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Abstract
The long-time behavior of solutions to different versions of Oseen equations of fluid flow
on the 2D torus is analyzed using the concept of hypocoercivity. The considered models are
isotropic Oseen equations where the viscosity acts uniformly in all directions and anisotropic
Oseen-type equations with different viscosity directions. The hypocoercivity index is deter-
mined (if it exists) and it is shown that similar to the finite dimensional case of ordinary
differential equations and differential-algebraic equations it characterizes its decay behavior.
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1 Introduction

This paper is concerned with the long-time behavior and hypocoercivity structure of
(an)isotropic Oseen equations from fluid dynamics. The Oseen equations describe the flow
of a viscous and incompressible fluid at low Reynolds numbers and they have the form

{
ut = −(b · ∇)u − ∇ p + ν�u , t > 0 ,

0 = − div u .
(1)

The Oseen equations arise when one linearizes the incompressible or nearly incompressible
Navier–Stokes equations describing the flow of a Newtonian fluid,

ut = −(u · ∇)u − ∇ p + ν�u , t > 0 ,

0 = − div u ,

around a prescribed vector field b, that is independent of space and time, see e.g. [46].
As it also includes a (linear) convective term, it can be seen as an improvement of the flow

description by the Stokes equations, see [14, Sect. 4.10], [38, Chap. 2, Sect. 11]. The Oseen
equations are a typical example of an operator differential-algebraic equation (DAEs) of the
form [

I 0
0 0

]
d

dt

[
u
p

]
= −

[
C −DT

D 0

] [
u
p

]
, t > 0 , (2)

with the unbounded operators C = b · ∇ − ν� and D = div, see [27, p. 466].
DAEs of the form (2) also arise when the Oseen system is semi-discretized in space e.g.

via a finite element discretization. This constitutes what is often called a vertical method of
lines approach, see e.g., [35, 39, 45].

In all described cases the equations have to be supplemented by suitable initial and bound-
ary conditions. While in applications, see e.g. [13, 31, 38], the Oseen equation is typically
considered on subsets of Rd or on unbounded exterior domains, to keep the presentations
and the technicalities of our analysis simple, we analyze its long-time behavior here on the
torus T2 := (0, 2π)2, similar to [30, 47, 48].

We perform the analysis using the concept of hypocoercivity which was introduced in [50]
in the study of unconstrained evolution equations (mostly partial differential equations) of the
form d

dt x = −Cx on some Hilbert space H, where the (possibly unbounded) operator −C
generates a uniformly exponentially stable C0-semigroup (e−Ct )t≥0. More precisely, for
hypocoercive operators C there exist constants μ > 0 and c ≥ 1, such that

‖e−Ct x0‖H̃ ≤ c e−μt‖x0‖H̃ for all x0 ∈ H̃ , t ≥ 0 , (3)
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where H̃ is another Hilbert space, densely embedded in (kerC)⊥ ⊂ H. Often, the evolution
equation d

dt x = −Cx is also called hypocoercive. For infinitesimal generators −C, an
estimate (3) with c = 1 holds if (and only if) C is coercive.

The long-time behavior of many systems exhibiting hypocoercivity has been studied
frequently in recent years, including Fokker–Planck equations [1, 10, 50], kinetic equations
[25, 26], and reaction-transport equations of BGK-type [2, 3]. In these works, in particular
in [2, 3, 10], the issue was to determine the sharp (i.e. maximal) exponential decay rate μ,
while to determine at the same time the smallest multiplicative constant c ≥ 1 is a rather
recent topic, e.g. see [4]. Also the short-time behavior of linear evolution equations and its
link to the hypocoercivity index was recently discussed for systems of ordinary differential
equations in [6, 8] and for Fokker–Planck equations [12, Th. 3.6].

In this paper we consider (unbounded) operators C on a Hilbert space H such that the
operator C is accretive, i.e. C has a nonnegative self-adjoint part, and that −C generates a
contraction semigroup, i.e., it satisfies ‖e−Ct‖H ≤ 1 for all t ≥ 0.

We characterize those accretive operators C which are hypocoercive, i.e., those for which
−C generates a uniformly exponentially stable C0-semigroup. Furthermore, based on our
characterization and following the Lyapunov theory on Hilbert spaces, see e.g. [23, 32, 33],
we will construct appropriate strict Lyapunov functionals.

The remainder of this paper is structured as follows: In Sect. 2 we review key notions
from hypocoercivity for finite dimensional ODEs and DAEs, and then extend it to the Hilbert
space case. In Sect. 3 we apply these techniques to analyze Oseen equations on the 2D torus
where the viscosity acts uniformly in all directions. In Sect. 4 we then study two anisotropic
Oseen-type equations on the 2D torus, where the viscosity is different in the different space
directions and the drift is either constant or space dependent.

Notation

The conjugate transpose (transpose) of a matrixC is denoted byCH (C	). The set of Hermi-
tian matrices in Cn×n is denoted by Hn . Positive definiteness (semi-definiteness) of C ∈ Hn

is denoted by C > 0 (C ≥ 0). The unique positive semi-definite square root of a positive
semi-definite Hermitian matrix R is denoted by R1/2 and the real part of a complex number
z is denoted by 
(z).

For linear operators on Hilbert spaces we use the following notation. The set of (possibly
unbounded) linear operators from a Hilbert space H (with inner product 〈·, ·〉) to itself is
denoted by L(H), the subset of bounded linear operators by B(H). For a linear operator
C ∈ L(H) with domain D(C), C∗ denotes the adjoint operator of C. A self-adjoint operator
C ∈ L(H) is called nonnegative (C ≥ 0) if 〈Cx, x〉 = 〈x,C∗x〉 ≥ 0 for all x ∈ D(C); C is
called positive (C > 0) if 〈Cx, x〉 > 0 for all x ∈ D(C)\{0}.

We consider spaces of square-summable doubly-infinite sequences taking values in
C

n , n = 1, 2, 3 and denote them as �2(Z;Cn); if n = 1 then we will use the short-
hand notation �2(Z) = �2(Z;C). Ḣ1

per (T
2) denotes the homogeneous Sobolev space

{ f ∈ H1
per (T

2) | ∫
T2 f dx = 0} of periodic functions on the 2D-torus T2, and Ḣ−1

per (T
2) is

its dual space.
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2 Hypocoercivity for Finite and Infinite Dimensional Evolution
Equations

In this section we recall the concepts of hypocoercivity and the hypocoercivity index for
(constrained) evolution equations. Our discussion will be in three steps, starting with finite
dimensional cases, then infinite dimensional operator evolution equations with bounded gen-
erators, and finally some cases of unbounded generators. We begin with the class of ordinary
differential equation (ODE) systems

ẋ(t) = Ax(t) , t ≥ 0 , (4)

with some function x : [0,∞) → C
n and a constant matrix A ∈ C

n×n . The second class are
differential-algebraic equation (DAE) systems

Eẋ(t) = Ax(t) , t ≥ 0 , (5)

for a pair (E,A) of constant matrices E,A ∈ C
n×n with E = EH positive semi-definite.

Note that if E ∈ Hn is positive definite, then it has a positive definite matrix square
root E1/2 ∈ Hn , and by a change of variables y := E1/2x and by scaling the equation by
(E1/2)−1, the DAE (5) takes the form

ẏ(t) = Ãy where Ã := (E1/2)−1A(E1/2)−1 . (6)

However, if E is singular then the behavior of the two systems (4)–(5) is fundamentally
different.

Writing a matrix A ∈ C
n×n as the sum of its Hermitian part AH = (A + AH )/2 and

skew-Hermitian part AS = (A − AH )/2, we have the following definition.

Definition 1 (Definition 4.1.1 of [15]) A matrix A ∈ C
n×n is called dissipative (resp. semi-

dissipative) if the Hermitian part AH is negative definite (resp. negative semi-definite). For
a (semi-)dissipative matrix A ∈ C

n×n , the associated ODE (4) is called (semi-)dissipative
Hamiltonian ODE. A DAE (5) with (semi-)dissipative matrix A ∈ C

n×n and positive semi-
definite Hermitian matrix E ∈ C

n×n is called (semi-)dissipative Hamiltonian DAE.

The notion (semi-)dissipative Hamiltonian is motivated by the fact that if AH = 0 and E is
the identity, then (4) is a Hamiltonian system with Hamiltonian H = (x HEx)/2, see [40] and
also [7, Remark 1] and [7, Theorem 3(E1)].

In the following (to avoid too many indices), we often write semi-dissipative matrices A
in the form A = J − R with a skew-Hermitian matrix J = AS and a positive semi-definite
Hermitian matrix R = −AH .

For ODE systems, hypocoercivity and the hypocoercivity index are defined as follows:

Definition 2 ([6]) A matrix C ∈ C
n×n is called coercive if its Hermitian part CH is positive

definite, and it is called hypocoercive if the spectrum of C lies in the open right half plane.
Let J,R ∈ C

n×n satisfy R = RH ≥ 0 and J = −JH . The hypocoercivity index (HC-
index) m HC of the matrix C = R − J is defined as the smallest integer m ∈ N0 (if it exists)
such that

m∑
j=0

J jR(JH ) j > 0 (7)

holds.
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Remark 1 (1) Clearly, (7) is equivalent to the condition

m∑
j=0

J jR(JH ) j ≥ κI (8)

for some κ > 0, where I denotes the identity matrix. This variant will be needed in the
infinite dimensional case below. Condition (8) was also used in [3].

(2) By a non-trivial result, the HC-index characterizes the short-time decay of semi-
dissipative Hamiltonian ODE systems ẋ(t) = −Cx(t): Its system matrix C has a
HC-index m HC ∈ N0 if and only if

‖e−Ct‖2 = 1 − ct2m HC +1 + O(t2m HC +2) for t → 0+, (9)

for some c > 0. Here we used that ‖e−Ct‖2 is a real analytic function on some (small)
time interval [0, t0), see Theorem 2.7(a) in [6].
This classification can be extended to the DAE case by considering the HC-index of the
dynamical part, see Proposition 8 in the Appendix A.1.

Condition (7) is equivalent to the well known Kalman rank condition:

Lemma 1 ([3, Proposition 1, Remark 4]) Let J,R ∈ C
n×n satisfy R = RH ≥ 0 and

J = −JH . Then the following conditions are equivalent:

(B1) There exists m ∈ N0 such that

rank[R, JR, . . . , JmR] = n . (10)

(B2) There exists m ∈ N0 such that

m⋂
j=0

ker
(
R1/2 J j ) = {0} . (11)

(B3) There exists m ∈ N0 such that (7) holds.

Moreover, the smallest possible m ∈ N0 in (B1), (B2), and (B3) coincide.

A similar equivalence result (on a subspace describing the dynamics of the system) has
also been shown for DAE systems in [7], see Appendix A.1 here.

The characterization of hypocoercive matrices is related to results in control theory (as
discussed in [7, Remark 2]):

Remark 2 (Connection to control theory: finite dimensional setting) Consider a state-space
system

ẋ(t) = Ax + Bu (12)

for constant matrices A,B ∈ C
n×n . A pair (A,B) of square matrices A,B ∈ C

n×n is called
controllable if the controllability matrix [B,AB,A2B, . . . ,An−1B] has full rank. For a con-
trollable pair (A,B), the smallest possible integer k such that the controllability (sub)matrix
[B,AB,A2B, . . . ,Ak−1B] has full rank, is called the controllability index, see e.g. [20,
Sect. 6.2.1], [36, Sect. 6.2.1], or [51, Sect. 5.7].

• For semi-dissipative matrices J−R, the HC-index of R− J is one less than the control-
lability index of (A,B) = (J,R).
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• Moreover, for general input–output systems there is also the dual concept of observability.
Conditions like (11) are most often formulated in the context of observability, but not
frequently in the context of controllability.

• Whereas the controllability/observability indices have a clear interpretation in the
discrete-time setting, see e.g. [20, p.171]; their interpretation in the continuous-time
setting is not so clear. In particular, we are not aware of a characterization which is
comparable to (9) in Remark 1.

While the two conditions (10) and (11) are clearly equivalent in the finite dimensional
ODE case, only the latter one may also be used for linear operators. In fact, the above results
are easily extended to evolution equations of the form

d

dt
x = −Cx , t > 0, (13)

with C a bounded or unbounded operator on some infinite dimensional Hilbert space H:

Definition 3 ([37, Sect. V.3.10]) A linear operator C on a Hilbert space H, with domain
D(C), is said to be accretive if the numerical range of C is a subset of the right half plane,
that is, if 
〈Cx, x〉 ≥ 0 for all x ∈ D(C). In this case −C is said to be dissipative. And C is
called coercive if there exists γ > 0 such that 〈Cx, x〉 ≥ γ ‖x‖2 for all x ∈ D(C).

Note that in this definition we follow the convention in semigroup theory, see e.g. [28,
Proposition 3.23]; whereas to be consistent with Definition 1 we would have to call such an
operator semi-dissipative.

