
n→∞

1

n
log span(n, φ, ε).

Definition 1.1 The topological entropy of φ : X → X is defined by

htop(φ) = lim
ε→0

sep(φ, ε) = lim
ε→0

span(φ, ε).

Definition 1.2 Wedefine the lowermetricmean dimension and the uppermetricmean dimen-
sion of (X , d, φ) by

mdimM(X , d, φ) = lim inf
ε→0

sep(φ, ε)

| log ε| = lim inf
ε→0

span(φ, ε)

| log ε|
and mdimM(X , d, φ) = lim sup

ε→0

sep(φ, ε)

| log ε| = lim sup
ε→0

span(φ, ε)

| log ε| ,

respectively.

Remark 1.3 Throughout the paper,wewill omit the underline and the overline on the notations
mdimM and mdimM when the result be valid for both cases, that is, we will use mdimM for
the both cases.
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In recent years, the metric mean dimension has been the subject of multiple investigations,
which can be verified in the bibliography of the present work. The purpose of this manuscript
is to complete the research started in [5], [14] and [2], concerning to the topological properties
of the level sets of the metric mean dimension map.

In [5], Theorem C, the authors proved the set consisting of continuous maps φ : [0, 1] →
[0, 1] such that mdimM([0, 1], | · |, φ) = mdimM([0, 1], | · |, φ) = α, for a fixed α ∈ [0, 1], is
dense in C0([0, 1]) (see also [2], Theorem 4.1). Furthermore, in Theorem A they showed if
N is an n-dimensional compact riemannian manifold, with n ≥ 2, and riemannian metric d ,
the set of homeomorphisms φ : N → N such that mdimM(N , d, φ) = n contains a residual
set in Hom(N ) (see a particular case of this fact in [14], Proposition 10). Next, for any n ≥ 1,
the set consisting of continuous maps φ : N → N such that

mdimM(N , d, φ) = mdimM(N , d, φ) = α

is dense in C0(N ), for a fixed α ∈ [0, n] (see [2], Theorem 4.5, and [1], Theorem 3.6).
We consider the next level sets of the metric mean dimension for homeomorphisms:

Definition 1.4 For α, β ∈ [0, n], with α ≤ β, we will set

Hβ
α (N ) = {φ ∈ Hom(N ) : mdimM(N , d, φ) = α and mdimM(N , d, φ) = β}.

If α = β, we denote Hα
α (N ) by Hα(N ).

If n = 1, then Hβ
α (N ) = ∅ for 0 < α ≤ β ≤ 1. This is due to the fact that any

homeomorphism on a one-dimensional compact Riemannian manifold has zero topological
entropy, leading to zerometricmean dimension.Our initial result is presented in the following
theorem, proved in [1], Theorem 3.6, specifically for continuous maps on the interval.

Theorem 1.5 Let n ≥ 2. For any α, β ∈ [0, n], with α ≤ β, the set Hβ
α (N ) is dense in

Hom(N ).

Using the techniques employed to proveTheorem1.5,wewill provide a newproof ofTheorem
A in [5], that is:

Theorem 1.6 The set H(N ) = {φ ∈ Hom(N ) : mdimM(N , d, φ) = n} contains a residual
set in Hom(N ).

Yano, in [15], defined a kind of horseshoe in order to prove the set consisting of home-
omorphisms φ : N → N with infinite entropy is generic in Hom(N ), where N is an n
dimensional compact manifold, with n ≥ 2. If we want to construct a continuous map with
infinite entropy we can consider an infinite sequence of horseshoes such that the number of
legs is unbounded. For the metric mean dimension case, in [5] and [14] the authors used
horseshoe in order to prove the set consisting of homeomorphisms φ : N → N with upper
metric mean dimension equal to n (which is the maximal value of the metric mean dimension
for any map defined on N ) is generic in Hom(N ). To get metric mean dimension equal to
n we must construct a sequence of horseshoes such that the number of legs increases very
quickly compared to the decrease in their diameters.

