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Abstract
The construction of the Conley index for dynamical systems with discrete time requires
an equivalence relation between morphisms induced on index pairs. It follows from the
features of the Szymczak functor that shift equivalence, whose equivalence classes are the
isomorphism classes in the Szymczak category, is the most general equivalence available. In
the case of dynamics modeled from data, the morphisms induced on index pairs are relations.
We present an algorithmizable classification of shift equivalence classes for the category of
finite sets with arbitrary relations as morphisms. The research is the first step towards the
construction of a Conley theory for relations.
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1 Introduction

In the 1970s Charles Conley [3] proposed a homotopical invariant of an isolated invariant
set, called after him the Conley index, which proved to be a very useful tool in the qualitative
study of flows. The construction of the Conley index is based on a technical concept of index
pair. For a given isolated invariant set there are many different index pairs, but they share
some common information. To extract the information some equivalence between index
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pairs is needed. In Conley’s original construction the equivalence is a homotopy equivalence
constructed along the trajectories of the flow. In fact, the original Conley index, as pointed
out by Conley [3, Sect. 5.3], is a connected simple system, that is, a small category with
exactly one morphism between any two objects. This feature of the index leads to the study
of functoriality in the Conley theory [13, 16].

In the case of dynamical systems with discrete time, homotopies along trajectories do not
make sense. Therefore, a different equivalence is needed to define the Conley index. In 1988
Robin and Salamon [23] noticed that the index map associated with every index pair contains
information helpful in overcoming the lack of homotopies and used shape theory to extract
information independent of the choice of index pair. In [20], in an algebraic setting of graded
modules, the Leray reduction of the index map was used to construct the Conley index and
in [21] a functorial framework for such a construction was proposed. But, it was Andrzej
Szymczak [26] who indicated in 1995 that all these functorial constructions factorize through
a functor from End(E), the category of endomorphism over an arbitrary category E , to its
Szymczak category Szym(E).

In 2000 Franks and Richeson [6] observed that the isomorphism classes in the Szymczak
category are equivalence classes of shift equivalence, a concept introduced in the study of
dynamical systems by Williams [29] in 1970.

Proposition ( [6, Proposition 8.1]) Suppose that (X , f ), (X ′, f ′) ∈ End(E). Then (X , f )
and (X ′, f ′) are isomorphic in the Szymczak category if and only if they are shift equivalent.

This observation provides a conceptually simpler definition of the Conley index. The
advantage of the definition based on the Szymczak functor, formally equivalent to Franks
and Richeson definition, is its functoriality. Functoriality, in particular, is needed to prove that
the Conley index is a connected simple system also in the case of dynamical systems with
discrete time [10]. Also, the definition based on the Szymczak functor better explains the
generality of the approach. This is because the Szymczak functor is an instance of a general
construction in category theory known as localization or calculus of fractions [7]. Roughly
speaking, localization is a universal functor which sends a certain family of morphisms
to isomorphisms. The Szymczak functor localizes endomorphisms in End(E) by sending
them into isomorphisms in Szym(E). The universality implies that any other functor used to
construct the Conley index factorizes through the Szymczak functor.

The universality ensures generality but it does not guarantee computability. In particular,
although the Szymczak functor provides the most general form of the Conley index, index
constructions based on some other functors like the shape functor, the inverse/direct limit
functor or the Leray functor are often more convenient in practice. As one may expect, the
same problem is visible in the shift equivalence formulation. Although the definition of shift
equivalence is elementary, it does not tell us how to decide in practice whether the shift
equivalence classes of two endomorphisms are the same or different. The challenges related
to shift equivalence in the context of the computation of the homological Conley index of
a discrete dynamical system generated by a continuous map are discussed in a recent paper
by Mischaikow and Weibel [17]. In particular, they point out that the problem is decidable
for the category of finitely generated abelian groups and efficiently algorithmizable for the
category of finite-dimensional vector spaces.

In the rigorous algorithmic computations of the Conley index [2, 22, 27] there is an addi-
tional challenge. Such computations, based on interval arithmetic [19], lead to multivalued
dynamical systems and, in consequence, to categories whose morphisms are not maps but
relations. The same happens in the study of sampled dynamical systems constructed directly
from data and acting on finite topological spaces [4, 5]. So far, the only method to deal with
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multivalued maps in the context of the Szymczak functor and shift equivalence is to assume
that they have acyclic values, because such maps induce single-valued maps in homology.
Acyclicitymay be achieved by enlarging the values. Unfortunately, this is often at the expense
of possible overestimation resulting in no interesting outcome. Although the acyclity condi-
tion may be slightly relaxed [8], it is natural to ask what may be achieved in terms of shift
equivalence and the Szymczak category when the class of morphisms is enhanced by allow-
ing for multivalued maps or relations. Such an enhancement is still a category, therefore,
shift equivalence and the Szymczak functor are well defined. But, are they nontrivial? If so,
is it possible to algorithmically differentiate between shift equivalence classes? In the study
of the homological Conley index for multivalued dynamics the category of linear or additive
binary relations [15, Chapter II, Sect. 6] is of particular interest.

In this paper we take a look at the category Setf of finite sets and maps, Relf of finite
sets and relations, and LRelf of finite-dimensional vector spaces over a fixed finite field and
linear relations.We show that the Szymczak functor and shift equivalence for these categories
are nontrivial. We do so by providing a computable invariant for shift equivalence classes
in Setf and Relf . We consider this paper as a stimulating first step toward a Conley index
theory for multivalued dynamics without the restrictive acyclicity condition.

The organization of the paper is as follows. In Sect. 2 we review the main ideas and
results of the paper. In Sect. 3 we recall the Szymczak construction. In Sect. 4 we present a
description of shift equivalence classes in the Setf category. Preliminary results on Relf are
presented in Sect. 5. In Sect. 6 we analyze some relations induced by an arbitrary relation.
We introduce the canonical form and present the main results in Sect. 7. Finally, in Sect. 8
we propose an invariant of shift equivalence class for Relf , classifying graphs, and make a
comment about its applications to LRelf in Sect. 9.

2 Main Results

As we pointed out in the introduction, rigorous numerical computations in dynamics are
based on interval arithmetic. This means, in particular, that a map f : X → X may only be
estimated in the form of a multivalued map F : X � X such that f (x) ∈ F(x) for x ∈ X .
Formally speaking, a multivalued map F is a binary relation F ⊆ X × X . Under suitable
assumptions one can use F to compute f∗, the map induced by f in homology. For this end
one takes the projections

p : F → X , (x, y) �→ x, q : F → X , (x, y) �→ y.

If the preimages of p are acyclic, that is if F(x) is acyclic for x ∈ X , then p∗ is an isomorphism
by the Vietoris–Begle Theorem [28] and one can prove [18] that f∗ = q∗ p−1∗ . In the context
of computational Conley theory this is the way one obtains the homological indexmapwhose
shift equivalence class is the Conley index. If p is not acyclic, then p∗ cannot be inverted as a
homomorphism. However, since every map is a special case of a relation, the homomorphism
p∗ may be inverted and composed with q∗ as a relation. Hence, under the assumption that
the homology of X is finitely generated and taken with coefficients in a finite field, the pair
(H∗(X), q∗ p−1∗ ) becomes an object in the category Relf consisting of finite sets as objects
and binary relations as morphisms (arrows) (see Sect. 5). Therefore, we may consider the
shift equivalence class of (H∗(X), q∗ p−1∗ ) in Relf . To make such an approach useful, we
need to know that shift equivalence in Relf is not trivial.
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Table 1 Number of different
objects in Szym(Relf ) and
different shift equivalence classes
in Relf for sets of cardinality not
exceeding n = 1, 2, 3, 4, 5

Card X No. of objects No. of Szym classes

≤ 1 2 2

≤ 2 16 5

≤ 3 512 14

≤ 4 65,536 48

≤ 5 33,554,432 192

Fig. 1 Canonical objects in
Szym(Relf ) of cardinality one
and two. Relations which are
maps are canonical objects in
Szym(Setf )

We first take a look at a simpler case of category, Setf , consisting of finite sets as objects
and maps as morphisms. It turns out that for the characterization of shift equivalences classes
it is enough to consider the ordered sequence of periods of disjoint orbits of a map, that is a
non-decreasing, finite sequence p1 ≤ p2 ≤ · · · ≤ pk inN1, where pi is a period of one orbit
of a map (see Sect. 4).

Theorem 1 (see Theorem 7) Two objects of End(Setf ) are in the same shift equivalence
class if and only if their sequences of periods are the same.

In order to characterize shift equivalence classes in Relf we need a definition in which
it is convenient to interpret an object (X , R) in End(Relf ) as a directed graph with X as
the set of vertices and R as the set of edges. We say that such an object is canonical (see
Definition 5 for the details) if each vertex in X belongs to a closed path, for each strongly
connected component U ⊆ X (that is, a maximal subset of X such that whenever x, y ∈ U
then y ∈ Rn(x) and x ∈ Rm(y) for some n,m ∈ N1) the restriction RU := R ∩ U × U is
a bijection RU : U → U , and R has periodic powers, that is, there exists a p ≥ 1 such that
Rp+1 = R.

The following two theorems constitute the main theoretical results of the paper. We prove
them in Sect. 7.

Theorem 2 (see Theorem 12) Every object in End(Relf ) is isomorphic in Szym(Relf ) to a
canonical object.

Theorem 3 (see Theorem 13) Two canonical objects are isomorphic in Szym(Relf ) if and
only if they are isomorphic in End(Relf ).

Theorem 2 shows that each shift equivalence class in Relf admits a canonical represen-
tative. Since the proof is constructive, the representative may be computed algorithmically.
Thus, the classification problem in Szym(Relf ) is reduced to the classical classification of
graphs. This lets us compute all canonical representatives of shift equivalence classes inRelf
for sets of cardinality not exceeding five. The number of different shift equivalence classes
is presented in Table 1. The four canonical objects of cardinality one and two are presented
in Fig. 1. The canonical objects of cardinality three are presented in Figs. 2 and 3. Note that
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Fig. 2 Canonical objects in Szym(Relf ) of cardinality three with three strongly connected components.
Relations which are maps are canonical objects in Szym(Setf )

Fig. 3 Canonical objects in Szym(Relf ) of cardinality three with less than three strongly connected compo-
nents. Relations which are maps are canonical objects in Szym(Setf )

there is also a class of the empty relation. Moreover, the relations from Figs. 1, 2 and 3 which
are also maps are canonical objects in Szym(Setf ).

One can interpret relations on finite sets as Boolean matrices. Then (X , R) and (Y , S)

are isomorphic in Szym(Relf ) if and only if R and S are shift equivalent as Boolean matri-
ces. With some work, one can show that the linear algebraic result Proposition 3.5 from
[12] (proven in [11]) is equivalent to part of Theorem 2 on canonical objects (the fact that
any relation is isomorphic to a canonical form, though not the interpretation of that form).
The application in [11, 12] is to the classification of shifts of finite type, so there may be
applications of Theorem 2 in that setting as well.

Notice that the lack of acyclicity of fibers of p means that p−1∗ is a linear relation, and
the composition q∗ p−1∗ is also a linear relation (see Sect. 9 for the details). Therefore, we are
interested in understanding shift equivalence classes in LRelf . Note that there is a forgetful
functor from LRelf to Relf category. Thus, we may use the classification of Szym(Relf ) to
distinguish in some cases between different shift equivalence classes of LRelf . Example 3
shows how to use the classifying graph, an invariant proposed in Sect. 8, to recognize linear
relations from different shift equivalence classes of LRelf . The example implies that the
Szymczak functor and shift equivalence for this category are also nontrivial.

3 The Szymczak Functor

Let E be a category. Recall that a morphism ϕ : E → E ′ is an isomorphism in E if there
exists a morphism ψ : E ′ → E such that ψ ◦ ϕ = idE and ϕ ◦ ψ = idE ′ . Then ψ is also
an isomorphism. It is uniquely determined by ϕ and called the inverse morphism of ϕ. We
denote it ϕ−1. We recall that an endomorphism in E is a morphism of the form e : E → E ,
that is, a morphism whose source object is the same as the target object. An automorphism
is an endomorphism which is also an isomorphism.

Let E and F be two objects of E and let e : E → E , f : F → F be morphisms in
E . We say that e and f are conjugate if there exists an isomorphism ϕ : E → F such that
ϕ ◦ e = f ◦ ϕ.
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Proposition 1 Assume the diagram

E E

F F
�

ϕ

�e

�
ϕ

�f
�

��ψ

of morphisms in E is commutative. If e and f are isomorphisms, then so are ϕ and ψ . In
particular, the isomorphisms e and f are conjugate.

Proof Set ϕ′ := ϕ ◦ e−1. Then ψ ◦ϕ′ = idE . From f ◦ϕ = ϕ ◦ e we get ϕ ◦ e−1 = f −1 ◦ϕ.
Therefore, ϕ′ ◦ ψ = ϕ ◦ e−1 ◦ ψ = f −1 ◦ ϕ ◦ ψ = f −1 ◦ f = idF . This proves that
ψ is an isomorphism. It follows that ϕ = ψ−1 ◦ e is an isomorphism as a composition of
isomorphisms. �


Wedefine the category of endomorphisms of E , denoted by End(E), as follows: the objects
of End(E) are pairs (E, e), where E ∈ E and e ∈ E(E, E) is an endomorphismof E . The set of
morphisms from (E, e) ∈ End(E) to (F, f ) ∈ End(E) is the subset of E(E, F) consisting of
exactly those morphisms ϕ ∈ E(E, F) for which f ϕ = ϕe. We write ϕ : (E, e) → (F, f )
to denote that ϕ is a morphism from (E, e) to (F, f ) in End(E). Note that, in particular,
e : (E, e) → (E, e) is an endomorphism in End(E).

Let C be another category and let L : End(E) → C be a functor. We say that L is normal
if L(e) : L(E, e) → L(E, e) (that is, L applied to e : (E, e) → (E, e)) is an isomorphism
in C for any endomorphism e : E → E in E . We have the following theorem.