The classical Lyapunov characterization of (uniformly) exponentially stable semigroups
on finite-dimensional Hilbert spaces easily extends to infinite dimensional settings:

Theorem 1 ([22, Theorem 4.1.3], [23]) Suppose that A is the infinitesimal generator of the
C0-semigroup T(t) on the Hilbert space H. Then T(t) is uniformly exponentially stable if
and only if there exists a bounded positive operator P ∈ B(H) such that

〈Ax,Px〉 + 〈Px,Ax〉 = −〈x, x〉 for all x ∈ D(A) . (14)

Equation (14) is called Lyapunov equation.
If T(t) is uniformly exponentially stable, then the unique self-adjoint solution of (14) is

given by

Px =
∫ ∞

0
T(s)∗T(s)x ds for x ∈ H . (15)

Next we recall the definition of hypocoercive operators in [50], which generalizes Defi-
nition 2:

Definition 4 ([50, Sect. I.3.2]) LetC be a (possibly unbounded) operator on aHilbert spaceH
with kernel kerC. Let H̃ be a Hilbert space, which is continuously and densely embedded
in (kerC)⊥, endowed with a scalar product 〈·, ·〉H̃ and norm ‖ · ‖H̃. The operator C is
called hypocoercive on H̃ if −C generates a uniformly exponentially stable C0-semigroup
(e−Ct )t≥0 on H̃ ↪→ (kerC)⊥, i.e. (3) holds.

Nextwe shall generalize the notion hypocoercivity index to the infinite dimensionalHilbert
space case. As in the finite dimensional case, we consider operators of the form C = R − J
withR self-adjoint and nonnegative, and J skew-adjoint. For technical reasons (related to the
operator domain) we shall first discuss bounded operatorsC and then some special situations
of unbounded operators C.
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Definition 5 Consider bounded operators R, J ∈ B(H) on a Hilbert space H such that R is
self-adjoint and nonnegative, and J is skew-adjoint, i.e., J∗ = −J. The hypocoercivity index
(HC-index) m HC of the (accretive) operator C := R − J ∈ B(H) is defined as the smallest
integer m ∈ N0 (if it exists) such that

m∑
j=0

J jR(J∗) j ≥ κI (16)

for some κ > 0.

Herewegeneralized the uniformcondition (8), since the exampleC = R = diag(1/ j; j ∈
N) onH = �2(N) would satisfy the non-uniform condition (7). However, the corresponding
semigroup satisfies ‖e−Ct‖ = 1, t ≥ 0, hence C is not hypocoercive.

When defining next the hypocoercivity index for unbounded operators, we do not aim at
the largest generality of equations (13), but rather we present a framework that covers the
Oseen equations in Sect. 4 below. In our extension, the unbounded operator C = R − J is
accretive with the following assumptions:

Assumptions

(A1) The unbounded operator R with dense domain D(R) ⊂ H is self-adjoint (and hence
closed) and nonnegative in H. The operator J is bounded and skew-adjoint on H.

(A2) J satisfies J(D(R)) ⊂ D(R).
(A3) For the self-adjoint (and hence closed) operator R1/2 defined on D(R1/2) ⊃ D(R)

assume that J(D(R1/2)) ⊂ D(R1/2).

Under these assumptions, standard arguments from semigroup theory show that −R and
hence also −C = −R + J are dissipative with domain D(R) and, hence, infinitesimal
generators of C0-semigroups of contractions onH, see e.g. Sect. 1.4 of [44]. Moreover these
semigroups are analytic, see [28, Theorem III.2.10]:Due to [28, Corollary II.4.7], the operator
−R generates a bounded analytic semigroup onH, and J isR-boundedwithR-bound a0 = 0,
see [28, Definition III.2.1].

For unbounded operators, the relation between the domains of the operator, its self-adjoint
part and its skew-adjoint part can be subtle. Therefore, different extensions of Definition 5
are reasonable. For example, under the assumptions (A1)–(A2), each term of the sum (16) is
well-defined on D(R). However, the following extension to D(R1/2) is more convenient for
the subsequent lemma:

Definition 6 Let the (accretive) operatorC = R−J satisfy theAssumptions (A1), (A3). Then
the hypocoercivity index (HC-index) m HC of C is defined as the smallest integer m ∈ N0 (if
it exists) such that

m∑
j=0

‖R1/2 (J∗) j x‖2 ≥ κ‖x‖2 for all x ∈ D(R1/2) , (17)

for some κ > 0.

In both of the above settings (Definitions 5 and 6) we have the following infinite dimen-
sional analog of Lemma 1.
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Lemma 2 Let the operatorsR, J ∈ L(H) on a Hilbert spaceH satisfy either the assumptions
in Definition 5 (if C = R − J is bounded) or the assumptions in Definition 6 (if C is
unbounded). Then the following three conditions are equivalent:

(B1’) There exists m ∈ N0 such that

span

( m⋃
j=0

range
(
J jR1/2)) = H.

(B2’) There exists m ∈ N0 such that

m⋂
j=0

ker
(
R1/2 J j ) = {0}, and span

( m⋃
j=0

range
(
J jR1/2)) is closed.

(B3’) There exists m ∈ N0 such that (17) holds for some κ > 0.

Moreover, the smallest possible m ∈ N0 coincides in all cases (if it exists).

Proof To prove Lemma 2 we will make use of the (equivalent) characterizations of surjective
operators in [17, Theorem 2.21]. To this end, we will introduce the following Hilbert spaces
and operators.

For m ∈ N0, the direct sumHm+1 := ⊕m
j=0 H = {(y0, . . . , ym)| y j ∈ H, j = 0, . . . , m}

endowedwith the inner product 〈x, y〉Hm+1 := ∑m
j=0〈x j , y j 〉; x, y ∈ Hm+1 is again aHilbert

space. Define the linear operator

G : D(R1/2) ⊂ H → Hm+1, x �→

⎡
⎢⎢⎢⎣

R1/2x
R1/2J∗x

...

R1/2(J∗)m x

⎤
⎥⎥⎥⎦ .

Since R1/2 is closed and J is bounded, also the operators R1/2(J∗) j are closed. Hence the
operator G is densely defined (in both cases of assumptions D(G) := D(R1/2) is dense in
H) and closed. Its adjoint reads

G∗ : D(G∗) ⊂ Hm+1 → H , with D(G∗) ⊃ (D(R1/2)
)m+1

,

y �→
m∑

j=0

J jR1/2y j .

Next, we identify the operator G and its adjoint G∗ in our statement with the ones in [17,
Theorem 2.21]: First,

range(G∗) = span

( m⋃
j=0

range
(
J jR1/2)) != H (18)

gives the equivalence of the conditions (B1’) and (a) in [17, Theorem 2.21], where “
!=” indi-

cates the condition to be satisfied. Note that in (18) each range
(
J jR1/2

)
has to be evaluated

on the j-th component of D(G∗), which may indeed be a proper superset of D(R1/2).
Second,

ker(G) =
m⋂

j=0

ker
(
R1/2(J∗) j ) =

m⋂
j=0

ker
(
R1/2J j ) != {0}.
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Moreover, due to the assumptions, range(G) is closed if and only if range(G∗) is closed. This
gives the equivalence of the conditions (B2’) and (c) in [17, Theorem 2.21].

Third,

‖Gx‖2Hm+1 =
m∑

j=0

‖(Gx) j‖2 =
m∑

j=0

‖R1/2 (J∗) j x‖2 !≥ κ‖x‖2

for all x ∈ D(R1/2) = D(G).

This gives the equivalence of the conditions (B3’) and (b) in [17, Theorem 2.21].
The three equivalences established in Theorem [17, Theorem 2.21] thus imply the three

equivalences of Lemma 2. ��
Remark 3 (Connection to control theory: infinite dimensional setting) Consider the control
system (12) where, for simplicity, A,B ∈ L(H) operate on the same Hilbert spaceH. In the
infinite dimensional setting many more concepts of controllability exist, e.g. depending on
the operator domains D(A),D(B) ⊂ H. In [21, Theorem 3.18] and [22, Theorem 6.2.27] it
is observed that forA,B ∈ B(H), system (12) is exactly controllable if and only if Condition
(B1’) in Lemma 2 holds.

After recalling the basic hypocoercivity concepts, in the next two sections we apply the
techniques for the analysis of different variants of the Oseen equations. We consider the
Oseen equations as a constrained PDE model on a torus. Since this allows for a modal
decomposition, it reduces to an infinite system of DAEs. Depending on the detailed shape
of the drift and diffusion terms in the Oseen equation, these models exhibit a wide range of
hypocoercivity phenomena: it may be coercive (see Sect. 3), hypocoercive with index 1 (see
Sect. 4.2), or not hypocoercive (see Sect. 4.1).

3 Isotropic Oseen Equation on the 2D Torus

As first model we consider the time-dependent, incompressible Oseen equation of fluid
dynamics with isotropic viscosity on the 2D torus T2 := (0, 2π)2,

ut = −(b · ∇)u − ∇ p + ν�u , t > 0 , on T
2 , (19a)

0 = − div u , t ≥ 0 , (19b)

for the vector-valued velocity field u = u(x, t) and the scalar pressure p = p(x, t) in the
space variable x ∈ T

2 and the time variable t ≥ 0. The constant ν > 0 denotes the viscosity
coefficient and b ∈ R

2 is the constant drift velocity. Note that since in (19) diffusion acts
uniformly in all directions, we call the Oseen model (19) isotropic.

For (19) we assume periodic boundary conditions in both u and p. Hence, this model
actually could be simplified right away: Taking the divergence of the first equation in (19)
yields �p(·, t) = 0 and hence p(·, t) is constant in x . It also shows that the vector-valued
transport-diffusion equation

ut = −(b · ∇)u + ν�u (20)

preserves the incompressibility if the initial condition satisfies div u(0) = 0,which is assumed
in the sequel. Since it is known that in this case the normal component of u has a periodic
extension [24, Sect. IX.1.2+3], [30, Sect. II.5], it follows that, for any initial condition

u(0) ∈ Hper (div 0,T
2) := {u ∈ (L2(T2))2 | div u = 0},
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Equation (20) and hence (19) has a unique smooth solution for t > 0, and its explicit Fourier
representation can be obtained from the first equation of the Fourier expansion (22) below.

Here, in order to pave the way for more general applications, we proceed differently and
employ negative hypocoercivity of matrix pencils in semi-dissipative Hamiltonian DAEs. So
we ignore this possible simplification and rather follow our discussion from [7, Sect. 3]. The
following analysis is an extension of Sect. 4.1 in [7], which considered the Stokes equation.

Due to the periodic setting, we consider the Fourier expansion of (19) with

u(x, t) =
∑
k∈Z2

φk(t)e
ik·x , p(x, t) =

∑
k∈Z2

pk(t)e
ik·x . (21)

Since u and p are real valued, their Fourier coefficients φk(t) ∈ C
2, pk(t) ∈ C, k ∈ Z

2, obey
the symmetry φ̄k = φ−k , p̄k = p−k and they satisfy the decoupled evolution equations{

d
dt φk = −ikpk − i(b · k)φk − ν|k|2φk , t > 0 ,

0 = −ik · φk .
(22)

The mode k = 0 satisfies φ0(t) = const (corresponding to momentum conservation)
and p0(t) = arbitrary. To enforce unique solvability of (19), we require the pressure as
p0(t) ≡ 0. Hence, this flow is a transversal wave [38, p.73]. For k �= 0 we write (22) as a
system of decoupled DAEs.

Eẇk(t) = Akwk , t ≥ 0 , (23)

for wk := [φk,1, φk,2, pk]	 ∈ C
3 with the matrices E := diag(1, 1, 0) and

Ak :=
⎡
⎣−i(b · k) − ν|k|2 0 −ik1

0 −i(b · k) − ν|k|2 −ik2
−ik1 −ik2 0

⎤
⎦ . (24)

The modal functions wk(t), k ∈ Z
2 correspond to the function x(t) in Sect. 2 and [7],

since x = [x1, x2]	 is used here for the spatial variable. Following the notation from Sect. 2,
we decompose Ak as Ak = Jk − Rk with Rk := diag(ν|k|2, ν|k|2, 0) and

Jk :=
⎡
⎣−i(b · k) 0 −ik1

0 −i(b · k) −ik2
−ik1 −ik2 0

⎤
⎦ . (25)

In order to determine the hypocoercivity index of (23) we employ the unitary transformation
of (23) to staircase form via the Algorithm in [7, Lemma 5], which we recall as Lemma 6 in
Appendix A.1. Applying the staircase algorithm to the triple (E, Jk,Rk) yields

qJk = PkJkPH
k =

⎡
⎣−i(b · k) 0 −|k|

0 −i(b · k) 0
|k| 0 0

⎤
⎦ , (26a)

qRk = PkRkPH
k = Rk , qE = PkEPH

k = E , (26b)

where

Pk = 1
|k|

⎡
⎣ k1 k2 0

−k2 k1 0
0 0 i |k|

⎤
⎦ . (27)

The evolution of (23) translates via yk = [yk,1, yk,2, yk,3]	 := Pkwk into the staircase form

qE ẏk(t) = (qJk − qRk)yk(t) , t ≥ 0 . (28)
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Note that in the staircase form (A1) the third and fifth blocks are missing, i.e. n3 = 0 and
n5 = 0. Setting yk := Pkwk , yk =: [yk,1, yk,2, yk,3]	 and using (28), we obtain

yk,1 = 1
|k| k · φk = 0, yk,3 = i pk = 0 for all k �= 0.

Hence, following (A3) in Appendix A.1, the dynamic part of the DAE (28) is given as

ẏk,2 = −i(b · k)yk,2 − ν|k|2yk,2 , k �= 0 . (29)

Therefore, the DAE systems (28), for k �= 0, exhibit non-trivial dynamics with HC-index
0, see Definition 8. Equation (29) is the modal decomposition of the (dissipative) transport-
diffusion equation (20) onT2. Hence, the solution (u(·, t), p(·, t)) of theOseen equation (19)
converges, as t → ∞, to the constant (in x and t) equilibrium (φ0, p0) ∈ R

3, for p0 = 0
with the exponential decay rate μ = mink �=0(ν|k|2) = ν.