Estimating the precise value of the metric mean dimension for a homeomorphism, and
hence to obtain a homeomorphism with metric mean dimension equal to a fixed α ∈ (0, n),
is harder and not trivial sake. We need to establish a precise relation between the sizes of
the horseshoes together with the number of appropriated legs to control the metric mean
dimension. This is our main tool (see Lemma 2.3).
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The paper is organized as follows: In Sect. 2, we will construct homeomorphisms, defined
on an n-cube, with metric mean dimension equal to α, for a fixed α ∈ (0, n]. Furthermore,
given α, β ∈ [0, n], with α ≤ β, we will construct examples of homeomorphisms φ :
[0, 1]n → [0, 1]n such that mdimM([0, 1]n, d, φ) = α and mdimM([0, 1]n, d, φ) = β. In
Sect. 3, we will prove Theorem 1.5. Finally, in Sect. 4, we will show Theorem 1.6.

2 Homeomorphisms on the n-cube with positive metric mean
dimension

Let n ≥ 2. Given α, β ∈ [0, n], α ≤ β, in this section we will construct a homeomorphism
φα,β , defined on an n-cube, with lower metric mean dimension equal to α and upper metric
mean dimension equal to β (see Lemma 2.4). This construction will be the main tool to prove
the Theorem 1.5, since if a homeomorphism present a periodic orbit, then we can glue, in
the C0-topology, along this orbit the dynamic of φα,β .

The construction of φα,β requires a special type of horseshoe. So, let us present the first
definition.

Definition 2.1 (n-dimensional (2k + 1)n−1-horseshoe) Fix n ≥ 2. Take E = [a, b]n and set
|E | = b−a. For a fixed natural number k > 1, take the sequence a = t0 < t1 < · · · < t4k <

t4k+1 = b, with |ti − ti−1| = b−a
4k+1 , and consider

Hi1,i2,...,in−1 = [a, b] × [ti1−1, ti1 ] × · · · × [tin−1−1, tin−1 ], for i j ∈ {1, . . . , 4k + 1}.
Take a = s0 < s1 < · · · < s2(2k+1)n−1−2 < s2(2k+1)n−1−1 = b, with |si − si−1| =

b−a
2(2k+1)n−1−1

, and consider

Vl = [sl−1, sl ] × [a, b]n−1, for l = 1, 2, . . . , 2(2k + 1)n−1 − 1.

We say that E ⊆ A ⊆ R
n is an n-dimensional (2k+1)n−1-horseshoe for a homeomorphism

φ : A → A if:

• φ(a, a, . . . , a, b) = (a, a, . . . , a, b) and φ(b, b, . . . , b, a) = (b, b, . . . , b, a);
• For any Hi1,i2,...,in−1 , with i j ∈ {1, 3, . . . , 4k+1}, there exists some l ∈ {1, 3, . . . , 2(2k+

1)n−1 − 1} with
φ(Vl) = Hi1,i2,...,in−1 and φ|Vl : Vl → Hi1,i2,...,in−1 is linear.

• For any l = 2, 4, . . . , 2(2k + 1)n−1 − 2, φ(Vl) ⊆ A\E .
In that case, the sets Hi1,i2,...,in−1 , with i j ∈ {1, 3, . . . , 4k + 1} are called the legs of the
horseshoe.

In Fig. 1 we present an example of a 2-dimensional 5-horseshoe. In that case, k = 2,
we have 2(2k + 1) − 1 divisions Vi of [a, b]2, and 2k + 1 legs Hi , for i = 1, 3, 5, 7, 9. In
Fig. 2 we have a 3-dimensional 9-horseshoe (we only show φ(E) ∩ E in that figure). In that
case, k = 1, we have 2(2k + 1)2 − 1 divisions Vi of [a, b]3, and (2k + 1)2 legs Hi, j , for
i, j = 1, 3, 5.