Theorem 4 Assume L : End(E) → C is a normal functor and ϕ : (E, e) → (F, f ),
ψ : (F, f ) → (E, e) are such that e = ϕψ , f = ψϕ. Then we have the commutative
diagram

L(E, e) L(E, e)

L(F, f ) L(F, f )
�

L(ϕ)

�L(e)

�
L(ϕ)

�L( f )
�

�
���L(ψ)

in C, in which all morphisms are isomorphisms.

Proof The theorem is an immediate consequence of Proposition 1. �

We denote by N0 = N ∪ {0} the set of whole numbers and N or, alternatively, N1 the set

of natural numbers.
With every category E one can associate its Szymczak category Szym(E) defined as

follows. The objects of Szym(E) are the objects of End(E). Given objects (E, e) and (F, f )
in Szym(E)we consider the equivalence relation in End(E)((E, e), (F, f ))×N0 defined by

(ϕ,m) ≡ (ϕ′,m′)

for (ϕ,m), (ϕ′,m′) ∈ End(E)((E, e), (F, f )) ×N0 if and only if there exists a k ∈ N0 such
that

ϕ ◦ em
′+k = ϕ′ ◦ em+k, (1)

or equivalently

f m
′+k ◦ ϕ = f m+k ◦ ϕ′.
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We define the set of morphisms Szym(E)((E, e), (F, f )) as the collection of equivalence
classes of the relation≡. Givenmorphisms [ϕ,m] : (E, e) → (F, f ) and [ϕ,m′] : (F, f ) →
(G, g) we define their composition by

[ϕ′,m′] ◦ [ϕ,m] := [ϕ′ ◦ ϕ,m + m′]
One easily verifies that the composition is well defined and [idE , 0] is the identity morphism
on (E, e). Thus, Szym(E) is indeed a category.

There is a functor Szym : End(E) → Szym(E)which fixes objects and sends a morphism
ϕ : (E, e) → (F, f ) to the equivalence class [ϕ, 0]. We call it the Szymczak functor. In gen-
eral, it may happen that Szym(ϕ) = Szym(ϕ′) even if ϕ �= ϕ′. Nevertheless it is convenient
to write just ϕ to denote Szym(ϕ) whenever it is clear from the context in which category
we work. One easily verifies that every morphism e : (E, e) → (E, e) in Szym(E) has an
inverse given by

ē := [idE , 1].
Indeed, we have

e ◦ ē = [e, 0] ◦ [idE , 1] = [e, 1] = [idE , 0] = id(E,e)

which shows that ē is an inverse of e. We can also write the abstract morphism [ϕ, n] in terms
of ē as

[ϕ, n] = [ϕ, 0] ◦ [idE , 1]n = ϕ ◦ ēn . (2)

Thus, Szym(e) is invertible in Szym(E). Therefore, Szym is a normal functor. Actually,
this is the most general normal functor in the following sense.

Theorem 5 [26, Theorem 6.1] For every normal functor L : End(E) → C there exists a
unique functor L ′ : Szym(E) → C such that the diagram

End(E) C

Szym(E)

�
Szym

�L

�
�

��
L ′

commutes.

The construction of the Szymczak category and the Szymczak functor is due to Szymczak
[26].

We say that two objects (E, e) and (E ′, e′) of End(E) are conjugate if e and e′ are conjugate
in E .
Proposition 2 Assume (E, e) and (E ′, e′) are conjugate objects of End(E). Then (E, e) and
(E ′, e′) are isomorphic in Szym(E).

Proof Let ϕ : E → E ′ be an isomorphism in E such that ϕ ◦ e = e′ ◦ ϕ and let ψ := ϕ−1.
Then [ψ, 0] ◦ [ϕ, 0] = [idE , 0] and [ϕ, 0] ◦ [ψ, 0] = [idE ′ , 0], which proves that (E, e) and
(E ′, e′) are isomorphic in Szym(E). �


It is not difficult to give examples showing that the converse of Proposition 2 is not true.
However, it is true in the category Aut(E) defined as the full subcategory of End(E) whose
objects are objects (E, e) of End(E) such that e is an isomorphism in E . Indeed, we have the
following proposition.
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Proposition 3 Assume (E, e) and (F, f ) are objects in Aut(E). If Szym(E, e) ∼=
Szym(F, f ), then (E, e) and (F, f ) are conjugate.

Proof Since Szym(E, e) ∼= Szym(F, f ), we may find morphisms ϕ : (E, e) → (F, f ) and
ψ : (F, f ) → (E, e) as well as constants n, n′ ∈ N0 such that [ϕ, n]◦ [ψ, n′] = [idF , 0] and
[ψ, n′]◦[ϕ, n] = [idE , 0]. Thismeans that there exist k, k′ ∈ N0 such thatψ◦ϕ◦ek = ek+n+n′

and ϕ ◦ ψ ◦ f k
′ = f k

′+n+n′
. Since e and f are isomorphisms, the equalities may be reduced

to ψ ◦ ϕ = en+n′
and ϕ ◦ ψ = f n+n′

. Since both en+n′
and f n+n′

are isomorphisms, the
conclusion follows now immediately from Proposition 1. �


The Szymczak category can be seen as a localization of the End(E) category with respect
to the class of morphisms e ∈ End(E)((E, e), (E, e)) (see [7]).

As we mentioned in the introduction and following [6, Proposition 8.1], objects are iso-
morphic in the Szymczak category for some category E if and only if they are shift equivalent
in E . We implicitly use that fact.

The Szymczak category and the Szymczak functor are very general concepts, defined for
any category. However, in practical terms it is not obvious how to compute the Szymczak cat-
egory and Szymczak functor for concrete categories and how to determine shift equivalence
classes of the categories. In the next section we do it for the category of finite sets.

4 The Szymczak Functor and Shift Equivalence in Setf

Let Setf denote the category of finite sets with maps as morphisms. Given an object (X , f )
in End(Setf ) and x ∈ X we say that the set { f n(x) | n ∈ N0} is the orbit of x with
(x, f (x), f 2(x), f 3(x), . . .), the associated orbit sequence.

We say that an x ∈ X is a periodic point of f if there exists a k ∈ N1 such that
f k(x) = x . We then say that k is a period of x and x is k-periodic. In that case, the orbit is
{x, f (x), . . . , f k(x)} and it is called a periodic orbit. We denote the set of periodic points
of f by Per f .

The following proposition is straightforward.

Proposition 4 Given f : X → X an endomorphism on a finite set X, the following are
equivalent:

(i) f is injective,
(ii) f is surjective,
(iii) f is bijective and so is an automorphism of X,
(iv) f is a permutation of X and so X is a union of disjoint periodic orbits of f ,
(v) every point of X is a periodic point of f .

�

A subset A of X is invariant for f : X → X when f (A) ⊆ A. In that case, the restriction

f |A : A → A is an endomorphism of A. Notice that each periodic orbit is an invariant set
and, in particular f (Per f ) = Per f .

Let (X , f ) be a fixed object of End(Setf ).

Proposition 5 Let x ∈ X. Then there exist unique k ∈ N0, p ∈ N1 such that
x, f (x), . . . , f k+p−1(x) are distinct points of X and f k+p(x) = f k(x). Moreover, k + p ≤
card X and for every n ≥ k the element f n(x) is in the orbit of the periodic point f k(x) and
so is a periodic point with minimal period p.
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Proof Since X is finite, the orbit sequence must contain repeats. The first and the second
occurrence of the first repeat in the orbit sequence are f k(x) and f k+p(x). These determine
k and p. Since k + p elements of the orbit sequence are distinct, k + p ≤ card X .

The second part of the proposition is an easy consequence of the fact f k+p(x) = f k(x). �

Corollary 1 Let p be the least common multiple of the minimal periods of the periodic points
of f , and let p′ be the smallest multiple of p such that p′ ≥ card X. Then

f p
′+np = f p

′
for all n ∈ N0, (3)

and, in particular

f p
′ ◦ f p

′ = f p
′
.

Moreover, the endomorphism f p
′
on X restricts to define a retraction f̂ : X → Per f .

Proof By definition, p is a period for every periodic point of f . Because p′ ≥ card X , it
follows from Proposition 5 that f p

′
(x) ∈ Per f for all x ∈ X . Hence,

f p
′+np(x) = f np( f p

′
(x)) = f p

′
(x).

Since p′ is a multiple of p, we have, in particular, f p
′ ◦ f p

′ = f p
′
and it follows that if

x ∈ Per f , then f p
′
(x) = x . Thus, f p

′
defines a retraction from X onto Per f . �


Proposition 6 Assume (X , f ) is an object of End(Setf ). Let ι : Per f → X denote the
inclusion map and let p′ and f̂ : X → Per f be defined as in Corollary 1. Then,

[ι, 0] : (Per f , f|Per f ) → (X , f )

and

[ f̂ , p′] : (X , f ) → (Per f , f| Per f )

are mutually inverse isomorphisms in Szym(Setf ).

Proof The equality f̂ = f p
′ = idX ◦ f p

′
implies that

[ι, 0] ◦ [ f̂ , p′] = [ f̂ , p′] = [idX , 0].
By Corollary 1, the map f̂ is a retraction. Thus, f̂| Per f = idPer f , which implies

[ f̂| Per f , p
′] = [idPer f , 0].

This proves that [ι, 0] and [ f̂ , p′] are mutually inverse isomorphisms in Szym(Setf ). �

Proposition 4 lets us define a functor

Per : End(Setf ) → Aut(Setf )

as follows. For an object (X , f ) in End(Setf ) we set Per(X , f ) := (Per f , f| Per f ). Given
a morphism ϕ : (X , f ) → (X ′, f ′) we define Per(ϕ) as the map Per(ϕ) : Per f → Per f ′,
x �→ ϕ(x). Note that this map is well defined, because x ∈ Per f implies that there exists
k ∈ N1 such that f ′k(ϕ(x)) = ϕ( f k(x)) = ϕ(x). One easily verifies that Per is indeed a
functor. Moreover, it is a normal functor, because Per( f ), as a bijection, is an isomorphism
in Aut(Setf ).

Let Per′ : Szym(Setf ) → Aut(Setf ) be the functor associated to Per by Theorem 5. In
particular, we have

Per′ ◦ Szym = Per. (4)
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Theorem 6 The functor Per′ is an equivalence.

Proof We need to show that Per′ is an injective and a surjective functor. To this end assume
[ϕ, n] : Szym(X , f ) → Szym(X ′, f ′) and [ψ,m] : Szym(X , f ) → Szym(X ′, f ′) are
morphisms in Szym(Setf ) such that

Per′([ϕ, n]) = Per′([ψ,m]).
Rewriting this formula using the functoriality of Per′, (2), (4) and multiplying on the right
by Per′( f )m+n we obtain

Per′(ϕ ◦ f̄ n) = Per′(ψ ◦ f̄ m),

Per′(ϕ) ◦ Per′( f̄ )n = Per′(ψ) ◦ Per′( f̄ )m,

Per′(ϕ) ◦ Per′( f )m = Per′(ψ) ◦ Per′( f )n,
Per(ϕ) ◦ Per( f )m = Per(ψ) ◦ Per( f )n,

Per(ϕ ◦ f m) = Per(ψ ◦ f n),

(ϕ ◦ f m)| Per f = (ψ ◦ f n)| Per f . (5)

By Proposition 5, we may find a k ∈ N1 such that f k(X) ⊆ Per f . Then, we get from (5)
that

ϕ ◦ f m+k = ψ ◦ f n+k

which proves that [ϕ, n] = [ψ,m]. This proves injectivity. To prove surjectivity take a
morphism ϕ : (X , f ) → (X ′, f ′) in Aut(Setf ). Then f , f ′ are bijections. We have

Per′([ϕ, 0]) = Per′(Szym(ϕ)) = Per(ϕ) = ϕ| Per f = ϕ,

which proves that Per is a surjective functor. �


Corollary 2 Every object (X , f ) in End(Setf ) admits an object in Aut(Setf ) which is iso-
morphic to (X , f ) in Szym(Setf ). Moreover, any such object is conjugate to Per(X , f ).

Proof It follows from Proposition 4 that Per(X , f ) = (Per f , f| Per f ) is an object in
Aut(Setf ). By Proposition 6 this object is isomorphic in Szym(Setf ) to (X , f ). If another
object in Aut(Setf ) is isomorphic to (X , f ) in Szym(Setf ) then it is also isomorphic to
Per(X , f ). Therefore, it is conjugate to Per(X , f ) by Proposition 3. �


The above considerations lead to the following conclusion on the shift equivalence classes
of End(Setf ). Observe that any (X , f ) ∈ End(Setf ) determines a non-decreasing, finite
sequence p1 ≤ p2 ≤ · · · ≤ pk in N1. Indeed, since Per(X , f ) = (X̄ , f̄ ) ∈ Aut(Setf ), by
Proposition 4, X̄ is a union of disjoint periodic orbits of f̄ . Each pi in the sequence is the
period of one orbit of f̄ . We call

p1 ≤ · · · ≤ pk (6)

a sequence of periods for (X , f ).

Theorem 7 (Theorem 1) Two objects of End(Setf ) are in the same shift equivalence class if
and only if their sequences of periods are the same.
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Proof Let (X , f ), (Y , g) ∈ End(Setf ) be isomorphic in Szym(Setf ). By Corollary 2,
(X̄ , f̄ ) := Per(X , f ) and (Ȳ , ḡ) := Per(Y , g) are objects of Aut(Setf ) from the same
shift equivalence class. By (4), (X̄ , f̄ ) and (Ȳ , ḡ) are isomorphic in Aut(Setf ). Therefore,
there exists a bijection h : X̄ → Ȳ such that h ◦ f̄ = ḡ ◦ h. Note that h maps an orbit of
f̄ into an orbit of ḡ of the same period, because otherwise it violates h ◦ f̄ = ḡ ◦ h. Thus,
sequences of periods for (X , f ) and (Y , g) are the same.