The transformation yk := Pkwk is related to theHelmholtz-Leray decomposition of vector
fields on bounded domains, see [30, Sect. II.3]:

Remark 4 (Helmholtz-Leray decomposition) Note that space-periodic vector fields u ∈
Hper (div,T2) with Hper (div,T2) := {u ∈ (L2(T2))2 | div u ∈ L2(T2)} can be written
as

u = ∇q + v with v ∈ Hper (div 0,T
2) , q ∈ H1(T2) . (30)

For u ∈ Hper (div,T2), the expression (30) is called the Helmholtz-Leray decomposition
of u, and q is unique (up to an additive constant). Moreover, the map 
L : Hper (div,T2) →
Hper (div 0,T2), u �→ v[u] is well-defined and a projection onto the divergence-free vector
fields. The map 
L is called the Leray projector [for space-periodic vector fields].

To determine the Leray projector for u ∈ Hper (div,T2) in the Fourier representation (21),
we extract the leading 2 × 2-subblock from Pk , k ∈ Z

2\{0} and define

qPk := 1
|k|
[

k1 k2
−k2 k1

]
, k ∈ Z

2 \ {0} . (31)

Then, for the modes k ∈ Z
2 \ {0}, the Leray projector 
L is given as[

φk,1

φk,2

]
�→ qP∗

k

[
0 0
0 1

]
qPk

[
φk,1

φk,2

]
.

Remark 5 (Possible extensions)

1. Our hypocoercivity analysis can be extended to isotropic Oseen equations on the 3D
torus: A modal decomposition yields again a family of decoupled DAE-systems (but)
with more complicated system matrices. See also the hypocoercivity analysis of BGK-
type equations on 1D, 2D, and 3D tori in [3].

2. In case of the isotropic Oseen equation (19) in the whole space and in exterior domains,
solutions exhibit only algebraic-in-time decay, see [13]. For kinetic equations in whole
space and without confinement, the hypocoercivity analysis has been adapted to prove
the expected algebraic [instead of exponential] temporal decay, see [11, 16]. Similarly,
the hypocoercivity analysis can be extended to Oseen equations in whole space.

When modifying (19) into an anisotropic Oseen equation with viscosity only in the x2-
direction, the dynamics becomes more interesting: Depending on the prescribed convection
field b, the dynamics may be hypocoercive or not. This is the topic of the next section.
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4 Anisotropic Oseen-Type Equations on the 2D Torus

Motivated by rotating fluids in geophysics, the 3D Navier–Stokes equation with anisotropic
viscosity, where the vertical viscosity was reduced or even zero, has been studied, see [18, 19,
42, 43]. In analogy, we shall study now Oseen-type models with anisotropic viscosity on the
torus (similar to [19, 41, 49]).We consider these equations as a useful simplifiedmathematical
model to illustrate (hypo)coercivity, rather than considering them for their physical interest
(similar to [30, 47, 48]). For simplicity of the presentation we again confine ourselves here
to the 2D case, i.e. to T

2 := (0, 2π)2: The model

ut = −(b(x) · ∇)u − ∇ p + ν∂2x2u , t > 0, on T
2, (32a)

0 = − div u , t ≥ 0 , (32b)

is subject to periodic boundary conditions; it has prescribed transport with a drift velocity
vector b(x) ∈ R

2 which may depend on x ∈ T
2, and diffusion only in x2 (hence, we call the

model (32) anisotropic).

Remark 6 Navier–Stokes equationwith anisotropic viscosity in 3D, are used tomodel rotating
fluids in geophysics [18, 19, 42, 43]; but also to model anisotropic fluids, e.g. with relaxed
ellipticity condition on the viscosity tensor [41]. Linearizing the Navier–Stokes equation
with anisotropic viscosity around a constant vector field b ∈ R

2 yields the anisotropic Oseen
equation (32).

Moreover, Oseen equations (19) with space-dependent vector field b = b(x) have been
derived to describe the motion of a Navier-Stokes liquid around a rotating rigid body, see [31,
Sect. VIII]. This is strictly speaking not an Oseen equation anymore, since the derivation of
Oseen needs that b is constant in space.

The periodic setting may be used to model fluid flow in periodic composite structures,
and is a basic setting in homogenisation theories for inhomogeneous fluids, see [41].

We analyze this model in two variants: For a constant convection field b ∈ R
2, the modes

still decouple but the generator of the evolution is (depending on b) either coercive or not
even hypocoercive. If the convection field is non-constant in space, e.g. if b = [sin(x2), 0]	,
then the spatial modes are coupled and the generator of the (infinite dimensional) problem
becomes hypocoercive.

4.1 Oseen-Type EquationWith Constant Drift Velocity

Let us first consider (32) as an evolution equation on the space of divergence-free vector
fields. In the case of a constant drift velocity vector b ∈ R

2, we can argue like in Sect. 3
to find p(·, t) = const, and we again normalize the pressure as p ≡ 0. Then, the (linear)
generator of (32) takes the shape −C = −b · ∇ + ν∂2x2 and it acts identically on the two
components u1 and u2. Proceeding as in Sect. 3 and using the analog of the modal evolution
equation (22) shows that, for any initial condition u(0) ∈ Hper (div 0,T2), Equation (32)
with b ∈ R

2 has a unique mild solution for t > 0. Hence, the operator −C generates a C0-
semigroup onH := Hper (div 0,T2), see also [28, 44]. But due to the degenerate, anisotropic
diffusion and the lack of hypocoercivity (see Proposition 2 below), solutions are in general
not smooth here. This is illustrated by an example, see (36) below.

In order to check the hypocoercivity of C as characterized in (3), we determine the kernel
of C in H:
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Lemma 3 Let b = [b1, b2]	 ∈ R
2 be constant in (32).

• If b1 �= 0 then kerC = R
2, i.e. the constant-in-x flows. Moreover, the L2-orthogonal

complement of kerC in H is given by

{u ∈ Hper (div 0,T
2) |

∫
T2

u dx = 0}.

• If b1 = 0 then the kernel of C in H is given as

kerC = {u ∈ H : u1 = const u2 = u2(x1)}.
Moreover, the L2-orthogonal complement of kerC in H is given by

{u ∈ Hper (div 0,T
2) |

∫
T2

u dx = 0 , u2 = u2(x2)}. (33)

Proof If b1 �= 0 then Cu = 0 reads b · ∇u j = ν∂2x2u j ; j = 1, 2. The space-“time” periodic
parabolic equation b1∂x1v = −b2∂x2v + ν∂2x2v admits only constant periodic solutions. The
Hilbert space H is endowed with an L2-inner product, which implies the final statement.

If b1 = 0 then Cu = 0 reads 0 = −b2∂x2u j + ν∂2x2u j ; j = 1, 2. The elliptic equation
0 = −b2∂x2v+ν∂2x2v admits only periodic solutionswhich are constant in x2 and 2π-periodic
in x1. Moreover, 0 = div u = ∂x1u1(x1) + ∂x2u2(x1) = ∂x1u1(x1) implies that u1 = const.
The Hilbert spaceH is endowed with an L2-inner product, which implies the final statement.

��
We continue to analyze the anisotropic Oseen-type model (32) with b ∈ R

2 and b1 �= 0.
Following the characterization of hypocoercivity in (3) and Lemma 3, we also introduce the
Hilbert space

H̃ := {u ∈ H |
∫
T2

u dx = 0},

endowed with the L2-inner product. Since the condition
∫
T2 u dx = 0 is preserved under the

flow, −C also generates a C0-semigroup on H̃, see e.g. [28, 44]. But related to its long-time
behavior we have the following result:

Proposition 2 Let b ∈ R
2 be constant with b1 �= 0. Then, the operator C = b · ∇ − ν∂2x2 is

neither coercive nor hypocoercive in H̃.

Proof First we introduce themaximal domain ofC in H̃:D(C) = {u ∈ H̃ |Cu ∈ (L2(T2))2}.
Since C has constant coefficients, u ∈ D(C) implies Cu ∈ H̃. For future reference we also
give their characterization in Fourier space (cf. (21) and [30, Sect. II.5]):

u ∈ H̃ ⇔ {φk} ∈ �2(Z2;C2) with φ0 = 0, k · φk = 0 for all k ∈ Z
2,

u ∈ D(C) ⇔ {φk},
{(

i(b · k) + νk22
)
φk
} ∈ �2(Z2;C2)

with φ0 = 0, k · φk = 0 for all k ∈ Z
2. (34)

To investigate the coercivity of C, we compute for u ∈ D(C):

〈u,Cu〉H̃ = ν

∫
T2

|∂x2u|2 dx = ν

∫
T2

[
(∂x2u1)

2 + 1
2 (∂x1u1)

2 + 1
2 (∂x2u2)

2] dx, (35)

where we have used that div u = 0. The last integral does not involve ∂x1u2. Hence, u :=
[0, sin(x1)]	 is a counterexample to coercivity on H̃ since 〈u,Cu〉H̃ = 0.
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IfCwas hypocoercive, the trivial solution u = 0 would be asymptotically stable on H̃ due
to the decay estimate (3). But for any v ∈ H1

per (T) with
∫
T

v(x1) dx1 = 0, the (undamped)
traveling wave

u(x, t) =
[

0
v(x1 − b1t)

]
(36)

solves (32) in H̃, in violation of (3). ��
This lack of hypocoercivity in the model (32) with constant b ∈ R

2 and b1 �= 0 can be
understood quite easily: It includes drift and diffusion in the x2-direction, but the uniform
transport in the x1-direction does not entail mixing between the different vertical layers. If the
flow field has only a vertical component u2, possibly different in each vertical layer (as shown
in (36)), then the flow field gets transported in the x1-direction and remains incompressible.

The lack of hypocoercivity can also be verified by considering (32) as a constrained partial
differential equation (PDAE), and bringing its modal representation into staircase form, see
Example 1 in Appendix A.1.

Remark 7 In contrast to the above case b1 �= 0, for the anisotropic Oseen-type model (32)
with b ∈ R

2 and b1 = 0, we have to define the Hilbert space H̃ as in (33) endowed with
the L2-inner product. Using that u ∈ H̃ satisfies u2 = u2(x2) and using (35), this shows
that 〈u,Cu〉H̃ ≥ ν‖u‖2

Ḣ1/2 for all u ∈ D(C) = {u ∈ H̃ | ∂2x2u ∈ (L2(T2))2}. Due to the

Poincaré inequality ‖u‖Ḣ1 ≥ ‖u‖L2 for all u ∈ H̃ ∩ H1(T2) (trivially obtained from the
Fourier representation (21); see also [29, 30]), C is coercive on (the smaller) Hilbert space
H̃ here.

4.2 Oseen-Type Equation with Non-constant Drift Velocity

As second example we consider the anisotropic Eq. (32) with a non-constant drift field
b(x) = [b1(x2), 0]	 such that

ut = −b1(x2) ∂x1u − ∇ p + ν∂2x2u , t > 0, on T
2, (37a)

0 = − div u , t ≥ 0 . (37b)

In order to simplify the detailed hypocoercivity analysis below, we choose b1(x2) = sin(x2);
in this case only neighboring k2-modes are coupled. We conjecture that choosing another
non-constant x2-periodic drift field b1 would lead to an analogous result, but it would need
a more cumbersome analysis. In this direction, the existence of stationary solutions for the
isotropic Oseen equation (19) with space-dependent drift b = b(x) and x ∈ R

3 has been
studied, see [9].

In contrast to Sect. 4.1, this model does not preserve vertical layers of the flow field but
rather mixes them, hence giving rise to hypocoercivity. While the pressure could have been
eliminated from the beginning in the model with constant drift term, this is not possible here.
Hence, (37) with b1(x2) has to be considered as a (true) constrained PDE.
Analytic framework and well-posedness: For the analysis of this case we apply the diver-
gence to the evolution equation (37a), leading to the following condition on the pressure:⎧⎪⎨

⎪⎩
�p = − cos(x2) ∂x1u2, on T2,

periodic boundary conditions for p,∫
T2 p dx = 0,

(38)
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where the last condition was added to ensure uniqueness of p. For a given inhomogeneity
u ∈ (L2(T2))2, Equation (38) has a unique weak solution in the homogeneous Sobolev space
Ḣ1

per (T
2), which we denote by p = p[u]. A standard elliptic estimate shows

‖p‖Ḣ1
per (T

2) ≤ ‖u2‖L2(T2)/R ≤ ‖u‖(L2(T2)/R)2 . (39)

The generator of the flow (37) with b1(x2) = sin(x2) takes the form

− Cu = − sin(x2) ∂x1u − ∇ p[u] + ν∂2x2u. (40)

Note that div u = 0 and p[u] from (38) imply that div(Cu) = 0. The assertion
∫
Cu dx = 0

follows trivially from
∫

u dx = 0. As before, we choose the Hilbert spaces

H := Hper (div 0,T
2), H̃ := {u ∈ H |

∫
T2

u dx = 0},

and the maximal domain ofC isD(C) = {u ∈ H̃ | sin(x2)∂x1u − ν∂2x2u ∈ (L2(T2))2}, since
the linear map u �→ ∇ p from (38) is bounded on (L2(T2))2.

With this framework we have the following result:

Lemma 4 Let b1(x2) = sin(x2) in (37). Then:

(1) kerC = R
2, i.e. the constant-in-x flows; and the L2-orthogonal complement of kerC is

H̃.
(2) The operator C is not coercive on H̃.