Note if E = [a, b]n is an n-dimensional (2k + 1)n−1-horseshoe for φ, then

φ2(Vl1 ∩ H
i (1)1 ,...,i (1)n−1

) ∩ Vl2 ∩ H
i (2)1 ,...,i (2)n−1

�= ∅,

for any l1, l2 ∈ {1, 3 . . . , 2(2k+1)n−1} and i (1)1 , . . . , i (1)n−1, i
(2)
1 , . . . , i (2)n−1 ∈ {1, 3, . . . , 4k+1}

(see Fig. 3).
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Fig. 1 2-dimensional 5-horseshoe

Fig. 2 3-dimensional 9-horseshoe

Fig. 3 E is the first square, is a 2-dimensional 3-horseshoe for φ

The assumptions φ(a, a, . . . , a, b) = (a, a, . . . , a, b) and φ(b, b, . . . , b, a) = (b, b,
. . . , b, a) is just to be able to extend φ to a homeomorphism φ̃ : E ′ → E ′, where E ′ is an
n-cube with E ⊂ E ′, such that φ̃|∂E ′ ≡ I d and htop(φ′) = htop(φ|E∩φ(E)) (see Lemma 2.2).
Thus, our strategy to prove the Theorem 1.5 will be to use local charts to glue such horseshoes
along of periodic orbits of a homeomorphism.
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Lemma 2.2 Let E, E ′ ⊆ R
n be closed n-cubes with E � (E ′)◦ and fix k ∈ N. There

exists a homeomorphism φ : E ′ −→ E ′ such that φ|E : E −→ E is an n-dimensional
(2k + 1)-horseshoe, φ|∂E ′ ≡ I d and htop(φ) = htop(φ|E∩φ(E)).

Inspired by the results shown in [5] and [14] to obtain a homeomorphism φ : N → N with
upper metric mean dimension equal to dim(N ), we present the next lemma, which proves
for any α ∈ (0, n], there exists a homeomorphism φ : C := [0, 1]n → C, with (upper and
lower) metric mean dimension equal to α.

On any n-cube E ⊆ R
n , we will consider the metric inherited from R

n , ‖ · ‖, given by

‖(x1, . . . , xn) − (y1, . . . , yn)‖ =
√

(x1 − y1)2 + · · · + (xn − yn)2.

Lemma 2.3 Let φ : C → C be a homeomorphism, Ek = [ak, bk]n and E ′
k sequences of cubes

such that:

C1. Ek ⊂ (E ′
k)

◦ and (E ′
k)

◦ ∩ (E ′
s)

◦ = ∅ for k �= s.
C2. S := ∪∞

k=1E
′
k ⊆ C.

C3. each Ek is an n-dimensional 3k(n−1)-horseshoe for φ;
C4. For each k, φ|E ′

k
: E ′

k → E ′
k satisfies the properties in Lemma 2.2;

C5. φ|C\S : C\S → C\S is the identity.

We have:

(i) For a fixed r ∈ (0,∞), if |Ek | = B
3kr

for each k ∈ N, where B > 0 is a constant, then

mdimM(C, ‖ · ‖, φ2) = n

r + 1
.

(ii) If |Ek | = B
k2

for each k ∈ N, where B > 0 is a constant, then

mdimM(C, ‖ · ‖, φ2) = n.

Proof We will prove (i), since (ii) can be proved analogously. Set ϕ = φ2. Note that

mdimM(C, ‖ · ‖, ϕ) = mdimM(S, ‖ · ‖, ϕ|S).
Take any ε ∈ (0, 1). For any k ≥ 1, set εk = |Ek |

2(3k )−1
= B

(2(3k )−1)3kr
. There exists k ≥ 1

such that ε ∈ [εk+1, εk]. We have

sep(n, ϕ, ε) ≥ sep(n, ϕ, εk) ≥ sep(n, ϕ|Ek∩φ(Ek ), εk) for any n ≥ 1.

Since Ek is an n-dimensional 3k(n−1)-horseshoe for φ, for each k ≥ 1, consider

Hk
i1,i2,...,in−1

= [ak, bk] × [ti1−1, ti1 ] × · · · × [tin−1−1, tin−1 ], for i j = 1, . . . , 2(3k) − 1,

and

V k
l = [sl−1, sl ] × [ak, bk]n−1, for l = 1, . . . , 2(3k)n−1 − 1,

as in Definition 2.1. For each j = 1, . . . , n − 1, let i j ∈ {1, 3, 5, . . . , 2(3k) − 1} and take
Ck
l,i1,...,in−1

= Hk
i1,i2,...,in−1

∩ V k
l for each l ∈ {1, 3, . . . , 2(3k)n−1 − 1}.
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For t = 1, . . . ,m, let i (t)1 , . . . , i (t)n−1 ∈ {1, 3, . . . , 2(3k) − 1}, l jt ∈ {1, 3, . . . , 2(3k)n−1 − 1}
and set

Ck
l j2 ,i (2)1 ,...,i (2)n−1,l j1 ,i (1)1 ,...,i (1)n−1

= ϕ−1
[
ϕ

(
Ck
l j2 ,i (2)1 ,...,i (2)n−1

)
∩ Ck

l j1 ,i (1)1 ,...,i (1)n−1

]

...