Let p1 ≤ p2 ≤ · · · ≤ pk be the sequence of periods for (X , f ) and (Y , g). Consider
Z := ⋃k

i=1{i} × Z/piZ and h : Z → Z , (i, t) �→ (i, t + 1). Clearly, (Z , h) ∈ Aut(Setf ).
There are bijections h1 : X̄ → Z and h2 : Ȳ → Z which map orbits into the orbits of the
same period such that h1 ◦ f̄ = h ◦ h1 and h2 ◦ ḡ = h ◦ h2. Since h2 ◦ ḡ ◦ h−1

2 = h, we get

h−1
2 ◦ h1 ◦ f̄ = h−1

2 ◦ h ◦ h1 = h−1
2 ◦ h2 ◦ ḡ ◦ h−1

2 ◦ h1 = ḡ ◦ h−1
2 ◦ h1.

Thus, h−1
2 ◦h1 is an isomorphism in End(Setf ) and, in consequence, in Szym(Setf ) between

(X̄ , f̄ ) and (Ȳ , ḡ). By Corollary 2, (X , f ) and (Y , g) are in the same shift equivalence class.
�


5 The Szymczak Functor and Shift Equivalence in Relf

We recall that a binary relation in X × Y , or briefly a relation, is a subset R ⊆ X × Y . If
X ′ ⊆ X and Y ′ ⊆ Y , we call the relation R|X ′×Y ′ := R ∩ X ′ × Y ′ the restriction of R to
X ′ × Y ′. For a relation R ⊆ X × Y and x ∈ X , A ⊆ X we define

R(x) := {y ∈ Y | (x, y) ∈ R}
R(A) :=

⋃
{R(x) | x ∈ A}

R−1 := {(y, x) ∈ Y × X | (x, y) ∈ R}
The relation R−1 is called the inverse relation of R.

The domain of R is dom R := R−1(Y ) and the image of R is im R := R(X).
If X = Y we say that R is a relation in X . If A ⊆ X , by the restriction of R to A we mean

the restriction of R to A × A. We denote this restriction by R|A := R ∩ A × A.
Given another relation S ⊆ Y × Z we define the composition of S with R as the relation

S ◦ R := { (x, z) ∈ X × Z | (x, y) ∈ R and (y, z) ∈ S for some y ∈ Y }.
The category Relf is the category whose objects are finite sets and whose morphisms

from set X to set X ′ consist of all relations in X × X ′. The composition of morphisms
R ⊆ X × X ′ and R′ ⊆ X ′ × X ′′ is defined as the composition of relations. Then idX is the
identity morphism on X for each object X in Relf and one easily verifies that so defined
Relf is indeed a category.

The following propositions follow immediately from the definition of composition of
relations.

Proposition 7 If S ⊆ R ⊆ X × X ′ and S′ ⊆ R′ ⊆ X ′ × X ′′, then S′ ◦ S ⊆ R′ ◦ R.

Proposition 8 Let R ⊆ X × Y and S ⊆ Y × Z be relations. Then

dom S ◦ R ⊆ dom R and im S ◦ R ⊆ im S.
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The identity relation on X is idX = { (x, x) | x ∈ X }. For n ∈ Z the nth power of a
relation R in X is given recursively by

Rn :=

⎧
⎪⎨

⎪⎩

idX for n = 0,

R ◦ Rn−1 for n > 0,

R−1 ◦ Rn+1 for n < 0.

We think of a relation as a generalization of a mapping. The relation R ⊆ X × Y is a
function from X to Y when for every x ∈ X the set R(x) is a singleton. Thus, we consider
R as a partial multivalued map or a multivalued map if dom R = X .

We say that a relation R ⊆ X × Y is injective if R(x1) ∩ R(x2) �= ∅ implies x1 = x2 for
any x1, x2 ∈ dom R. We say that a relation R ⊆ X × Y is surjective if im R = Y . We say
that g ⊆ X × Y is a bijection or a bijective map if it is an injective and surjective map. Note
that a relation which is both injective and surjective need not be a bijection or even a map.
But, we have the following proposition.

Proposition 9 Let R ⊆ X × Y be a relation and let S ⊆ Y × Z be a multivalued map, that
is dom S = Y . If S ◦ R ⊆ X × Z is a bijective map then S is a surjective multivalued map
and R is an injective multivalued map.

Proof Let g := S ◦ R. Since g is a bijection, we have im g = Z and dom g = X . It follows
from Proposition 8 that Z = im g = im S ◦ R ⊆ im S. Hence, im S = Z which means that
S is a surjection. Similarly, X = dom g = dom S ◦ R ⊆ dom R. Hence, dom R = X which
means that R is a multivalued map. To see that R is injective assume that R(x1)∩ R(x2) �= ∅.
Let y ∈ R(x1) ∩ R(x2). Since dom S = Y , we can find a z ∈ Z such that (y, z) ∈ S. It
follows that (x1, z) ∈ S ◦ R and (x2, z) ∈ S ◦ R. Since g = S ◦ R is a bijection we obtain
x1 = x2. �


Although the morphisms in Relf are arbitrary relations, the following proposition shows
that isomorphisms have to be bijective maps.

Proposition 10 A relation R ⊆ X×Y is an isomorphism inRelf if and only if it is a bijective
map.

Proof Clearly, if R ⊆ X × Y is a bijective map, then so is R−1 and R−1 ◦ R = idX as well
as R ◦ R−1 = idY . Therefore, R is an isomorphism in Relf . To see the converse statement
assume a relation R is an isomorphism. Then, there exists a relation S ⊆ Y × X such that
S ◦ R = idX and R ◦ S = idY . To see that R is a partial map assume that y ∈ R(x) and
y′ ∈ R(x). It follows from Proposition 9 that S is a surjective multivalued map. Therefore,
we can find a ȳ ∈ Y such that x ∈ S(ȳ). Hence, y ∈ (R ◦ S)(ȳ) = idY (ȳ) = {ȳ}. Similarly
we get y′ ∈ {ȳ}. In consequence, y = ȳ = y′ proving that R is a partial map. It is a map,
because X = dom idX = dom S ◦ R ⊆ dom R by Proposition 8. By Proposition 9 it is a
surjective map and since X is finite, it is a bijective map. �


Given a relation R in X , we set

gdom R :=
⋂

n∈N1

dom Rn,

gim R :=
⋂

n∈N1

im Rn,

Inv R := gdom R ∩ gim R.
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The set Inv R can be seen as a invariant part for R, that is the maximal subset N ⊆ X
satisfying the following property: for every x ∈ N there exists a map σ : Z → N such that
σ(n + 1) ∈ R(σ (n)) for every n ∈ Z and σ(0) = x (cf. [1, 6]).

We say that a relation R is wide if Inv R = X . Notice that the restriction R|Inv R is a wide
relation on Inv R. We have the following proposition whose straightforward proof is left to
the reader.

Proposition 11 A relation R in a finite set X is wide if and only if dom Rn = X = im Rn for
all n ∈ N0. �

Proposition 12 For every relation R in a finite set X there exists a q ∈ N1 such that for all
p ≥ q we have gdom R = dom Rp and gim R = im Rp.

Proof Since dom Rn is a decreasing sequence of sets and X is finite, there exists a q ∈ N

such that dom Rq = dom Rq+1. It follows that gdom R = dom Rp for p ≥ q . The argument
for gim R is analogous. �


The following proposition shows that each relation is equivalent in the Szymczak category
to a wide relation.

Proposition 13 For a relation R in X we have

Szym(X , R) ∼= Szym(Inv R, R| Inv R).

Proof By Proposition 12 we may fix an n ∈ N such that dom Rn = gdom R and im Rn =
gim R. Let A := Inv R and let R̄ := R|A. Set S := (Rn)|X×A and T := (Rn)|A×X . We will
prove that the following diagrams

X X X X

A A A A
�

S

�R

�
S

�R

�̄R
�T

�̄R
�T

commute. To see that R̄ ◦ S ⊆ S ◦ R take (x, y) ∈ R̄ ◦ S. Then x ∈ X , y ∈ A and there exists
an a ∈ A such that (x, a) ∈ Rn and (a, y) ∈ R̄ ⊆ R.

Choose an x ′ ∈ X such that (x, x ′) ∈ R, (x ′, a) ∈ Rn−1. It follows that (x ′, y) ∈ S and
(x, y) ∈ S◦R. Toprove the opposite inclusion take (x, y) ∈ S◦R. Then, there exist x ′, x ′′ ∈ X
such that (x, x ′) ∈ R, (x ′, x ′′) ∈ Rn−1 and (x ′′, y) ∈ R|X×A. In particular, (x, x ′′) ∈ Rn .
We will show that x ′′ ∈ A. Indeed, x ′′ ∈ im Rn = gim R and since y ∈ A ⊆ gdom R and
(x ′′, y) ∈ R, it follows that x ′′ ∈ gdom R. Hence, (x, x ′′) ∈ S and (x ′′, y) ∈ R̄ which implies
(x, y) ∈ R̄ ◦ S. The proof of the commutativity of the other diagram is similar.

Next, we prove that

S ◦ T = R2n (7)

T ◦ S = R̄2n . (8)

The inclusions S ◦ T ⊆ R2n and T ◦ S ⊃ R̄2n follow immediately from Proposition 7. To
see that S ◦ T ⊃ R2n take (x, y) ∈ R2n . Then, there exists a z ∈ X such that (x, z) ∈ Rn

and (z, y) ∈ Rn . It follows that z ∈ im Rn = gim R and z ∈ dom Rn = gdom R. Hence,
z ∈ Inv R = A and we get (x, z) ∈ T , (z, y) ∈ S and (x, y) ∈ S ◦ T . In order to
prove that T ◦ S ⊆ R̄2n take (x, y) ∈ T ◦ S. Then, x, y ∈ A and there exists a sequence
x = x0, x1, . . . xn = y of points in X such that (xi−1, xi ) ∈ R for i = 1, 2, . . . 2n. Since
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x, y ∈ A, it is straightforward to observe that each xi ∈ A. Therefore, (xi−1, xi ) ∈ R̄, which
proves that (x, y) ∈ R̄2n .

Finally, we have

[S, n] ◦ [T , n] = [S ◦ T , 2n] = [R2n, 2n] = [idX , 0] (9)

[T , n] ◦ [S, n] = [T ◦ S, 2n] = [R̄2n, 2n] = [idA, 0], (10)

which proves that [S, n] : Szym(X , R) → Szym(A, R̄) and [T , n] : Szym(A, R̄) →
Szym(X , R) are mutually inverse isomorphisms. �


We will consider relations between objects from End(Setf ) that are isomorphic in
Szym(Relf ). In order to do that, recall that a partition of a set X is a family A of mutu-
ally disjoint, nonempty subsets of X such that X = ⋃A. Given a partition A of X and an
element x ∈ X , we denote by A[x] the unique element of A to which x belongs.

We say that a relation R in X is a block bijection if there exist a partition A of X and a
bijection α : A → A such that

R =
⋃

{ A × α(A) | A ∈ A }. (11)

Note that for any x ∈ X we have R(x) = α(A[x]), which comes easily from the definition
of a block bijection. Moreover, a bijection is always a block bijection.

Proposition 14 Assume a relation R ⊆ X × X is a block bijection satisfying (11) for some
partitionA of X and bijection α : A → A. Then, the partitionA and bijection α in (11) are
uniquely determined by R.

Proof LetA and α be the partition and bijection such that (11) is satisfied. If (11) is satisfied
withA replaced by another partitionB andα replaced by another bijection β, then α(A[x]) =
R(x) = β(B[x]). Since α : A → A and β : B → B are bijections, this means that each set
in A equals a set in B. This is possible only if A = B. And so α = β as well. �


The following facts show the structure of isomorphisms and relations between isomorphic
objects in different categories.

Theorem 8 Let (Y , R) be an object inEnd(Relf ) and (X , f ) an object inAut(Relf ). Assume
that (Y , R) and (X , f ) are isomorphic in Szym(Relf ), that is, there exist mutually inverse
isomorphisms

[S,m] : Szym(X , f ) → Szym(Y , R),

[T , n] : Szym(Y , R) → Szym(X , f ).

If R is wide, then S ◦ f k ◦ T is a block bijection for sufficiently large k ∈ N0 with
{ S(x) | x ∈ X } as the associated partition of Y . Moreover, R p is a block bijection for p
sufficiently large.

Proof Since [S,m] and [T , n] are mutually inverse isomorphisms, we can find a k0 ∈ N0

such that T ◦ S ◦ f k = f m+n+k and S ◦T ◦ Rk = Rm+n+k for all k ≥ k0. We will prove that

dom T = Y = im S. (12)

Indeed, the inclusions dom T ⊆ Y and im S ⊆ Y are obvious. Since R is wide, by Proposi-
tion 11 we get Y = dom Rm+n+k . Hence, by Proposition 8, we get

Y = dom Rm+n+k = dom S ◦ T ◦ Rk = dom Rk ◦ S ◦ T ⊆ dom T .
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Similarly,

Y = gim R = im Rm+n+k = im S ◦ T ◦ Rk ⊆ im S.

This proves (12).
By Proposition 10 f is a bijective map. Hence, it is a wide relation and an analogous

argument proves that

dom S = X = im T . (13)

Since f is a bijective map, we see that f̌ := f m+n = T ◦ S : X → X is also a bijective
map. We claim that

S(x) = T−1( f̌ (x)) for any x ∈ X . (14)

To see this take a y ∈ S(x). By (12) we may find an x ′ ∈ X such that (y, x ′) ∈ T . It follows
that (x, x ′) ∈ T ◦ S which means x ′ = f̌ (x). Thus, y ∈ T−1(x ′) = T−1( f̌ (x)), which
proves that S(x) ⊆ T−1( f̌ (x)). To prove the opposite inclusion take a y ∈ T−1( f̌ (x)).
Then (y, x ′) ∈ T , where x ′ := f̌ (x). Since f̌ = T ◦ S, there exists a y′ ∈ Y such that
(x, y′) ∈ S and (y′, x) ∈ T . But, by (12) y ∈ im S. Therefore, we can find an x ′′ ∈ X
such that (x ′′, y) ∈ S. Hence, (x ′′, x ′) ∈ T ◦ S which means x ′ = f̌ (x ′′). It follows that
f̌ (x ′′) = f̌ (x) and bijectivity of f̌ implies x = x ′′. This together with y ∈ S(x ′′) gives
y ∈ S(x) and completes the proof of the opposite inclusion.