Proof (1) For u ∈ D(C) we compute:

0 =
∫
T2

u · Cu dx =
∫
T2

( 1
2 sin(x2) ∂x1 |u|2 + ν|∂x2u|2) dx = ν

∫
T2

|∂x2u|2 dx,

to obtain u = u(x1), and hence 0 = div u = ∂x1u1. So, using u1 = const in (40) yields
p = p(x2) and

sin(x2) ∂x1u2(x1) + ∂x2 p(x2) = 0,

or equivalently for x2 /∈ {0, π}:

∂x1u2(x1) = −∂x2 p(x2)

sin(x2)
= λ with some λ ∈ R.

The periodicity of u2 implies λ = 0 and hence u2 = const, p = 0.
(2) As in Sect. 4.1, u := [0, sin(x1)]	 ∈ D(C) is a counterexample to coercivity on H̃,

since 〈u,Cu〉H̃ = 0, by noting that p[u] = 1
2 cos(x2) cos(x1) solves (38). ��

Nextwe discuss the existence and uniqueness of amild solution to the initial value problem
(37) when eliminating the pressure via (38). The resulting PDE-evolution problem for u only,
with u(0) ∈ H̃, will be analyzed with semigroup theory, see e.g. [44].

Proposition 3 On H̃, the operator −C from (40) satisfies the following properties:

(1) It is dissipative, densely defined, and closed.
(2) It generates a C0-semigroup of contractions on H̃.
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Proof (1) A similar computation as in (35) shows 〈u,−Cu〉H̃ ≤ 0 for all u ∈ D(C), i.e. the
dissipativity of −C.

For the density of D(C) in H̃ we first consider

D̃ := {u ∈ H̃ | ∂x1u, ∂2x2u ∈ (L2(T2))2} ⊂ D(C).

Truncating the Fourier representation of any u ∈ D̃ (in analogy to (34)) one easily finds that
D̃ is L2-dense in H̃, and hence also D(C) in H̃.

Using Theorem 1.4.5(c) of [44] we find that −C is closable. Moreover, −C = −C, since
D(C) was chosen as the maximal domain.

(2) For the second statement we easily compute

−C∗u = sin(x2) ∂x1u − ∇ p[u] + ν∂2x2u,

which is defined at least on D̃ and also dissipative. Hence, Corollary 1.4.4 (to the Lumer-
Phillips Theorem) from [44] implies that−C is the infinitesimal generator of aC0-semigroup
of contractions on H̃. ��

Next we shall illustrate the short-time behavior of ‖e−Ct‖ [in the spirit of (9)] by analyzing
the Taylor expansion of the norm for a single trajectory at t = 0. Using the same initial
condition as in the proof of Lemma 4, i.e. u(0) = [0, sin(x1)]	 which is a linear combination
of the modes

(±1
0

)
, we compute:

Cu(0) = −1

2

[
sin(x1) cos(x2)

− cos(x1) sin(x2)

]
∈ D(C),

C2u(0) = −1

2

[ 3
5 cos(x1) sin(2x2) + ν sin(x1) cos(x2)

sin(x1)
( 1
2 − 3

10 cos(2x2)
)− ν cos(x1) sin(x2)

]
∈ D(C),

C3u(0) =
[
sin(x1)

( 19
80 cos(x2) − 63

400 cos(3x2)
)

cos(x1)
( 21
400 sin(3x2) − 19

80 sin(x2)
)
]

+ ν

[ − 3
2 cos(x1) sin(2x2)

sin(x1)
(− 1

4 + 3
4 cos(2x2)

)]+ ν2

2

[− sin(x1) cos(x2)
cos(x1) sin(x2)

]
,

where we used the following solutions to the corresponding Poisson equation (38):

p[Cu(0)] = − 1

20
sin(x1) sin(2x2),

p[C2u(0)] = − 1

80
cos(x1)

(
7 cos(x2) − 3

5
cos(3x2)

)− ν

20
sin(x1) sin(2x2).

Hence we obtain

‖u(0)‖2H̃ = 2π2,

d

dt
‖u(t)‖2H̃

∣∣
t=0 = −2〈u(0),Cu(0)〉H̃ = 0,

d2

dt2
‖u(t)‖2H̃

∣∣
t=0 = 2〈Cu(0),Cu(0)〉H̃ + 2〈u(0),C2u(0)〉H̃ = 0,

d3

dt3
‖u(t)‖2H̃

∣∣
t=0 = −6〈Cu(0),C2u(0)〉H̃ − 2〈u(0),C3u(0)〉H̃ = −2νπ2 < 0.

This implies the following lower bound on the propagator norm:

‖e−Ct‖ := sup
‖v‖H̃=1

‖e−Ctv‖H̃ ≥ 1 − 1

12
ν t3 + O(t4) for t → 0+. (41)
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The first non-constant term in the Taylor expansion of ‖u(t)‖2H̃ has exponent a = 3. In
Proposition 4 below, we show that the modal expansion of (37) with b1(x2) = sin(x2),
has hypocoercivity index m HC = 1. Although the analog of the result (9) has not yet been
established for unbounded generators −C, we note that the exponent a = 3 in the Taylor
series of ‖u(t)‖2H̃ satisfies again a = 2m HC + 1.

Modal decomposition: To analyze the hypocoercivity of (37) with b1(x2) = sin(x2), we
perform a modal decomposition of this model as in Sect. 3. But due to the non-constant
coefficient b1(x2), these modes decouple now only w.r.t. k1, but not w.r.t. k2. As the analog
of (22) we obtain for k ∈ Z

2 the DAE system{
d
dt φk = k1

2 (φk+e2 − φk−e2) − ikpk − νk22φk , t > 0 ,

0 = −ik · φk ,
(42)

with e2 := [0, 1]	. All modes with k1 = 0 are fully decoupled, showing that φ0(t) = const
and one has exponential decay with rate at least μ = ν for all modes with k = (0, k2) �= 0.
More precisely, proceeding as for (22) with b = 0 one obtains: φ(0,k2),2(t) = 0, p(0,k2)(t) =
0 for k2 �= 0, as well as

|φ(0,k2),1(t)| ≤ |φ(0,k2),1(0)| e−tνk22 , k2 �= 0 . (43)

But for k1 �= 0 the modes are only semi-decoupled, i.e., for each fixed k1 �= 0, (42) forms
an infinite dimensional DAE system with k2 ∈ Z. Using the Fourier decomposition it is
notationally simpler to consider �2(Z) rather than �2(N). Then the doubly infinite complex
vector

wk1 := {[φ(k1,k2),1, φ(k1,k2),2, p(k1,k2)]	
}

k2∈Z
= [... | φ(k1,−1),1, φ(k1,−1),2, p(k1,−1) | φ(k10),1, φ(k1,0),2, p(k1,0) | φ(k1,1),1, φ(k1,1),2, p(k1,1) | ...]	
∈ �2(Z;C3)

satisfies the DAE

Eẇk1(t) = (Jk1 − R)wk1(t), t ≥ 0, (44)

with doubly infinite diagonal matrices E,R ∈ L(�2(Z;C3)) given as

E := diag( diag([1, 1, 0]); k2 ∈ Z)

= diag(. . . | 1, 1, 0 | 1, 1, 0 | 1, 1, 0 | . . .) , (45)

R := ν diag( diag([k22, k22, 0]); k2 ∈ Z)

= ν diag(. . . | 4, 4, 0 | 1, 1, 0 | 0, 0, 0 | 1, 1, 0 | 4, 4, 0 | . . .) , (46)

and the doubly infinite block-tridiagonal matrix Jk1 ∈ L(�2(Z;C3)) with 3×3-blocks given
as
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Jk1 :=⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

− k1
2 0 0 −ik1

k1
2

− k1
2 0 0 i k1

2
0 −ik1 i 0 0

− k1
2 0 0 −ik1

k1
2

− k1
2 0 0 0 k1

2
0 −ik1 0 0 0

− k1
2 0 0 −ik1

k1
2

− k1
2 0 0 −i k1

2
0 −ik1 −i 0 0

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k2 = −1

k2 = 0

k2 = 1

k̃2=−2 k̃2=−1 k̃2=0 k̃2=1 k̃2=2

, (47)

where missing elements are understood to be zero. Here we label the 3 × 3 submatrices
Jk1(k2, k̃2) by the correspondingmodal numbers of k2. In particular, the diagonal blocks have
the general form

Jk1(k2, k2) =
⎡
⎣ 0 0 −ik1

0 0 −ik2
−ik1 −ik2 0

⎤
⎦ . (48)

Staircase transformation: To bring (44) into staircase form we have to modify Step 1 in
[7, Algorithm 5], see e.g. Appendix A.1, and hence also the presentation of the result in
Lemma 6:

On the one hand the matrix E is already diagonal, but on the other hand it has both
an infinite dimensional kernel and range. Hence, it would be impractical to separate the
corresponding eigenvalues. Instead we shall leave them interlaced as in (45). This has the
following (purely notational) consequence on partitioning the matrices Jk1 , k1 �= 0. With the
notation from [7, Algorithm 5: Step 1.2], see also Appendix A.1, we partition every 3 × 3
submatrix of J into blocks of size 2 and 1. In [7, Algorithm 5: Step 1.2] the finite dimensional

matrix J is partitioned as
[̃
J1,1 −̃JH

2,1
J̃2,1 J̃2,2

]
. Just for notational simplicity we suppressed here and

in the sequel the index k1 and write J := Jk1 . Next, we decompose the space of sequences
�2(Z;C3) as

�2(Z;C3) = �2(Z; span{e1, e2}) ⊕ �2(Z; span{e3}), (49)

where e1 = [1, 0, 0]	, e2 = [0, 1, 0]	, e3 = [0, 0, 1]	; and use that these subspaces are
isomorphic to

�2(Z; span{e1, e2}) � �2(Z;C2) , �2(Z; span{e3}) � �2(Z;C) . (50)

In analogy to Algorithm 5: Step 1.2, we decompose the operator J ∈ L(�2(Z;C3)) into the
linear operators

J̃1,1 ∈ L(�2(Z;C2)
)
, J̃2,1 ∈ L(�2(Z;C2); �2(Z;C)

)
, J̃2,2 ≡ 0 ∈ L(�2(Z;C)

)
,
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represented by the doubly infinite block-tridiagonal matrices with 2 × 2-blocks

J̃1,1 := k1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

−1 0 0 1
−1 0 0 1

−1 0 0 1
−1 0 0 1

−1 0 0 1
−1 0 0 1

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k2 = −1

k2 = 0

k2 = 1

,

k̃2=−2 k̃2=−1 k̃2=0 k̃2=1 k̃2=2

(51)

and the doubly infinite block-tridiagonal matrices with 1 × 2-blocks

J̃2,1 := diag([−ik1 − ik2]; k2 ∈ Z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .

−ik1 i
−ik1 0

−ik1 −i
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

k2 = −1

k2 = 0

k2 = 1

.

k̃2=−1 k̃2=0 k̃2=1

(52)

When partitioning R̃ like J̃, we find from (46) that R̃2,2 = 0. Hence Step 2 of Algorithm 5
is trivial. Since the subblocks of J̃2,1 are identical to the (2, 1)-subblock of (25), with k1 �= 0
fixed and k2 ∈ Z, their singular value decompositions (SVDs) also coincide. Thus, the unitary
transformationmatrixPk1,k2 (pertaining to each 3×3 submatrix (48)) is given by (27). Hence,
the (global) unitary transformation matrix for the DAE systems (44) with k1 ∈ Z \ {0} is
given by the block diagonal matrix

Pk1 = diag

⎛
⎝ 1

|k|

⎡
⎣ k1 k2 0

−k2 k1 0
0 0 i |k|

⎤
⎦ ; k2 ∈ Z

⎞
⎠ , (53)

which represents a bounded unitary operator on �2(Z;C3). Also the leading 2 × 2-
subblocks (27) form a bounded unitary operator on �2(Z;C2). For each fixed k1 �= 0 in (44),
this is an infinite dimensional analog of the staircase transformation in Lemma 6. Hence it
translates (44), via yk1 := Pk1wk1 ∈ �2(Z;C3), into the staircase form

qE ẏk1(t) = (qJk1 − qR)yk1(t), t ≥ 0. (54)

Here, the matrices are given by qE = Pk1EP
H
k1

= E, qR = Pk1RP
H
k1

= R, and qJk1 = Pk1Jk1P
H
k1

is a block tridiagonal matrix with the blocks

qJk1(k2, k2) =
⎡
⎣ 0 0 −|k|

0 0 0
|k| 0 0

⎤
⎦ ,

qJk1(k2, k2 ± 1) = ± k1
2|k| |k ± e2|

⎡
⎣|k|2 ± k2 ∓k1 0

±k1 |k|2 ± k2 0
0 0 0

⎤
⎦ .
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In analogy to Definition 8, the non-trivial dynamics of (54) is given by (A3) as the infinite
ODE

E2,2
(
ẏk1

)
2 = (̂

Jk1 − R̂
)
2,2

(
yk1

)
2. (55)

Here,
(
yk1

)
2 = { 1

|k|
(−k2φk,1+k1φk,2

)}
k2∈Z ∈ �2(Z;C) is the projection of yk1 ∈ �2(Z;C3),

where only the second element of each 3-block of yk1 is kept. This second component is
closely related to the modal representation of the vorticity rot u, see the proof of Theorem
5 and Remark 8 below for details. Analogously, the three matrices in (55) are obtained by
keeping only the (2, 2)-element of each submatrix, and they act on �2(Z;C). Hence,E2,2 = I.
The infinite matrix

R̂2,2 = ν diag(k22; k2 ∈ Z) = ν diag(. . . , 9, 4, 1, 0, 1, 4, 9, . . .) (56)

is positive semi-definite but not coercive. Moreover it represents an unbounded self-adjoint
operator on �2(Z;C) with dense domain

D(R̂2,2) = {z ∈ �2(Z;C) |
∑
j∈Z

j4 |z( j)|2 < ∞} . (57)

Furthermore,

(R̂2,2)
1/2 = √

ν diag(|k2|; k2 ∈ Z)

D((R̂2,2)
1/2) = {z ∈ �2(Z;C) |

∑
j∈Z

j2 |z( j)|2 < ∞}. (58)

The operator (̂Jk1)2,2 ∈ L(�2(Z;C)) can be represented as the skew-adjoint tridiagonal
matrix

(̂
Jk1

)
2,2

= k1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

− k21+2√
k21+1

√
k21+4

0
k21√

k21+1 |k1|
− k21

|k1|
√

k21+1
0

k21

|k1|
√

k21+1

− k21√
k21+1 |k1|

0
k21+2√

k21+1
√

k21+4

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k2 = −1

k2 = 0

k2 = 1

k̃2=−2 k̃2=−1 k̃2=0 k̃2=1 k̃2=2.