Ck
l jm ,i (m)

1 ,...,i (m)
n−1,...,l j1 ,i (1)1 ,i (1)1 ,...,i (1)n−1

= ϕ−(m−1)

[
ϕm−1

(
Ck
l jm ,i (m)

1 ,...,i (m)
n−1,...,l j2 ,i (2)1 ,...,i (2)n−1

)
∩ Ck

l j1 ,i (1)1 ,...,i (1)n−1

]

From the definition of ϕ, these sets are non-empty. Furthermore, we can choose a sequence
s1, . . . , s3k ∈ {1, 3, . . . , 2(3k)n−1 − 1} such that, if x and y belong to different sets
Ck
s(m),i (m)

1 ,...,i (m)
n−1,...,s(m),i

(1)
1 ,...,i (1)n−1

, where s( j) ∈ {s1, . . . , s3k }, then dm(x, y) > εk . Note that

we have 3km3k(n−1)m = 3knm sets of this form. Hence,

sep(m, ϕ, εk) ≥ 3knm and thus sep(ϕ, ε) ≥ log 3kn .

Therefore,

mdimM(S, ‖ · ‖, ϕ|S) = lim inf
ε→0

sep(ϕ, ε)

| log ε| ≥ lim
k→∞

log 3kn

| log εk+1|
= lim

k→∞
log 3kn

log[(2(3k+1) − 1)3(k+1)r B−1] = lim
k→∞

log 3kn

log[3(k+1)+(k+1)r ]
= n

r + 1
.

On the other hand, note that log 3kn

log[4(2(3k )−1)3kr B−1] → n
1+r as k → ∞. Hence, for any

δ > 0, there exists k0 ≥ 1, such that, for any k > k0, we have
log 3kn

log[4(2(3k )−1)3kr B−1] < n
1+r +δ.

Hence, suppose that ε > 0 is small enough such that ε < εk0 . Set �̃k = ⋂
n∈Z

ϕn(Ek) and take

�̃ = ⋃
k∈N

�k . We have

mdimM(C, ‖ · ‖, ϕ) = mdimM(�̃, ‖ · ‖, ϕ|�̃).

If x ∈ �̃, then x belongs to some Ck
l jm ,i (m)

1 ,...,i (m)
n−1,...,l j1 ,i (1)1 ,...,i (1)n−1

. Take s( j1), . . . s( jm ) ∈
{s1, . . . , s3k } with

|s( ji ) − l ji | = min
t=1,...,m

|s(t) − l ji |, fot each i = 1, . . . ,m,

and furthermore dm(x, y) ≤ 4εk for any y ∈ Ck
s( jm ),i (m)

1 ,...,i (m)
n−1,...,s

( j1),i (1)1 ,...,i (1)n−1

. Hence, if

Yk = ∪k
j=1E j , for every m ≥ 1, we have

span(m, ϕ|Yk , 4ε) ≤
k∑
j=1

3 jnm

ε
≤ k

3knm

ε
.
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Therefore,

span(ϕ|Yk , 4ε)
| log 4ε| ≤ lim sup

m→∞

log
[
k 3knm

ε

]

m| log 4εk | = log 3kn

log[4(2(3k) − 1)3kr B−1] <
n

1 + r
+ δ.

This fact implies that for any δ > 0 we have

mdimM(S, ‖ · ‖, ϕ|S) <
n

r + 1
+ δ and hence mdimM(S, ‖ · ‖, ϕ|S) ≤ n

r + 1
.

The above facts prove that mdimM(C, ‖ · ‖, ϕ) = n
r+1 . ��

Given α, β ∈ [0, n], with α ≤ β, in the next lemma we construct an homeomorphism
φ : [0, 1]n → [0, 1]n such that

mdimM([0, 1]n, ‖ · ‖, φ) = α and mdimM([0, 1]n, ‖ · ‖, φ) = β.