We will also prove that

S(x1) ∩ S(x2) = ∅ for x1, x2 ∈ X , x1 �= x2. (15)

To see (15) assume to the contrary that there exists a y ∈ S(x1) ∩ S(x2). By (12) we may
find an x ∈ X such that x ∈ T (y). It follows that x ∈ T (S(x1)) and x ∈ T (S(x2)). Since
T ◦S = f̌ is a bijection, we get x = f̌ (x1) and x = f̌ (x2). It follows that x1 = f̌ −1(x) = x2,
a contradiction proving (15).

Consider the family A := { S(x) | x ∈ X }. By (13) the elements of A are non-empty, by
(15) they are disjoint and from (12) we get

⋃A = Y . Hence, A is a partition of Y . Fix a
k ≥ k0 and define a bijection α : A → A by α(S(x)) := S( f k( f̌ (x))). We will prove that

S ◦ f k ◦ T =
⋃

x∈X
S(x) × α(S(x)). (16)

Consider first a pair (y, y′) ∈ S ◦ f k ◦ T . Then there exist x̄, x ′ ∈ X such that (y, x̄) ∈ T ,
(x̄, x ′) ∈ f k and (x ′, y′) ∈ S. Let x := f̌ −1(x̄). It follows that y ∈ T−1(x̄) = T−1( f̌ (x))
and, by (14), y ∈ S(x). We also have y′ ∈ S(x ′) = S( f k(x̄)) = S( f k( f̌ (x)) = α(S(x)).
Hence (y, y′) ∈ S(x) × α(S(x)), which proves that the left hand side of (16) is contained in
the right hand side. To prove the opposite inclusion take a pair (y, y′) ∈ S(x) × α(S(x)) for
some x ∈ X . Then y ∈ S(x) = T−1( f̌ (x)) which means that (y, f̌ (x)) ∈ T . We also have
y′ ∈ α(S(x)) = S( f k( f̌ (x))) or, equivalently, ( f̌ (x), y′) ∈ (S ◦ f k). Since (y, f̌ (x)) ∈ T ,
we obtain (y, y′) ∈ S ◦ f k ◦ T , which completes the proof of (16). Therefore, S ◦ f k ◦ T is a
block bijection. Moreover, since Rm+n+k = S ◦T ◦ Rk = S ◦ f k ◦T holds for all sufficiently
large k, equation (16) implies that Rp is a block bijection for p sufficiently large. �

Corollary 3 Let (X , f ) and (Y , g) be objects in End(Setf ). Then (X , f ) and (Y , g) are also
objects in End(Relf ). If objects (X , f ) and (Y , g) are isomorphic in Szym(Relf ), then they
are also isomorphic in Szym(Setf ).
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Proof It follows from Corollary 2 that both (X , f ) and (Y , g) are isomorphic in Szym(Setf )
to objects in Aut(Setf ). Therefore, without loss of generality we may assume that (X , f )
and (Y , g) are objects in Aut(Setf ). Let [S,m] : Szym(X , f ) → Szym(Y , R) and [T , n] :
Szym(Y , R) → Szym(X , f ) be mutually inverse isomorphisms in Szym(Relf ). Note that
every bijection is obviously a wide relation. Therefore, it follows from Theorem 8 that
R := S ◦ f k ◦T is a block bijection with { S(x) | x ∈ X } as the associated partition of Y . We
also know that S ◦T ◦ gk = gm+n+k for a k ∈ N1. Hence, S ◦ f k ◦T = S ◦T ◦ gk = gm+n+k

is a bijection. It follows that also S ◦ T is a bijection. Since R is a bijection, we get from
Proposition 14 that the partition { S(x) | x ∈ X } consists of singletons. This means that S
is a map. It is surjective, because { S(x) | x ∈ X } is a partition of Y . By Proposition 9
it is also injective. Hence, S is a bijection. Since S ◦ T is a bijection, it follows that also
T = S−1 ◦ (S ◦ T ) is a bijection. This shows that (X , f ) and (Y , g) are conjugate. In
particular, they are isomorphic in Szym(Setf ). �


The following observation is crucial for the rest of this work.

Proposition 15 Let (X , R) be an object of End(Relf ). Then there exists a p ∈ N1 such that

Ri+p = Ri for i ≥ p (17)

and, in particular,

Rkp = Rp for k ∈ N1. (18)

Moreover,

dom Rp = gdom R and im Rp = gim R.

Proof Since X is finite, the set of all relations in X is finite. In particular, the set of values of the
sequence R, R2, R3, . . . is finite. It follows that there exist m1,m2 ∈ N1 such that m1 < m2

and Rm1 = Rm2 . Set q := m2 − m1 and choose an m ∈ N1 such that p := mq ≥ m1. Then
Rm1+q = Rm1 . Multiplying both sides by Rq we obtain Rm1+2q = Rm1+q = Rm1 . Thus, an
induction argument proves that Rm1+kq = Rm1 for k ∈ N1. Fix i ≥ p. Then i ≥ m1 and

Ri+p = R(i−m1)+m1+mq = R(i−m1)+m1 = Ri ,

which proves (17), and (18) follows easily from (17) by induction.
The last part of the statement comes easily from Proposition 12. �


For R ⊆ X × X there is a subset of particular interest. By the recurrent set of R we mean
a set

XR := {x ∈ X | x ∈ Rm(x) for some m ∈ N1}. (19)

We call its elements the recurrent vertices of R.
We have the following corollary from the previous proposition.

Corollary 4 Let R ⊆ X × X. Then x ∈ XR if and only if x ∈ Rp(x) for any eventual period
p.

Proof Let x ∈ Rm(x). By induction, x ∈ Rkm(x) for each k ∈ N1. In particular, x ∈ Rpm(x).
We have Rpm = Rp , hence x ∈ Rp(x). �
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Definition 1 For an object (X , R) ∈ End(Relf ), any p ∈ N1 satisfying

Ri+p = Ri for i ≥ p

is called an eventual period of R.

The key feature of an eventual period is (17). Therefore, we do not require that the eventual
period be the smallest number with this property. Note that a similar concept, called the index,
is introduced in [12].

Theorem 9 Let (X , R) be an object of End(Relf ) and let p be an eventual period of R. Then
for each s ∈ N1

Szym(X , Rs) ∼= Szym(X , Rs+p).

Proof Let S := T := Rp . We claim that [S, p] : Szym(X , Rs) → Szym(X , Rs+p)

and [T , p] : Szym(X , Rs+p) → Szym(X , Rs) are mutually inverse isomorphisms in
Szym(Relf ). Since p + s ≥ p, we get from (17) that

Rp+s ◦ T = R2p+s = Rp+s = T ◦ Rs,

Rs ◦ S = Rp+s = R2p+s = S ◦ Rp+s .

This shows that R and S are morphisms in End(Relf ). Moreover, by (18)

T ◦ S = R2p = Rp = R2sp = (Rs)2p,

S ◦ T = R2p = Rp = R2(s+p)p = (Rs+p)2p,

which proves that [T , p] ◦ [S, p] = [idX , 0] and [S, p] ◦ [T , p] = [idX , 0], that is [T , p]
and [S, p] are mutually inverse isomorphisms. �


6 Induced Relations in Relf

We will recall some basic notions of directed graph theory. By a directed graph (or just a
digraph) we mean a pair G := (V , E) consisting of the finite set of vertices V and the set of
edges E ⊆ V × V . We allow a digraph to contain loops, that is edges in the form of (v, v),
where v ∈ V . A walk in G is a sequence x = x0x1 . . . xk with k > 0 such that xi ∈ V for
i = 0, 1, . . . , k and (xi , xi+1) ∈ E for i = 0, 1, . . . , k − 1. We then say that x is a walk from
x0 to xk or just an (x0, xk)-walk. The length of walk x is the number of edges (xi , xi+1),
that is, k. We denote it by #x . We say that a vertex xi lies on a walk x if it is contained in the
sequence that constitutes the walk x . If the vertices of the walk x are different, then we call x
a path (or a path from x0 to xk). A walk x = x0 . . . xk is a cycle if x0 = xk . A concatenation
of a walk x = x0 . . . xk with a walk y = y0 . . . yn is a walk xy := x0 . . . xk y1 . . . yn provided
xk = y0.

A digraph G = (V , E) is strongly connected if for each u �= v in V there exist both a
(v, u)-walk and a (u, v)-walk. For any digraph G = (V , E) a setU ⊆ V is called a strongly
connected component of G if the digraph G(U ) := (U , {(v, u) ∈ E | v, u ∈ U }) is strongly
connected and there is no other W such that U ⊆ W ⊆ V and G(W ) is strongly connected.
In this paper we do not use any other connectivity of digraphs.

Each relation R ⊆ X × X may be considered as the directed graph (X , R). Similarly,
any directed graph G = (V , E) may be considered as the binary relation E ⊆ V × V . This
observation lets us use the notions of digraph and relation interchangeably throughout the
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paper, choosing the one that better fits the presented content and applying digraph terminology
to relations and vice versa. For example, we use the following notion extensively.

Definition 2 A set A ⊆ X is a strongly connected component of relation R ⊆ X × X if A is
a strongly connected component of the digraph (X , R).

Notice that the existence of a (x0, xp)-walk of length p in the digraph (X , R) is equivalent
to the fact xp ∈ Rp(x0). In particular, if a (x0, xp)-walk is a cycle, then the existence of a
cycle is equivalent to xi ∈ Rp(xi ) for each i = 0, . . . , p.

The following proposition is straightforward.

Proposition 16 Let R ⊆ X × X be a strongly connected relation. Then R is wide. Moreover,
if x ∈ Rk(x), then x ∈ Rkl(x) for each l ∈ N1. �


Consider the greatest common divisor of the length of all cycles in a strongly connected
relation R. Following [14, Definition 4.5.2.], we call this number the period of R. Note that
the meaning of a period of relation differs from that of a period of an element within an
endomorphism domain, as discussed in Sect. 4. In order to compute the period of R one can
consider the set of cycles with different vertices (cf. [25, Definition 7.1]). The following
proposition relates the period of a strongly connected relation with its eventual period.

Proposition 17 Let p ∈ N1 be an eventual period of a strongly connected relation R ⊆ X×X
and let q ∈ N1 be the period of R. Then q ≤ p. Moreover, q|p.
Proof Assume to the contrary that q > p. Then there exists at least one x ∈ X such that
x /∈ Rp(x) because otherwise q would divide p. Since R is strongly connected, there exists
an l ∈ N1 such that x ∈ Rl(x) and q|l. By Proposition 15 we get Rlp(x) = Rp(x) �� x . It
follows from Proposition 16 that x ∈ Rlp(x), a contradiction.

In order to prove that q|p note that for any x ∈ X there exists an i ∈ {0, . . . , p − 1}
such that x ∈ Rp+i (x). Indeed, by Proposition 15 for any m ≥ p we have Rm = Rp+i for
some i ∈ {0, 1, . . . , p − 1}. From the same proposition we conclude that for any k ∈ N1

the equation Rp+i = Rkp+i holds. Therefore, x ∈ Rkp+i (x) and this means q|p + i and
q|kp+ i . It follows that q|a(p+ i)+b(kp+ i) for any a, b ∈ Z and k ∈ N1. Setting a = −1,
b = 1 and k = 2 we get q|p. �


There are some relationships between eventual periods of an arbitrary relation and eventual
periods of the relation restricted to its strongly connected components.

Proposition 18 Let U ⊆ X be a strongly connected component of an arbitrary R ⊆ X × X.
Then

(R|U )n = (Rn)|U
for each n ∈ N0.

Proof The left-hand-side is clearly contained in the right-hand-side.
To prove the opposite inclusion consider a pair (u, v) ∈ (Rn)|U . Then (u, v) ∈ U ×U and

there is a (u, v)-walk in R of length n. Since u and v belong to the same strongly connected
component of R, there is a (v, u)-walk in R|U . Concatenation of both walks gives a cycle
in R|U , because U is a strongly connected component of R. Therefore, vertices lying on the
(u, v)-walk belong to U . In consequence, (u, v) ∈ (R|U )n . �
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Corollary 5 Let U ⊆ X be a strongly connected component of R ⊆ X × X and let p and pU
be eventual periods of R and R|U , respectively. Then pU |p.
Proof We have Rp+i = Ri for i ≥ p. By Proposition 18

(R|U )p+i = (Rp+i )|U = (Ri )|U = (R|U )i .

Hence, p is a multiple of pU . �

Proposition 19 Let q ∈ N1 be the period of a strongly connected relation R ⊆ X × X and
let x, y ∈ X. Then the following conditions are equivalent:

(i) there exists an (x, y)-walk in R with length divisible by q,
(ii) each (x, y)-walk in R has length divisible by q.

Proof Let c = x . . . y be an (x, y)-walk in R such that q|#c. Consider a walk d = x . . . y in
R such that #c �= #d . Since R is strongly connected, there exists a (y, x)-walk e in R. Then
ce is a cycle passing through the vertex y. Since q is the period of R, q divides the length of
the cycle. Also q|#c, hence q|#e. Since de is also a cycle in R passing through y, the period
q divides its length. Therefore, q|#d , because q|#e.