(59)

Its off-diagonal terms have the general form

(̂
Jk1

)
2,2(k2, k2 ± 1) = ±k1

2

|k|2 ± k2
|k| |k ± e2| ,

hence, for each fixed k1 �= 0,
(̂
Jk1

)
2,2 is a bounded operator on �2(Z;C). Moreover, one

easily sees that(̂
Jk1

)
2,2

(D(R̂2,2)
) ⊂ D(R̂2,2),

(̂
Jk1

)
2,2

(D((R̂2,2)
1/2)) ⊂ D((R̂2,2)

1/2).
Thus, the operators

(̂
Jk1

)
2,2 and R̂2,2 satisfy the assumptions (A1), (A3) in the Definition 6 of

the HC-index. Hence, for fixed k1 �= 0, (̂Jk1 − R̂)2,2 in (55) generates an analytic semigroup
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of contractions on �2(Z;C). Moreover, either of the three conditions from Lemma 2 can be
used to determine the HC-index (see Proposition 4 below).

Altogether, due to [28, Theorem III.2.10], the operator (̂Jk1 − R̂)2,2 with domainD(R̂2,2)

generates an analytic semigroup on �2(Z;C).
Exponential decay of the dynamical part:UsingDAEconceptswe separated the dynamical
part from the algebraic constraint. The following proposition studies the hypocoercivity of the
dynamical part. More precisely, with the above setup we can now establish the exponential
decay of

(
yk1

)
2 , i.e., the modal decomposition of the vorticity rot u (in fact in Ḣ−1

per (T
2), see

Remark 8 for details):

Proposition 4 Let b1 = sin(x2) in (37). Then, for each k1 ∈ Z\{0}, the modal dynamics (55)
is hypocoercive in the sense of (3) in �2(Z;C). Moreover, its HC-index m HC = 1.

We remark that HC-indexm HC = 1was already illustrated on one example in the estimate
(41). In the following, we will use the canonical unit vectors (e j ) j∈Z as orthonormal basis
for �2(Z), which are defined for j, k ∈ Z as

ek
j =

{
1 for k = j,

0 for k �= j .
(60)

Proof To determine the HC-index of
(̂
Jk1 − R̂

)
2,2 in (55), we use Condition (B1’) in Lemma

2: TheHC-index of
(̂
Jk1 −R̂

)
2,2 cannot be zero, since the selfadjoint part R̂2,2 has a nontrivial

kernel ker(R̂2,2) = span{e0}.
We prove that its HC-index is 1 by verifying Condition (B1’) with m = 1 in Lemma 2:

For any h ∈ H, we determine v,w ∈ D((R̂2,2
)1/2) such that

h = (
R̂2,2

)1/2
v + (̂Jk1)2,2

(
R̂2,2

)1/2
w . (61)

To do this, we compute

(̂
Jk1

)
2,2

(
R̂2,2

)1/2 = −√
ν

k1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . − k21+2

|k| |k−e2|
. . . 0 0

0
k21|k| |k+e2| 0 − k21|k| |k−e2| 0

0 0
. . .

k21+2
|k| |k+e2|

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k2=−1

k2=0

k2=1

,

k̃2=−1 k̃2=0 k̃2=1

see also (B6) below. Since
((
R̂2,2

)1/2
v
)
0 = 0, we observe that

h0 = −√
ν

k1
2

k21√
k21 + 1 |k1|

(w−1 − w1) ,

and choosing w−1 = 2w1 yields,

h0 = −√
ν

k1
2

k21√
k21 + 1 |k1|

=:α

w1 ,
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such that w1 = α−1h0. In fact, defining w as

w j :=

⎧⎪⎨
⎪⎩

α−1h0 if j = 1,

2α−1h0 if j = −1,

0 else,

yields w ∈ D((R̂2,2
)1/2). Then h − (̂Jk1)2,2

(
R̂2,2

)1/2
w ∈ range

(
R̂2,2

)1/2 such that
v :=

((
R̂2,2

)1/2)+(
h − (̂Jk1)2,2

(
R̂2,2

)1/2
w
) ∈ D((R̂2,2

)1/2)
,

where
((
R̂2,2

)1/2)+ = 1√
ν
diag

(
..., 1

3 ,
1
2 , 1, 0, 1,

1
2 ,

1
3 , ...

)
denotes the Moore-Penrose

inverse. Thus, for all h ∈ H, there exist v,w ∈ D((R̂2,2
)1/2) such that (61) holds. This

proves Condition (B1’) with m = 1 in Lemma 2 and finishes the proof of the statement about
the HC-index.

We remark that determining the hypocoercivity index of −Ak1 := (R̂ − Ĵk1)2,2 directly
via the coercivity condition in Definition 6 would be much more tedious, since both the
matrix −Ak1 and the corresponding left-hand-side of (17) (with m = 1) are 5-diagonal, see
Appendix 1.

In order to derive a hypocoercivity estimate (3) for the evolution equation (55) we proceed
similarly to Sect. 4.3 in [2] (there for a linear transport-reaction equation in 1D) and construct
a strict Lyapunov functional ‖y‖2Xk1

:= 〈y,Xk1 y〉�2(Z) for each k1 ∈ Z\{0}. In the following,
we will use the canonical unit vectors (e j ) j∈Z as orthonormal basis for �2(Z), which are
defined for j, k ∈ Z as

ek
j =

{
1 for k = j,

0 for k �= j .

We construct (an ansatz for) a strict Lyapunov functional using [7, Algorithm 3], see
Appendix 1, starting with 
0 = I, Ã0 = −(̂Jk1

)
2,2, and B̃0 = R̂2,2. The orthogonal

projection 
̃1 onto ker(B̃0B̃0) is given as 
̃1 = e0e	
0 , such that 
1 := 
̃1 = e0e	

0 . Here,
by abuse of notation, sequences (such as e0) are interpreted as infinite column vectors and
e0e	

0 is the outer product of two (infinite) vectors such that e0e	
0 ∈ B(�2(Z)) with

(
e0e	

0

)
j,k∈Z =

{
1 for k = j = 0,

0 else .

Then,

Ã1 := 
1Ã0
1 = −e0 e	
0

(̂
Jk1

)
2,2e0

=0

e	
0
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and

B̃1 := 
1Ã0(I − 
1) = k1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

0 0 0
k21

|k1|
√

k21+1
0 − k21

|k1|
√

k21+1

0 0 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k2 = −1

k2 = 0

k2 = 1

,

= α̃

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

0 0 0
1 0 −1

0 0 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

= α̃e0 [. . . , 0, 1, 0,−1, 0, . . .]
=(e−1−e1)	

,

where α̃ = k1
2

k21

|k1|
√

k21+1
. In the next iteration,

B̃1B̃H
1 = α̃2e0(e−1 − e1)

	(e0(e−1 − e1)
	)H

= α̃2e0(e−1 − e1)
	 (e−1 − e1)e

	
0

= 2α̃2(e0e	
0 ).

Hence, the orthogonal projection 
̃2 onto ker
(
B̃1B̃H

1

)
is given as 
̃2 = I− e0e	

0 = I−
1.
Due to 
2 := 
̃2
1 = 0, the iteration terminates after one iteration in agreement with
m HC = 1. Finally, the ansatz for the weight matrix Xk1 is chosen as

Xk1 := 
0 + ε1(Ã0
1 + 
1ÃH
0 ) = I + ε1

k31

2
√

k21 + 1 |k1|
=:εk1∈R

⎡
⎢⎢⎢⎢⎣

0 −1 0
−1 0 1
0 1 0

⎤
⎥⎥⎥⎥⎦

=:Y

, (62)

for some ε1 > 0 to be determined. We remark that all blank elements in the matrix in
(62) are zero. In the finite-dimensional setting, for sufficiently small ε1 > 0, the squared
weighted norm ‖·‖2Xk1

yields a strict Lyapunov functional, see [5]. In this infinite dimensional

example, we shall verify this statement directly. The infinite matrix Xk1 is positive definite
for |εk1 | < 1/

√
2.

Moreover,
(1 − √

2|εk1 |)I ≤ Xk1 ≤ (1 + √
2|εk1 |)I. (63)

Finally, the coefficients εk1 , k1 �= 0 should be chosen such that the Lyapunov matrix
inequalities (LMIs)

AH
k1Xk1 + Xk1Ak1 + 2μk1Xk1 ≤ 0 , k1 �= 0 (64)

hold with μk1 as large as possible. Due to Lemma 5 (below), there exists an αmin > 0 such
that for all α ∈ (0, αmin), the matrices Xk1 defined in (62) with εk1 := α/k1 satisfy the
LMIs (64), where the decay rates μk1 ≥ λ1,min/4 > 0 are uniformly bounded from below
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for all k1 ∈ Z \ {0}; the bound λ1,min = λ1,min(α) is defined in (B24). Consequently, for
α ∈ (0, αmin), the squared weighted norms ‖(yk1)2‖2Xk1

, k1 ∈ Z \ {0} are strict Lyapunov

functionals for the dynamics of each (yk1)2. More precisely,

‖(yk1)2(t)‖�2(Z) ≤ √
κ(Xk1)e

−tλ1,min/4‖(yk1)2(0)‖�2(Z)

≤
√

1+√
2 α

1−√
2 α

e−tλ1,min/4‖yk1,2(0)‖�2(Z) t ≥ 0, (65)

where α < αmin ≤ 1/
√
2 and κ(Xk1) = ‖Xk1‖2 ‖X−1

k1
‖2 = 1+√

2α/|k1|
1−√

2α/|k1| is the condition

number of Xk1 . This finishes the proof (of the first statement) of Proposition 4. ��
The following lemma was used in the above proof. There, we did not intend to find the

optimal decay rate of each system in (55) (and similarly of (54)). Hence, we shall (only)
prove that there exists an ε1 > 0 such that Qk1 := −(AH

k1
Xk1 + Xk1Ak1) is positive definite;

afterwards we shall determine μk1 > 0 such that (64) holds.

Lemma 5 Consider Ak1 := (̂Jk1)2,2 − R̂2,2 with the matrices defined in (56)–(59). For any
fixed ν > 0, there exists αmin > 0 (defined in (B23)) such that for all α ∈ (0, αmin), the
matrices Xk1 defined in (62) with εk1 := α/k1 satisfy the Lyapunov matrix inequality (64),
where μk1 > 0 is uniformly bounded from below by λ1,min/4 > 0 (defined in (B24)) for all
k1 ∈ Z \ {0}.

The technical proof of this lemma is deferred to Appendix 1.
Exponential decay of the full system:Combining the modal decay of Proposition 4 with the
decay of the (0, k2)-modes we shall obtain next the hypocoercivity estimate of the anisotropic
Oseen equation (37) in state domain.

u(t) ∈ H := Hper (div 0,T
2),

u(t) − u∞ ∈ H̃ := {u ∈ H |
∫
T2

u dx = 0} ,

where the steady stateu∞ := 1
4π2

∫
T2 u(x, 0) dx equals the constant-in-t modeφ0.Moreover,

both H and H̃ are closed subspaces of (L2(T2))2. For the Fourier decomposition (21) we
have in H̃

‖u(t) − u∞‖2H̃ = ‖u(t) − u∞‖2
(L2(T2))2

= 1

4π2

∑
k �=0

|φk(t)|2 . (66)

Theorem 5 Let b1 = sin(x2) in (37) and u(0) ∈ Hper (div 0,T2). Then

‖∇ p(t)‖(L2(T2))2 ≤ ‖u(t) − u∞‖(L2(T2))2

≤
√

1+√
2 α

1−√
2 α

e−t min(ν, λ1,min/4)‖u(0) − u∞‖(L2(T2))2 t ≥ 0, (67)

where α and λ1,min are as in (65).

Proof We first prove that

‖(yk1

)
2‖�2(Z) = ‖φ(k1,·)‖�2(Z;C2) , for all k1 �= 0 (68)

for divergence-free flow fields u ∈ H̃, and that

(
yk1

)
2 = { 1

|k|
(− k2φk,1 + k1φk,2

)}
k2∈Z , k1 �= 0 (69)
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is a bijection from the divergence-free subspace of �2(Z;C2), i.e., for ik · φk = 0, to �2(Z);
see also the remark on the leading 2 × 2-subblock of Pk1 after (53).

To this end we first note that the right hand side of (69) is related to the vorticity of u,
since the modal representation of rot u (in 2D) is i(−k2φk,1 + k1φk,2).