Lemma 2.4 For every α, β ∈ [0, n], with α < β, there exists a homeomorphism φα,β :
[0, 1]n → [0, 1]n such that

α = mdimM([0, 1]n, ‖ · ‖, φα,β) < mdimM([0, 1]n, ‖ · ‖, φα,β) = β.

Proof We will prove the case β < n. First, we will show there exists a homeomorphism
φ0,β : [0, 1]n → [0, 1]n such that

0 = mdimM([0, 1]n, ‖ · ‖, φ0,β) < mdimM([0, 1]n, ‖ · ‖, φ0,β) = β.

Fix r > 0 and set b = n
r+1 . Set a0 = 0 and an = ∑n−1

i=0
C
3ir

for n ≥ 1, where C =
1∑∞

i=0
1
3ir

= 3r−1
3r . Let Ek = [ak, bk]n and E ′

k satisfying the conditions C1 and C2, C4 and C5

inLemma2.3,with |Ek | = B
3kr

, and such that each Ekk is an n-dimensional 3nk
k
-horseshoe for

φ0,β and otherwiseφ0,β |Ek is the identity on Ek .We can provemdimM([0, 1]n, ‖·‖, φ0,β) = 0
and mdimM([0, 1]n, ‖ · ‖, φ0,β) = β.

Now consider α < β. From Lemma 2.3(i), we have there exists φα ∈ Hom([0, 1]n) such
that

mdimM([0, 1]n, ‖ · ‖, φα) = mdimM([0, 1]n, ‖ · ‖, φα) = α.

Set φα,β ∈ Hom([0, 1]n) be defined by

φα,β(x) =

⎧
⎪⎨
⎪⎩

T−1
1 ◦ φ0,β ◦ T1(x) if x ∈ [0, 1

2 ]n,
T−1
2 ◦ φα ◦ T2(x) if x ∈ [ 12 , 1]n,

x otherwise,

where T1 : [0, 1
2 ]n → [0, 1]n and T2 : [ 12 , 1]n → [0, 1]n are bi-lipchitsz maps. We have

mdimM([0, 1]n, ‖ · ‖, φα,β)

= max{mdimM([0, 1/2]n, ‖ · ‖, φα,β |[0, 12 ]n ),mdimM([1/2, 1]n, ‖ · ‖, φα,β |[ 12 ,1]n )}
= max{mdimM([0, 1]n, ‖ · ‖, φ0,β),mdimM([0, 1]n, ‖ · ‖, φα)}
= mdimM([0, 1]n, ‖ · ‖, φα) = α.

Analogously, we prove mdimM([0, 1]n, ‖ · ‖, φα,β) = mdimM([0, 1]n, ‖ · ‖, φ0,β) = β. ��

123



Journal of Dynamics and Differential Equations

3 Homeomorphisms onmanifolds with positive metric mean
dimension

Throughout this section, N will denote an n dimensional compact riemannian manifold with
n ≥ 2 and d a riemannian metric on N . On Hom(N ) we will consider the metric

d̂(φ, ϕ) = max
p∈N {d(φ(p), ϕ(p)), d(φ−1(p), ϕ−1(p))} for any φ, ϕ ∈ Hom(N ).

It is well-known (Hom(N ), d̂) is a complete metric space. The main goal of this section is
to prove Theorem 1.5.
Good Charts For each p ∈ N , consider the exponential map

expp : Bδ′(0p) ⊆ TpN → Bδ′(p) ⊆ N ,

where 0p is the origin in the tangent space TpN , δ′ is the injectivity radius of N and Bε(x)

denote the open ball of radius ε > 0 with center x . We will take δN = δ′
2 . The exponential

map has the following properties:

• Since N is compact, δ′ does not depends on p.
• expp(0p) = p and expp[BδN (0p)] = BδN (p);
• expp : BδN (0p) → BδN (p) is a diffeomorphism;
• If v ∈ BδN (0p), taking q = expp(v) we have d(p, q) = ‖v‖.
• The derivative of expp at the origin is the identity map:

D(expp)(0) = id : TpN → TpN .