To prove the opposite implication it suffices to note that the existence of an (x, y)-walk
follows from the strong connectivity of R. �


Let R ⊆ X × X be an arbitrary relation. We write x →R y to denote that there is a walk
in R from x to y of positive length. We say that x, y ∈ X are strongly connected and write
x ↔R y if x →R y and y →R x . Note that the recurrent set of R given by (19) can be
rewritten in terms of relation ↔. Indeed,

XR = {x ∈ X | x ↔R x}.
The relation ↔R is clearly symmetric and transitive. Hence, it is an equivalence relation

in XR . It is easy to check that the equivalence classes of ↔R in XR are exactly the strongly
connected components of R. For a recurrent vertex x ∈ XR we denote by [x]R the strongly
connected component to which x belongs.

We refine the relation ↔R in XR to a relation ∼R in XR .

Definition 3 Let R ⊆ X×X . The relation∼R in XR is defined as follows. For each x, y ∈ XR

there is x ∼R y if x ↔R y and each walk from x to y has length equal to zero modulo the
period of R|[x]R .

Notice that if R ⊆ X × X is a strongly connected relation, then XR = X and ↔R has
exactly one equivalence class.

Proposition 20 Let R ⊆ X × X be an arbitrary relation. Then ∼R given by Definition 3 is
an equivalence relation in XR.

Proof Consider A ⊆ X , a strongly connected component of R. Then, R|A is a strongly
connected relation. Denote by AR the recurrent set of R|A. By [9, Lemma 6, Corollary 1],
∼R is an equivalence relation on AR = A. Moreover, ∼R has exactly q distinct equivalence
classes, where q is a period of R|A.

Since XR is a union of disjoint strongly connected components of R,∼R is an equivalence
relation on XR . �
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Fig. 4 The eventual period p and
the period q of the relation R on
the left are both p = q = 3. The
equivalence classes of the
relation ∼R are marked with
colors. Both relations are in the
same shift equivalence class (cf.
Theorem 11)

The example in Fig. 4 shows the partition of the set of vertices into the equivalence classes
of the relation ∼R .

Let gcd(a, b) denote the greatest common divisor of a, b ∈ Z. In order to proceed we
need the following classical result.

Lemma 1 Assume a and b are coprime in N. Then the set {ax + by | x, y ∈ N0} has finite
complement inN0.Moreover, if a, b ∈ Nwithq = gcd(a, b), then the set {ax+by | x, y ∈ N0}
contains nq for all sufficiently large n.

Proof If a, b are coprime then {0, a, . . . , (b − 1)a} represents all the congruence classes
mod b, that is multiplication by a is an isomorphism mod b. Consider n > a(b − 1) − b.
Then n is congruent to some ax with 0 ≤ x ≤ b − 1. Therefore, n = ax + by for some
y ∈ Z. Since

a(b − 1) + by ≥ ax + by = n > a(b − 1) − b,

it follows that by > −b and so y > −1.
In order to prove the second part assume q = gcd(a, b). Then apply the above result to a

q

and b
q , which are coprime in N. �


For A, B ⊆ N0 we write A + B := {a + b | a ∈ A, b ∈ B}. In general, for any A ⊆ N

closed under addition (i.e. A + A ⊆ A) there is a finite subset F ⊆ A with gcd A = gcd F
(see [24] for more details).

Assume R is a strongly connected relation on a finite set X . Define for x, y ∈ X the set

e(x, y) := {m ∈ N | y ∈ Rm(x)},
that is, the set of lengths of paths from x to y. Clearly, e(x, y) + e(y, z) ⊆ e(x, z), from
which we get

(i) e(x, y) + e(y, x) ⊆ e(x, x),
(ii) e(x, y) + e(y, y) + e(y, x) ⊆ e(x, x),
(iii) e(x, x) + e(x, x) ⊆ e(x, x).

Properties (i) and (ii) imply that the gcd e(x, x) divides every element of e(y, y) and so the
period q defined to be the gcd e(x, x) is the same for all x ∈ X . Then (iii) together with
Lemma 1 imply that nq ∈ e(x, x) for all sufficiently large n ∈ N. Finally, from (i) we get
that m + n is congruent to 0 mod q for all m ∈ e(x, y) and n ∈ e(y, x) and so the elements
of e(x, y) are contained in a single congruence class.

Proposition 21 Let R ⊆ X × X be a strongly connected relation with its period equal to q.
For every eventual period p of R we have idX ⊆ Rp+q .
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Proof By Proposition 17 we have q|p. Hence, by Lemma 1, for large enough n we have
np + q ∈ e(x, x). That is, x ∈ Rnp+q(x). But Rnp+q = Rp+q which implies idX ⊆ Rp+q .

�

As a corollary to the above proposition we get a variant of Proposition 15 for strongly

connected relations.

Corollary 6 Let R be a strongly connected relation with its period equal to q and an eventual
period equal to p. Then

Rp+kq = Rp for k ∈ N0. (20)

Proof We prove inductively on k ∈ N0 that

Rp+kq ⊆ Rp+(k+1)q . (21)

By Proposition 21 we have idX ⊆ Rp+q , hence Rp ⊆ R2p+q . By Proposition 15 we have
R2p+q = Rp+q . This proves (21) for k = 0.

Proceeding by induction we get

Rp+(k+1)q = Rp+kq ◦ Rq ⊆ Rp+(k+1)q ◦ Rq = Rp+(k+2)q ,

which completes the proof of (21).
We will now prove (20). By Proposition 17, p = mq holds for some m ∈ N1. Fix an

s ∈ N such that sm ≥ k. By (21), we have

Rp ⊆ Rp+kq ⊆ Rp+smq = Rp+sp = Rp.

�

We are now ready to present a theorem expressing the equivalence classes of ∼R in XR

in terms of a power of the relation R ⊆ X × X .

Theorem 10 Let R ⊆ X × X be an arbitrary relation and let p be an eventual period of R.
Then for each x ∈ XR we have

[x]∼R = Rp(x) ∩ [x]R . (22)

In particular, if R is a strongly connected relation, then [x]∼R = Rp(x).

Proof Let y ∈ [x]∼R . This means that there exists an (x, y)-walk of length kq , where
q ∈ N1 is the period of R|[x]R and k ∈ N1. In other words, y ∈ (R|[x]R )kq(x). Notice that
x ∈ (R|[x]R )p(x). Indeed, we have

x ∈ id[x]R (x) ⊆ (R|[x]R )p[x]R+q(x) = (R|[x]R )p[x]R (x) ⊆ (R|[x]R )p(x),

where p[x]R is an eventual period of R|[x]R . By Proposition 21, Corollary 6 and Proposition
18 we get

y ∈ (R|[x]R )p+kq(x) = (R|[x]R )p(x) = (Rp)|[x]R (x) ⊆ Rp(x).

It is clear that y ∈ [x]R .
In order to prove the opposite inclusion take a y ∈ Rp(x) ∩ [x]R . There exists an (x, y)-

walk of length p in R|[x]R . Since R|[x]R is strongly connected, there exists also a (y, x)-walk
of length l in R|[x]R for some l ∈ N1. Concatenation of these walks is a cycle of length p+ l.
Hence, the period q of R|[x]R divides p+ l. By Proposition 17, we have q|p[x]R , where p[x]R
is an eventual period of R|[x]R . By Corollary 5, q|p. Therefore, q|l and this proves y ∼R x ,
that is y ∈ [x]∼R . �
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Definition 4 Let (X , R) ∈ End(Relf ) and let p ∈ N1 be an eventual period of R. The relation
R induces a relation R̄ in XR/∼R given by

([x]∼R , [y]∼R ) ∈ R̄ if (x, y) ∈ Rp+1 (23)

for x, y ∈ XR .

The relation R̄ is well-defined. This is a consequence of the following implication:

x ∼R x ′, (x, y) ∈ Rp+1, y ∼R y′ �⇒ (x ′, y′) ∈ Rp+1.

The implication holds. Indeed, there are an (x ′, x)-walk and a (y, y′)-walk of length equal
to zero modulo the period of the strongly connected component containing x, x ′ and y, y′,
respectively. By Corollaries 6 and 5 there are also an (x ′, x)-walk and a (y, y′)-walk of length
p. Concatenating these walks of length p with an (x, y)-walk of length p + 1 in the right
order we get the (x ′, y′)-walk of length 3p + 1. By Proposition 15, there is an (x ′, y′)-walk
of length p + 1 which proves the implication.

Lemma 2 Let (X , R) ∈ End(Relf ) and let p be an eventual period of R. Then for R̄ given
by Definition 4

R̄([x]∼R ) = R̄({[y]∼R | y ∈ Rp(x), y ∈ XR})
for all x ∈ XR. Moreover, p is an eventual period of R̄.

Proof The left-hand-side is clearly contained in the right-hand-side.
To prove the opposite inclusion consider a [z]∼R which belongs to the right-hand-side.

This means that there is a y ∈ Rp(x), y ∈ XR such that ([y]∼R , [z]∼R ) ∈ R̄. Thus, (y, z) ∈
Rp+1 and z ∈ Rp+1(y) ⊆ Rp+1(Rp(x)) = Rp+1(x). It follows that (x, z) ∈ Rp+1 and
([x]∼R , [z]∼R ) ∈ R̄.

Let i ≥ p. We have

R̄i ([x]∼R ) = {[y]∼R | (x, y) ∈ (Rp+1)i } = {[y]∼R | (x, y) ∈ Rpi+i+p2+p}
= {[y]∼R | (x, y) ∈ (Rp+1)i+p} = R̄i+p([x]∼R ),

which proves that p is an eventual period of R̄. �

Lemma 3 Let R ⊆ X × X be an arbitrary relation and let p be an eventual period of R. For
each x ∈ X and n ∈ N0

Rp+n(x) = Rp(Rp+n(x) ∩ XR). (24)

Proof Note that if XR = ∅, then the relation Rp is empty. Therefore, in this case the theorem
is trivial. Hence, assume that XR �= ∅. We prove formula (24) inductively on n ∈ N0.

Assume that n = 0.We need to prove that Rp(x) = Rp(Rp(x)∩XR) for each x ∈ X . For
the proof of the right-to-left inclusion, note that for each x ∈ X wehave Rp(x)∩XR ⊆ Rp(x)
and, in consequence, Rp(Rp(x) ∩ XR) ⊆ Rp+p(x) = Rp(x).

In order to prove the opposite inclusion take a y ∈ Rp(x). We claim that there is an (x, y)-
walk in R such that there exists a z ∈ XR which belongs to the walk. Indeed, if this were not
true, then we would get a contradiction to the equality (18) in Proposition 15, because from
the finiteness of X there would be a number k ∈ N1 such that Ri (x) = ∅ for each i ≥ k, in
particular y ∈ Rp(x) = Rkp(x) = ∅.

Let us take a z ∈ U lying on the (x, y)-walk in some strongly connected component U .
Assume that z ∈ Rl(x) for some l ∈ {0, . . . , p}. Clearly, y ∈ Rp−l(z). Note that there exists
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a z′ ∈ U ⊆ XR lying on a cycle starting at z of length p such that z′ ∈ Rp−l(z). Note that it
may happen that z = z′. By Theorem 10, the set Rp(z′) contains some equivalence class of
∼R defined in XR . In particular, z′ ∈ Rp(z′). Therefore,

z′ ∈ Rp(z′) ⊆ R2p−l(z) ⊆ R2p(x) = Rp(x).

In consequence, z′ ∈ Rp(x) ∩ XR . We will show that there is a (z′, z)-walk in R of length
p+l. Indeed, from the definition of z′ we know that z ∈ Rl(z′). Togetherwith z′ ∈ Rp(z′), we
get z ∈ Rp+l(z′). We have y ∈ Rp−l(z) ⊆ R2p(z′) = Rp(z′) which proves y ∈ Rp(z′) ⊆
Rp(Rp(x) ∩ XR).

Hence, formula (24) for n = 0 is proved. Now assume that (24) holds. We prove that (24)
also holds with n replaced by n+ 1. Using the inductive assumption and the formula that the
image of a union under a multivalued map is equal to the union of the images, we get

Rp(Rp+n+1(x) ∩ XR) = Rp(Rp+n(R(x)) ∩ XR)

= Rp((
⋃

t∈R(x) R
p+n(t)) ∩ XR)

= Rp(
⋃

t∈R(x) R
p+n(t) ∩ XR)

= ⋃
t∈R(x) R

p(Rp+n(t) ∩ XR)

= ⋃
t∈R(x) R

p+n(t)
= Rp+n+1(x),

which ends the proof. �

Lemma 4 Let R ⊆ X × X be an arbitrary relation and let p be an eventual period of R.
Then

x ∼R x ′ �⇒ Rp(x) = Rp(x ′).

Proof Let x ∼R x ′. By Theorem 10, we have x ′ ∈ Rp(x) and, in consequence, Rp(x ′) ⊆
Rp(x). The right-to-left inclusion follows by symmetry of ∼R . �

Theorem 11 Let (X , R) ∈ End(Relf ). Then

Szym(X , R) ∼= Szym(XR/∼R , R̄),

where R̄ is induced on equivalence classes of ∼R given by Definition 4.

Proof Let p be an eventual period of R and set Y := XR/∼R . Consider relations S ⊆ X ×Y
and T ⊆ Y × X defined by S(x) := {[y]∼R | y ∈ Rp(x), y ∈ XR} for x ∈ X and
T ([x]∼R ) := Rp(x) for [x]∼R ∈ Y . By Lemma 4, T is well-defined. We claim that S and T
are morphisms in End(Relf ). Note that by Lemma 2, for x ∈ X we have

(S ◦ R)(x) = S(R(x)) = {[y]∼R | y ∈ Rp+1(x), y ∈ XR}
= {[y]∼R | ([x]∼R , [y]∼R ) ∈ R̄} = R̄([x]∼R )

= R̄({[y]∼R | y ∈ Rp(x), y ∈ XR}) = (R̄ ◦ S)(x),

and, by Lemma 3, for [x]∼R ∈ Y

(R ◦ T )([x]∼R ) = R(Rp(x)) = R2p+1(x)
= Rp({y | y ∈ Rp+1(x), y ∈ XR})
= T ({[y]∼R | ([x]∼R , [y]∼R ) ∈ R̄}) = (T ◦ R̄)([x]∼R ),

which proves that S and T are morphisms in End(Relf ).