Given a divergence-free φ(k1,·) ∈ �2(Z;C2) with k1 �= 0 we compute with (69):

‖(yk1

)
2‖2�2(Z)

=
∑
k2∈Z

1

|k|2
(
k22 |φk,1|2 − k1k2φk,1 φk,2 − k1k2φk,1 φk,2 + k21 |φk,2|2

)

=
∑
k2∈Z

1

|k|2
(
k22 |φk,1|2 + k21 |φk,1|2 + k22 |φk,2|2 + k21 |φk,2|2

) = ‖φ(k1,·)‖2�2(Z;C2)
,

where we used k · φk = 0 twice.
For the other direction, given a

(
yk1

)
2 ∈ �2(Z) with k1 �= 0 we define the divergence-free

flow field

φk,1 := − k2
|k|
(
yk1

)
2, φk,2 := k1

|k|
(
yk1

)
2, k2 ∈ Z,

which is compatible with (69). Then we have

‖φ(k1,·)‖2�2(Z;C2)
=
∑
k2∈Z

( k22
|k|2 + k21

|k|2
)
|(yk1

)
2|2 = ‖(yk1

)
2‖2�2(Z)

,

and this proves the isometry and bijectivity.
Finally, we sum up the (square of the) modal inequalities (65) for k1 �= 0 and the inequal-

ities (43) for k1 = 0 but k2 �= 0. This yields the claimed decay estimate (67) for u(t) − u∞
with using (66). The decay of ‖∇ p(t)‖(L2(T2))2 then follows from the estimate (39). ��
Remark 8 Themodal isometry (68) can be extended to physical space by combining allmodes(
yk1

)
2. Recalling from (69) the dependence of y2 = y2[u] on u, let y2 := {(

yk
)
2

}
k∈Z2\{0}.

For scalar functions f on T
2 we define the following homogeneous Sobolev space via the

Fourier decomposition of f :

f ∈ Ḣ−1
per (T

2) :⇔ ‖ f ‖2
Ḣ−1

per (T
2)

:= 1

4π2

∑
k �=0

1

|k|2 | fk |2 < ∞.

Then we have the following relation for divergence-free flow fields u on T
2 with van-

ishing average, i.e.
∫
T2 u(x) dx = 0: The space Ḣ−1

per (T
2) [for rot u = −∂x2u1 + ∂x1u2] is

isometrically isomorphic to

H̃ = {u ∈ Hper (div 0,T2) |
∫
T2

u dx = 0}
[for u]. More precisely we have

1

4π2 ‖y2[u]‖2
�2(Z2\{0}) = 1

4π2

∑
k �=0

|(yk)2|2 = 1

4π2

∑
k �=0

∣∣∣ 1|k|
(− k2φk,1 + k1φk,2

)∣∣∣2

= ‖ rot u‖2
Ḣ−1

per (T
2)

= 1

4π2 ‖φk‖2(�2(Z2\{0}))2 = ‖u‖2
(L2(T2))2

,

where we used (68). This relation shows that ‖u(t)‖(L2(T2))2 describes all combined modes
of the dynamical part in (55) by summing over k1 ∈ Z.
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In Proposition 4 we established the exponential decay of the dynamical mode component
(yk1)2(t). Next we shall extend this result by including the enslaved components (yk1)1 ≡ 0
and (yk1)3(t) = i pk1(t).

Proposition 6 Let b1 = sin(x2) in (37). Then, for each k1 ∈ Z\{0}, the modal dynamics (54)
is hypocoercive in the sense of (3) in �2(Z;C3).

Proof Noting again that the third block in the staircase form (54) is void, it follows that

yk1 = Pk1wk1 = [
P(k1,k2)[φ(k1,k2),1, φ(k1,k2),2, p(k1,k2)]	; k2 ∈ Z

]
=: [[y(k1,k2),1, y(k1,k2),2, y(k1,k2),3]	; k2 ∈ Z

] ∈ �2(Z;C3).

In our infinite dimensional model, we deduce (in analogy to the results of [7, Corollary 1])
that (

yk1

)
1 = 0 ,(

yk1

)
2 is governed by (55) ,(

yk1

)
3 = (qJk1)

−H
3,1 (−(qJk1)

H
2,1 − RH

2,1)
(
yk1

)
2 ,

(70)

where (qJk1)3,1 = diag(|k| =
√

k21 + k22; k2 ∈ Z), R2,1 = 0, and (qJk1)2,1 is a symmet-
ric tridiagonal matrix whose diagonal elements are zero and the off-diagonal elements are
(qJk1)2,1(k2, k2 ± 1) = k21/(2 |k| |k ± e2|) with e2 := [0, 1]	. Then, for fixed k1 �= 0, the
third component of (70) reads explicitly

(
yk1

)
3 = (

yk
)
3 = − k21

2|k|2
((

yk−e2

)
2

|k − e2| +
(
yk+e2

)
2

|k + e2|

)
, k = [k1, k2]	, k2 ∈ Z. (71)

Since (yk1)3 is a linear combination of (yk1)2 with k2-uniformly bounded coefficients, solu-
tions yk1(t) for consistent initial data will converge to 0 with uniform exponential rate
λ1,min/4 > 0 for all k1 ∈ Z \ {0}. Since the multiplying factors in the modal relation
(71) areO(1/|k|) and by using (68), (66), we see that the decay of p(t) is in a Sobolev space
one level higher than the decay of u(t) − u∞. With different tools, this was already reflected
in (67).

A consistent initial value yk1(0) again has to satisfy (70) such that(
yk1

)
1(0) = 0 ,(

yk1

)
2(0) ∈ �2(Z) ,(

yk1

)
3(0) = (qJk1)

−H
3,1 (−(qJk1)

H
2,1 − RH

2,1)
(
yk1

)
2(0) .

(72)

Then, the associated solution yk1(t) of (54) satisfies

‖yk1(t)‖2 = ‖(yk1

)
2(t)‖2 + ‖(yk1

)
3(t)‖2

= ‖(yk1

)
2(t)‖2 + ‖(qJk1)

−1
3,1(

qJk1)2,1
(
yk1

)
2(t)‖2

≤
(
1 + ∥∥(qJk1)

−1
3,1(

qJk1)2,1
∥∥2)‖(yk1

)
2(t)‖2

≤
(
1 + ∥∥(qJk1)

−1
3,1(

qJk1)2,1
∥∥2) 1+√

2 α

1−√
2 α

‖(yk1

)
2(0)‖2e−λ1,mint/2

≤
(
1 + ∥∥(qJk1)

−1
3,1(

qJk1)2,1
∥∥2) 1+√

2 α

1−√
2 α

‖yk1(0)‖2e−λ1,mint/2 ,

(73)
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due to (65), where α < αmin ≤ 1/
√
2, λ1,min = λ1,min(α) is defined in (B24), and ‖T‖

denotes the operator norm of a bounded operator T ∈ B(�(Z)). This finishes the proof of
Proposition 6. ��

As a final step we note that the (inverse) staircase transformation also implies exponential
decay of the variable wk := [φk,1, φk,2, pk]	 which is the modal representation of [u, p]	:
Proposition 7 Let b1 = sin(x2) in (37). Then, for each k1 ∈ Z, the modal dynamics (44) is
hypocoercive in the sense of (3) in �2(Z;C3).

Proof For k1 = 0, the (evolution equations of the) modes wk1 are decoupled. Following the
analysis of the family of decoupled DAEs (23) (with k1 = 0), and in particular (43) shows
that w0 converges to the infinite complex vector

w∞
0 := [. . . ; 0, 0, 0; φ(0,0),1, φ(0,0),2, p(0,0); 0, 0, 0; . . .]	

(which corresponds to the constant equilibrium (φ0, p0)) with the exponential decay rate
ν(= mink2 �=0(νk22)).

For k1 ∈ Z \ {0}, consistent initial data wk1(0) of system (44) has the form wk1(0) =
PH

k1
yk1(0) where Pk1 is defined in (53) and yk1(0) is given as (72). Then, the associated

solution wk1(t) of system (44) satisfies

‖wk1(t)‖2 = ‖PH
k1 yk1(t)‖2 = ‖yk1(t)‖2

≤
(
1 + ∥∥(qJk1)

−1
3,1(

qJk1)2,1
∥∥2) 1+√

2 α

1−√
2 α

‖yk1(0)‖2e−λ1,mint/2

=
(
1 + ∥∥(qJk1)

−1
3,1(

qJk1)2,1
∥∥2) 1+√

2 α

1−√
2 α

‖wk1(0)‖2e−λ1,mint/2 ,

due to (73), where α < αmin ≤ 1/
√
2, λ1,min = λ1,min(α) is defined in (B24), and ‖T‖

denotes the operator norm of a bounded operator T ∈ B(�(Z)).
Altogether, for consistent initial data, solutions of system (44) (and resp. (42)) converge

to the constant equilibrium with a uniform exponential rate. ��

5 Conclusions

After extending the notion of hypocoercivity index to evolution equations in (infinite dimen-
sional) Hilbert spaces, we have performed the analysis of the long-time decay behavior of
three variants of isotropic and anisotropic Oseen-type equations from fluid dynamics (for
simplicity on a 2D torus). Due to the torus setting we used DAE theory in Fourier space
to classify the hypocoercivity index. These equations are either coercive, hypocoercive with
index 1, or even not hypocoercive (the latter showing exponential convergence only to a
traveling wave solution).
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Appendix A Appendix

A.1 Hypocoercivity in linear semi-dissipative DAEs

Here, we recall the basic theory of hypocoercivity for finite-dimensional linear semi-
dissipative Hamiltonian DAEs [7]:

Definition 7 ( [7, Definition 4]) Amatrix pencil λE−A is called negative hypocoercive if the
pencil is regular, of DAE-index at most two and the finite eigenvalues of the pencil λE − A
have negative real part.

We note that a regular pencil might not have any finite eigenvalues, in which case the last
condition would be void. Due to [7, Theorem 3], a linear semi-dissipative Hamiltonian DAE
system (5) with a regular pencil λE − A only has finite eigenvalues with non-positive real
part.

The definition of the hypocoercivity index for DAEs is based on a staircase form of DAEs,
see [7, Lemma 5]:

Lemma 6 (Staircase form for triple (E, J,R)) Let E, J,R ∈ C
n×n satisfy E = EH ≥ 0,

R = RH ≥ 0 and J = −JH . Then there exists a unitary matrix P ∈ C
n×n, such that

qE := P E PH , qJ := P J PH and qR := P R PH satisfy

qE =:

⎡
⎢⎢⎢⎢⎣
E1,1 EH

2,1 0 0 0
E2,1 E2,2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦, qJ =:

⎡
⎢⎢⎢⎢⎣
J1,1 −JH

2,1 −JH
3,1 −JH

4,1 0
J2,1 J2,2 −JH

3,2 0 0
J3,1 J3,2 J3,3 0 0
J4,1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦, qR =:

⎡
⎢⎢⎢⎢⎣
R1,1 RH

2,1 RH
3,1 0 0

R2,1 R2,2 RH
3,2 0 0

R3,1 R3,2 R3,3 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦.

(A1)
These three matrices are partitioned in the same way, with (square) diagonal block matrices
of sizes n1, n2, n3, n4 = n1, n5 ∈ N0. If the block matrices E1,1, E2,2 (as well as E2,1) are

present, then the matricesE1,1,E2,2 (as well as

[
E1,1 EH

2,1
E2,1 E2,2

]
) are positive definite. If the block

matrices J4,1, J3,3 − R3,3 are present, then the matrices J4,1, J3,3 − R3,3 are invertible.

The proof is given as a constructive algorithm, see [7, Algorithm 5], which is reproduced
here as Algorithm 5 below.
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Algorithm 5 Staircase Algorithm for triple (E, J,R)

———– Step 1 ———–
1: Perform a spectral decomposition of E such that

E = UE

[
Ẽ1,1 0
0 0

]
UH

E ,

with UE ∈ C
n×n unitary, Ẽ1,1 ∈ C

ñ1,ñ1 positive definite or ñ1 = 0.
2: Set

P := UH
E , J̃ := UH

E J UE =
[̃
J1,1 −̃JH

2,1
J̃2,1 J̃2,2

]
,

R̃ := UH
E R UE =

[
R̃1,1 R̃H

2,1
R̃2,1 R̃2,2

]
, Ẽ := UH

E E UE .

———– Step 2 ———–
3: if ñ1 < n then
4: Apply [7, Lemma 2] to J̃2,2 − R̃2,2 ∈ C

(n−ñ1)×(n−ñ1) such that

P2,2 (̃J2,2 − R̃2,2) PH
2,2 =

[
�̃2,2 0
0 0

]
,

with �̃2,2 ∈ C
ñ2,ñ2 invertible or ñ2 = 0.

5: end if
6: Set

P2 :=
[
I 0
0 P2,2

]
∈ C

n×n, P := P2P.

7: Set Ẽ := P2 Ẽ PH
2 ,

J̃ := P2 J̃ PH
2 =:

⎡
⎢⎢⎣
J̃1,1 −̃JH

2,1 −̃JH
3,1

J̃2,1 J̃2,2 0

J̃3,1 0 0

⎤
⎥⎥⎦ , R̃ := P2 R̃ PH

2 =:

⎡
⎢⎢⎣
R̃1,1 R̃H

2,1 0

R̃2,1 R̃2,2 0

0 0 0

⎤
⎥⎥⎦ ,

with J̃2,2−R̃2,2 = �̃2,2. (The lines indicate the partitioning of the block matrices J̃ and R̃
in the previous step. Note that the positive semi-definiteness of the Hermitian matrix R
implies the 0 structure in R̃.)
———– Step 3 ———–

8: Define ñ3 := n − ñ1 − ñ2.
9: if ñ3 > 0 then
10: Perform an SVD of J̃3,1 such that

J̃3,1 = U3,1

[
�̃3,1 0
0 0

]
VH
3,1 ∈ C

ñ3×ñ1 ,

with �̃3,1 ∈ R
n1×n1 nonsingular diagonal or n1 = 0.