Since expp : BδN (0p) → BδN (p) is a diffeomorphism and D(expp)(0) = id : TpN →
TpN , we have expp : BδN (0p) → BδN (p) is a bi-Lipschitz map with Lipschitz constant
close to 1. Therefore, we can assume that if v1, v2 ∈ BδN (0p), taking q1 = expp(v1) and
q2 = expp(v2), we have d(q1, q2) = ‖v1 − v2‖. Furthermore, we will identify BδN (0p) ⊂
TpN with BδN (0) = {x ∈ R

n : ‖x‖ < δN } ⊆ R
n .

Recall that if α = β ∈ [0, n], then
Hα

α (N ) := Hα(N ) = {φ ∈ Hom(N ) : mdimM(N , d, φ) = mdimM(N , d, φ) = α}.

Theorem 3.1 For any α ∈ [0, n], the set Hα(N ) is dense in Hom(N ).

Proof Let Pr (N ) be the set of Cr -diffeomorphisms on N with a periodic point. This set is
C0-dense in Hom(N ) (see [4, 7]). Hence, in order to prove the theorem, it is sufficient to show
that Hα(N ) is dense in Pr (N ). Fixψ ∈ Pr (N ) and take any ε ∈ (0, δN ). Suppose that p ∈ N
is a periodic point ofψ , with period k. Let β > 0, small enough, such that [−β, β]n ⊂ B ε

4
(0).

For each i = 0, . . . , k − 1, N\ψ(expψ i (p) ∂[−β, β]n) has two connected components. We
denote by Ci the connected component that contains ψ i (p). Consider the positive number

γ = min
i=0,...,k−1

d(ψ i+1(p), ψ(expψ i (p) ∂[−β, β]n)) > 0.

Let λ ∈ (0,min{γ /2, β}), such that
expψ i+1(p)[−λ, λ]n ⊂ Ci+1 for each i = 0, . . . , k − 1.
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The regions [−β, β]n\(−λ, λ)n and Ci+1\ expψ i (p)(−λ, λ)n are homeomorphic. For each
i = 0, . . . , k − 1, take

hi : ∂[−β, β]n → exp−1
ψ i+1(p)

(∂Ci+1)

u �→ exp−1
ψ i+1(p)

◦ψ ◦ expψ i (p)(u).

Then, there exists a homeomorphism

Hi : [−β, β]n \ (−λ, λ)n → exp−1
ψ i+1(p)

[Ci+1 \ expψ i+1(p)(−λ, λ)n],
such that

Hi |∂[−λ,λ]n = I d and Hi |∂[−β,β]n = hi .

If q ∈ Ri = expψ i (p) ([−β, β]n\(−λ, λ)n), we can write

q = expψ i (p)(z), for some z ∈ [−β, β]n \ (−λ, λ)n .

Set ϕα : N → N , given by

ϕα(q) =

⎧
⎪⎨
⎪⎩

expψ i+1(p) Hi (z), if q ∈ Ri = expψ i (p) ([−β, β]n \ (−λ, λ)n)

expψ i+1(p) φα(exp−1
ψ i (p)

(q)), if q ∈ Di := expψ i (p) ([−λ, λ]n)
ψ(q), otherwise,

where φα : [−λ, λ]n → [−λ, λ]n is a homeomorphismwhich satisfies φα|∂[−λ,λ]n = I d and

mdimM([−λ, λ]n, ‖ · ‖, φα) = α,

(see Lemma 2.3). Set K := ∪k−1
i=0 Di . Note that N \ K is ϕα invariant and

mdimM(N \ K , d, ϕα|N\K ) = 0.

Hence,

mdimM(N , d, ϕα) = mdimM(K , d, ϕα|K ).

Note if q ∈ Di , we have

(ϕα)s(q) = expψ(i+s) mod k (p) ◦ (φα)s ◦ exp−1
ψ i (p)

(q)

and (ϕα)k(q) = expψ i (p) ◦ (φα)k ◦ exp−1
ψ i (p)

(q).