123



Journal of Dynamics and Differential Equations

Now we prove that

[S, p] : Szym(X , R) → Szym(Y , R̄)

and

[T , p] : Szym(Y , R̄) → Szym(X , R)

are mutually inverse isomorphisms in Szym(Relf ). Again by Lemma 3, for x ∈ X we get

(T ◦ S)(x) = T ({[y]∼R | y ∈ Rp(x) ∩ XR}) = Rp({y | y ∈ Rp(x) ∩ XR}) = Rp(x)

and for [x]∼R ∈ Y

(S ◦ T )([x]∼R ) = S(Rp(x)) = {[y]∼R | y ∈ Rp(Rp(x)), y ∈ XR}
= {[y]∼R | y ∈ Rp(x) ∩ XR}
= {[y]∼R | y ∈ (Rp+1)p(x) ∩ XR}
= {[y]∼R | ([x]∼R , [y]∼R ) ∈ R̄ p} = R̄ p([x]∼R ).

Note that, in particular, the following holds:

idX ◦R2p+p = Rp+p = Rp ◦ Rp.

Hence, [T , p] ◦ [S, p] = [T ◦ S, 2p] = [Rp, 2p] = [idX , 0]. By Lemma 2, we get

idY ◦R̄2p+p = R̄ p ◦ R̄ p.

Therefore, [S, p] ◦ [T , p] = [S ◦ T , 2p] = [R̄ p, 2p] = [idY , 0], which ends the proof. �

Note that for a strongly connected relation R, the relation R̄ from Theorem 11 is, in fact,

a cyclic bijection (see the example in Fig. 4).

7 Objects in Canonical Form

Now we will consider a particular class of objects in End(Relf ).

Definition 5 Wesay that (X , R) ∈ End(Relf ) is in canonical form if the following conditions
apply:

(i) X = XR ; in other words, each element of X belongs to a strongly connected component
of R,

(ii) R is a bijection on each strongly connected component,
(iii) the equation Rp+1 = R holds, where p is an eventual period of R.

Note that the condition (iii) is equivalent to the condition Rn+p = Rn for each n ∈ N1.
Moreover, (iii) implies that the bijection from (ii) is cyclic.

Theorem 12 (Theorem 2) For each (X , R) ∈ End(Relf ) there exists an object (X̄ , R̄) ∈
End(Relf ) in canonical form such that

Szym(X , R) ∼= Szym(X̄ , R̄).

Proof Let p be an eventual period of R. Consider (X̄ , R̄), where X̄ := XR/∼R and R̄ is
induced by R on equivalence classes of ∼R as in (23). We claim that (X̄ , R̄) is in canonical
form.
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To prove that X̄ = X̄ R̄ let α ∈ X̄ and let x, x ′ ∈ α. By Corollaries 5, 6 and Proposition 17
there exists an (x, x ′)-walk in R of length equal to (p + 1)p. This means x ′ ∈ (Rp+1)p(x).
Hence, ([x ′]∼R , [x]∼R ) ∈ R̄ p and α ↔R̄ α, which proves that α ∈ X̄ R̄ . The right-to-left
inclusion comes from the definition of recurrent set of R̄.

Recall that by [γ ]R̄ for γ ∈ X̄ R̄ we mean an equivalence class of ↔R̄ , that is, the
strongly connected component of R̄ to which γ belongs. Notice that R̄ restricted to a strongly
connected component of R̄ is a map. Indeed, suppose that there are α, β ∈ X̄ , α �= β,
such that α ∈ R̄|[γ ]R̄ (γ ) and β ∈ R̄|[γ ]R̄ (γ ) for some γ ∈ X̄ . This means that for any
x ∈ γ, y ∈ α, z ∈ β we have (x, y) ∈ (R|⋃[γ ]R̄ )p+1 and (x, z) ∈ (R|⋃[γ ]R̄ )p+1. Therefore,
there is an (x, y)-walk and an (x, z)-walk of R|⋃[γ ]R̄ , both of length equal to p + 1. Hence,
y, z belong to the same class of ∼R , α = β, a contradiction.

Using a similar argument as in the paragraph above one can prove that R̄ restricted to a
strongly connected component is injective. In order to show that R̄ restricted to a strongly con-
nected component is surjective let α ∈ X̄ and take β ∈ [α]R̄ . Consider γ = (R̄|[α]R̄ )p−1(β),
where p is an eventual period of R̄ (see Lemma 2). We have R̄|[α]R̄ (γ ) = (R̄|[α]R̄ )p(β). By
Proposition 21 and Corollary 6 we get id[α]R̄ ⊆ (R̄|[α]R̄ )p . Therefore, (R̄|[α]R̄ )p(β) = β and
R̄|[α]R̄ (γ ) = β. Thus, R̄|[α]R̄ is a bijection.

Careful inspection of the proof of Lemma 2 indicates that the variable i may be replaced
by any positive integer, which verifies (iii) of Definition 5.

Isomorphisms between objects (X , R) and (X̄ , R̄) in the Szymczak category are given by
Theorem 11. �


Proposition 22 Let (X , R) ∈ End(Relf ) be in canonical form. Put X̄ := XR/∼R . Then
(X̄ , R̄) is also in canonical form, where R̄ is given as in (23). Moreover, (X , R) and (X̄ , R̄)

are conjugate objects of End(Relf ).

Because of Proposition 22, an object (X , R) in canonical form is also said to be canonical.

Proof By Theorem 12, the object (X̄ , R̄) is in canonical form.
Consider the map f : X → X̄ such that f (x) := [x]∼R . Since X = XR , the map f is

well-defined. Notice that for each x ∈ X we have card[x]∼R = 1. Indeed, suppose to the
contrary that there are x, x ′ ∈ [x]∼R such that x �= x ′. Then there are an (x, x)-walk and an
(x, x ′)-walk. This means that for some y lying on both walks card R|[x]R (y) > 1, but R|[x]R
is a bijection, a contradiction.

Using the above fact one can easily prove that f is a bijection. By Proposition 10, the map
f is an isomorphism between X and X̄ in Relf .
We will show that f ◦ R = R̄ ◦ f . Let p ∈ N1 be an eventual period of R and let x ∈ X .

We have

R̄( f (x)) = R̄([x]∼R ) = {[y]∼R | (x, y) ∈ Rp+1} = f ({y | (x, y) ∈ Rp+1})
= f ({y | y ∈ Rp+1(x)}) = f (Rp+1(x)) = f (R(x)),

which proves that (X , R) and (X̄ , R̄) are conjugate in End(Relf ). �


Example 1 We will show that the relation R1 in Fig. 5 is isomorphic to the relation R3 in the
Szymczak category. For the matrix representation A of a relation R we use the convention
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Fig. 5 Relations R1, R2 and R3 (from left to right) from the same shift equivalence class of Relf . Only
relation R3 is in canonical form

Ai j = 1 if (xi , x j ) ∈ R and 0 otherwise. We have

R1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 1 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

and R3 =

⎛

⎜
⎜
⎝

0 1 1 0
1 0 0 1
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ .

An eventual period of R1 is p = 4. Relation R1 has two strongly connected components
[1]R1 := {1, 2, 3} and [4]R1 := {4, 5}, where the vertex number is also the row-column
number of the matrix representation of the relation R1. Moreover, we have [1]∼R1

= {1, 3},
[2]∼R1

= {2}, [4]∼R1
= {4} and [5]∼R1

= {5}. Using the formulas from the proof of Theorem
11 we get

T :=

⎛

⎜
⎜
⎝

1 0 1 0 1
0 1 0 1 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎠ and S :=

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 1
0 1 1 0
1 0 0 1
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

It is easy to check that R1 ◦ T = T ◦ R3, R3 ◦ S = S ◦ R1, S ◦ T = Rp
3 , and T ◦ S =

Rp
1 . Therefore, [S, p] and [T , p] are mutually inverse isomorphisms and, in consequence,

({1, 2, 3, 4, 5}, R1) and ({1, 2, 4, 5}, R3) are isomorphic in Szym(Relf ). �


Definition 6 Let (X , R) ∈ End(Relf ) be an object in canonical form. The relation R induces
a partial order ≤R in X/↔R defined by

[x]R ≤R [y]R : ⇐⇒ there exists a (y, x)-walk in R. (25)

Indeed, reflexivity and transitivity of ≤R are obvious. If [x]R ≤R [y]R and [y]R ≤R [x]R ,
then there are a (y, x)-walk and an (x, y)-walk. Hence, x and y are strongly connected,
[x]R = [y]R .

If [x]R ≤R [y]R , then we say that the component [y]R is higher than the component [x]R .
Now we present a few technical lemmas which give us information on isomorphisms in

Szym(Relf ).

Lemma 5 Let (X , R), (Y , P) ∈ End(Relf ) be objects in canonical form isomorphic in
Szym(Relf ) with [S, k] : (X , R) → (Y , P) and [T , l] : (Y , P) → (X , R) mutually inverse
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isomorphisms. For every (x, x ′) ∈ T ◦ S such that [x]R = [x ′]R, there exists a unique y ∈ Y
such that (x, y) ∈ S and (y, x ′) ∈ T .

Proof The existence of y ∈ Y comes from the composition T ◦ S.
Suppose that y ∈ S(x), y′ ∈ S(x) and x ′ ∈ T (y), x ′ ∈ T (y′). Hence, S(x ′) ⊆ S(T (y))

and S(x ′) ⊆ S(T (y′)). There exists n ∈ N1 such that x ∈ Rn(x ′) and [x]R = [x ′]R . Using
y ∈ S(x), we get

y ∈ S(x) ⊆ S(Rn(x ′)) = Pn(S(x ′)) ⊆ Pn(S(T (y′))). (26)

Notice that since [S ◦ T , k + l] = [idY , 0], for some m ∈ N0 we have

Pm(z) ⊆ Pm(S(T (z′))) = Pk+l+m(z′) (27)

and we can always find z′′ ∈ [z]P such that z′′ ∈ Pm(z) for any m. Moreover, by taking m
large enough, the sum k+ l +m is a multiple of eventual periods of relations R and P . Thus,
z′′ = z′, because P is in canonical form. Applying it to (26) with a large enough exponent
r we get y′′ ∈ Pk+l+r (y′), where [y′′]P = [y]P , which means [y]P ≤P [y′]P . Similarly,
using y′ ∈ S(x) and S(x ′) ⊆ S(T (y)) in (26), we get y′′′ ∈ Pk+l+r (y) for large enough
r , where [y′′′]P = [y′]P , which means [y′]P ≤P [y]P . By antisymmetry of ≤P , we have
[y]P = [y′]P . Since y′ ∈ S(x ′) ⊆ S(T (y)), by (27) we get y′ ∈ Pr+t (y′) ⊆ Pk+l+r+t (y).
Thus, y′ = y. �

Lemma 6 Let (X , R), (Y , P) ∈ End(Relf ) be objects in canonical form isomorphic in
Szym(Relf ). If [S, α] : (X , R) → (Y , P) is an isomorphism and U is a component of R,
then S(U ) contains a uniquely determined component V of P with the same period as U
such that no other component of P with non-empty intersection with S(U ) is higher than V .

Proof Let [T , β] : (Y , P) → (X , R) be an isomorphism inverse to [S, α], let x ∈ X and
U := [x]R . We claim that there exists exactly one component V intersecting S(x) such that
no other component W intersecting S(x) is higher than V .

We have S(x) �= ∅, because for some t ∈ N0 we get Rt (T (S(x))) = Rt+α+β(x) and
Rt+α+β(x) ∩ [x]R �= ∅. Take x, x ′ ∈ [x]R such that (x, x ′) ∈ T ◦ S. By Lemma 5, there
exists a unique y ∈ Y such that (x, y) ∈ S and (y, x ′) ∈ T .

The component [y]P is uniquely determined. Indeed, for (x̄, x̄ ′) ∈ T ◦ S, x̄ �= x and
[x̄]R = [x̄ ′]R = [x]R we have (x, x̄) ∈ Rk for some k ∈ N1. By Lemma 5, there exists
unique ȳ ∈ Y such that (x̄, ȳ) ∈ S and (ȳ, x̄ ′) ∈ T . Since x̄ ′ ∈ [x ′], for some l ∈ N1 we
have (x̄ ′, x ′) ∈ Rl . Therefore, (x, x ′) ∈ Rl ◦ T ◦ S ◦ Rk = Rl+k ◦ T ◦ S = T ◦ Pl ◦ Pk ◦ S
and (x, ȳ) ∈ S ◦ Rk , (ȳ, x ′) ∈ Rl ◦ T . Since R and P are in canonical form, (x, y) ∈ S,
(y, ȳ) ∈ Pk and (ȳ, y) ∈ Pl , (y, x ′) ∈ T , which implies [ȳ]P ≤P [y]P and [y]P ≤P [ȳ]P .
Thus, [y]P = [ȳ]P .

Suppose that there exists y1 ∈ Y such that (x, y1) ∈ S and [y]P ≤P [y1]P . That is, y ∈
Rk(y1) for some k ∈ N1. We have x ′ ∈ T (y) ⊆ T (Pk(y1)) = Rk(T (y1)) and so there exists
x1 ∈ T (y1) such that x ′ ∈ Rk(x1). Because y1 ∈ S(x), it follows that x1 ∈ T (S(x)). By (27),
[x1]R = [x]R and, moreover, we can take the exponent n ∈ N1 large enough to be a multiple
of eventual periods of R and P such that x ′

1 ∈ Rn(x1) ⊆ Rn(T (S(x))) = Rn+α+β(x),
where x ′

1 ∈ [x1]R . Thus, x ′
1 = x and x ∈ Rn(x1). Therefore, (x, x) ∈ Rn ◦ T ◦ S and

(x, x ′) ∈ T ◦ S implies (x ′, x) ∈ Rn . Since R is in canonical form we get x ′ = x1. Hence,
x ′ ∈ T (y1). We have (x, y1) ∈ S, (y1, x ′) ∈ T and (x, y) ∈ S, (y, x ′) ∈ T . By Lemma
5, [y1]P = [y]P . Thus, we proved that there is only one component such that no other
component of P intersecting S(x) is higher than this component. Let V be this component
of P . Assume that the period of R|[x]R is equal to q .