11: end if
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12: Set

P3 :=
⎡
⎣VH

3,1
I
UH
3,1

⎤
⎦ ∈ C

n×n, P := P3P.

13: Set qE := P3 Ẽ PH
3 , qJ := P3 J̃ PH

3 , qR := P3 R̃ PH
3 such that

qE =:

⎡
⎢⎢⎢⎢⎣
E1,1 EH

2,1 0 0 0
E2,1 E2,2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

qJ =:

⎡
⎢⎢⎢⎢⎣
J1,1 −JH

2,1 −JH
3,1 −JH

4,1 0
J2,1 J2,2 −JH

3,2 0 0
J3,1 J3,2 J3,3 0 0
J4,1 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , qR =:

⎡
⎢⎢⎢⎢⎣
R1,1 RH

2,1 RH
3,1 0 0

R2,1 R2,2 RH
3,2 0 0

R3,1 R3,2 R3,3 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

which are of the desired form with n2 := ñ1 − n1, n3 := ñ2, n4 := n1, n5 := ñ3 − n4.
The matrices J4,1 := �̃3,1 and J3,3 − R3,3 = J̃2,2 − R̃2,2 = �̃2,2 are invertible.

The pencil λE − (J − R) is associated to the DAE (5) with A = J − R. Using the above
lemma, it can be transformed into a DAE in staircase form,

qE ẏ = (qJ − qR)y , with y := Px . (A2)

In analogy to (A1), the vector y can be partitioned as y = (y1, ..., y5)T with subvectors of
the respective length n1, ..., n5. For systems (A2) with n5 = 0, the underlying implicit ODE
systems are given by the system in y2 that are obtained by eliminating all other variables.
For example, if n2 > 0 and n3 ≥ 0, then this yields systems of the form

E2,2 ẏ2 = Â2,2y2 = (̂J2,2 − R̂2,2)y2, (A3)

with E2,2 = Ê2,2 Hermitian positive definite and Â2,2 semi-dissipative. Here

Ĵ2,2 := (Â2,2)S R̂2,2 := −(Â2,2)H

where Â2,2 =
{
qA2,2 if n3 = 0,
qA2,2 − qA2,3qA

−1
3,3

qA3,2 if n3 > 0.

This staircase form now allows to define the hypocoercivity index also for DAEs:

Definition 8 ( [7, Definition 5]) Consider a linear semi-dissipative Hamiltonian DAE sys-
tem (5) with a regular pencil λE − A and the unitarily congruent DAE (A2) in staircase
form (A1). If the underlying implicit ODE (A3) is missing (present) then system (5) is said to
exhibit (non-)trivial dynamics. In case of non-trivial dynamics, theHC-index m HC of λE−A
is defined as the HC-index of the system matrix (E1/2

2,2 )−1Â2,2(E
1/2
2,2 )−1 of (A3) (in the sense

of Definition 2), otherwise it is defined as 0.

The following proposition states that the HC-index characterizes the short time behavior of
its solution propagator, but restricted to the dynamical subspace.
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Proposition 8 ( [7, Proposition 3]) Consider the semi-dissipative Hamiltonian DAE (5) with
a regular, negative hypocoercive pencil λE−A, DAE-index at most two, non-trivial dynamics,
and consistent initial condition x(0). Then its (finite) HC-index is m HC ∈ N0, if and only if

‖S(t)‖E = 1 − cta + O(ta+1) for t → 0+

where c > 0 and a = 2m HC +1, and the propagator (semi-)norm pertaining to the evolution
of (5) reads

‖S(t)‖E := sup
‖x(0)‖E=1

for consistent x(0)

‖x(t)‖E t ≥ 0.

The anisotropic Oseen model (32) with constant b ∈ R
2 and b1 �= 0 is not hypocoercive,

see Proposition 2. This lack of hypocoercivity can also be verified by considering (32) with
b ∈ R

2 and b1 �= 0 as a partial differential-algebraic equation (PDAE), and bringing its
modal representation into staircase form:

Example 1 Consider the anisotropic Oseen model (32) with constant vector b ∈ R
2. Pro-

ceeding as in Sect. 3 yields with Pk from (27):

qE ẏk(t) = (qJk − qRk) yk(t) t ≥ 0

with qE = diag(1, 1, 0), qRk = diag(νk22, νk22, 0), and
qJk as in (26). The modes with k2 = 0

(and k1 �= 0) imply yk,1(t) = φk,1(t) k1/|k1| = 0, which is also a consistency condition on
the initial value φk,1(0), i.e. the divergence-free condition of these initial modes. Since the
corresponding qRk = 0, the modes with k = (k1, 0) are not hypocoercive. In fact, they are
purely oscillatory and have no damping.

Thismodal approach also shows that general solutions to (32) in H̃ convergewith rateμ =
ν to traveling waves like (36).

A.2 Review of Algorithm 3 from [7]

The purpose of Algorithm 3 from [7] is to construct an ansatz for strict Lyapunov functionals
for semi-dissipative Hamiltonian ODEs (4) with negative hypocoercive matrixA ∈ C

n×n . In
[5], explicit restrictions on ε j (relative to other parameters) were derived such that a suitable
choice of ε j turns the ansatz in Step 10 of Algorithm 3 into a strict Lyapunov functional.

Consider a semi-dissipative matrix A = J − R with finite HC-index, then Algorithm 3
reads as follows:

Algorithm 3 Construction of a strict Lyapunov functional

Input: 
0 := I, Ã0 := −J, B̃0 := R, j := 1
1: Construct an orthogonal projection 
̃ j onto ker

(
B̃ j−1B̃H

j−1

)
.

2: 
 j := 
̃ j
 j−1

3: while 
 j �= 0 do
4: Set Ã j := 
 j Ã j−1
 j , B̃ j := 
 j Ã j−1(
 j−1 − 
 j ).
5: j := j + 1
6: Construct an orthogonal projection 
̃ j onto ker

(
B̃ j−1B̃H

j−1

)
.

7: 
 j := 
̃ j
 j−1

8: end while
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9: m HC := j − 1
10: Set X := 
0 +∑m HC

j=1 ε j
(
Ã j−1
 j + 
 j ÃH

j−1

)
for sufficiently small ε j > 0.

Output: ‖ · ‖2X := 〈·,X·〉

Appendix B Auxiliary Results for the Infinite Dimensional ODE (55)

B.1 Quantitative estimate of � for the evolution generators from Proposition 4

Here we compute the HC-index of the systemmatrix (R̂− Ĵk1)2,2 in the modal dynamics (55)
using directly Definition 6, and derive a quantitative estimate for κ > 0 in (17). This is an
alternative approach to the proof given for Proposition 4.

Proposition 9 Let b1 = sin(x2) in (37). Then, for each k1 ∈ Z \ {0}, the system
matrix −Ak1 := (R̂ − Ĵk1)2,2 in the modal dynamics (55) has HC-index m HC = 1, and
satisfies (17) for some κ ≥ ν/100 > 0.

Proof We show that there exists κ > 0 such that (17) with m = 1, J = Ĵ2,2 := (̂Jk1)2,2

and R = R̂2,2 holds. Let x ∈ D(
(
R̂2,2

)1/2
) be a unit vector, and decompose x = v + w

where v ∈ (ker(
(
R̂2,2

)1/2
))⊥ andw ∈ ker(

(
R̂2,2

)1/2
). Define α := ‖v‖2, and then supposing

0 < α < 1, define the unit vector u := v/α and note that w/
√
1 − α2 = e0, cf. (56). We

now compute ∥∥∥(R̂2,2
)1/2

x
∥∥∥2 =

∥∥∥(R̂2,2
)1/2

v

∥∥∥2 = α2
∥∥∥(R̂2,2

)1/2
u
∥∥∥2 ≥ α2ν (B4)

using (56). In the same way, we find∥∥∥(R̂2,2
)1/2̂J∗

2,2x
∥∥∥2

=
〈(
R̂2,2

)1/2̂J∗
2,2(v + w),

(
R̂2,2

)1/2̂J∗
2,2(v + w)

〉
=
∥∥∥(R̂2,2

)1/2̂J∗
2,2v

∥∥∥2 + 2

(〈(

R̂2,2
)1/2̂J∗

2,2v,
(
R̂2,2

)1/2̂J∗
2,2w

〉)
+
∥∥∥(R̂2,2

)1/2̂J∗
2,2w

∥∥∥2
= α2

∥∥∥(R̂2,2
)1/2̂J∗

2,2u
∥∥∥2 + α

√
1 − α22


(〈(
R̂2,2

)1/2̂J∗
2,2u,

(
R̂2,2

)1/2̂J∗
2,2e0

〉)
+ (1 − α2)

∥∥∥(R̂2,2
)1/2̂J∗

2,2e0
∥∥∥2 .

(B5)
Step 1: We now estimate from below the three terms of (B5). For k1 �= 0, the operator

Ĵ2,2 := (̂Jk1)2,2 given in (59) can be written as

Ĵ2,2(k2, �) = 〈ek2 , Ĵ2,2e�〉 = k1
2

{
± k̂

|̂k| · �̂

|�̂| for � = k2 ± 1,

0 else,

where k̂ :=
[

k1
k2

]
, �̂ :=

[
k1
�

]
, (B6)

such that Ĵ2,2 = −̂J∗
2,2 and

(
(R̂2,2)

1/2̂J∗
2,2

)
(k2, �) = 〈ek2 , (R̂2,2)

1/2̂J∗
2,2e�〉 = √

ν
k1
2

{
±|k2| k̂

|̂k| · �̂

|�̂| , for � = k2 ∓ 1,

0 , else.
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In particular, we deduce

((
R̂2,2

)1/2̂J∗
2,2

)
e0(k2) = √

ν
k1
2

⎧⎨
⎩

± k21√
k21+1 |k1|

, for k2 = ±1 ,

0 , else,
(B7)

such that ∥∥∥(R̂2,2
)1/2̂J∗

2,2e0
∥∥∥2 = ν

2

k41
(k21 + 1)

. (B8a)

Continuing with the second term of (B5), and with k1 �= 0, we derive using u0 = 0 that

2

(〈(

R̂2,2
)1/2̂J∗

2,2u,
(
R̂2,2

)1/2̂J∗
2,2e0

〉)

= −ν
k21
4

(k21 + 2) k21

(k21 + 1) |k1|
√

k21 + 4
2
(
(u−2) + 
(u2)

)

≥ −ν
k21
4

(k21 + 2) k21

(k21 + 1) |k1|
√

k21 + 4
2
(|
(u−2)| + |
(u2)|

)
. (B8b)

For the first term of (B5), and with k1 �= 0, we compute using u0 = 0 that

∥∥(R̂2,2
)1/2̂J∗

2,2u
∥∥2 = ν

k21
4

∞∑
k2=−∞

∣∣∣− |k2| k̂

|̂k| · k̂−
|̂k−|uk2−1 + |k2| k̂

|̂k| · k̂+
|̂k+|uk2+1

∣∣∣2

= ν
k21
4

∞∑
k2=−∞

|k2|2
∣∣∣− k̂

|̂k| · k̂−
|̂k−|uk2−1 + k̂

|̂k| · k̂+
|̂k+|uk2+1

∣∣∣2

≥ ν
k21
4

∑
k2=−1,1

|k2|2
∣∣∣− k̂

|̂k| · k̂−
|̂k−|uk2−1 + k̂

|̂k| · k̂+
|̂k+|uk2+1

∣∣∣2

= ν
k21
4

(k21 + 2)2

(k21 + 1) (k21 + 4)

(
|u−2|2 + |u2|2

)

≥ ν
k21
4

(k21 + 2)2

(k21 + 1) (k21 + 4)

(
(
(u−2))

2 + (
(u2))
2
)

(B8c)

where

k̂ =
[

k1
k2

]
, k̂− :=

[
k1

k2 − 1

]
, k̂+ :=

[
k1

k2 + 1

]
.

Combining (B5) and (B8) yields∥∥∥(R̂2,2
)1/2̂J∗

2,2x
∥∥∥2

≥ α2ν
k21
4

(k21 + 2)2

(k21 + 1) (k21 + 4)

(
(
(u−2))

2 + (
(u2))
2
)

−α
√
1 − α2ν

k21
2

(k21 + 2) k21

(k21 + 1) |k1|
√

k21 + 4

(|
(u−2)| + |
(u2)|
)+ (1 − α2)

ν

2

k41
(k21 + 1)
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= ν
k21
4

(
α

k21 + 2√
k21 + 1

√
k21 + 4

|
(u−2)| −
√
1 − α2 |k1|√

k21 + 1

)2

+ν
k21
4

(
α

k21 + 2√
k21 + 1

√
k21 + 4

|
(u2)| −
√
1 − α2 |k1|√

k21 + 1

)2

≥ ν

4

(
α a|
(u−2)| −

√
1 − α2 b

)2 + ν

4

(
α a|
(u2)| −

√
1 − α2 b

)2
, (B9)

where

a := k21 + 2√
k21 + 1

√
k21 + 4

, b := |k1|√
k21 + 1

. (B10)

Together with (B4), for any x ∈ D(
(
R̂2,2

)1/2
) with ‖x‖ = 1, we obtain

1∑
j=0

∥∥∥(R̂2,2
)1/2

(̂J∗
2,2)

j x
∥∥∥2

≥ να2 + ν

4

(
α a|
(u−2)| −

√
1 − α2 b

)2 + ν

4

(
α a|
(u2)| −

√
1 − α2 b

)2
.