Hence, D ⊆ Di is an (s, φα, ε)-separated set if and only if expψ i (p)(D) ⊆ N is an (s, ϕα, ε)-
separated set for any ε > 0. Therefore, sep(s, ϕα|K , ε) = k sep(s, φα, ε). Therefore,

mdimM(K , d, ϕα|K ) = mdimM([−λ, λ]n, ‖ · ‖, φα),

which proves the theorem. ��
The last theorem proved Theorem 1.5 in the case α = β = n. The proof of the general case
will be a consequence of the above arguments, in fact:

Proof of the Theorem 1.5 The proof follows similarly to the proof of Theorem 3.1, changing
φα by a continuous map φα,β : [−λ, λ]n → [−λ, λ]n such that

mdimM([−λ, λ]n, ‖ · ‖, φα,β) = α and mdimM([−λ, λ]n, ‖ · ‖, φα,β) = β,

as in the Lemma 2.4. ��
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4 Tipical homeomorphism hasmaximal metric mean dimension

To complete this work, in this section we show Theorem 1.6, which was proved in Theorem
A in [5], however, we will present an alternative proof of this fact using the techniques of
Sects. 2 and 3.

Definition 4.1 (n-dimensional strong horseshoe) Let E = [a, b]n and set |E | = b− a. For a
fixed natural number k > 1, set δk = b−a

4k+1 and εk = b−a
2(2k+1)n−1−1

. For i = 0, 1, 2, . . . , 4k+1,
set ti = a + iδk and consider

Hi1,i2,...,in−1 = [a, b] × [ti1−1, ti1 ] × · · · × [tin−1−1, tin−1 ],
for i j ∈ {1, . . . , 4k+1}. For l = 0, 1, 2, . . . , 2(2k+1)n−1−2, set sl = a+ lεk and consider

Vl+1 = [sl , sl+1] × [a, b]n−1.

We say that E ⊆ A ⊆ R
n is an n-dimensional strong (ε, (2k + 1)n−1)-horseshoe for a

homeomorphism φ : A → A if |E | > ε and furthermore:

• For any Hi1,i2,...,in−1 , with i j ∈ {1, 3, . . . , 4k + 1}, there exists l ∈ {1, 3, . . . , 2(2k +
1)n−1 − 1} with

Hi1,i2,...,in−1 ⊆ φ(Vl)
◦.

• For any l = 2, 4, . . . , 2(2k + 1)n−1 − 2, φ(Vl) ⊆ A\E .
Remark 4.2 Note if ε′ > ε, then any n-dimensional strong (ε′, (2k + 1)n−1)-horseshoe for
φ is an n-dimensional strong (ε, (2k + 1)n−1)-horseshoe for φ.

Using local charts, the last definition can be done on the manifold N .

Definition 4.3 Let N be an n-dimensional riemannian manifold and fix k ≥ 1. We say that
φ ∈ Hom(N ) has an n-dimensional strong (ε, (2k + 1)n−1)-horseshoe E = [a, b]n , if there
is s and an exponential charts expi : BδN (0) → N , for i = 1, . . . , s, such that:

• φi = exp(i+1)mod s ◦ φ ◦ exp−1
i : Bδ(0) → BδN (0) is well defined for some δ ≤ δN ;

• E is an n-dimensional strong (ε, (2k + 1)n−1)-horseshoe for φi .

To simplify the notation, we will set φi = φ for each i = 1, . . . , s.

For ε > 0 and k ∈ N, we consider the sets

H(ε, k) = {φ2 ∈ Hom(N ) : φ has a strong (ε, k)-horseshoe}
H(k) =

⋃
i∈N

H

(
1

i2
, 3ki(n−1)

)

H =
∞⋂
k=1

H(k).

Lemma 4.4 The set H is residual.

Proof Clearly, for any ε ∈ (0, δN ) and k ∈ N, the set H(ε, k) is open and nonempty.
We claim that the set H(k) is dense in Hom(N ). In fact: fix ψ ∈ Pr (N ) with a s-periodic
point. In the same way as the proof of the Theorem 3.1, every small neighborhood of the
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orbit of this point can be perturbed in order to obtain a strong
(

1
i2

, 3nki
)
horseshoe for a φ

such that φ2 be close to ψ for a large enough i . Thus H(k) is a dense set, and a fortiori

H =
∞⋂
k=1

H(k) is residual in Hom(N ). ��

Finally, we prove Theorem 1.6.