123



Journal of Dynamics and Differential Equations

Now, we prove the statement about the period of V . Take e ∈ V ∩ S(x). We will prove
that the component V has the same period as U (equal to q). Note that x ∈ Rq(x), and then
e ∈ S(x) ⊆ S(Rq(x)) = Pq(S(x)). Hence,

e ∈ S(x) ⊆ Pq(S(x)) ⊆ P2q(S(x)) ⊆ . . . .

Therefore, the period of V is equal to either k := rq for some r ∈ N1 or some k ∈ N1 such
that k|q .

As we proved above, U is the component of R with non-empty intersection with T (e)
such that no other component of R with non-empty intersection with T (e) is higher than U .
Take y ∈ T (e) ∩U . Since we have the sequence of inclusions

y ∈ T (e) ⊆ Rk(T (e)) ⊆ R2k(T (e)) ⊆ . . . ,

the period of U is equal to either q = sk for some s ∈ N1 or some q ∈ N1 such that q|k.
Combining the cases for the period of V and U , we have to consider four cases.

In the first case q = srq it follows that sr = 1 and k = q . In the second case q|k and k|q ,
we also get immediately k = q . Consider the next case q = sk and k|q . Since e ∈ Pk(e),
we get T (e) ⊆ Rk(T (e)) and y ∈ T (e) ∩U . Therefore, either y ∈ Rk(y) and then k = q or
there is z ∈ T (e) ∩U such that y �= z and y ∈ Rk(z). We have y, z ∈ T (e) ⊆ Rk(T (S(x))).
Also T ◦ S ◦ Rl = Rl+α+β for some l ∈ N0. Hence, assuming without loss of generality that
l − k > 0 we get Rl−k(y) ⊆ Rl+α+β(x) and Rl−k(z) ⊆ Rl+α+β(x).

We have x, y, z ∈ U , y �= z and R|U is a bijection on U . There exist y′, z′ ∈ U such that
y′ ∈ Rl−k(y), z′ ∈ Rl−k(z) and y′ �= z′. Therefore, y′ ∈ Rl+α+β(x) and z′ ∈ Rl+α+β(x).
That means y′ = z′. This contradicts the choice of y′ and z′, so the alternative in the third
case cannot hold.

Analogously, it can be proved that in the fourth case k = q . Hence, the period of component
V is equal to q .

Now we will prove that V ⊆ S(U ). Let e ∈ S(x) ∩ V , where x ∈ U and d ∈ P(e) ∩ V ,
y ∈ R(x) ∩ U . Suppose to the contrary that d /∈ S(y), that is, there exist w ∈ R(x),
w ∈ [w]R �= U such that d ∈ S(w). Obviously, U is higher than [w]R . Since the period of
V is equal to q , e ∈ Pq−1(d) holds and e ∈ Pq−1(d) ⊆ Pq−1(S(w)). We have

T (e) ⊆ Rq−1(T (S(w))),

and by repeating the reasoning of this proof we show that there exists z ∈ T (e) ∩ U such
that z ∈ Rq−1(T (S(w))). Hence, [w]R is higher thanU . By the assumptionU is higher than
[w]R . Therefore,U = [w]R , a contradiction. Repeating the reasoning for each element of V
we get V ⊆ S(U ). Since V is uniquely determined by elements ofU and no other component
with non-empty intersection with S(U ) is higher than V , the proof is completed. �

Lemma 7 An isomorphism in Szym(Relf ) between objects (X , R), (X ′, R′) ∈ End(Relf )
in canonical form induces a bijection between X/↔R and X ′/↔R′ . Moreover, the bijection
maps ≤R to ≤R′ .

Proof First we prove that an isomorphism preserves the partial order given by (25) between
the corresponding components.

Let [S, α] : (X , R) → (X ′, R′), [T , β] : (X ′, R′) → (X , R) be mutually inverse iso-
morphisms in Szym(Relf ). Let U and V be components of R with periods qU and qV ,
respectively. Let W ⊆ S(U ) and Q ⊆ S(V ) be the uniquely determined components of R′
with periods qU and qV such that no other components of R′ with non-empty intersection
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with S(U ) and S(V ) are higher than W and Q, respectively (see Lemma 6). Assume that
V ≤R U . We will prove that Q ≤R′ W .

Take e ∈ W . There is an x ∈ T (e) such that x ∈ U . Since V ≤R U , there exists y ∈ Rk(x)
for some k ∈ N1, where y ∈ V . We have S(x) ⊆ S(T (e)) and S(Rk(x)) ⊆ S(T (R′k(e))).
Hence, for some l ∈ N0 we get

R′l(S(y)) ⊆ R′l(S(Rk(x))) ⊆ R′k+l+α+β(e).

Since S(y) contains elements of Q and no other component of R′ intersecting S(y) is higher
than Q, we take an element d ∈ S(y)∩Q and c ∈ R′l(d)∩Q. Therefore, c ∈ R′k+l+α+β(e),
that is W is higher than Q, that is, Q ≤R̄ W .

Define a map f : X/↔R → X ′/↔R′ such that f (U ) := W , where W ⊆ S(U ) and no
other component of R′ intersecting S(U ) is higher than W . Since such a W is determined
uniquely (see Lemma 6), the map f is well-defined.

We will prove that f is injective. Let f (U ) = W = f (V ). Then W ⊆ S(U ) ∩ S(V ) and
T (W ) ⊆ T (S(U )), T (W ) ⊆ T (S(V )). There is an x ∈ T (W )∩U , whereU is the component
of R higher than any other component intersecting T (W ). Similarly, y ∈ T (W ) ∩ V , where
no other component intersecting T (W ) is higher than V . That meansU is higher than V and
V is higher than U , hence U = V .

We prove that f is surjective. Assume to the contrary that there is W ∈ X ′/↔R′ such
that for each U ∈ X/↔R the inequality f (U ) �= W holds. We have V ⊆ T (W ) for some
V ∈ X/↔R and no other component of R intersecting T (W ) is higher than V . Since S(V ) ⊆
S(T (W )), we get W ⊆ S(V ) and no other component intersecting with S(V ) is higher than
W . Hence, f (V ) = W , a contradiction. Therefore, the map f is surjective.

In particular, card X/↔R = card X ′/↔R′ . By the above facts we get that for each U , V ∈
X/↔R , if U ≤R V , then f (U ) ≤R′ f (V ). This proves that f maps ≤R to ≤R′ . �

Corollary 7 Relations of isomorphic objects in Szym(Relf ) have the same number of com-
ponents with the same periods.

Proof Since for each object in End(Relf ) we can find an object in canonical form (see
Theorem 12) isomorphic to the given one in Szym(Relf ), the composition of isomorphisms
in Szym(Relf ) is an isomorphism between canonical forms. The conclusion comes from
Lemmas 7 and 6. �

Corollary 8 Let (X , R), (X ′, R′) ∈ End(Relf )be in canonical formand let [S, α] : (X , R) →
(X ′, R′) be an isomorphism in Szym(Relf ). Assume that f : X/↔R → X ′/↔R′ is a bijection
given by Lemma 7. Then for each x ∈ X the restriction of S to [x]R × f ([x]R) is a bijection.

Proof ByLemma6, f ([x]R) ⊆ S([x]R) and the components [x]R and f ([x]R) have the same
periods. The relations R and R′ restricted to these components respectively are bijections.
Hence, card[x]R = card f ([x]R).

We will prove that S|[x]R× f ([x]R) is a map. Let [T , β] : (X ′, R′) → (X , R) be an inverse
isomorphism to [S, α]. Suppose that there exists x ∈ X such that card S|[x]R× f ([x]R)(x) > 1
and pick y ∈ S|[x]R× f ([x]R)(x). Then for each x ′ ∈ [x]R we have card S|[x]R× f ([x]R)(x ′) > 1.
Let t ∈ T (y) such that t ∈ [x]R . Then S(t) ⊆ S(T (y)) and y′, z′ ∈ S(t), y′ �= z′ and
y′, z′ ∈ [y]R′ . There are y′′ �= z′′ such that y′′, z′′ ∈ [y]R′ and

y′′, z′′ ∈ R′k(S(t)) ⊆ R′k(S(T (y))) = R′k+α+β(y)

for some k ∈ N0. This yields y′′ = z′′, a contradiction.
Since card[x]R = card f ([x]R), the map S|[x]R× f ([x]R) is a bijection. �
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Lemma 8 Let (X , R), (X ′, R′) ∈ End(Relf ) be in canonical form and let [S, α] : (X , R) →
(X ′, R′) be an isomorphism in Szym(Relf ). Assume that f : X/↔R → X ′/↔R′ is a bijection
given by Lemma 7. Then for each x ∈ X

R′ ◦ S|[x]R× f ([x]R) = S|[x]R× f ([x]R) ◦ R.

Proof Let p ∈ N1 be an eventual period of R. Let us take x ′ ∈ R′(S|[x]R× f ([x]R)(x)).
By Corollary 8, there exist a y′ = S|[x]R× f ([x]R)(x) and x ′ ∈ R′(y′). Consider [x ′]R′ . By
Lemma 6, there exists a z ∈ X such that [z]R = f −1([x ′]R′). Since S|[z]R× f ([z]R) is a
bijection, assume that x ′ = S|[z]R× f ([z]R)(z).

We will show that z ∈ R(x). Notice that S|[z]R× f ([z]R)(z) ∈ R′(S|[x]R× f ([x]R)(x)) and

T (S|[z]R× f ([z]R)(z)) ⊆ T (R′(S|[x]R× f ([x]R)(x))) = R(T (S|[x]R× f ([x]R)(x))).

It follows that there is a t ∈ T (S|[z]R× f ([z]R)(z)) such that t ∈ [z]R and t ∈
R(T (S|[x]R× f ([x]R)(x))). In particular, t ∈ R(T (S(x))), therefore Rk(t) ⊆ R(Rα+β+k(x))
for some k ∈ N0. Let us take x̃ ∈ Rα+β+k(x) such that x̃ ∈ [x]R . Since R = Rp+1, there
exists a t̃ ∈ [z]R such that t̃ ∈ Rk(t) and t̃ ∈ R(x̃).

Notice that x̄ ∈ T (S|[x]R× f ([x]R)(x)) such that x̄ ∈ [x]R is uniquely determined by x ,
because the restrictions of S and T to the components are bijections. In consequence, x̃ = x̄ .

Furthermore, t ∈ T (S|[z]R× f ([z]R)(z)) such that t ∈ [z]R is also uniquely determined by
z. Take t̄ ∈ Rα+β+k(z) such that t̄ ∈ [z]R . Then t̄ ∈ Rk(t) and t̄ = t̃ .

Since t̃ ∈ Rk(t) and t̃ ∈ Rα+β+k(z), we get t ∈ Rα+β(z). To sum up, we have x̃ ∈
Rα+β+k(x), t̃ ∈ R(x̃) and z ∈ Rmp−α−β−k(t̃) for mp > α + β + k and m ∈ N1. Combining
these we get

z ∈ Rmp−α−β−k(R(Rα+β+k(x))),

which means that z ∈ Rmp+1(x). Hence, z ∈ R(x).
Since x ′ = S|[z]R× f ([z]R)(z) and z ∈ R(x), we have

R′ ◦ S|[x]R× f ([x]R) ⊆ S|[x]R× f ([x]R) ◦ R.

The proof of the opposite inclusion is analogous. �

Lemma 9 Let (X , R) ∈ End(Relf ) be in canonical form. Then for any n ∈ N1 and for each
x ∈ X

R ◦ R|n[x]R = R|n[x]R ◦ R.

Proof Since (X , R) is in canonical form, XR = X . Let y ∈ R(R|[x]R (x)). There exists a
z = R|[x]R (x) such that y ∈ R(z) and there exists a z′ ∈ [y]R such that y ∈ R(z′) and
y = R|[y]R (z′). We have y ∈ R2(x) and z′ ∈ Rp−1(y), where p is an eventual period of R.
Thus, z′ ∈ Rp−1(y) ⊆ Rp+1(x) = R(x). Hence, z′ ∈ R(x) and R ◦ R|[x]R ⊆ R|[x]R ◦ R.
The proof of the opposite inclusion is analogous.

Now assume that R ◦ R|n[x]R = R|n[x]R ◦ R. We have

R ◦ R|n+1
[x]R = R ◦ R|n[x]R ◦ R|[x]R = R|n[x]R ◦ R ◦ R|[x]R = R|n[x]R ◦ R|[x]R ◦ R = R|n+1

[x]R ◦ R.

This completes the proof. �

Theorem 13 (Theorem 3) Let (X , R), (X ′, R′) ∈ End(Relf ) be in canonical form. The
objects (X , R) and (X ′, R′) are isomorphic in Szym(Relf ) if and only if (X , R) and (X ′, R′)
are isomorphic in End(Relf ).
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Proof Let [S, α] : (X , R) → (X ′, R′) and [T , β] : (X ′, R′) → (X , R) be mutually inverse
isomorphisms in Szym(Relf ) and let t ∈ N1 be such that T ◦ S ◦ Rt = Rα+β+t . Let us
define morphisms U : (X , R) → (X ′, R′) and V : (X ′, R′) → (X , R) in End(Relf ) by

U (x) := S|[x]R× f ([x]R)(R|mp−α−t
[x]R (x)),

V (x ′) := T |[x ′]R′× f −1([x ′]R′ )(R
′|mp−β

[x ′]R′ (x ′)),

where p ∈ N1 is an eventual period of R, mp > α + β + t for some m ∈ N1, f −1 is the
inverse of bijection from Lemma 7 and x ∈ X , x ′ ∈ X ′. We claim thatU and V are mutually
inverse isomorphisms in End(Relf ).