(B11)

Step 2: Finally, we show that there exists κ > 0 such that (17) holds with m = 1, J = Ĵ2,2 :=
(̂Jk1)2,2 and R = R̂2,2. To this end, we estimate the left-hand side of (B11) uniformly in
α ∈ [0, 1], |
(u2)| ∈ [0, 1], and k1 ∈ N: We observe that the function

b2 : [1,∞) → [0,∞) , k1 �→ k21
k21 + 1

, (B12)

is monotonically increasing such that b2(k1) ≥ b2(1) = 1/2 for k1 ∈ [1,∞). Then, we
estimate the expression on the left-hand side of (B11) as

1∑
j=0

∥∥∥(R̂2,2
)1/2

(̂J∗
2,2)

j x
∥∥∥2

≥ να2 + ν

4

(
α a|
(u−2)| −

√
1 − α2 b

)2 + ν

4

(
α a|
(u2)| −

√
1 − α2 b

)2
= ν

(
α2 + b2

4

(
α

a

b
|
(u−2)| −

√
1 − α2

)2 + b2

4

(
α

a

b
|
(u2)| −

√
1 − α2

)2)
≥ ν

(
α2 + 1

8

(
α

a

b
|
(u−2)| −

√
1 − α2

)2 + 1

8

(
α

a

b
|
(u2)| −

√
1 − α2

)2)
≥ ν

(
α2 + 1

8

(
α

a

b
|
(u2)| −

√
1 − α2

)2)
.

(B13)

We continue to derive a lower bound for the function

h : [0, 1] × [0, 1] → [0,∞) , (α, β) �→ α2 + 1

8

(
αβc −

√
1 − α2

)2
, (B14)
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where c := a/b > 0 and β replaces |
(u2)|. The function

c2 : [1,∞) → [0,∞) , k1 �→ a2

b2
= (k21 + 2)2

k21 (k21 + 4)
, (B15)

is monotonically decreasing such that 1 ≤ c2(k1) ≤ c2(1) = 9/5 for k1 ∈ [1,∞).
A straightforward computation shows that h has no extremum in the interior of [0, 1]2.

Therefore, the minimum of h = h(α, β) in (B14) is located at the boundary of (α, β) ∈
[0, 1] × [0, 1]: For β ∈ [0, 1], we derive

h(0, β) = 1

8
, h(1, β) = 1 + 1

8
c2β2 ≥ 1.

For α ∈ [0, 1], we derive

h(α, 0) = 1

8
(7α2 + 1) ≥ 1

8

and

h(α, 1) = α2 + 1

8

(
αc −

√
1 − α2

)2
. (B16)

To finish the estimate, we have to derive a lower bound for h(α, 1),α ∈ [0, 1]:We observe that
h(0, 1) = 1/8 and h(1, 1) = 1+ c2/8 ≥ 1. To find local extrema, we search for α∗ ∈ (0, 1)
such that

0 = ∂h

∂α
(α∗, 1) = α∗

4
(7 + c2)

>0

+ c

4

2α2∗ − 1√
1 − α2∗

<0 on (0,1/
√
2)

or,

α4∗ − α2∗ + c2

4c2 + (7 + c2)2
= 0.

Solving for α2∗ , we find the solutions

(α2∗)± = 1

2

(
1 ±

√
(7 + c2)2

4c2 + (7 + c2)2

)
∈ (0, 1).

Using the positive root of (α2∗)− yields

h
(√

(α2∗)−, 1
)

≥ (α2∗)− = 1

2

(
1 −

√
(7 + c2)2

4c2 + (7 + c2)2

)
> 0.

To derive a lower bound on h, which is uniform w.r.t. k1 ∈ [1,∞), we recall that 1 ≤
c2(k1) ≤ 2 for k1 ∈ [1,∞) and study the function

g : [1, 2] → [0,∞), γ �→ (7 + γ )2

4γ + (7 + γ )2
.

The function g = g(γ ) is monotone decreasing w.r.t. γ ∈ [1, 2] such that 81/89 = g(2) ≤
g(γ ) ≤ g(1) = 64/68. This implies that

(α2∗)− = 1

2

(
1 −

√
g(c2)

)
≥ 1

2

(
1 −√

g(1)
)

= 0.0149 . . . > 1/100.

123



Journal of Dynamics and Differential Equations

Altogether, we derive that

h(α, β) > 1/100 for (α, β) ∈ [0, 1] × [0, 1],
which implies the uniform lower bound κ ≥ ν/100 in (B13). ��

B.2 Proof of Lemma 5

Proof To prove uniform coercivity (w.r.t. k1 ∈ Z \ {0}) of the self-adjoint operator Qk1 :=
−(AH

k1
Xk1 + Xk1Ak1), we use Xk1 = I + εk1Y in (62) and Ak1 = (̂Jk1)2,2 − R̂2,2 to deduce

that

Qk1 = 2R̂2,2 − εk1(A
H
k1Y + YAk1).

Hence,Qk1 is the sum of the diagonal operator 2R̂2,2, and the compact operator−εk1(A
H
k1
Y+

YAk1) acting on the finite-dimensional subspace H5 := span{e−2, e−1, e0, e1, e2}. Since
〈x,Qk1x〉 = 〈x, 2R̂2,2x〉 ≥ 18‖x‖2 for all x ∈ (H5)

⊥, we are left to prove uniform coercivity
of Qk1

∣∣H5
, or equivalently, of the following 5 × 5-matrix: For α := εk1k1, the matrices Q

representing Qk1

∣∣H5
read

Q =

⎡
⎢⎢⎢⎢⎣

8ν 0 −αβ2 0 0
0 −2αβ1 + 2ν −αν/k1 2αβ1 0

−αβ2 −αν/k1 4αβ1 αν/k1 −αβ2

0 2αβ1 αν/k1 −2αβ1 + 2ν 0
0 0 −αβ2 0 8ν

⎤
⎥⎥⎥⎥⎦

where β1, β2 are functions given as

β1 : Z → R, k1 �→ k21

2
√

k21 + 1 |k1|
, and β2 : Z → R, k1 �→ k21 + 2

2
√

k21 + 4
√

k21 + 1
,

which satisfy

β1,min := 1

2
√
2

≤ β1(k1) <
1

2
for all k1 ∈ Z \ {0} , (B17)

and

β2,min := 3√
40

≤ β2(k1) ≤ 1

2
for all k1 ∈ Z \ {0} . (B18)

A Hermitian matrix is positive definite if and only if all of its leading principal minors are
positive definite [34]. Using permutations of rows and columns, it is evident that all principal
minors have to be positive definite. Indeed, we consider other (not only the leading) principal
minors to highlight restrictions on α.

The 1 × 1 minors are the diagonal elements of Q. The leading principal 1 × 1 minor
Q1,1 = 8ν > 0 is positive, since the diffusion coefficient ν > 0 is positive. The coefficient
Q2,2 = −2αβ1 + 2ν is positive if and only if αβ1 < ν for all k1 ∈ Z \ {0} which holds if

α ≤ 2ν for all k1 ∈ Z \ {0}, (B19)

due to (B17). The coefficientQ3,3 = 4αβ1 is positive if and only if 0 < αβ1 for all k1 ∈ Z\{0},
which holds if

0 < α for all k1 ∈ Z \ {0}, (B20)

due to (B17).
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The leading principal 2 × 2 minor detQ{1,2}×{1,2} = 8ν (−2αβ1 + 2ν) is positive, since
it is the product of two diagonal elements. The principal minor detQ{2,4}×{2,4} = (−2αβ1 +
2ν)2 − (2αβ1)

2 = 2ν (−4αβ1 +2ν) > 0, if and only if −4αβ1 +2ν > 0 for all k1 ∈ Z\ {0},
which is satisfied if

α ≤ ν for all k1 ∈ Z \ {0}, (B21)

due to (B17). The principal minor detQ{2,3}×{2,3} = α
(
8β1ν − α(8β2

1 + ν2/k21)
)
is positive

if and only if α < 8β1ν/(8β2
1 + ν2/k21) for all k1 ∈ Z \ {0}. This holds if

α < ν
2
√
2

2 + ν2
for all k1 ∈ Z \ {0}, (B22)

since 2
√
2/(2 + ν2) ≤ 8β1/(8β2

1 + ν2/k21) for all k1 ∈ Z \ {0} due to (B17).
The leading principal 3 × 3 minor detQ{1,2,3}×{1,2,3} = 2β1β

2
2α

3 − 2(32β2
1ν + β2

2ν +
4ν3/k21) α2 + 64β1ν

2α is positive if

β1β
2
2

=:a3
α2 −ν(32β2

1 + β2
2 + 4ν2)

=:b3
α + 32β1ν

2

=:c3
> 0

for all k1 ∈ Z \ {0}. This quadratic polynomial in α has two positive roots, since b3 < 0 and
c3 > 0. Moreover, since 4a3c3 is uniformly bounded away from 0, there exists a constant
α3,min > 0, independent of k1, which is a lower bound (uniformly in k1 ∈ Z \ {0}) for the
smaller root α

(3)
− := (−b3 −

√
b23 − 4a3c3)/(2a3). Consequently, for α ∈ (0, α3,min), the

leading principal 3 × 3 minor detQ{1,2,3}×{1,2,3} is positive for all k1 ∈ Z \ {0}.
The leading principal 4 × 4 minor detQ{1,2,3,4}×{1,2,3,4} = 8β1β

2
2να3 − 4(64β2

1ν
2 +

β2
2ν

2 + 8ν4/k21) α2 + 128β1ν
3α is positive if

2β1β
2
2

=:a4
α2 −ν(64β2

1 + β2
2 + 8ν2)

=:b4
α + 32β1ν

2

=:c4
> 0

for all k1 ∈ Z \ {0}. This quadratic polynomial in α has two positive roots, since b4 < 0 and
c4 > 0. Moreover, since 4a4c4 is uniformly bounded away from 0, there exists a constant
α4,min > 0, independent of k1, which is a lower bound (uniformly in k1 ∈ Z \ {0}) for the
smaller root α

(4)
− := (−b4 −

√
b24 − 4a4c4)/(2a4). Consequently, for α ∈ (0, α4,min), the

leading principal 4 × 4 minor detQ{1,2,3,4}×{1,2,3,4} is positive for all k1 ∈ Z \ {0}.
The (leading) principal 5 × 5 minor detQ = 128β1β

2
2ν

2α3 − 64(32β2
1ν

3 + β2
2ν

3 +
4ν5/k21) α2 + 1024β1ν

4α is positive if

2β1β
2
2

=:a5
α2 −ν(32β2

1 + β2
2 + 4ν2)

=:b5
α + 16β1ν

2

=:c5
> 0

for all k1 ∈ Z \ {0}. This quadratic polynomial in α has two positive roots, since b5 < 0 and
c5 > 0. Moreover, since 4a5c5 is uniformly bounded away from 0, there exists a constant
α5,min > 0, independent of k1, which is a lower bound (uniformly in k1 ∈ Z \ {0}) for the
smaller root α

(5)
− := (−b5 −

√
b25 − 4a5c5)/(2a5). Consequently, for α ∈ (0, α5,min), the

leading principal 5 × 5 minor detQ is positive for all k1 ∈ Z \ {0}.
Thus, we choose

0 < α < min
{
1/

√
2, ν, ν

2
√
2

2 + ν2
, α3,min, α4,min, α5,min

} =: αmin, (B23)
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due to the restriction |εk1 | < 1/
√
2 to ensure that Xk1 is positive definite and εk1 = α/k1,

and those conditions to ensure that Q = Qk1 is positive definite.
Finally we determine μk1 > 0 (bounded below, uniformly in k1 ∈ Z \ {0}) such that the

LMIs (64) hold. Let {λ1, λ2, . . . , λ5} be the eigenvalues of the positive definite Hermitian
matrixQ arranged in increasing order.We seek a lower bound on λ1. Note that the arithmetic–
geometric mean inequality yields

λ1 = detQ
λ2λ3λ4λ5

≥ (λ2 + λ3 + λ4 + λ5

4

)−4 detQ ≥ 256
detQ

(TrQ)4
.

Since TrQ = 20ν is independent of k1, we finally obtain the bound

λ1 ≥ 256
detQ

(TrQ)4

= (
128β1β

2
2ν

2α3 − 64(32β2
1ν

3 + β2
2ν

3 + 4ν5/k21) α2 + 1024β1ν
4α
) 256

(20ν)4

= (
2β1β

2
2α

2 − (32β2
1 + β2

2 + 4ν2/k21)να + 16β1ν
2)64ν2α 256

(20ν)4

>
(
2β1,minβ

2
2,minα

2 − (33/4 + 4ν2)να + 16β1,minν
2)α 64

54ν2
=: λ1,min(α) .

(B24)

Note that λ1,min > 0 for α > 0 small enough, and it is a lower bound on λ1, uniform in
k1 ∈ Z \ {0}. Then, for each admissible α from (B23) such that λ1,min(α) > 0, the uniform
estimates Q ≥ λ1,min(α)I and Xk1 ≤ (1 + √

2|εk1 |) I ≤ 2I using |εk1 | ≤ 1/
√
2 imply that

Q ≥ λ1,minI ≥ (λ1,min/2)Xk1 . Hence, the inequalities (64) hold for some constants μk1 > 0
which are uniformly (w.r.t. k1) bounded from below. One may choose, e.g., μk1 = λ1,min/4,
k1 �= 0. ��
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