Proof of the Theorem 1.6 It is sufficient to prove that mdimM(N , d, φ) = n for any φ ∈ H.
For this sake, take ϕ = φ2 ∈ H. We have ϕ ∈ H(k) for any k ≥ 1. Therefore, for any

k ∈ N, there exists ik , with ik < ik+1, such that φ has a strong

(
1
i2k

, 3n k ik
)
-horseshoe

Ek = [ak, bk]n , such that |Ek | > 1
i2k
, consisting of rectangles

Hik
j1, j2,..., jn−1

= [ak, bk] × [tkj1−1, t
k
j1 ] × · · · × [tkjn−1−1, t

k
jn−1

],
with jt ∈ {1, 3, . . . , 2(3k ik ) − 1},

and

V k
l = [skl−1, s

k
l ] × [ak, bk]n−1, for l ∈ {1, 3, . . . , 2(3kik (n−1)) − 1},

with

Hk
j1, j2,..., jn−1

⊆ φ(V k
l )◦ for some l.

For i j ∈ {1, . . . , 2(3kik ) − 1} and l = 1, . . . , 2(3kik )n−1 − 1, take

Ek
l,i1,...,in−1

= [skl−1, s
k
l ] × [tki1−1, t

k
i1 ] × · · · × [tkin−1−1, t

k
in−1

].

For t = 1, . . . ,m, let i (t)1 , . . . , i (t)n−1 ∈ {1, 3, . . . , 2(3kik )−1} and for lt ∈ {1, . . . , 2(3kik )n−1−
1}, set

Ck
l1,i

(1)
1 ,...,i(1)n−1

= Ek
l1,i

(1)
1 ,...,i(1)n−1

Ck
l2,i

(2)
1 ,...,i(2)n−1,l1,i

(1)
1 ,...,i(1)n−1

= ϕ−1

[
ϕ

(
Ck
l2,i

2
1 ,...,i2n−1

)
∩ Ek

l1,i
(1)
1 ,...,i(1)n−1

]

.

.

.

Ck
lm ,i(m)

1 ,...,i(m)
n−1,...,l1,i

(1)
1 ,...,i(1)n−1

= ϕ−(m−1)

[
ϕm−1

(
Ck
lm ,i(m)

1 ,...,i(m)
n−1,...,l2,i

(2)
1 ,...,i(2)n−1

)
∩ Ek

l1,i
(1)
1 ,...,i(1)n−1

]

Furthermore, set

C̃k
lm ,i (m)

1 ,...,i (m)
n−1,...,l1,i

(1)
1 ,...,i (1)n−1

:= exp

[
Ck
lm ,i (m)

1 ,...,i (m)
n−1,...,l1,i

(1)
1 ,...,i (1)n−1

]
.
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For any k ≥ 1, take εk = 1
4i2k (2(3k ik )−1)

. We can choose at least 3kik sub-

indices p1, . . . , p3kik in {1, . . . , 2(3kik )n−1 − 1} such that if x ∈ C̃ ps ,i1,...,in−1 and y ∈
C̃ pt ,i1,...,in−1 , with s �= t , then d1(x, y) > εk . Hence, if x and y belong to differ-

ent sets C̃k
p(m),i (m)

1 ,...,i (m)
n−1,...,p

(1),i (1)1 ,...,i (1)n−1

, with p(t) ∈ {p1, . . . , p3kik } and i (t)1 , . . . , i (t)n−1 ∈
{1, 3, . . . , 2(3kik ) − 1}, we have that dm(x, y) > εk . Hence,

sep(m, ϕ, εk) ≥ 3kiknm and thus sep(ϕ, εk) ≥ log 3nkik .

Therefore,

mdimM(N , d, ϕ) = lim sup
k→∞

sep(ϕ, εk)

| log εk | ≥ lim
k→∞

log 3nkik

| log εk | = lim sup
k→∞

log 3nkik

log[4i2k (2(3kik ) − 1)] = n.

This fact proves the theorem, since for any ψ ∈ Hom(N ), the inequality mdimM(N , d, φ) ≤
n always holds (see [14], Remark 4). ��
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