By Corollary 8, both U and V are bijections. Using Lemma 8 one can prove that
V (U (x)) = R|p[x]R (x). By Theorem 10, we have R|p[x]R (x) = [x]∼R and card[x]∼R = 1

because (X , R) is in canonical form. Therefore, V (U (x)) = R|p[x]R (x) = idX (x). Similarly,
one proves that U (V (x ′)) = idX ′(x ′).

Equalities R′ ◦U = U ◦ R and V ◦ R′ = R ◦ V easily come from Lemmas 8 and 9.
The proof of the other direction comes from the fact that Szym is a functor. �


8 Classifying Graphs

Let (X , R) ∈ End(Relf ) be in canonical form. Define the map l[x]R : [x]R × [x]R →
Z/(q[x]RZ) on strongly connected components of R such that

l[x]R (x ′, x ′′) := m mod q[x]R , if x ′′ ∈ R|m[x]R (x ′),

where q[x]R is the period of R|[x]R . Since the restriction R|[x]R is a bijection and (R|[x]R )k =
(R|[x]R )k+q[x]R holds for k ∈ N1, the maps l[x]R are well-defined for each component [x]R
of R.

Let [x]R and [y]R be components of R and let q[x]R and q[y]R be the periods of
R|[x]R and R|[y]R , respectively. Define the relation ∼[x]R [y]R⊆ ([x]R × [y]R)2 such that
for (x ′, y′), (x ′′, y′′) ∈ [x]R × [y]R we have

(x ′, y′) ∼[x]R [y]R (x ′′, y′′) : ⇐⇒
l[x]R (x ′, x ′′) = l[y]R (y′, y′′) mod gcd(q[x]R , q[y]R ).

(28)

Proposition 23 The relation ∼[x̃]R [ỹ]R on [x̃]R × [ỹ]R is an equivalence relation for all
components [x̃]R �= [ỹ]R of R.

Proof For the proof we denote ∼[x̃]R [ỹ]R by �. Reflexivity of � is obvious. Let
(x, y) � (x ′, y′). Then l[x̃]R (x ′, x) = q[x̃]R − l[x̃]R (x, x ′) and l[ỹ]R (y′, y) = q[ỹ]R −
l[ỹ]R (y, y′). Since q[x̃]R = q[ỹ]R = 0 mod gcd(q[x̃]R , q[ỹ]R ) and l[x̃]R (x, x ′) = l[ỹ]R (y, y′)
mod gcd(q[x̃]R , q[ỹ]R ), we get (x ′, y′) � (x, y). Hence, � is symmetric.

In order to prove transitivity of �, let (x, y) � (x ′, y′) and (x ′, y′) � (x ′′, y′′).
Since l[x̃]R (x, x ′) = l[ỹ]R (y, y′) mod gcd(q[x̃]R , q[ỹ]R ) and l[x̃]R (x ′, x ′′) = l[ỹ]R (y′, y′′)
mod gcd(q[x̃]R , q[ỹ]R ), also

l[x̃]R (x, x ′) + l[x̃]R (x ′, x ′′) = l[ỹ]R (y, y′) + l[ỹ]R (y′, y′′) mod gcd(q[x̃]R , q[ỹ]R ).

It follows that l[x̃]R (x, x ′′) = l[ỹ]R (y, y′′) mod gcd(q[x̃]R , q[ỹ]R ) and in consequence
(x, y) � (x ′′, y′′). �
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Note that ∼[x]R [y]R gives a partition of [x]R × [y]R into gcd(q[x]R , q[y]R ) equivalence
classes. Let (X , R), (X ′, R′) ∈ End(Relf ) be in canonical form and [S, α] : (X , R) →
(X ′, R′) be an isomorphism between the objects in Szym(Relf ). If f ([x]R) ⊆ S([x]R)

and f ([y]R) ⊆ S([y]R) are components of R′ from Lemma 6, where f is the bijection
from Lemma 7, then ∼ f ([x]R) f ([y]R) on f ([x]R) × f ([y]R) also defines the partition into
gcd(q[x]R , q[y]R ) number of equivalence classes.

For (X , R) in canonical form define the number of connections between components [x]R
and [y]R of R as

l[x]R [y]R (R) :=
card{[(x ′, y′)]∼[x]R [y]R ∈ [x]R × [y]R/∼[x]R [y]R | (x ′, y′) ∈ R|[x]R×[y]R }. (29)

This number determines how many equivalence classes of ∼[x]R [y]R are realized by con-
nections given by the relation between the [x]R and [y]R components of R. The following
proposition holds.

Proposition 24 Let (X , R), (X ′, R′) ∈ End(Relf ) be in canonical form. If the objects are
isomorphic in Szym(Relf ) and f is the bijection between components of R and R′ from
Lemma 7, then l[x]R [y]R (R) = l f ([x]R) f ([y]R)(R′).

Proof Let [S, α] : (X , R) → (X ′, R′) and [T , β] : (X ′, R′) → (X , R) be mutually inverse
isomorphisms. Consider components [x]R and [y]R and let q[x]R and q[y]R be the peri-
ods of R|[x]R and R|[y]R , respectively. Let x̃ ∈ [x]R and e ∈ S(x̃) ∩ f ([x]R). Take all
e1, . . . , ek′ ∈ f ([x]R) such that [(e, el)]∼ f ([x]R ) f ([y]R )

�= [(e, em)]∼ f ([x]R ) f ([y]R )
for all l �= m,

l,m ∈ {1, . . . , k′}. There exists a sequence s′
1, . . . , s

′
k′ ∈ N1 such that el ∈ R′s′l (e) and

s′
l �= s′

m mod gcd(q[x]R , q[y]R ) for each l �= m. In other words, l f ([x]R), f ([y]R)(R′) = k′.
We have also T (el) ⊆ T (R′s′l (e)). Take xl ∈ T (el) ∩ [y]R for each l = 1, . . . , k′.

Then there is t ∈ N0 such that for each xl we have xl ∈ Rt+α+β+s′l (x̃). Since s′
l �= s′

m
mod gcd(q[x]R , q[y]R ) for l �= m, we get l[x]R [y]R (R) ≥ k′.

Assume to the contrary that there exist x1, x2 ∈ [y]R such that the classes [(x̃, x1)]∼[x]R [y]R�= [(x̃, x2)]∼[x]R [y]R and for e′ ∈ S(x1) and e′′ ∈ S(x2) we have [(e, e′)]∼ f ([x]R ) f ([y]R )
=

[(e, e′′)]∼ f ([x]R ) f ([y]R )
. Then e′ ∈ R′s′(e), e′′ ∈ R′s′′(e) and s′ = s′′ mod gcd(q[x]R , q[y]R ).

Note that e′ ∈ R′s′(S(x̃)) and e′′ ∈ R′s′′(S(x̃)), hence x1 ∈ T (e′) ⊆ Rt+α+β+s′(x̃) and
x2 ∈ T (e′′) ⊆ Rt+α+β+s′′(x̃) for some t ∈ N0. But s′ = s′′ mod gcd(q[x]R , q[y]R ), so
we get [(x̃, x1)]∼[x]R [y]R = [(x̃, x2)]∼[x]R [y]R , a contradiction. Therefore, l[x]R [y]R (R) = k′ =
l f ([x]R), f ([y]R)(R′). �

Definition 7 Let (X , R) ∈ End(Relf ) and let (X̄ , R̄) ∈ End(Relf ) be in canonical form
such that the two objects are isomorphic in Szym(Relf ) (see Theorem 12). We define a
classifying graph k(R), that is a directed graph k(R) := (V , E) such that V := X̄/↔R̄

and
E := {([x]R̄, [y]R̄) ∈ V × V | l[x]R̄ [y]R̄ (R̄) �= 0 and [x]R̄ �= [y]R̄}. Vertices and edges
of a classifying graph are labelled by positive integers. For an [x]R̄ ∈ V we label it by
lab([x]R̄) := q[x]R̄ , where q[x]R̄ is the period of R̄|[x]R̄ and for an edge ([x]R̄, [y]R̄) ∈ E we
label it by lab([x]R̄, [y]R̄) := l[x]R̄ [y]R̄ (R̄).

Classifying graphs are invariants of isomorphic objects in Szym(Relf ).

Theorem 14 Isomorphic objects in Szym(Relf ) have the same classifying graphs up to
graph isomorphism preserving labels of vertices and edges.
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Fig. 6 From left to right: relation R, classifying graph k(R) of R, relation R′, and its classifying graph k(R′).
The numbers of the vertices marked on relations digraphs denote the position in the matrix representation of
the relations. The numbers marked on the classifying graphs denote the labels of the vertices and the edges

Proof ByTheorem11, each object in End(Relf ) is isomorphic inSzym(Relf ) to some object
in canonical form. Composing corresponding isomorphisms we get an isomorphism between
canonical forms of the isomorphic objects. By Lemma 7, Corollary 7 and Proposition 24 we
get the proof. �

Example 2 Consider objects (X , R) and (X ′, R′) in canonical form given by

R =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ and R′ =

⎛

⎜
⎜
⎝

0 1 1 0
1 0 0 1
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ .

Both relations R and R′ are pretty similar. They have two components with period both equal
to 2.One component is higher than the other. Assume that the first component in both relations
is the set {1, 2} =: [1]R =: [1]R′ and the second is the set {3, 4} =: [3]R =: [3]R′ (numbers
correspond to row-column positions of ones in matrix representation of these relations). We
have l[1]R ,[3]R (R) �= 0 and l[1]R′ ,[3]R′ (R′) �= 0. More precisely,

card([1]R × [3]R/∼[1]R ,[3]R ) = card([1]R′ × [3]R′/∼[1]R′ ,[3]R′ ) = gcd(2, 2) = 2.

By (28), we easily compute that l[1]R ,[3]R (R) = 2 whereas l[1]R′ ,[3]R′ (R′) = 1. By Theorem
14, we conclude that (X , R) and (X ′, R′) are not isomorphic in Szym(Relf ) (cf. Fig. 6). �


Unfortunately, the classifying graph as an invariant of shift equivalence classes is not
complete, in the sense that objects in End(Relf ) having the same classifying graphs up to
graph isomorphism preserving labels of vertices and edges are isomorphic in Szym(Relf ).
To see this, observe the example on Fig. 7. Both relations are in canonical form and have the
same classifying graphs but are neither isomorphic in End(Relf ) nor Szym(Relf ).

9 Final Remarks

The classification that we obtained allows us to distinguish non-isomorphic objects in
Szym(Relf ) in an effective way. The main computational aspects involve strongly con-
nected component detection, finding the period of a digraph component (the time complexity
for both tasks is linear with respect to the sum of the number of vertices and edges of the
digraph; see [9]) and composition of relations (Boolean matrix multiplication). But in order
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Fig. 7 Two relations in canonical form with the same classifying graph (on the right) not isomorphic in
Szym(Relf )

to put this result into direct application in dynamics we need to consider relations with some
algebraic structure, namely so-called linear relations. Recall, for vector spaces X , Y over the
field F a relation R ⊆ X × Y is called linear (or additive; see [15, Sect. II.6]) if

(x1, y1) ∈ R, (x2, y2) ∈ R �⇒ (x1 + x2, y1 + y2) ∈ R,

(x1, y1) ∈ R �⇒ (ax1, ay1) ∈ R for each a ∈ F.

Thus a linear relation is just a vector subspace of X ×Y . The sets with vector space structures
are objects and linear relations are morphisms of the category of linear relations, denoted by
LRelf . Composition of morphisms is defined as standard composition of relations.

We focus on linear relations since a multivalued generator of a dynamical system with
non-acyclic values induces a linear relation (see Sect. 2). Such generators are common in
sampled dynamics (see [1, 8]). Moreover, there are strong connections between LRelf and
Relf . Therefore, we may use the Szym(Relf ) classification to understand Szym(LRelf ).

Notice that in generalLRelf is not a subcategory of the category of sets and relations since
a given set may have more than one vector space structure. But there is a forgetful functor
to Relf which forgets the linear structure of the space. Therefore, it is easy to check that if
two objects equipped with relations on finite vector spaces are isomorphic in Szym(LRelf ),
then both objects are also isomorphic in Szym(Relf ). Thus, we may use the invariant from
Szym(Relf ) as an invariant in Szym(LRelf ).

Example 3 Consider the following example. Let (Z3, R) and (Z3, R′) be objects of
End(LRelf ), where relations are defined in Z3 over Z3 with the standard operations. The
relations are given by

R := {(0, 0), (0, 1), (0, 2)} and R′ := {(0, 0), (1, 2), (2, 1)}.
One can easily check that both relations are linear. Notice that relation R is multivalued.
After applying a functor induced by the forgetful functor we get two objects non-isomorphic
in Szym(Relf ), because their classifying graphs are different (they have different numbers
of components). Hence, (Z3, R) and (Z3, R′) are non-isomorphic in Szym(LRelf ). �


In such a way we may use the classification of Szym(Relf ) in understanding
Szym(LRelf ). On the other hand, the assumption of a linear structure of relations is strong
enough that it may significantly improve the classification of Szym(LRelf ). For example,
there are reasons to suppose that for linear relations over fields of finite (nonzero) characteris-
tic the gradient structure of a relation between its components is no longer present or is trivial.
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Moreover, the stronger conditions imply that there are fewer morphisms in Szym(LRelf ),
so it is possible that the identification of two objects is not as common as in Szym(Relf ).
Addressing these observations is beyond the scope of this paper and is a part of further
research. We suppose that Szymczak’s ideas may lead to the development of a Conley-index-
type tool, enabling us to obtain dynamical information for systems reconstructed from data.
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